Sample records for evolutionary programming method

  1. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less

  2. An evolutionary algorithm that constructs recurrent neural networks.

    PubMed

    Angeline, P J; Saunders, G M; Pollack, J B

    1994-01-01

    Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

  3. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  4. Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem

    NASA Astrophysics Data System (ADS)

    Tangpatiphan, Kritsana; Yokoyama, Akihiko

    This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.

  5. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  6. Evolutionary computation in zoology and ecology.

    PubMed

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  7. Evolutionary computation in zoology and ecology

    PubMed Central

    2017-01-01

    Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029

  8. Training the Millennial learner through experiential evolutionary scaffolding: implications for clinical supervision in graduate education programs.

    PubMed

    Venne, Vickie L; Coleman, Darrell

    2010-12-01

    They are the Millennials--Generation Y. Over the next few decades, they will be entering genetic counseling graduate training programs and the workforce. As a group, they are unlike previous youth generations in many ways, including the way they learn. Therefore, genetic counselors who teach and supervise need to understand the Millennials and explore new ways of teaching to ensure that the next cohort of genetic counselors has both skills and knowledge to represent our profession well. This paper will summarize the distinguishing traits of the Millennial generation as well as authentic learning and evolutionary scaffolding theories of learning that can enhance teaching and supervision. We will then use specific aspects of case preparation during clinical rotations to demonstrate how incorporating authentic learning theory into evolutionary scaffolding results in experiential evolutionary scaffolding, a method that potentially offers a more effective approach when teaching Millennials. We conclude with suggestions for future research.

  9. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  10. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  11. Evolutionary programming-based univector field navigation method for past mobile robots.

    PubMed

    Kim, Y J; Kim, J H; Kwon, D S

    2001-01-01

    Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.

  12. Detecting and Analyzing Genetic Recombination Using RDP4.

    PubMed

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  13. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  14. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  15. Application of time series discretization using evolutionary programming for classification of precancerous cervical lesions.

    PubMed

    Acosta-Mesa, Héctor-Gabriel; Rechy-Ramírez, Fernando; Mezura-Montes, Efrén; Cruz-Ramírez, Nicandro; Hernández Jiménez, Rodolfo

    2014-06-01

    In this work, we present a novel application of time series discretization using evolutionary programming for the classification of precancerous cervical lesions. The approach optimizes the number of intervals in which the length and amplitude of the time series should be compressed, preserving the important information for classification purposes. Using evolutionary programming, the search for a good discretization scheme is guided by a cost function which considers three criteria: the entropy regarding the classification, the complexity measured as the number of different strings needed to represent the complete data set, and the compression rate assessed as the length of the discrete representation. This discretization approach is evaluated using a time series data based on temporal patterns observed during a classical test used in cervical cancer detection; the classification accuracy reached by our method is compared with the well-known times series discretization algorithm SAX and the dimensionality reduction method PCA. Statistical analysis of the classification accuracy shows that the discrete representation is as efficient as the complete raw representation for the present application, reducing the dimensionality of the time series length by 97%. This representation is also very competitive in terms of classification accuracy when compared with similar approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    PubMed

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.

  17. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    PubMed Central

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926

  18. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  19. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Lonie, David C.; Zurek, Eva

    2011-02-01

    The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely available to the scientific community for use and collaboration under the GNU Public License. Running time: User dependent. The program runs until stopped by the user.

  20. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  1. Process Engineering with the Evolutionary Spiral Process Model. Version 01.00.06

    DTIC Science & Technology

    1994-01-01

    program . Process Definition and SPC-92041-CMC Provides methods for defining and Modeling Guidebook documenting processes so they can be analyzed, modified...and Program Evaluation and Review Technique (PERT) support the activity of developing a project schedule. A variety of automated tools, such as...keep the organiza- tion from becoming disoriented during the improvement program (Curtis, Kellner, and Over 1992). Analyzing and documenting how

  2. Improving Search Properties in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.; DeWeese, Scott

    1997-01-01

    With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also developed and implemented methods to use additional problem heuristics to fine-tune the searchable space, and to use typing information to further reduce the search space. Additional improvements have been proposed, but they are yet to be explored and implemented.

  3. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  4. Generative Representations for Automated Design of Robots

    NASA Technical Reports Server (NTRS)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance according to a fitness criterion to yield a figure of merit that is fed back into the evolutionary subprocess of the next iteration. In comparison with prior approaches to automated evolutionary design of robots, the use of generative representations offers two advantages: First, a generative representation enables the reuse of components in regular and hierarchical ways and thereby serves a systematic means of creating more complex modules out of simpler ones. Second, the evolved generative representation may capture intrinsic properties of the design problem, so that variations in the representations move through the design space more effectively than do equivalent variations in a nongenerative representation. This method has been demonstrated by using it to design some robots that move, variously, by walking, rolling, or sliding. Some of the robots were built (see figure). Although these robots are very simple, in comparison with robots designed by humans, their structures are more regular, modular, hierarchical, and complex than are those of evolved designs of comparable functionality synthesized by use of nongenerative representations.

  5. Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    PubMed Central

    Bryson, David M.; Ofria, Charles

    2013-01-01

    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. PMID:24376669

  6. The Simulation and Analysis of an Evolutionary Model of Deoxyribonucleic Acid (DNA).

    DTIC Science & Technology

    1983-09-01

    current interest in evolutionary biology . This section identifies the organization of the remainder of the paper. The second chapter reports the...the field of evolutionary biology . 77 APPENDIX 78 APPENDIX A PROGRAM SOURCE LISTING -79 PROGRAM SOURCE LISTING 00005 PROGRAM (COMPUTERANDOM MUTATIONS...34Some Theoretical Aspects of the Problem of Life Origin," Journal 2f Theoreical Biology : 13-23, 1975. 27. Chirpich, Thomas P. "Rates of Protein

  7. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  8. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  9. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  10. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  11. Honey bee-inspired algorithms for SNP haplotype reconstruction problem

    NASA Astrophysics Data System (ADS)

    PourkamaliAnaraki, Maryam; Sadeghi, Mehdi

    2016-03-01

    Reconstructing haplotypes from SNP fragments is an important problem in computational biology. There have been a lot of interests in this field because haplotypes have been shown to contain promising data for disease association research. It is proved that haplotype reconstruction in Minimum Error Correction model is an NP-hard problem. Therefore, several methods such as clustering techniques, evolutionary algorithms, neural networks and swarm intelligence approaches have been proposed in order to solve this problem in appropriate time. In this paper, we have focused on various evolutionary clustering techniques and try to find an efficient technique for solving haplotype reconstruction problem. It can be referred from our experiments that the clustering methods relying on the behaviour of honey bee colony in nature, specifically bees algorithm and artificial bee colony methods, are expected to result in more efficient solutions. An application program of the methods is available at the following link. http://www.bioinf.cs.ipm.ir/software/haprs/

  12. Optimal GENCO bidding strategy

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.

  13. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation.

    PubMed

    Cornuet, Jean-Marie; Santos, Filipe; Beaumont, Mark A; Robert, Christian P; Marin, Jean-Michel; Balding, David J; Guillemaud, Thomas; Estoup, Arnaud

    2008-12-01

    Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC. The software DIY ABC is freely available at http://www.montpellier.inra.fr/CBGP/diyabc.

  14. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  15. EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi; Wilensky, Uri

    2018-04-01

    Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.

  16. Ancient Wings: animating the evolution of butterfly wing patterns.

    PubMed

    Arbesman, Samuel; Enthoven, Leo; Monteiro, Antónia

    2003-10-01

    Character optimization methods can be used to reconstruct ancestral states at the internal nodes of phylogenetic trees. However, seldom are these ancestral states visualized collectively. Ancient Wings is a computer program that provides a novel method of visualizing the evolution of several morphological traits simultaneously. It allows users to visualize how the ventral hindwing pattern of 54 butterflies in the genus Bicyclus may have changed over time. By clicking on each of the nodes within the evolutionary tree, the user can see an animation of how wing size, eyespot size, and eyespot position relative the wing margin, have putatively evolved as a collective whole. Ancient Wings may be used as a pedagogical device as well as a research tool for hypothesis-generation in the fields of evolutionary, ecological, and developmental biology.

  17. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  18. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations.

    PubMed

    Liao, David; Tlsty, Thea D

    2014-08-06

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.

  19. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs

    PubMed Central

    Brodersen, Jakob; Seehausen, Ole

    2014-01-01

    While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys. PMID:25553061

  20. Punctuated equilibrium in the large-scale evolution of programming languages†

    PubMed Central

    Valverde, Sergi; Solé, Ricard V.

    2015-01-01

    The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. PMID:25994298

  1. Parallel Evolutionary Optimization for Neuromorphic Network Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Disney, Adam; Singh, Susheela

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impactmore » the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.« less

  2. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    PubMed Central

    Lemoine, Frédéric; Lespinet, Olivier; Labedan, Bernard

    2007-01-01

    Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD) using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs), and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene order conservation in prokaryotes whichever their taxonomic distance. Thus, our approach will make easy the rapid identification of POGS in the next few years as we are expecting to be inundated with thousands of completely sequenced microbial genomes. PMID:18047665

  3. The 1999 Crafoord Prize lectures. Neo-Lamarckian experimentalism in America: origins and consequences.

    PubMed

    Cook, G M

    1999-12-01

    The 1890s and the first decades of the twentieth century saw a vigorous debate about the mechanisms of evolutionary change. On one side, August Weismann defended the selectionist hypothesis; on the other, Herbert Spencer defended neo-Lamarckian theory. Supporters of Spencer, notably the American paleontologist and evolutionary theorist Henry Fairfield Osborn, recognized that the questions raised by Weismann and Spencer could only be settled experimentally. They called for the application of experimental methods, and the establishment of a new institution for the purpose of confirming the inheritance of acquired characters. To a great extent, the experimental program championed by Osborn and others was implemented and, although it failed to reveal soft inheritance and was soon eclipsed by Mendelian and chromosomal genetics, it did make significant and lasting contributions to evolutionary biology. Thus the importance of methodological and institutional innovation and theoretical pluralism to the progress of science is illustrated and underscored.

  4. Turbopump Performance Improved by Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2002-01-01

    The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.

  5. Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation

    PubMed Central

    Cornuet, Jean-Marie; Santos, Filipe; Beaumont, Mark A.; Robert, Christian P.; Marin, Jean-Michel; Balding, David J.; Guillemaud, Thomas; Estoup, Arnaud

    2008-01-01

    Summary: Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC. Availability: The software DIY ABC is freely available at http://www.montpellier.inra.fr/CBGP/diyabc. Contact: j.cornuet@imperial.ac.uk Supplementary information: Supplementary data are also available at http://www.montpellier.inra.fr/CBGP/diyabc PMID:18842597

  6. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  7. Genetic Network Programming with Reconstructed Individuals

    NASA Astrophysics Data System (ADS)

    Ye, Fengming; Mabu, Shingo; Wang, Lutao; Eto, Shinji; Hirasawa, Kotaro

    A lot of research on evolutionary computation has been done and some significant classical methods such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary Programming (EP), and Evolution Strategies (ES) have been studied. Recently, a new approach named Genetic Network Programming (GNP) has been proposed. GNP can evolve itself and find the optimal solution. It is based on the idea of Genetic Algorithm and uses the data structure of directed graphs. Many papers have demonstrated that GNP can deal with complex problems in the dynamic environments very efficiently and effectively. As a result, recently, GNP is getting more and more attentions and is used in many different areas such as data mining, extracting trading rules of stock markets, elevator supervised control systems, etc., and GNP has obtained some outstanding results. Focusing on the GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP-RI). The aim of GNP-RI is to balance the exploitation and exploration of GNP, that is, to strengthen the exploitation ability by using the exploited information extensively during the evolution process of GNP and finally obtain better performances than that of GNP. In the proposed method, the worse individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worse individuals mimics the maturing phenomenon in nature, where bad individuals can become smarter after receiving a good education. In this paper, GNP-RI is applied to the tile-world problem which is an excellent bench mark for evaluating the proposed architecture. The performance of GNP-RI is compared with that of the conventional GNP. The simulation results show some advantages of GNP-RI demonstrating its superiority over the conventional GNPs.

  8. Evolutionary effects of alternative artificial propagation programs: implications for viability of endangered anadromous salmonids

    PubMed Central

    McClure, Michelle M; Utter, Fred M; Baldwin, Casey; Carmichael, Richard W; Hassemer, Peter F; Howell, Philip J; Spruell, Paul; Cooney, Thomas D; Schaller, Howard A; Petrosky, Charles E

    2008-01-01

    Most hatchery programs for anadromous salmonids have been initiated to increase the numbers of fish for harvest, to mitigate for habitat losses, or to increase abundance in populations at low abundance. However, the manner in which these programs are implemented can have significant impacts on the evolutionary trajectory and long-term viability of populations. In this paper, we review the potential benefits and risks of hatchery programs relative to the conservation of species listed under the US Endangered Species Act. To illustrate, we present the range of potential effects within a population as well as among populations of Chinook salmon (Oncorhynchus tshawytscha) where changes to major hatchery programs are being considered. We apply evolutionary considerations emerging from these examples to suggest broader principles for hatchery uses that are consistent with conservation goals. We conclude that because of the evolutionary risks posed by artificial propagation programs, they should not be viewed as a substitute for addressing other limiting factors that prevent achieving viability. At the population level, artificial propagation programs that are implemented as a short-term approach to avoid imminent extinction are more likely to achieve long-term population viability than approaches that rely on long-term supplementation. In addition, artificial propagation programs can have out-of-population impacts that should be considered in conservation planning. PMID:25567637

  9. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  10. A phase one AR/C system design

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises

    1991-01-01

    The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.

  11. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  12. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  13. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  14. Punctuated equilibrium in the large-scale evolution of programming languages.

    PubMed

    Valverde, Sergi; Solé, Ricard V

    2015-06-06

    The analogies and differences between biological and cultural evolution have been explored by evolutionary biologists, historians, engineers and linguists alike. Two well-known domains of cultural change are language and technology. Both share some traits relating the evolution of species, but technological change is very difficult to study. A major challenge in our way towards a scientific theory of technological evolution is how to properly define evolutionary trees or clades and how to weight the role played by horizontal transfer of information. Here, we study the large-scale historical development of programming languages, which have deeply marked social and technological advances in the last half century. We analyse their historical connections using network theory and reconstructed phylogenetic networks. Using both data analysis and network modelling, it is shown that their evolution is highly uneven, marked by innovation events where new languages are created out of improved combinations of different structural components belonging to previous languages. These radiation events occur in a bursty pattern and are tied to novel technological and social niches. The method can be extrapolated to other systems and consistently captures the major classes of languages and the widespread horizontal design exchanges, revealing a punctuated evolutionary path. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Evolutionary Theory in Undergraduate Biology Programs at Lebanese Universities: A Comparative Study

    ERIC Educational Resources Information Center

    Vlaardingerbroek, Barend; Hachem-El-Masri, Yasmine

    2006-01-01

    The purpose of this study was to gauge the profile of evolutionary theory in Lebanese undergraduate biology programs. The research focused mainly on the views of university biology department heads, given that they are the people who exercise the most direct influence over their departments' ethos. An Australasian sample was chosen as a reference…

  16. Evolutionary trade-offs in kidney injury and repair.

    PubMed

    Lei, Yutian; Anders, Hans-Joachim

    2017-11-01

    Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.

  17. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  18. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing.

    PubMed

    Catania, Francesco; Schmitz, Jürgen

    2015-01-01

    Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences. © 2015 Wiley Periodicals, Inc.

  19. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  20. Hybrid Genetic Agorithms and Line Search Method for Industrial Production Planning with Non-Linear Fitness Function

    NASA Astrophysics Data System (ADS)

    Vasant, Pandian; Barsoum, Nader

    2008-10-01

    Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.

  1. Using traveling salesman problem algorithms for evolutionary tree construction.

    PubMed

    Korostensky, C; Gonnet, G H

    2000-07-01

    The construction of evolutionary trees is one of the major problems in computational biology, mainly due to its complexity. We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.

  2. Optimal lunar soft landing trajectories using taboo evolutionary programming

    NASA Astrophysics Data System (ADS)

    Mutyalarao, M.; Raj, M. Xavier James

    A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel consumption. The results are compared with the available results in literature shows that the solution of present algorithm is better than some of the existing algorithms. Keywords: soft landing, trajectory optimization, evolutionary programming, control parameters, Pontrygen principle.

  3. A comparative study of corrugated horn design by evolutionary techniques

    NASA Technical Reports Server (NTRS)

    Hoorfar, A.

    2003-01-01

    Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.

  4. A comparison of fitness-case sampling methods for genetic programming

    NASA Astrophysics Data System (ADS)

    Martínez, Yuliana; Naredo, Enrique; Trujillo, Leonardo; Legrand, Pierrick; López, Uriel

    2017-11-01

    Genetic programming (GP) is an evolutionary computation paradigm for automatic program induction. GP has produced impressive results but it still needs to overcome some practical limitations, particularly its high computational cost, overfitting and excessive code growth. Recently, many researchers have proposed fitness-case sampling methods to overcome some of these problems, with mixed results in several limited tests. This paper presents an extensive comparative study of four fitness-case sampling methods, namely: Interleaved Sampling, Random Interleaved Sampling, Lexicase Selection and Keep-Worst Interleaved Sampling. The algorithms are compared on 11 symbolic regression problems and 11 supervised classification problems, using 10 synthetic benchmarks and 12 real-world data-sets. They are evaluated based on test performance, overfitting and average program size, comparing them with a standard GP search. Comparisons are carried out using non-parametric multigroup tests and post hoc pairwise statistical tests. The experimental results suggest that fitness-case sampling methods are particularly useful for difficult real-world symbolic regression problems, improving performance, reducing overfitting and limiting code growth. On the other hand, it seems that fitness-case sampling cannot improve upon GP performance when considering supervised binary classification.

  5. Application of evolutionary computation in ECAD problems

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hyun; Hwang, Seung H.

    1998-10-01

    Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.

  6. A Bright Future for Evolutionary Methods in Drug Design.

    PubMed

    Le, Tu C; Winkler, David A

    2015-08-01

    Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki

    Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.

  8. Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.

    PubMed

    Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke

    2016-01-01

    Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.

  9. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  10. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  11. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.

  12. Bistability of Evolutionary Stable Vaccination Strategies in the Reinfection SIRI Model.

    PubMed

    Martins, José; Pinto, Alberto

    2017-04-01

    We use the reinfection SIRI epidemiological model to analyze the impact of education programs and vaccine scares on individuals decisions to vaccinate or not. The presence of the reinfection provokes the novelty of the existence of three Nash equilibria for the same level of the morbidity relative risk instead of a single Nash equilibrium as occurs in the SIR model studied by Bauch and Earn (PNAS 101:13391-13394, 2004). The existence of three Nash equilibria, with two of them being evolutionary stable, introduces two scenarios with relevant and opposite features for the same level of the morbidity relative risk: the low-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a low probability; and the high-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a high probability. We introduce the evolutionary vaccination dynamics for the SIRI model and we prove that it is bistable. The bistability of the evolutionary dynamics indicates that the damage provoked by false scares on the vaccination perceived morbidity risks can be much higher and much more persistent than in the SIR model. Furthermore, the vaccination education programs to be efficient they need to implement a mechanism to suddenly increase the vaccination coverage level.

  13. Evolutionary neural networks for anomaly detection based on the behavior of a program.

    PubMed

    Han, Sang-Jun; Cho, Sung-Bae

    2006-06-01

    The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.

  14. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  15. Comparing genomes with rearrangements and segmental duplications.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  16. A graph-based evolutionary algorithm: Genetic Network Programming (GNP) and its extension using reinforcement learning.

    PubMed

    Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu

    2007-01-01

    This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.

  17. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  18. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  19. Knowledge discovery with classification rules in a cardiovascular dataset.

    PubMed

    Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan

    2005-12-01

    In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.

  20. MrBayes tgMC3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method.

    PubMed

    Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng

    2016-01-01

    MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.

  1. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  2. Space industrialization. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Potential goals for space industrialization were identified, and evolutionary program options for the realization of those goals were developed and assessed. Program support demands were defined, and recommendations were made in relation to program implementation.

  3. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    NASA Astrophysics Data System (ADS)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural-/cognitive-focused learning goals. Chapter 5 explores the cognitive effects that "teaching evolution" has on the learner. This chapter examines the effects that a course on evolutionary theory has on university undergraduate students in understanding and applying evolution and how learning the evolutionary toolkit affects critical thinking skills and domain transfer of knowledge. The results demonstrate that a single course on evolutionary theory increases students' acceptance and understanding of evolution and science, and, in effect, increases critical thinking performance.

  4. Understanding Evolutionary Change within the Framework of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff

    2007-01-01

    This paper focuses on a learning strategy designed to overcome students' difficulty in understanding evolutionary change within the framework of geological time. Incorporated into the learning program "From Dinosaurs to Darwin: Evolution from the Perspective of Time," this strategy consists of four scaffolded investigations in which…

  5. Establishment of the mathematical model for diagnosing the engine valve faults by genetic programming

    NASA Astrophysics Data System (ADS)

    Yang, Wen-Xian

    2006-05-01

    Available machine fault diagnostic methods show unsatisfactory performances on both on-line and intelligent analyses because their operations involve intensive calculations and are labour intensive. Aiming at improving this situation, this paper describes the development of an intelligent approach by using the Genetic Programming (abbreviated as GP) method. Attributed to the simple calculation of the mathematical model being constructed, different kinds of machine faults may be diagnosed correctly and quickly. Moreover, human input is significantly reduced in the process of fault diagnosis. The effectiveness of the proposed strategy is validated by an illustrative example, in which three kinds of valve states inherent in a six-cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance and gas leakage faults, are identified. In the example, 22 mathematical functions have been specially designed and 8 easily obtained signal features are used to construct the diagnostic model. Different from existing GPs, the diagnostic tree used in the algorithm is constructed in an intelligent way by applying a power-weight coefficient to each feature. The power-weight coefficients vary adaptively between 0 and 1 during the evolutionary process. Moreover, different evolutionary strategies are employed, respectively for selecting the diagnostic features and functions, so that the mathematical functions are sufficiently utilized and in the meantime, the repeated use of signal features may be fully avoided. The experimental results are illustrated diagrammatically in the following sections.

  6. Literary study and evolutionary theory : A review essay.

    PubMed

    Carroll, J

    1998-09-01

    Several recent books have claimed to integrate literary study with evolutionary biology. All of the books here considered, except Robert Storey's, adopt conceptions of evolutionary theory that are in some way marginal to the Darwinian adaptationist program. All the works attempt to connect evolutionary study with various other disciplines or methodologies: for example, with cultural anthropology, cognitive psychology, the psychology of emotion, neurobiology, chaos theory, or structuralist linguistics. No empirical paradigm has yet been established for this field, but important steps have been taken, especially by Storey, in formulating basic principles, identifying appropriate disciplinary connections, and marking out lines of inquiry. Reciprocal efforts are needed from biologists and social scientists.

  7. Clustering Genes of Common Evolutionary History

    PubMed Central

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  8. Parallel evolutionary computation in bioinformatics applications.

    PubMed

    Pinho, Jorge; Sobral, João Luis; Rocha, Miguel

    2013-05-01

    A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less

  10. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  11. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  12. Quantification of complex modular architecture in plants.

    PubMed

    Reeb, Catherine; Kaandorp, Jaap; Jansson, Fredrik; Puillandre, Nicolas; Dubuisson, Jean-Yves; Cornette, Raphaël; Jabbour, Florian; Coudert, Yoan; Patiño, Jairo; Flot, Jean-François; Vanderpoorten, Alain

    2018-04-01

    Morphometrics, the assignment of quantities to biological shapes, is a powerful tool to address taxonomic, evolutionary, functional and developmental questions. We propose a novel method for shape quantification of complex modular architecture in thalloid plants, whose extremely reduced morphologies, combined with the lack of a formal framework for thallus description, have long rendered taxonomic and evolutionary studies extremely challenging. Using graph theory, thalli are described as hierarchical series of nodes and edges, allowing for accurate, homologous and repeatable measurements of widths, lengths and angles. The computer program MorphoSnake was developed to extract the skeleton and contours of a thallus and automatically acquire, at each level of organization, width, length, angle and sinuosity measurements. Through the quantification of leaf architecture in Hymenophyllum ferns (Polypodiopsida) and a fully worked example of integrative taxonomy in the taxonomically challenging thalloid liverwort genus Riccardia, we show that MorphoSnake is applicable to all ramified plants. This new possibility of acquiring large numbers of quantitative traits in plants with complex modular architectures opens new perspectives of applications, from the development of rapid species identification tools to evolutionary analyses of adaptive plasticity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  14. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  15. A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory

    PubMed Central

    Jiang, Xiaowei; Ji, Yanjie; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455

  16. A study of driver's route choice behavior based on evolutionary game theory.

    PubMed

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  17. Potential applications of skip SMV with thrust engine

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Savvaris, Al

    2016-11-01

    This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the path and boundary constraints.

  18. Effective Technology Insertion: The Key to Evolutionary Acquisition Program

    DTIC Science & Technology

    2004-05-03

    Army War College, 7 April 2003. 47Orazia A. Di Marca ; Rejto, Stephen B. Rejto and Thomas Gomez, “ Open System Design and Evolutionary Acquisition...to Military Applications-Report No. D-2002-107. 14 June 2002. Di Marca , Orazia A.; Rejto, StephenB., and Gomez, Thomas, “ Open System Design and

  19. Applications of genetic programming in cancer research.

    PubMed

    Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M

    2009-02-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.

  20. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins

    PubMed Central

    Knudsen, Bjarne; Miyamoto, Michael M.

    2001-01-01

    Changes in protein function can lead to changes in the selection acting on specific residues. This can often be detected as evolutionary rate changes at the sites in question. A maximum-likelihood method for detecting evolutionary rate shifts at specific protein positions is presented. The method determines significance values of the rate differences to give a sound statistical foundation for the conclusions drawn from the analyses. A statistical test for detecting slowly evolving sites is also described. The methods are applied to a set of Myc proteins for the identification of both conserved sites and those with changing evolutionary rates. Those positions with conserved and changing rates are related to the structures and functions of their proteins. The results are compared with an earlier Bayesian method, thereby highlighting the advantages of the new likelihood ratio tests. PMID:11734650

  1. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    PubMed

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  2. OAST Space Theme Workshop. Volume 3: Working group summary. 4: Software (E-4). A. Summary. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Only a few efforts are currently underway to develop an adequate technology base for the various themes. Particular attention must be given to software commonality and evolutionary capability, to increased system integrity and autonomy; and to improved communications among the program users, the program developers, and the programs themselves. There is a need for quantum improvement in software development methods and increasing the awareness of software by all concerned. Major thrusts identified include: (1) data and systems management; (2) software technology for autonomous systems; (3) technology and methods for improving the software development process; (4) advances related to systems of software elements including their architecture, their attributes as systems, and their interfaces with users and other systems; and (5) applications of software including both the basic algorithms used in a number of applications and the software specific to a particular theme or discipline area. The impact of each theme on software is assessed.

  3. DE and NLP Based QPLS Algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo

    As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.

  4. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  5. An Improved Evolutionary Programming with Voting and Elitist Dispersal Scheme

    NASA Astrophysics Data System (ADS)

    Maity, Sayan; Gunjan, Kumar; Das, Swagatam

    Although initially conceived for evolving finite state machines, Evolutionary Programming (EP), in its present form, is largely used as a powerful real parameter optimizer. For function optimization, EP mainly relies on its mutation operators. Over past few years several mutation operators have been proposed to improve the performance of EP on a wide variety of numerical benchmarks. However, unlike real-coded GAs, there has been no fitness-induced bias in parent selection for mutation in EP. That means the i-th population member is selected deterministically for mutation and creation of the i-th offspring in each generation. In this article we present an improved EP variant called Evolutionary Programming with Voting and Elitist Dispersal (EPVE). The scheme encompasses a voting process which not only gives importance to best solutions but also consider those solutions which are converging fast. By introducing Elitist Dispersal Scheme we maintain the elitism by keeping the potential solutions intact and other solutions are perturbed accordingly, so that those come out of the local minima. By applying these two techniques we can be able to explore those regions which have not been explored so far that may contain optima. Comparison with the recent and best-known versions of EP over 25 benchmark functions from the CEC (Congress on Evolutionary Computation) 2005 test-suite for real parameter optimization reflects the superiority of the new scheme in terms of final accuracy, speed, and robustness.

  6. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood.

    PubMed

    Kim, Tane; Hao, Weilong

    2014-09-27

    The study of discrete characters is crucial for the understanding of evolutionary processes. Even though great advances have been made in the analysis of nucleotide sequences, computer programs for non-DNA discrete characters are often dedicated to specific analyses and lack flexibility. Discrete characters often have different transition rate matrices, variable rates among sites and sometimes contain unobservable states. To obtain the ability to accurately estimate a variety of discrete characters, programs with sophisticated methodologies and flexible settings are desired. DiscML performs maximum likelihood estimation for evolutionary rates of discrete characters on a provided phylogeny with the options that correct for unobservable data, rate variations, and unknown prior root probabilities from the empirical data. It gives users options to customize the instantaneous transition rate matrices, or to choose pre-determined matrices from models such as birth-and-death (BD), birth-death-and-innovation (BDI), equal rates (ER), symmetric (SYM), general time-reversible (GTR) and all rates different (ARD). Moreover, we show application examples of DiscML on gene family data and on intron presence/absence data. DiscML was developed as a unified R program for estimating evolutionary rates of discrete characters with no restriction on the number of character states, and with flexibility to use different transition models. DiscML is ideal for the analyses of binary (1s/0s) patterns, multi-gene families, and multistate discrete morphological characteristics.

  7. Structural technology challenges for evolutionary growth of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doiron, Harold H.

    1990-01-01

    A proposed evolutionary growth scenario for Space Station Freedom was defined recently by a NASA task force created to study requirements for a Human Exploration Initiative. The study was an initial response to President Bush's July 20, 1989 proposal to begin a long range program of human exploration of space including a permanently manned lunar base and a manned mission to Mars. This growth scenario evolves Freedom into a critical transportation node to support lunar and Mars missions. The growth scenario begins with the Assembly Complete configuration and adds structure, power, and facilities to support a Lunar Transfer Vehicle (LTV) verification flight. Evolutionary growth continues to support expendable, then reusable LTV operations, and finally, LTV and Mars Transfer Vehicle (MTV) operations. The significant structural growth and additional operations creating new loading conditions will present new technological and structural design challenges in addition to the considerable technology requirements of the baseline Space Station Freedom program. Several structural design and technology issues of the baseline program are reviewed and related technology development required by the growth scenario is identified.

  8. The Meaningful Roles Intervention: An Evolutionary Approach to Reducing Bullying and Increasing Prosocial Behavior.

    PubMed

    Ellis, Bruce J; Volk, Anthony A; Gonzalez, Jose-Michael; Embry, Dennis D

    2016-12-01

    Bullying is a problem that affects adolescents worldwide. Efforts to prevent bullying have been moderately successful at best, or iatrogenic at worst. We offer an explanation for this limited success by employing an evolutionary-psychological perspective to analyze antibullying interventions. We argue that bullying is a goal-directed behavior that is sensitive to benefits as well as costs, and that interventions must address these benefits. This perspective led us to develop a novel antibullying intervention, Meaningful Roles, which offers bullies prosocial alternatives-meaningful roles and responsibilities implemented through a school jobs program and reinforced through peer-to-peer praise notes-that effectively meet the same status goals as bullying behavior. We describe this new intervention and how its theoretical evolutionary roots may be applicable to other intervention programs. © 2015 The Authors. Journal of Research on Adolescence © 2015 Society for Research on Adolescence.

  9. Efficient fractal-based mutation in evolutionary algorithms from iterated function systems

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.

    2018-03-01

    In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.

  10. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed

    Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  11. Analysis of optimality in natural and perturbed metabolic networks

    PubMed Central

    Segrè, Daniel; Vitkup, Dennis; Church, George M.

    2002-01-01

    An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism. PMID:12415116

  12. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles.

    PubMed

    Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald

    2014-04-01

    Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

  14. EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes

    ERIC Educational Resources Information Center

    Wagh, Aditi; Wilensky, Uri

    2018-01-01

    Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience…

  15. A novel BLAST-Based Relative Distance (BBRD) method can effectively group members of protein arginine methyltransferases and suggest their evolutionary relationship.

    PubMed

    Wang, Yi-Chun; Wang, Jing-Doo; Chen, Chin-Han; Chen, Yi-Wen; Li, Chuan

    2015-03-01

    We developed a novel BLAST-Based Relative Distance (BBRD) method by Pearson's correlation coefficient to avoid the problems of tedious multiple sequence alignment and complicated outgroup selection. We showed its application on reconstructing reliable phylogeny for nucleotide and protein sequences as exemplified by the fmr-1 gene and dihydrolipoamide dehydrogenase, respectively. We then used BBRD to resolve 124 protein arginine methyltransferases (PRMTs) that are homologues of nine mammalian PRMTs. The tree placed the uncharacterized PRMT9 with PRMT7 in the same clade, outside of all the Type I PRMTs including PRMT1 and its vertebrate paralogue PRMT8, PRMT3, PRMT6, PRMT2 and PRMT4. The PRMT7/9 branch then connects with the type II PRMT5. Some non-vertebrates contain different PRMTs without high sequence homology with the mammalian PRMTs. For example, in the case of Drosophila arginine methyltransferase (DART) and Trypanosoma brucei methyltransferases (TbPRMTs) in the analyses, the BBRD program grouped them with specific clades and thus suggested their evolutionary relationships. The BBRD method thus provided a great tool to construct a reliable tree for members of protein families through evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Eco-Evo PVAs: Incorporating Eco-Evolutionary Processes into Population Viability Models

    EPA Science Inventory

    We synthesize how advances in computational methods and population genomics can be combined within an Ecological-Evolutionary (Eco-Evo) PVA model. Eco-Evo PVA models are powerful new tools for understanding the influence of evolutionary processes on plant and animal population pe...

  17. Manager’s Guide to Technology Transition in an Evolutionary Acquisition Environment

    DTIC Science & Technology

    2005-06-01

    program managers, product managers, staffs, and organizations that manage the development , procurement, production, and fielding of systems...rapidly advancing technologies. Technology transitions can occur during the development of systems, or even after a system has been in the field ...Documentation Evolutionary acquisition is an acquisition strategy that defines, develops , produces or acquires, and fields an initial hardware or software

  18. A hybrid neural learning algorithm using evolutionary learning and derivative free local search method.

    PubMed

    Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil

    2006-06-01

    In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.

  19. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  20. The evolutionary psychology of hunger.

    PubMed

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    PubMed

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  3. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function.

    PubMed

    Yang, Zheng Rong; Thomson, Rebecca; Hodgman, T Charles; Dry, Jonathan; Doyle, Austin K; Narayanan, Ajit; Wu, XiKun

    2003-11-01

    This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is superior to C5, a conventional method for deriving decision trees.

  4. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. The Evolution of Cartography Graduate Programs and the Development of New Graduate Programs in Cartography: An Assessment of Models.

    ERIC Educational Resources Information Center

    Steinke, Theodore R.

    This paper traces the historical development of cartography graduate programs, establishes an evolutionary model, and evaluates the model to determine if it has some utility today for the development of programs capable of producing highly skilled cartographers. Cartography is defined to include traditional cartography, computer cartography,…

  6. Evolving cell models for systems and synthetic biology.

    PubMed

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  7. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.

    PubMed

    Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F

    2015-01-01

    The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.

  8. Practical advantages of evolutionary computation

    NASA Astrophysics Data System (ADS)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  9. Mean protein evolutionary distance: a method for comparative protein evolution and its application.

    PubMed

    Wise, Michael J

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins' roles. Different species' proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz.

  10. Mean Protein Evolutionary Distance: A Method for Comparative Protein Evolution and Its Application

    PubMed Central

    Wise, Michael J.

    2013-01-01

    Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED), measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins’ roles. Different species’ proteomes can also be compared because the results, consistent across virus subtypes, concisely reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus, human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7 (hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus) emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.edu.au/~michaelw/ftp/src/meaped.tar.gz. PMID:23613826

  11. Nemo: an evolutionary and population genetics programming framework.

    PubMed

    Guillaume, Frédéric; Rougemont, Jacques

    2006-10-15

    Nemo is an individual-based, genetically explicit and stochastic population computer program for the simulation of population genetics and life-history trait evolution in a metapopulation context. It comes as both a C++ programming framework and an executable program file. Its object-oriented programming design gives it the flexibility and extensibility needed to implement a large variety of forward-time evolutionary models. It provides developers with abstract models allowing them to implement their own life-history traits and life-cycle events. Nemo offers a large panel of population models, from the Island model to lattice models with demographic or environmental stochasticity and a variety of already implemented traits (deleterious mutations, neutral markers and more), life-cycle events (mating, dispersal, aging, selection, etc.) and output operators for saving data and statistics. It runs on all major computer platforms including parallel computing environments. The source code, binaries and documentation are available under the GNU General Public License at http://nemo2.sourceforge.net.

  12. A novel metaheuristic for continuous optimization problems: Virus optimization algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue

    2016-01-01

    A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.

  13. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2011-08-11

    Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

  14. Adapting legume crops to climate change using genomic approaches.

    PubMed

    Mousavi-Derazmahalleh, Mahsa; Bayer, Philipp E; Hane, James K; Valliyodan, Babu; Nguyen, Henry T; Nelson, Matthew N; Erskine, William; Varshney, Rajeev K; Papa, Roberto; Edwards, David

    2018-03-30

    Our agricultural system and hence food security is threatened by combination of events, such as increasing population, the impacts of climate change, and the need to a more sustainable development. Evolutionary adaptation may help some species to overcome environmental changes through new selection pressures driven by climate change. However, success of evolutionary adaptation is dependent on various factors, one of which is the extent of genetic variation available within species. Genomic approaches provide an exceptional opportunity to identify genetic variation that can be employed in crop improvement programs. In this review, we illustrate some of the routinely used genomics-based methods as well as recent breakthroughs, which facilitate assessment of genetic variation and discovery of adaptive genes in legumes. Although additional information is needed, the current utility of selection tools indicate a robust ability to utilize existing variation among legumes to address the challenges of climate uncertainty. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  15. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  16. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedbackmore » during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.« less

  17. How Cultural Evolutionary Theory Can Inform Social Psychology and Vice Versa

    ERIC Educational Resources Information Center

    Mesoudi, Alex

    2009-01-01

    Cultural evolutionary theory is an interdisciplinary field in which human culture is viewed as a Darwinian process of variation, competition, and inheritance, and the tools, methods, and theories developed by evolutionary biologists to study genetic evolution are adapted to study cultural change. It is argued here that an integration of the…

  18. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed Central

    Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors’ workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems. PMID:28931033

  19. Evolutionary Losses? The Growth of Graduate Programs at Undergraduate Colleges.

    ERIC Educational Resources Information Center

    McCormick, Alexander C.; Staklis, Sandra

    This study examined the addition and expansion of graduate programs at primarily undergraduate colleges. The primary approach of the study was quantitative, consisting of descriptive and multivariate analysis of master's degree programs at colleges that were classified in 1994 as Baccalaureate Colleges. Data came from the 1994 and 2000 Carnegie…

  20. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower

    PubMed Central

    Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.

    2010-01-01

    The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731

  1. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower.

    PubMed

    Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S

    2010-12-28

    The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.

  2. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    PubMed Central

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  3. From genes to ecosystems: Measuring evolutionary diversity and community structure with Forest Inventory and Analysis (FIA) data

    Treesearch

    Kevin M. Potter

    2009-01-01

    Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...

  4. The contribution of statistical physics to evolutionary biology.

    PubMed

    de Vladar, Harold P; Barton, Nicholas H

    2011-08-01

    Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. Here, we discuss aspects of population genetics that have embraced methods from physics: non-equilibrium statistical mechanics, travelling waves and Monte-Carlo methods, among others, have been used to study polygenic evolution, rates of adaptation and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics; for example, by following the distribution of paths taken by a population through time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Antibody Epitope Analysis to Investigate Folded Structure, Allosteric Conformation, and Evolutionary Lineage of Proteins.

    PubMed

    Wong, Sienna; Jin, J-P

    2017-01-01

    Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Automatic programming via iterated local search for dynamic job shop scheduling.

    PubMed

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2015-01-01

    Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.

  7. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  8. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.

    PubMed

    Pitiot, Alain; Toga, Arthur W; Thompson, Paul M

    2002-08-01

    This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.

  10. From the "Modern Synthesis" to cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his research program for a synthesis of evolutionary and developmental biology.

    PubMed

    Levit, Georgy S; Hossfeld, Uwe; Olsson, Lennart

    2006-03-15

    Ivan I. Schmalhausen was one of the central figures in the Russian development of the "Modern Synthesis" in evolutionary biology. He is widely cited internationally even today. Schmalhausen developed the main principles of his theory facing the danger of death in the totalitarian Soviet Union. His great services to evolutionary and theoretical biology are indisputable. However, the received view of Schmalhausen's contributions to evolutionary biology makes an unbiased reading of his texts difficult. Here we show that taking all of his works into consideration (including those only available in Russian) paints a much more dynamic and exciting picture of what he tried to achieve. Schmalhausen pioneered the integration of a developmental perspective into evolutionary thinking. A main tool for achieving this was his approach to living objects as complex multi-level self-regulating systems. Schmalhausen put enormous effort into bringing this idea into fruition during the final stages of his career by combining evolutionary theory with cybernetics. His results and ideas remain thought-provoking, and his texts are of more than just historical interest. Copyright 2006 Wiley-Liss, Inc.

  11. Consciousness and the natural method.

    PubMed

    Flanagan, O

    1995-09-01

    'Consciousness' is a superordinate term for a heterogeneous array of mental state types. The types share the property of 'being experienced' or 'being experiences'--'of there being something that it is like for the subject to be in one of these states.' I propose that we can only build a theory of consciousness by deploying 'the natural method' of coordinating all relevant informational resources at once, especially phenomenology, cognitive science, neuroscience and evolutionary biology. I'll provide two examples of the natural method in action in mental domains where an adaptationist evolutionary account seems plausible: (i) visual awareness and (ii) conscious event memory. Then I will discuss a case, (iii), dreaming, where I think no adaptationist evolutionary account exists. Beyond whatever interest the particular cases have, the examination will show why I think that a theory of mind, and the role conscious mentation plays in it, will need to be built domain-by-domain with no a priori expectation that there will be a unified account of the causal role or evolutionary history of different domains and competences.

  12. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  13. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    PubMed

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  14. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites

    PubMed Central

    2011-01-01

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities. PMID:21439063

  15. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  16. Inferring explicit weighted consensus networks to represent alternative evolutionary histories

    PubMed Central

    2013-01-01

    Background The advent of molecular biology techniques and constant increase in availability of genetic material have triggered the development of many phylogenetic tree inference methods. However, several reticulate evolution processes, such as horizontal gene transfer and hybridization, have been shown to blur the species evolutionary history by causing discordance among phylogenies inferred from different genes. Methods To tackle this problem, we hereby describe a new method for inferring and representing alternative (reticulate) evolutionary histories of species as an explicit weighted consensus network which can be constructed from a collection of gene trees with or without prior knowledge of the species phylogeny. Results We provide a way of building a weighted phylogenetic network for each of the following reticulation mechanisms: diploid hybridization, intragenic recombination and complete or partial horizontal gene transfer. We successfully tested our method on some synthetic and real datasets to infer the above-mentioned evolutionary events which may have influenced the evolution of many species. Conclusions Our weighted consensus network inference method allows one to infer, visualize and validate statistically major conflicting signals induced by the mechanisms of reticulate evolution. The results provided by the new method can be used to represent the inferred conflicting signals by means of explicit and easy-to-interpret phylogenetic networks. PMID:24359207

  17. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  18. Period Changes in Pulsating Red Supergiant Stars: A Science and Education Project

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Favaro, E.; Glasheen, J.; Ho, B.; Sato, H.

    2008-12-01

    We describe research done as part of the University of Toronto Mentorship Program, which enables outstanding senior high school students to work on research projects at the university. The students began with extensive background reading on variable stars, and became familiar with various forms of time-series analysis by applying them to a few red supergiant variables in the AAVSO International Database; we report on the results. They also prepared a useful manual for our publicly-available self-correlation analysis software. They undertook an intensive analysis of the period changes in BC Cyg, using the AAVSO and Turner data and the (O-C) method, in the hope that evolutionary period changes could be observed. The (O-C) diagram, however, is dominated by errors in determining the times of maximum, and by the effects of cycle-to-cycle period fluctuations. As a result, the (O-C) method is generally not effective for these stars. We also describe the Mentorship Program and its elements, and reflect on the students' experience.

  19. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    NASA Astrophysics Data System (ADS)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

  20. Robust electromagnetically guided endoscopic procedure using enhanced particle swarm optimization for multimodal information fusion.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian

    2015-04-01

    Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor's) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. The experimental results demonstrate that the authors' proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors' framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.

  1. Comparative Phylogeographic Analyses Illustrate the Complex Evolutionary History of Threatened Cloud Forests of Northern Mesoamerica

    PubMed Central

    Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo

    2013-01-01

    Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage-specific, and thus difficult to capture in a simple conservation strategy. PMID:23409165

  2. A Program for At-Risk High School Students Informed by Evolutionary Science

    PubMed Central

    Wilson, David Sloan; Kauffman, Richard A.; Purdy, Miriam S.

    2011-01-01

    Improving the academic performance of at-risk high school students has proven difficult, often calling for an extended day, extended school year, and other expensive measures. Here we report the results of a program for at-risk 9th and 10th graders in Binghamton, New York, called the Regents Academy that takes place during the normal school day and year. The design of the program is informed by the evolutionary dynamics of cooperation and learning, in general and for our species as a unique product of biocultural evolution. Not only did the Regents Academy students outperform their comparison group in a randomized control design, but they performed on a par with the average high school student in Binghamton on state-mandated exams. All students can benefit from the social environment provided for at-risk students at the Regents Academy, which is within the reach of most public school districts. PMID:22114703

  3. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis

    PubMed Central

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W.; Nakhleh, Luay

    2016-01-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of ‘network thinking’ and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  4. Quality assessment of protein model-structures using evolutionary conservation.

    PubMed

    Kalman, Matan; Ben-Tal, Nir

    2010-05-15

    Programs that evaluate the quality of a protein structural model are important both for validating the structure determination procedure and for guiding the model-building process. Such programs are based on properties of native structures that are generally not expected for faulty models. One such property, which is rarely used for automatic structure quality assessment, is the tendency for conserved residues to be located at the structural core and for variable residues to be located at the surface. We present ConQuass, a novel quality assessment program based on the consistency between the model structure and the protein's conservation pattern. We show that it can identify problematic structural models, and that the scores it assigns to the server models in CASP8 correlate with the similarity of the models to the native structure. We also show that when the conservation information is reliable, the method's performance is comparable and complementary to that of the other single-structure quality assessment methods that participated in CASP8 and that do not use additional structural information from homologs. A perl implementation of the method, as well as the various perl and R scripts used for the analysis are available at http://bental.tau.ac.il/ConQuass/. nirb@tauex.tau.ac.il Supplementary data are available at Bioinformatics online.

  5. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects

    PubMed Central

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-01-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing ‘uncoupled’ gene drive system components in the field. PMID:24944572

  6. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects.

    PubMed

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-05-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.

  7. A study in the founding of applied behavior analysis through its publications.

    PubMed

    Morris, Edward K; Altus, Deborah E; Smith, Nathaniel G

    2013-01-01

    This article reports a study of the founding of applied behavior analysis through its publications. Our methods included hand searches of sources (e.g., journals, reference lists), search terms (i.e., early, applied, behavioral, research, literature), inclusion criteria (e.g., the field's applied dimension), and (d) challenges to their face and content validity. Our results were 36 articles published between 1959 and 1967 that we organized into 4 groups: 12 in 3 programs of research and 24 others. Our discussion addresses (a) limitations in our method (e.g., the completeness of our search), (b) challenges to the validity of our methods and results (e.g., convergent validity), and (c) priority claims about the field's founding. We conclude that the claims are irresolvable because identification of the founding publications depends significantly on methods and because the field's founding was an evolutionary process. We close with suggestions for future research.

  8. A Study in the Founding of Applied Behavior Analysis Through Its Publications

    PubMed Central

    Morris, Edward K.; Altus, Deborah E.; Smith, Nathaniel G.

    2013-01-01

    This article reports a study of the founding of applied behavior analysis through its publications. Our methods included hand searches of sources (e.g., journals, reference lists), search terms (i.e., early, applied, behavioral, research, literature), inclusion criteria (e.g., the field's applied dimension), and (d) challenges to their face and content validity. Our results were 36 articles published between 1959 and 1967 that we organized into 4 groups: 12 in 3 programs of research and 24 others. Our discussion addresses (a) limitations in our method (e.g., the completeness of our search), (b) challenges to the validity of our methods and results (e.g., convergent validity), and (c) priority claims about the field's founding. We conclude that the claims are irresolvable because identification of the founding publications depends significantly on methods and because the field's founding was an evolutionary process. We close with suggestions for future research. PMID:25729133

  9. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    PubMed

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  10. MosaicSolver: a tool for determining recombinants of viral genomes from pileup data

    PubMed Central

    Wood, Graham R.; Ryabov, Eugene V.; Fannon, Jessica M.; Moore, Jonathan D.; Evans, David J.; Burroughs, Nigel

    2014-01-01

    Viral recombination is a key evolutionary mechanism, aiding escape from host immunity, contributing to changes in tropism and possibly assisting transmission across species barriers. The ability to determine whether recombination has occurred and to locate associated specific recombination junctions is thus of major importance in understanding emerging diseases and pathogenesis. This paper describes a method for determining recombinant mosaics (and their proportions) originating from two parent genomes, using high-throughput sequence data. The method involves setting the problem geometrically and the use of appropriately constrained quadratic programming. Recombinants of the honeybee deformed wing virus and the Varroa destructor virus-1 are inferred to illustrate the method from both siRNAs and reads sampling the viral genome population (cDNA library); our results are confirmed experimentally. Matlab software (MosaicSolver) is available. PMID:25120266

  11. Space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Merkle, Charles; Stangeland, Maynard L.; Brown, James R.; Mccarty, John P.; Povinelli, Louis A.; Northam, G. Burton; Zukoski, Edward E.

    1994-01-01

    This report focuses primarily on Japan's programs in liquid rocket propulsion and propulsion for spaceplane and related transatmospheric areas. It refers briefly to Japan's solid rocket programs and to new supersonic air-breathing propulsion efforts. The panel observed that the Japanese had a carefully thought-out plan, a broad-based program, and an ambitious but achievable schedule for propulsion activity. Japan's overall propulsion program is behind that of the United States at the time of this study, but the Japanese are gaining rapidly. The Japanese are at the forefront in such key areas as advanced materials, enjoying a high level of project continuity and funding. Japan's space program has been evolutionary in nature, while the U.S. program has emphasized revolutionary advances. Projects have typically been smaller in Japan than in the United States, focusing on incremental advances in technology, with an excellent record of applying proven technology to new projects. This evolutionary approach, coupled with an ability to take technology off the shelf from other countries, has resulted in relatively low development costs, rapid progress, and enhanced reliability. Clearly Japan is positioned to be a world leader in space and transatmospheric propulsion technology by the year 2000.

  12. Core principles of evolutionary medicine

    PubMed Central

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  13. Core principles of evolutionary medicine: A Delphi study.

    PubMed

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  14. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  15. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  16. Quality Assurance Program for Molecular Medicine Laboratories

    PubMed Central

    Hajia, M; Safadel, N; Samiee, S Mirab; Dahim, P; Anjarani, S; Nafisi, N; Sohrabi, A; Rafiee, M; Sabzavi, F; Entekhabi, B

    2013-01-01

    Background: Molecular diagnostic methods have played and continuing to have a critical role in clinical laboratories in recent years. Therefore, standardization is an evolutionary process that needs to be upgrade with increasing scientific knowledge, improvement of the instruments and techniques. The aim of this study was to design a quality assurance program in order to have similar conditions for all medical laboratories engaging with molecular tests. Methods: We had to design a plan for all four elements; required space conditions, equipments, training, and basic guidelines. Necessary guidelines was prepared and confirmed by the launched specific committee at the Health Reference Laboratory. Results: Several workshops were also held for medical laboratories directors and staffs, quality control manager of molecular companies, directors and nominees from universities. Accreditation of equipments and molecular material was followed parallel with rest of program. Now we are going to accredit medical laboratories and to evaluate the success of the program. Conclusion: Accreditation of medical laboratory will be succeeding if its basic elements are provided in advance. Professional practice guidelines, holding training and performing accreditation the molecular materials and equipments ensured us that laboratories are aware of best practices, proper interpretation, limitations of techniques, and technical issues. Now, active external auditing can improve the applied laboratory conditions toward the defined standard level. PMID:23865028

  17. Bayesian molecular dating: opening up the black box.

    PubMed

    Bromham, Lindell; Duchêne, Sebastián; Hua, Xia; Ritchie, Andrew M; Duchêne, David A; Ho, Simon Y W

    2018-05-01

    Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the relationship between genetic change and evolutionary time, often referred to as a 'molecular clock'. Although initially regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The aim of this review is to open the 'black box' of Bayesian molecular dating and have a look at the machinery inside. We explain the components of these dating methods, the important decisions that researchers must make in their analyses, and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales. © 2017 Cambridge Philosophical Society.

  18. Testing for Independence between Evolutionary Processes.

    PubMed

    Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume

    2016-09-01

    Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Knowing the natural world: The construction of knowledge about evolution in and out of the classroom

    NASA Astrophysics Data System (ADS)

    Perkins, Alison Emily Havard

    Evolution is a central underlying concept to a significant number of discourses in civilized society, but the complexity of understanding basic tenets of this important theory is just now coming to light. Knowledge about evolution is constructed from both formal and "free-choice" opportunities, like television. Nature programs are commonly considered "educational" by definition, but research indicates the narratives often promote creationist ideas about this important process in biology. I explored how nature programs influenced knowledge construction about evolutionary theory using a combination of qualitative and quantitative approaches. Because misconceptions about evolution are common, I examined how students' conceptual ecologies changed in response to information presented in an example of a particularly poor nature film narrative. Students' held a diversity of misconceptions, proximate conceptions, and evolutionary conceptions simultaneously, and many of their responses were direct reflections of the nature program. As a result, I incorporated the same nature program into an experiment designed to examine the effects of narrative and imagery on evolution understanding. After completing an extensive pre-assessment that addressed attitudes and beliefs about science knowledge, students viewed one of four versions of the nature program that varied in the quality of science and imagery presented. The effect of watching different versions was only vaguely apparent in students with a moderate understanding of evolution. The relationship was much more complex among students with a poor understanding of evolution but suggested a negative effect that was more influenced by public discourses about this "controversial" subject than conceptual understanding. The relationships warranted examining learning from the perspective of the consumers of these programs. I surveyed audience beliefs about the educational value of nature programs and found that an overwhelming majority believed the programs were "educational" and designed to teach about nature. The results were particularly alarming because beliefs about the educational value may strongly impact learning outcomes. An informal survey of nature programs aired during a "sweeps" month indicated that poor presentation of science, and specifically evolutionary theory, was indeed the norm. Indeed, nature programs may be contributing to the "deconstruction" of knowledge about evolution both in and out of the classroom.

  20. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Zillig, W.; Woese, C. R.

    1988-01-01

    The sequence of the 16S ribosomal RNA gene from the archaebacterium Thermococcus celer shows the organism to be related to the methanogenic archaebacteria rather than to its phenotypic counterparts, the extremely thermophilic archaebacteria. This conclusion turns on the position of the root of the archaebacterial phylogenetic tree, however. The problems encountered in rooting this tree are analyzed in detail. Under conditions that suppress evolutionary noise both the parsimony and evolutionary distance methods yield a root location (using a number of eubacterial or eukaryotic outgroup sequences) that is consistent with that determined by an "internal rooting" method, based upon an (approximate) determination of relative evolutionary rates.

  1. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  2. Performance comparison of some evolutionary algorithms on job shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rao, C. S. P.

    2016-09-01

    Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.

  3. Evolutionary Scheduler for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  4. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  5. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  6. The Comet Cometh: Evolving Developmental Systems.

    PubMed

    Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner

    In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.

  7. Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang 'Apollo', Chen

    2006-07-01

    For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to searchmore » for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)« less

  8. Derived heuristics-based consistent optimization of material flow in a gold processing plant

    NASA Astrophysics Data System (ADS)

    Myburgh, Christie; Deb, Kalyanmoy

    2018-01-01

    Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.

  9. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  10. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  11. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  12. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi

    In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.

  14. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  15. Cancer Evolution: Mathematical Models and Computational Inference

    PubMed Central

    Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804

  16. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  17. Comparative modeling of coevolution in communities of unicellular organisms: adaptability and biodiversity.

    PubMed

    Lashin, Sergey A; Suslov, Valentin V; Matushkin, Yuri G

    2010-06-01

    We propose an original program "Evolutionary constructor" that is capable of computationally efficient modeling of both population-genetic and ecological problems, combining these directions in one model of required detail level. We also present results of comparative modeling of stability, adaptability and biodiversity dynamics in populations of unicellular haploid organisms which form symbiotic ecosystems. The advantages and disadvantages of two evolutionary strategies of biota formation--a few generalists' taxa-based biota formation and biodiversity-based biota formation--are discussed.

  18. How Can We Study the Evolution of Animal Minds?

    PubMed Central

    Cauchoix, Maxime; Chaine, Alexis S.

    2016-01-01

    During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior. PMID:27014163

  19. Robust electromagnetically guided endoscopic procedure using enhanced particle swarm optimization for multimodal information fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiongbiao, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; Wan, Ying, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; He, Xiangjian

    Purpose: Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. Methods: The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) asmore » a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor’s) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. Results: The experimental results demonstrate that the authors’ proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors’ framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. Conclusions: A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.« less

  20. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  1. An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters

    PubMed Central

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172

  2. How hardwired is human behavior?

    PubMed

    Nicholson, N

    1998-01-01

    Time and time again managers have tried to eliminate hierarchies, politics, and interorganizational rivalry--but to no avail. Why? Evolutionary psychologists would say that they are working against nature--emotional and behavioral "hardwiring" that is the legacy of our Stone Age ancestors. In this evolutionary psychology primer for executives, Nigel Nicholson explores many of the Science's central tenets. Of course, evolutionary psychology is still an emerging discipline, and its strong connection with the theory of natural selection has sparked significant controversy. But, as Nicholson suggests, evolutionary psychology is now well established enough that its insights into human instinct will prove illuminating to anyone seeking to understand why people act the way they do in organizational settings. Take gossip. According to evolutionary psychology, our Stone Age ancestors needed this skill to survive the socially unpredictable conditions of the Savannah Plain. Thus, over time, the propensity to gossip became part of our mental programming. Executives trying to eradicate gossip at work might as well try to change their employees' musical tastes. Better to put one's energy into making sure the "rumor mill" avoids dishonesty or unkindness as much as possible. Evolutionary psychology also explores the dynamics of the human group. Clans on the Savannah Plain, for example, appear to have had no more than 150 members. The message for managers? People will likely be most effective in small organizational units. As every executive knows, it pays to be an insightful student of human nature. Evolutionary psychology adds another important chapter to consider.

  3. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  4. Application study of evolutionary operation methods in optimization of process parameters for mosquito coils industry

    NASA Astrophysics Data System (ADS)

    Ginting, E.; Tambunanand, M. M.; Syahputri, K.

    2018-02-01

    Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.

  5. General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.

    PubMed

    de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael

    2016-11-01

    Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.

  6. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  7. Pattern and Process in the Comparative Study of Convergent Evolution.

    PubMed

    Mahler, D Luke; Weber, Marjorie G; Wagner, Catherine E; Ingram, Travis

    2017-08-01

    Understanding processes that have shaped broad-scale biodiversity patterns is a fundamental goal in evolutionary biology. The development of phylogenetic comparative methods has yielded a tool kit for analyzing contemporary patterns by explicitly modeling processes of change in the past, providing neontologists tools for asking questions previously accessible only for select taxa via the fossil record or laboratory experimentation. The comparative approach, however, differs operationally from alternative approaches to studying convergence in that, for studies of only extant species, convergence must be inferred using evolutionary process models rather than being directly measured. As a result, investigation of evolutionary pattern and process cannot be decoupled in comparative studies of convergence, even though such a decoupling could in theory guard against adaptationist bias. Assumptions about evolutionary process underlying comparative tools can shape the inference of convergent pattern in sometimes profound ways and can color interpretation of such patterns. We discuss these issues and other limitations common to most phylogenetic comparative approaches and suggest ways that they can be avoided in practice. We conclude by promoting a multipronged approach to studying convergence that integrates comparative methods with complementary tests of evolutionary mechanisms and includes ecological and biogeographical perspectives. Carefully employed, the comparative method remains a powerful tool for enriching our understanding of convergence in macroevolution, especially for investigation of why convergence occurs in some settings but not others.

  8. Combining analysis with optimization at Langley Research Center. An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.

  9. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    PubMed

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  10. An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu

    2018-04-01

    There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.

  11. The Growth of Developmental Thought: Implications for a New Evolutionary Psychology

    PubMed Central

    Lickliter, Robert

    2009-01-01

    Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346

  12. Evolutionary Design and Simulation of a Tube Crawling Inspection Robot

    NASA Technical Reports Server (NTRS)

    Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.

  13. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  14. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  15. Modeling Open Architecture and Evolutionary Acquisition: Implementation Lessons from the ARCI Program for the Rapid Capability Insertion Process

    DTIC Science & Technology

    2009-04-22

    Implementation Issues Another RCIP implementation risk is program management burnout . The ACRI program manager specifically identified the potential...of burnout in his program management team due to the repeated, intense Integration phases. To investigate the possibility and severity of this risk to...the ACRI simulation. This suggests that the burnout risk will be larger for RCIP than it was for ACRI. Successfully implementing a sustainable RCIP

  16. Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods

    PubMed Central

    Dröge, J.; Gregor, I.; McHardy, A. C.

    2015-01-01

    Motivation: Metagenomics characterizes microbial communities by random shotgun sequencing of DNA isolated directly from an environment of interest. An essential step in computational metagenome analysis is taxonomic sequence assignment, which allows identifying the sequenced community members and reconstructing taxonomic bins with sequence data for the individual taxa. For the massive datasets generated by next-generation sequencing technologies, this cannot be performed with de-novo phylogenetic inference methods. We describe an algorithm and the accompanying software, taxator-tk, which performs taxonomic sequence assignment by fast approximate determination of evolutionary neighbors from sequence similarities. Results: Taxator-tk was precise in its taxonomic assignment across all ranks and taxa for a range of evolutionary distances and for short as well as for long sequences. In addition to the taxonomic binning of metagenomes, it is well suited for profiling microbial communities from metagenome samples because it identifies bacterial, archaeal and eukaryotic community members without being affected by varying primer binding strengths, as in marker gene amplification, or copy number variations of marker genes across different taxa. Taxator-tk has an efficient, parallelized implementation that allows the assignment of 6 Gb of sequence data per day on a standard multiprocessor system with 10 CPU cores and microbial RefSeq as the genomic reference data. Availability and implementation: Taxator-tk source and binary program files are publicly available at http://algbio.cs.uni-duesseldorf.de/software/. Contact: Alice.McHardy@uni-duesseldorf.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25388150

  17. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  18. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  19. Evolutionary Science as a Method to Facilitate Higher Level Thinking and Reasoning in Medical Training.

    PubMed

    Graves, Joseph L; Reiber, Chris; Thanukos, Anna; Hurtado, Magdalena; Wolpaw, Terry

    2016-10-15

    Evolutionary science is indispensable for understanding biological processes. Effective medical treatment must be anchored in sound biology. However, currently the insights available from evolutionary science are not adequately incorporated in either pre-medical or medical school curricula. To illuminate how evolution may be helpful in these areas, examples in which the insights of evolutionary science are already improving medical treatment and ways in which evolutionary reasoning can be practiced in the context of medicine are provided. In order to facilitate the learning of evolutionary principles, concepts derived from evolutionary science that medical students and professionals should understand are outlined. These concepts are designed to be authoritative and at the same time easily accessible for anyone with the general biological knowledge of a first-year medical student. Thus we conclude that medical practice informed by evolutionary principles will be more effective and lead to better patient outcomes.Furthermore, it is argued that evolutionary medicine complements general medical training because it provides an additional means by which medical students can practice the critical thinking skills that will be important in their future practice. We argue that core concepts from evolutionary science have the potential to improve critical thinking and facilitate more effective learning in medical training. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  20. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  1. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  2. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  3. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  4. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  5. Advanced Targeting Cost Function Design for Evolutionary Optimization of Control of Logistic Equation

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana

    2010-06-01

    This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.

  6. Image-Guided Rendering with an Evolutionary Algorithm Based on Cloud Model

    PubMed Central

    2018-01-01

    The process of creating nonphotorealistic rendering images and animations can be enjoyable if a useful method is involved. We use an evolutionary algorithm to generate painterly styles of images. Given an input image as the reference target, a cloud model-based evolutionary algorithm that will rerender the target image with nonphotorealistic effects is evolved. The resulting animations have an interesting characteristic in which the target slowly emerges from a set of strokes. A number of experiments are performed, as well as visual comparisons, quantitative comparisons, and user studies. The average scores in normalized feature similarity of standard pixel-wise peak signal-to-noise ratio, mean structural similarity, feature similarity, and gradient similarity based metric are 0.486, 0.628, 0.579, and 0.640, respectively. The average scores in normalized aesthetic measures of Benford's law, fractal dimension, global contrast factor, and Shannon's entropy are 0.630, 0.397, 0.418, and 0.708, respectively. Compared with those of similar method, the average score of the proposed method, except peak signal-to-noise ratio, is higher by approximately 10%. The results suggest that the proposed method can generate appealing images and animations with different styles by choosing different strokes, and it would inspire graphic designers who may be interested in computer-based evolutionary art. PMID:29805440

  7. An evolutionary algorithm for large traveling salesman problems.

    PubMed

    Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan

    2004-08-01

    This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.

  8. The extended evolutionary synthesis: its structure, assumptions and predictions

    PubMed Central

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  9. Marr's levels and the minimalist program.

    PubMed

    Johnson, Mark

    2017-02-01

    A simple change to a cognitive system at Marr's computational level may entail complex changes at the other levels of description of the system. The implementational level complexity of a change, rather than its computational level complexity, may be more closely related to the plausibility of a discrete evolutionary event causing that change. Thus the formal complexity of a change at the computational level may not be a good guide to the plausibility of an evolutionary event introducing that change. For example, while the Minimalist Program's Merge is a simple formal operation (Berwick & Chomsky, 2016), the computational mechanisms required to implement the language it generates (e.g., to parse the language) may be considerably more complex. This has implications for the theory of grammar: theories of grammar which involve several kinds of syntactic operations may be no less evolutionarily plausible than a theory of grammar that involves only one. A deeper understanding of human language at the algorithmic and implementational levels could strengthen Minimalist Program's account of the evolution of language.

  10. Empirical verification of evolutionary theories of aging.

    PubMed

    Kyryakov, Pavlo; Gomez-Perez, Alejandra; Glebov, Anastasia; Asbah, Nimara; Bruno, Luigi; Meunier, Carolynne; Iouk, Tatiana; Titorenko, Vladimir I

    2016-10-25

    We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.

  11. Atmospheric lidar multi-user instrument system definition study

    NASA Technical Reports Server (NTRS)

    Greco, R. V. (Editor)

    1980-01-01

    A spaceborne lidar system for atmospheric studies was defined. The primary input was the Science Objectives Experiment Description and Evolutionary Flow Document. The first task of the study was to perform an experiment evolutionary analysis of the SEED. The second task was the system definition effort of the instrument system. The third task was the generation of a program plan for the hardware phase. The fourth task was the supporting studies which included a Shuttle deficiency analysis, a preliminary safety hazard analysis, the identification of long lead items, and development studies required. As a result of the study an evolutionary Lidar Multi-User Instrument System (MUIS) was defined. The MUIS occupies a full Spacelab pallet and has a weight of 1300 kg. The Lidar MUIS laser provides a 2 joule frequency doubled Nd:YAG laser that can also pump a tuneable dye laser wide frequency range and bandwidth. The MUIS includes a 1.25 meter diameter aperture Cassegrain receiver, with a moveable secondary mirror to provide precise alignment with the laser. The receiver can transmit the return signal to three single and multiple photomultiple tube detectors by use of a rotating fold mirror. It is concluded that the Lidar MUIS proceed to program implementation.

  12. MultiSeq: unifying sequence and structure data for evolutionary analysis

    PubMed Central

    Roberts, Elijah; Eargle, John; Wright, Dan; Luthey-Schulten, Zaida

    2006-01-01

    Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: PMID:16914055

  13. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases.

    PubMed

    Cummins, Carla A; McInerney, James O

    2011-12-01

    Current phylogenetic methods attempt to account for evolutionary rate variation across characters in a matrix. This is generally achieved by the use of sophisticated evolutionary models, combined with dense sampling of large numbers of characters. However, systematic biases and superimposed substitutions make this task very difficult. Model adequacy can sometimes be achieved at the cost of adding large numbers of free parameters, with each parameter being optimized according to some criterion, resulting in increased computation times and large variances in the model estimates. In this study, we develop a simple approach that estimates the relative evolutionary rate of each homologous character. The method that we describe uses the similarity between characters as a proxy for evolutionary rate. In this article, we work on the premise that if the character-state distribution of a homologous character is similar to many other characters, then this character is likely to be relatively slowly evolving. If the character-state distribution of a homologous character is not similar to many or any of the rest of the characters in a data set, then it is likely to be the result of rapid evolution. We show that in some test cases, at least, the premise can hold and the inferences are robust. Importantly, the method does not use a "starting tree" to make the inference and therefore is tree independent. We demonstrate that this approach can work as well as a maximum likelihood (ML) approach, though the ML method needs to have a known phylogeny, or at least a very good estimate of that phylogeny. We then demonstrate some uses for this method of analysis, including the improvement in phylogeny reconstruction for both deep-level and recent relationships and overcoming systematic biases such as base composition bias. Furthermore, we compare this approach to two well-established methods for reweighting or removing characters. These other methods are tree-based and we show that they can be systematically biased. We feel this method can be useful for phylogeny reconstruction, understanding evolutionary rate variation, and for understanding selection variation on different characters.

  14. Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.

    PubMed

    Goldsmith, Theodore C

    2016-12-01

    Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.

  15. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  16. Engineering the object-relation database model in O-Raid

    NASA Technical Reports Server (NTRS)

    Dewan, Prasun; Vikram, Ashish; Bhargava, Bharat

    1989-01-01

    Raid is a distributed database system based on the relational model. O-raid is an extension of the Raid system and will support complex data objects. The design of O-Raid is evolutionary and retains all features of relational data base systems and those of a general purpose object-oriented programming language. O-Raid has several novel properties. Objects, classes, and inheritance are supported together with a predicate-base relational query language. O-Raid objects are compatible with C++ objects and may be read and manipulated by a C++ program without any 'impedance mismatch'. Relations and columns within relations may themselves be treated as objects with associated variables and methods. Relations may contain heterogeneous objects, that is, objects of more than one class in a certain column, which can individually evolve by being reclassified. Special facilities are provided to reduce the data search in a relation containing complex objects.

  17. Evolutionary Construction of Block-Based Neural Networks in Consideration of Failure

    NASA Astrophysics Data System (ADS)

    Takamori, Masahito; Koakutsu, Seiichi; Hamagami, Tomoki; Hirata, Hironori

    In this paper we propose a modified gene coding and an evolutionary construction in consideration of failure in evolutionary construction of Block-Based Neural Networks. In the modified gene coding, we arrange the genes of weights on a chromosome in consideration of the position relation of the genes of weight and structure. By the modified gene coding, the efficiency of search by crossover is increased. Thereby, it is thought that improvement of the convergence rate of construction and shortening of construction time can be performed. In the evolutionary construction in consideration of failure, the structure which is adapted for failure is built in the state where failure occured. Thereby, it is thought that BBNN can be reconstructed in a short time at the time of failure. To evaluate the proposed method, we apply it to pattern classification and autonomous mobile robot control problems. The computational experiments indicate that the proposed method can improve convergence rate of construction and shorten of construction and reconstruction time.

  18. Genetic Simulation Resources: a website for the registration and discovery of genetic data simulators

    PubMed Central

    Peng, Bo; Chen, Huann-Sheng; Mechanic, Leah E.; Racine, Ben; Clarke, John; Clarke, Lauren; Gillanders, Elizabeth; Feuer, Eric J.

    2013-01-01

    Summary: Many simulation methods and programs have been developed to simulate genetic data of the human genome. These data have been widely used, for example, to predict properties of populations retrospectively or prospectively according to mathematically intractable genetic models, and to assist the validation, statistical inference and power analysis of a variety of statistical models. However, owing to the differences in type of genetic data of interest, simulation methods, evolutionary features, input and output formats, terminologies and assumptions for different applications, choosing the right tool for a particular study can be a resource-intensive process that usually involves searching, downloading and testing many different simulation programs. Genetic Simulation Resources (GSR) is a website provided by the National Cancer Institute (NCI) that aims to help researchers compare and choose the appropriate simulation tools for their studies. This website allows authors of simulation software to register their applications and describe them with well-defined attributes, thus allowing site users to search and compare simulators according to specified features. Availability: http://popmodels.cancercontrol.cancer.gov/gsr. Contact: gsr@mail.nih.gov PMID:23435068

  19. Introducing Evolution to Non-Biology Majors via the Fossil Record: A Case Study from the Israeli High School System.

    ERIC Educational Resources Information Center

    Dodick, Jeff; Orion, Nir

    2003-01-01

    Discusses challenges faced in the teaching and learning of evolution. Presents a curricular program and a case study on evolutionary biology. Investigates students' conceptual knowledge after exposure to the program "From Dinosaurs to Darwin," which focuses on fossil records as evidence of evolution. (Contains 32 references.) (YDS)

  20. Phylogenetic tree and community structure from a Tangled Nature model.

    PubMed

    Canko, Osman; Taşkın, Ferhat; Argın, Kamil

    2015-10-07

    In evolutionary biology, the taxonomy and origination of species are widely studied subjects. An estimation of the evolutionary tree can be done via available DNA sequence data. The calculation of the tree is made by well-known and frequently used methods such as maximum likelihood and neighbor-joining. In order to examine the results of these methods, an evolutionary tree is pursued computationally by a mathematical model, called Tangled Nature. A relatively small genome space is investigated due to computational burden and it is found that the actual and predicted trees are in reasonably good agreement in terms of shape. Moreover, the speciation and the resulting community structure of the food-web are investigated by modularity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrating instance selection, instance weighting, and feature weighting for nearest neighbor classifiers by coevolutionary algorithms.

    PubMed

    Derrac, Joaquín; Triguero, Isaac; Garcia, Salvador; Herrera, Francisco

    2012-10-01

    Cooperative coevolution is a successful trend of evolutionary computation which allows us to define partitions of the domain of a given problem, or to integrate several related techniques into one, by the use of evolutionary algorithms. It is possible to apply it to the development of advanced classification methods, which integrate several machine learning techniques into a single proposal. A novel approach integrating instance selection, instance weighting, and feature weighting into the framework of a coevolutionary model is presented in this paper. We compare it with a wide range of evolutionary and nonevolutionary related methods, in order to show the benefits of the employment of coevolution to apply the techniques considered simultaneously. The results obtained, contrasted through nonparametric statistical tests, show that our proposal outperforms other methods in the comparison, thus becoming a suitable tool in the task of enhancing the nearest neighbor classifier.

  2. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  3. An evolutionary solution to anesthesia automated record keeping.

    PubMed

    Bicker, A A; Gage, J S; Poppers, P J

    1998-08-01

    In the course of five years the development of an automated anesthesia record keeper has evolved through nearly a dozen stages, each marked by new features and sophistication. Commodity PC hardware and software minimized development costs. Object oriented analysis, programming and design supported the process of change. In addition, we developed an evolutionary strategy that optimized motivation, risk management, and maximized return on investment. Besides providing record keeping services, the system supports educational and research activities and through a flexible plotting paradigm, supports each anesthesiologist's focus on physiological data during and after anesthesia.

  4. Developmental biology, the stem cell of biological disciplines.

    PubMed

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  5. Modelling and strategy optimisation for a kind of networked evolutionary games with memories under the bankruptcy mechanism

    NASA Astrophysics Data System (ADS)

    Fu, Shihua; Li, Haitao; Zhao, Guodong

    2018-05-01

    This paper investigates the evolutionary dynamic and strategy optimisation for a kind of networked evolutionary games whose strategy updating rules incorporate 'bankruptcy' mechanism, and the situation that each player's bankruptcy is due to the previous continuous low profits gaining from the game is considered. First, by using semi-tensor product of matrices method, the evolutionary dynamic of this kind of games is expressed as a higher order logical dynamic system and then converted into its algebraic form, based on which, the evolutionary dynamic of the given games can be discussed. Second, the strategy optimisation problem is investigated, and some free-type control sequences are designed to maximise the total payoff of the whole game. Finally, an illustrative example is given to show that our new results are very effective.

  6. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  7. Cancer evolution: mathematical models and computational inference.

    PubMed

    Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  8. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  9. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  10. [Nonuniformity in the evolutionary rate in the virilis: II. group of Drosophilas: application of the method of Tajima's test].

    PubMed

    Kulikov, A M; Lazebnyĭ, O E; Chekunova, A I; Mitrofanov, V G

    2010-01-01

    The steadiness of the molecular clock was estimated in 11 Drosophila species of the virilis group by sequences of five genes by applying Tajima's Simple Method. The main characteristic of this method is the independence of its phylogenetic constructions. The obtained results have completely confirmed the conclusions drawn relying on the application of the two-cluster test and the Takezaki branch-length test. In addition, the deviation of the molecular clock has found confirmation in D. virilis evolutionary lineages.

  11. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  12. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  14. Affective Neuronal Selection: The Nature of the Primordial Emotion Systems

    PubMed Central

    Toronchuk, Judith A.; Ellis, George F. R.

    2013-01-01

    Based on studies in affective neuroscience and evolutionary psychiatry, a tentative new proposal is made here as to the nature and identification of primordial emotional systems. Our model stresses phylogenetic origins of emotional systems, which we believe is necessary for a full understanding of the functions of emotions and additionally suggests that emotional organizing systems play a role in sculpting the brain during ontogeny. Nascent emotional systems thus affect cognitive development. A second proposal concerns two additions to the affective systems identified by Panksepp. We suggest there is substantial evidence for a primary emotional organizing program dealing with power, rank, dominance, and subordination which instantiates competitive and territorial behavior and is an evolutionary contributor to self-esteem in humans. A program underlying disgust reactions which originally functioned in ancient vertebrates to protect against infection and toxins is also suggested. PMID:23316177

  15. Can An Evolutionary Process Create English Text?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.

    Critics of the conventional theory of biological evolution have asserted that while natural processes might result in some limited diversity, nothing fundamentally new can arise from 'random' evolution. In response, biologists such as Richard Dawkins have demonstrated that a computer program can generate a specific short phrase via evolution-like iterations starting with random gibberish. While such demonstrations are intriguing, they are flawed in that they have a fixed, pre-specified future target, whereas in real biological evolution there is no fixed future target, but only a complicated 'fitness landscape'. In this study, a significantly more sophisticated evolutionary scheme is employed tomore » produce text segments reminiscent of a Charles Dickens novel. The aggregate size of these segments is larger than the computer program and the input Dickens text, even when comparing compressed data (as a measure of information content).« less

  16. Optimization of Artificial Neural Network using Evolutionary Programming for Prediction of Cascading Collapse Occurrence due to the Hidden Failure Effect

    NASA Astrophysics Data System (ADS)

    Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.

    2018-03-01

    This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).

  17. MySSP: Non-stationary evolutionary sequence simulation, including indels

    PubMed Central

    Rosenberg, Michael S.

    2007-01-01

    MySSP is a new program for the simulation of DNA sequence evolution across a phylogenetic tree. Although many programs are available for sequence simulation, MySSP is unique in its inclusion of indels, flexibility in allowing for non-stationary patterns, and output of ancestral sequences. Some of these features can individually be found in existing programs, but have not all have been previously available in a single package. PMID:19325855

  18. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 2: Program plans

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.

  19. Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions.

    PubMed

    Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Antolin, Michael F; Bradburd, Gideon; Lowry, David B; Poss, Mary L; Reed, Laura K; Storfer, Andrew; Whitlock, Michael C

    2016-10-01

    Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.

  20. Molecular species delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex.

    PubMed

    Wade, E J; Hertach, T; Gogala, M; Trilar, T; Simon, C

    2015-12-01

    Molecular species delimitation is increasingly being used to discover and illuminate species level diversity, and a number of methods have been developed. Here, we compare the ability of two molecular species delimitation methods to recover song-delimited species in the Cicadetta montana cryptic species complex throughout Europe. Recent bioacoustics studies of male calling songs (premating reproductive barriers) have revealed cryptic species diversity in this complex. Maximum likelihood and Bayesian phylogenetic analyses were used to analyse the mitochondrial genes COI and COII and the nuclear genes EF1α and period for thirteen European Cicadetta species as well as the closely related monotypic genus Euboeana. Two molecular species delimitation methods, general mixed Yule-coalescent (GMYC) and Bayesian phylogenetics and phylogeography, identified the majority of song-delimited species and were largely congruent with each other. None of the molecular delimitation methods were able to fully recover a recent radiation of four Greek species. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  1. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  2. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  3. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  4. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  5. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  6. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  7. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  8. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  9. Cui bono? A review of breaking the spell: religion as a natural phenomenon by Daniel C. Dennett.

    PubMed

    Rachlin, Howard

    2007-01-01

    The three requirements for a Darwinian evolutionary process are replication, variation and selection. Dennett (2006) discusses various theories of how these three processes, especially selection, may have operated in the evolution of religion. He believes that the origins of religion, like the origins of language and music, may be approached scientifically. He hopes that such investigations will open a dialog between science and religion leading to moderation of current religious extremism. One problem with Dennett's program, illustrating the difficulty of breaking away from creationist thinking, is Dennett's own failure to consider how Darwinian methods may be used to study evolution of behavioral patterns over the lifetime of individual organisms.

  10. OncoNEM: inferring tumor evolution from single-cell sequencing data.

    PubMed

    Ross, Edith M; Markowetz, Florian

    2016-04-15

    Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM's robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.

  11. A single determinant dominates the rate of yeast protein evolution.

    PubMed

    Drummond, D Allan; Raval, Alpan; Wilke, Claus O

    2006-02-01

    A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.

  12. Integrated pipeline for inferring the evolutionary history of a gene family embedded in the species tree: a case study on the STIMATE gene family.

    PubMed

    Song, Jia; Zheng, Sisi; Nguyen, Nhung; Wang, Youjun; Zhou, Yubin; Lin, Kui

    2017-10-03

    Because phylogenetic inference is an important basis for answering many evolutionary problems, a large number of algorithms have been developed. Some of these algorithms have been improved by integrating gene evolution models with the expectation of accommodating the hierarchy of evolutionary processes. To the best of our knowledge, however, there still is no single unifying model or algorithm that can take all evolutionary processes into account through a stepwise or simultaneous method. On the basis of three existing phylogenetic inference algorithms, we built an integrated pipeline for inferring the evolutionary history of a given gene family; this pipeline can model gene sequence evolution, gene duplication-loss, gene transfer and multispecies coalescent processes. As a case study, we applied this pipeline to the STIMATE (TMEM110) gene family, which has recently been reported to play an important role in store-operated Ca 2+ entry (SOCE) mediated by ORAI and STIM proteins. We inferred their phylogenetic trees in 69 sequenced chordate genomes. By integrating three tree reconstruction algorithms with diverse evolutionary models, a pipeline for inferring the evolutionary history of a gene family was developed, and its application was demonstrated.

  13. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    PubMed Central

    Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua

    2017-01-01

    NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414

  14. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.

    PubMed

    Zhou, Jiyun; Lu, Qin; Xu, Ruifeng; He, Yulan; Wang, Hongpeng

    2017-08-29

    Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community.

  15. A new fast method for inferring multiple consensus trees using k-medoids.

    PubMed

    Tahiri, Nadia; Willems, Matthieu; Makarenkov, Vladimir

    2018-04-05

    Gene trees carry important information about specific evolutionary patterns which characterize the evolution of the corresponding gene families. However, a reliable species consensus tree cannot be inferred from a multiple sequence alignment of a single gene family or from the concatenation of alignments corresponding to gene families having different evolutionary histories. These evolutionary histories can be quite different due to horizontal transfer events or to ancient gene duplications which cause the emergence of paralogs within a genome. Many methods have been proposed to infer a single consensus tree from a collection of gene trees. Still, the application of these tree merging methods can lead to the loss of specific evolutionary patterns which characterize some gene families or some groups of gene families. Thus, the problem of inferring multiple consensus trees from a given set of gene trees becomes relevant. We describe a new fast method for inferring multiple consensus trees from a given set of phylogenetic trees (i.e. additive trees or X-trees) defined on the same set of species (i.e. objects or taxa). The traditional consensus approach yields a single consensus tree. We use the popular k-medoids partitioning algorithm to divide a given set of trees into several clusters of trees. We propose novel versions of the well-known Silhouette and Caliński-Harabasz cluster validity indices that are adapted for tree clustering with k-medoids. The efficiency of the new method was assessed using both synthetic and real data, such as a well-known phylogenetic dataset consisting of 47 gene trees inferred for 14 archaeal organisms. The method described here allows inference of multiple consensus trees from a given set of gene trees. It can be used to identify groups of gene trees having similar intragroup and different intergroup evolutionary histories. The main advantage of our method is that it is much faster than the existing tree clustering approaches, while providing similar or better clustering results in most cases. This makes it particularly well suited for the analysis of large genomic and phylogenetic datasets.

  16. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples.

    PubMed

    U'ren, Jana M; Dalling, James W; Gallery, Rachel E; Maddison, David R; Davis, E Christine; Gibson, Cara M; Arnold, A Elizabeth

    2009-04-01

    Fungi associated with seeds of tropical trees pervasively affect seed survival and germination, and thus are an important, but understudied, component of forest ecology. Here, we examine the diversity and evolutionary origins of fungi isolated from seeds of an important pioneer tree (Cecropia insignis, Cecropiaceae) following burial in soil for five months in a tropical moist forest in Panama. Our approach, which relied on molecular sequence data because most isolates did not sporulate in culture, provides an opportunity to evaluate several methods currently used to analyse environmental samples of fungi. First, intra- and interspecific divergence were estimated for the nu-rITS and 5.8S gene for four genera of Ascomycota that are commonly recovered from seeds. Using these values we estimated species boundaries for 527 isolates, showing that seed-associated fungi are highly diverse, horizontally transmitted, and genotypically congruent with some foliar endophytes from the same site. We then examined methods for inferring the taxonomic placement and phylogenetic relationships of these fungi, evaluating the effects of manual versus automated alignment, model selection, and inference methods, as well as the quality of BLAST-based identification using GenBank. We found that common methods such as neighbor-joining and Bayesian inference differ in their sensitivity to alignment methods; analyses of particular fungal genera differ in their sensitivity to alignments; and numerous and sometimes intricate disparities exist between BLAST-based versus phylogeny-based identification methods. Lastly, we used our most robust methods to infer phylogenetic relationships of seed-associated fungi in four focal genera, and reconstructed ancestral states to generate preliminary hypotheses regarding the evolutionary origins of this guild. Our results illustrate the dynamic evolutionary relationships among endophytic fungi, pathogens, and seed-associated fungi, and the apparent evolutionary distinctiveness of saprotrophs. Our study also elucidates the diversity, taxonomy, and ecology of an important group of plant-associated fungi and highlights some of the advantages and challenges inherent in the use of ITS data for environmental sampling of fungi.

  17. Product Mix Selection Using AN Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Vasant, Pandian

    2009-08-01

    This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.

  18. Synthesis of Feedback Controller for Chaotic Systems by Means of Evolutionary Techniques

    NASA Astrophysics Data System (ADS)

    Senkerik, Roman; Oplatkova, Zuzana; Zelinka, Ivan; Davendra, Donald; Jasek, Roman

    2011-06-01

    This research deals with a synthesis of control law for three selected discrete chaotic systems by means of analytic programming. The novality of the approach is that a tool for symbolic regression—analytic programming—is used for such kind of difficult problem. The paper consists of the descriptions of analytic programming as well as chaotic systems and used cost function. For experimentation, Self-Organizing Migrating Algorithm (SOMA) with analytic programming was used.

  19. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  20. Evolutionary change in physiological phenotypes along the human lineage

    PubMed Central

    Vining, Alexander Q.; Nunn, Charles L.

    2016-01-01

    Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376

  1. NeXML: rich, extensible, and verifiable representation of comparative data and metadata.

    PubMed

    Vos, Rutger A; Balhoff, James P; Caravas, Jason A; Holder, Mark T; Lapp, Hilmar; Maddison, Wayne P; Midford, Peter E; Priyam, Anurag; Sukumaran, Jeet; Xia, Xuhua; Stoltzfus, Arlin

    2012-07-01

    In scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input-output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML.

  2. NeXML: Rich, Extensible, and Verifiable Representation of Comparative Data and Metadata

    PubMed Central

    Vos, Rutger A.; Balhoff, James P.; Caravas, Jason A.; Holder, Mark T.; Lapp, Hilmar; Maddison, Wayne P.; Midford, Peter E.; Priyam, Anurag; Sukumaran, Jeet; Xia, Xuhua; Stoltzfus, Arlin

    2012-01-01

    Abstract In scientific research, integration and synthesis require a common understanding of where data come from, how much they can be trusted, and what they may be used for. To make such an understanding computer-accessible requires standards for exchanging richly annotated data. The challenges of conveying reusable data are particularly acute in regard to evolutionary comparative analysis, which comprises an ever-expanding list of data types, methods, research aims, and subdisciplines. To facilitate interoperability in evolutionary comparative analysis, we present NeXML, an XML standard (inspired by the current standard, NEXUS) that supports exchange of richly annotated comparative data. NeXML defines syntax for operational taxonomic units, character-state matrices, and phylogenetic trees and networks. Documents can be validated unambiguously. Importantly, any data element can be annotated, to an arbitrary degree of richness, using a system that is both flexible and rigorous. We describe how the use of NeXML by the TreeBASE and Phenoscape projects satisfies user needs that cannot be satisfied with other available file formats. By relying on XML Schema Definition, the design of NeXML facilitates the development and deployment of software for processing, transforming, and querying documents. The adoption of NeXML for practical use is facilitated by the availability of (1) an online manual with code samples and a reference to all defined elements and attributes, (2) programming toolkits in most of the languages used commonly in evolutionary informatics, and (3) input–output support in several widely used software applications. An active, open, community-based development process enables future revision and expansion of NeXML. PMID:22357728

  3. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  4. Prediction of stock markets by the evolutionary mix-game model

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping

    2008-06-01

    This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.

  5. Using concepts from biology to improve problem-solving methods

    NASA Astrophysics Data System (ADS)

    Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.

    2011-06-01

    Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.

  6. The wind power prediction research based on mind evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  7. Task-level robot programming: Integral part of evolution from teleoperation to autonomy

    NASA Technical Reports Server (NTRS)

    Reynolds, James C.

    1987-01-01

    An explanation is presented of task-level robot programming and of how it differs from the usual interpretation of task planning for robotics. Most importantly, it is argued that the physical and mathematical basis of task-level robot programming provides inherently greater reliability than efforts to apply better known concepts from artificial intelligence (AI) to autonomous robotics. Finally, an architecture is presented that allows the integration of task-level robot programming within an evolutionary, redundant, and multi-modal framework that spans teleoperation to autonomy.

  8. Peptide Signaling in Plant Development

    PubMed Central

    Katsir, Leron; Davies, Kelli A.; Bergmann, Dominique C.; Laux, Thomas

    2011-01-01

    Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective. PMID:21549958

  9. Re-writing Popper's philosophy of science for systematics.

    PubMed

    Rieppel, Olivier

    2008-01-01

    This paper explores the use of Popper's philosophy of science by cladists in their battle against evolutionary and numerical taxonomy. Three schools of biological systematics fiercely debated each other from the late 1960s: evolutionary taxonomy, phenetics or numerical taxonomy, and phylogenetic systematics or cladistics. The outcome of that debate was the victory of phylogenetic systematics/cladistics over the competing schools of thought. To bring about this "cladistic turn" in systematics, the cladists drew heavily on the philosopher K.R. Popper in order to dress up phylogenetic systematics as a hypothetico-deductivist, indeed falsificationist, research program that would put an end to authoritarianism. As the case of the "cladistic revolution" demonstrates, scientists who turn to philosophy in defense of a research program read philosophers with an agenda in mind. That agenda is likely to distort the philosophical picture, as happened to Popper's philosophy of science at the hands of cladists.

  10. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    PubMed

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Finding a common path: predicting gene function using inferred evolutionary trees.

    PubMed

    Reynolds, Kimberly A

    2014-07-14

    Reporting in Cell, Li and colleagues (2014) describe an innovative method to functionally classify genes using evolutionary information. This approach demonstrates broad utility for eukaryotic gene annotation and suggests an intriguing new decomposition of pathways and complexes into evolutionarily conserved modules. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Archeological insights into hominin cognitive evolution.

    PubMed

    Wynn, Thomas; Coolidge, Frederick L

    2016-07-01

    How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.

  13. Evidence Combination From an Evolutionary Game Theory Perspective.

    PubMed

    Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu

    2016-09-01

    Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well.

  14. Evolutionary Considerations on the Emerging Subculture of the E-psychonauts and the Novel Psychoactive Substances: A Comeback to the Shamanism?

    PubMed Central

    Orsolini, Laura; St John-Smith, Paul; McQueen, Daniel; Papanti, Duccio; Corkery, John; Schifano, Fabrizio

    2017-01-01

    Background: Evolutionary research on drug abuse has hitherto been restricted to proximate studies, considering aetiology, mechanism, and ontogeny. However, in order to explain the recent emergency of a new behavioral pattern (e.g. ‘the e-psychonaut style’) of novel psychoactive substances’ (NPS) intake, a complementary evolutionary model may be needed. Objective A range of evolutionary interpretations on the ‘psychonaut style’ and the recent emergency of NPS were here considered. Method The PubMed database was searched in order to elicit evolutionary theory-based documents commenting on NPS/NPS users/e-psychonauts. Results The traditional ‘shamanic style’ use of entheogens/plant-derived compounds may present with a range of similarities with the ‘e-psychonauts’ use of mostly of hallucinogen/psychedelic NPS. These users consider themselves as ‘new/technological’ shamans. Conclusion Indeed, a range of evolutionary mechanisms, such as: optimal foraging, costly signaling, and reproduction at the expense of health may all cooperate to explain the recent spread and diffusion of the NPS market, and this may represent a reason of concern. PMID:27834144

  15. SCARF: maximizing next-generation EST assemblies for evolutionary and population genomic analyses.

    PubMed

    Barker, Michael S; Dlugosch, Katrina M; Reddy, A Chaitanya C; Amyotte, Sarah N; Rieseberg, Loren H

    2009-02-15

    Scaffolded and Corrected Assembly of Roche 454 (SCARF) is a next-generation sequence assembly tool for evolutionary genomics that is designed especially for assembling 454 EST sequences against high-quality reference sequences from related species. The program was created to knit together 454 contigs that do not assemble during traditional de novo assembly, using a reference sequence library to orient the 454 sequences. SCARF is freely available at http://msbarker.com/software.htm, and is released under the open source GPLv3 license (http://www.opensource.org/licenses/gpl-3.0.html.

  16. Toward an integrative approach of cognitive neuroscientific and evolutionary psychological studies of art.

    PubMed

    De Smedt, Johan; De Cruz, Helen

    2010-11-28

    This paper examines explanations for human artistic behavior in two reductionist research programs, cognitive neuroscience and evolutionary psychology. Despite their different methodological outlooks, both approaches converge on an explanation of art production and appreciation as byproducts of normal perceptual and motivational cognitive skills that evolved in response to problems originally not related to art, such as the discrimination of salient visual stimuli and speech sounds. The explanatory power of this reductionist framework does not obviate the need for higher-level accounts of art from the humanities, such as aesthetics, art history or anthropology of art.

  17. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    NASA Astrophysics Data System (ADS)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  18. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Using Fossil Shark Teeth to Illustrate Evolution and Introduce Basic Geologic Concepts in a High School Biology Classroom

    NASA Astrophysics Data System (ADS)

    Agnew, J. G.; Nunn, J. A.

    2007-12-01

    Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first appearance in the fossil record. This is followed by a group discussion of each group's predictions. Next students are given photographs of teeth from different megatoothed sharks, and a geologic time scale with the sharks stratigraphic ranges. Students are asked to describe evolutionary trends in the fossil megatoothed lineage and formulate several hypotheses to explain the observed evolutionary trends. The exercise is concluded with a discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused the evolutionary changes in the megatoothed shark's teeth.

  20. CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.

    PubMed

    Terashi, Genki; Takeda-Shitaka, Mayuko

    2015-01-01

    Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.

  1. Protein interface classification by evolutionary analysis

    PubMed Central

    2012-01-01

    Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial), appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and bioinformatics. We made the corresponding software implementation available to the community as an easy-to-use graphical web interface at http://www.eppic-web.org. PMID:23259833

  2. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion.

    PubMed

    Griskevicius, Vladas; Goldstein, Noah J; Mortensen, Chad R; Sundie, Jill M; Cialdini, Robert B; Kenrick, Douglas T

    2009-06-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics-social proof (e.g., "most popular") and scarcity (e.g., "limited edition"). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights.

  3. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  4. An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms.

    PubMed

    Zhang, Yushan; Hu, Guiwu

    2015-01-01

    Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP). This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.

  5. Optimising operational amplifiers by evolutionary algorithms and gm/Id method

    NASA Astrophysics Data System (ADS)

    Tlelo-Cuautle, E.; Sanabria-Borbon, A. C.

    2016-10-01

    The evolutionary algorithm called non-dominated sorting genetic algorithm (NSGA-II) is applied herein in the optimisation of operational transconductance amplifiers. NSGA-II is accelerated by applying the gm/Id method to estimate reduced search spaces associated to widths (W) and lengths (L) of the metal-oxide-semiconductor field-effect-transistor (MOSFETs), and to guarantee their appropriate bias levels conditions. In addition, we introduce an integer encoding for the W/L sizes of the MOSFETs to avoid a post-processing step for rounding-off their values to be multiples of the integrated circuit fabrication technology. Finally, from the feasible solutions generated by NSGA-II, we introduce a second optimisation stage to guarantee that the final feasible W/L sizes solutions support process, voltage and temperature (PVT) variations. The optimisation results lead us to conclude that the gm/Id method and integer encoding are quite useful to accelerate the convergence of the evolutionary algorithm NSGA-II, while the second optimisation stage guarantees robustness of the feasible solutions to PVT variations.

  6. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  7. Air Force Flight Screening: Evolutionary Changes, 1917-2003

    DTIC Science & Technology

    2004-12-01

    US), FFA (Switzerland), Siai Marchetti (Italy), SAAB (Sweden), Slingsby (United Kingdom), Glassair (US), Piper (US), American General (US), and...Jumper, USAF/CC, [Academy Flight Screening program], 10 Apr 03, 3) BBP , 557 FTS/CC, “USAF 66 As the...Academy Flight Screening (AFS) Program,” 4 Feb 03, 4) BBP , 557 FTS/CC, “AFS Funding,” 22 Jan 03, 5) Position Paper, 557 FTS/CC

  8. Near earth tracking/data exploration

    NASA Technical Reports Server (NTRS)

    Spearing, Robert

    1990-01-01

    The future challenges facing NASA's data acquisition program are examined, with emphasis on the near-earth exploration activity and the associated data systems. It is noted that the process that is being followed is an evolutionary one: new technologies are being gradually integrated into currently operating systems. For example, advanced handling is already being introduced into such programs as the Space Telescope and the Gamma Ray Source Observatory System.

  9. Simultaneous phylogeny reconstruction and multiple sequence alignment

    PubMed Central

    Yue, Feng; Shi, Jian; Tang, Jijun

    2009-01-01

    Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110

  10. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  11. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    PubMed

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  12. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  13. An Agent-based Model for Groundwater Allocation and Management at the Bakken Shale in Western North Dakota

    NASA Astrophysics Data System (ADS)

    Lin, T.; Lin, Z.; Lim, S.

    2017-12-01

    We present an integrated modeling framework to simulate groundwater level change under the dramatic increase of hydraulic fracturing water use in the Bakken Shale oil production area. The framework combines the agent-based model (ABM) with the Fox Hills-Hell Creek (FH-HC) groundwater model. In development of the ABM, institution theory is used to model the regulation policies from the North Dakota State Water Commission, while evolutionary programming and cognitive maps are used to model the social structure that emerges from the behavior of competing individual water businesses. Evolutionary programming allows individuals to select an appropriate strategy when annually applying for potential water use permits; whereas cognitive maps endow agent's ability and willingness to compete for more water sales. All agents have their own influence boundaries that inhibit their competitive behavior toward their neighbors but not to non-neighbors. The decision-making process is constructed and parameterized with both quantitative and qualitative information, i.e., empirical water use data and knowledge gained from surveys with stakeholders. By linking institution theory, evolutionary programming, and cognitive maps, our approach addresses a higher complexity of the real decision making process. Furthermore, this approach is a new exploration for modeling the dynamics of Coupled Human and Natural System. After integrating ABM with the FH-HC model, drought and limited water accessibility scenarios are simulated to predict FH-HC ground water level changes in the future. The integrated modeling framework of ABM and FH-HC model can be used to support making scientifically sound policies in water allocation and management.

  14. How evolutionary crystal structure prediction works--and why.

    PubMed

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an overall shape and explore their intrinsic dimensionalities. Because of the inverse relationships between order and energy and between the dimensionality and diversity of an ensemble of crystal structures, the chances that a random search will find the ground state decrease exponentially with increasing system size. A well-designed evolutionary algorithm allows for much greater computational efficiency. We illustrate the power of evolutionary CSP through applications that examine matter at high pressure, where new, unexpected phenomena take place. Evolutionary CSP has allowed researchers to make unexpected discoveries such as a transparent phase of sodium, a partially ionic form of boron, complex superconducting forms of calcium, a novel superhard allotrope of carbon, polymeric modifications of nitrogen, and a new class of compounds, perhydrides. These methods have also led to the discovery of novel hydride superconductors including the "impossible" LiH(n) (n=2, 6, 8) compounds, and CaLi(2). We discuss extensions of the method to molecular crystals, systems of variable composition, and the targeted optimization of specific physical properties. © 2011 American Chemical Society

  15. Phylogenetic rooting using minimal ancestor deviation.

    PubMed

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  16. Wiener-Hammerstein system identification - an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Naitali, Abdessamad; Giri, Fouad

    2016-01-01

    The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.

  17. Android malware detection based on evolutionary super-network

    NASA Astrophysics Data System (ADS)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  18. Artificial evolution by viability rather than competition.

    PubMed

    Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario

    2014-01-01

    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  19. Evolutionary Computing Methods for Spectral Retrieval

    NASA Technical Reports Server (NTRS)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  20. Alignment-free protein interaction network comparison

    PubMed Central

    Ali, Waqar; Rito, Tiago; Reinert, Gesine; Sun, Fengzhu; Deane, Charlotte M.

    2014-01-01

    Motivation: Biological network comparison software largely relies on the concept of alignment where close matches between the nodes of two or more networks are sought. These node matches are based on sequence similarity and/or interaction patterns. However, because of the incomplete and error-prone datasets currently available, such methods have had limited success. Moreover, the results of network alignment are in general not amenable for distance-based evolutionary analysis of sets of networks. In this article, we describe Netdis, a topology-based distance measure between networks, which offers the possibility of network phylogeny reconstruction. Results: We first demonstrate that Netdis is able to correctly separate different random graph model types independent of network size and density. The biological applicability of the method is then shown by its ability to build the correct phylogenetic tree of species based solely on the topology of current protein interaction networks. Our results provide new evidence that the topology of protein interaction networks contains information about evolutionary processes, despite the lack of conservation of individual interactions. As Netdis is applicable to all networks because of its speed and simplicity, we apply it to a large collection of biological and non-biological networks where it clusters diverse networks by type. Availability and implementation: The source code of the program is freely available at http://www.stats.ox.ac.uk/research/proteins/resources. Contact: w.ali@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161230

  1. Evolutionary change in physiological phenotypes along the human lineage.

    PubMed

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  2. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia

    PubMed Central

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.

    2016-01-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  4. HHsvm: fast and accurate classification of profile–profile matches identified by HHsearch

    PubMed Central

    Dlakić, Mensur

    2009-01-01

    Motivation: Recently developed profile–profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. Results: Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile–profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database. Availability: Programs and scripts implementing the methods described in this manuscript are freely available from http://hhsvm.dlakiclab.org/. Contact: mdlakic@montana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19773335

  5. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    PubMed

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  6. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    PubMed

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  7. Advances in computer simulation of genome evolution: toward more realistic evolutionary genomics analysis by approximate bayesian computation.

    PubMed

    Arenas, Miguel

    2015-04-01

    NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.

  8. Beyond the EDGE with EDAM: Prioritising British Plant Species According to Evolutionary Distinctiveness, and Accuracy and Magnitude of Decline

    PubMed Central

    Pearse, William D.; Chase, Mark W.; Crawley, Michael J.; Dolphin, Konrad; Fay, Michael F.; Joseph, Jeffrey A.; Powney, Gary; Preston, Chris D.; Rapacciuolo, Giovanni; Roy, David B.; Purvis, Andy

    2015-01-01

    Conservation biologists have only finite resources, and so must prioritise some species over others. The EDGE-listing approach ranks species according to their combined evolutionary distinctiveness and degree of threat, but ignores the uncertainty surrounding both threat and evolutionary distinctiveness. We develop a new family of measures for species, which we name EDAM, that incorporates evolutionary distinctiveness, the magnitude of decline, and the accuracy with which decline can be predicted. Further, we show how the method can be extended to explore phyogenetic uncertainty. Using the vascular plants of Britain as a case study, we find that the various EDAM measures emphasise different species and parts of Britain, and that phylogenetic uncertainty can strongly affect the prioritisation scores of some species. PMID:26018568

  9. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  10. Mothers Who Kill Their Offspring: Testing Evolutionary Hypothesis in a 110-Case Italian Sample

    ERIC Educational Resources Information Center

    Camperio Ciani, Andrea S.; Fontanesi, Lilybeth

    2012-01-01

    Objectives: This research aimed to identify incidents of mothers in Italy killing their own children and to test an adaptive evolutionary hypothesis to explain their occurrence. Methods: 110 cases of mothers killing 123 of their own offspring from 1976 to 2010 were analyzed. Each case was classified using 13 dichotomic variables. Descriptive…

  11. EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity

    PubMed Central

    Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D

    2006-01-01

    Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150

  12. Novel non-parametric models to estimate evolutionary rates and divergence times from heterochronous sequence data.

    PubMed

    Fourment, Mathieu; Holmes, Edward C

    2014-07-24

    Early methods for estimating divergence times from gene sequence data relied on the assumption of a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of rates, local clocks, or the so called "uncorrelated relaxed clock" where substitution rates are assumed to be drawn from a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior. We develop a maximum likelihood method--Physher--that uses local or discrete clocks to estimate evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher can outperform a Bayesian method when the real topology contains two long branches below the root node, even when evolution is strongly clock-like. These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and divergence times from heterochronous sequence data. Physher and the associated data sets used here are available online at http://code.google.com/p/physher/.

  13. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming.

    PubMed

    Cotto, Olivier; Wessely, Johannes; Georges, Damien; Klonner, Günther; Schmid, Max; Dullinger, Stefan; Thuiller, Wilfried; Guillaume, Frédéric

    2017-05-05

    Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.

  14. An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology.

    PubMed

    Pennell, Matthew W; Harmon, Luke J

    2013-06-01

    Recent innovations in phylogenetic comparative methods (PCMs) have spurred a renaissance of research into the causes and consequences of large-scale patterns of biodiversity. In this paper, we review these advances. We also highlight the potential of comparative methods to integrate across fields and focus on three examples where such integration might be particularly valuable: quantitative genetics, community ecology, and paleobiology. We argue that PCMs will continue to be a key set of tools in evolutionary biology, shedding new light on how evolutionary processes have shaped patterns of biodiversity through deep time. © 2013 New York Academy of Sciences.

  15. TOmographic Remote Observer of Ionospheric Disturbances

    DTIC Science & Technology

    2007-11-15

    ionosphere . The proposed spacecraft was an evolutionary design from the USUSat, Combat Sentinel, and USUSat II programs whose histories are shown in...Figure 1. The primary science instrument, TOROID for TOmographic Remote Observer of Ionospheric Disturbances, is a photometer for measuring the

  16. Monitoring the evolutionary aspect of the Gene Ontology to enhance predictability and usability.

    PubMed

    Park, Jong C; Kim, Tak-eun; Park, Jinah

    2008-04-11

    Much effort is currently made to develop the Gene Ontology (GO). Due to the dynamic nature of information it addresses, GO undergoes constant updates whose results are released at regular intervals as separate versions. Although there are a large number of computational tools to aid the development of GO, they are operating on a particular version of GO, making it difficult for GO curators to anticipate the full impact of particular changes along the time axis on a larger scale. We present a method for tapping into such an evolutionary aspect of GO, by making it possible to keep track of important temporal changes to any of the terms and relations of GO and by consequently making it possible to recognize associated trends. We have developed visualization methods for viewing the changes between two different versions of GO by constructing a colour-coded layered graph. The graph shows both versions of GO with highlights to those GO terms that are added, removed and modified between the two versions. Focusing on a specific GO term or terms of interest over a period, we demonstrate the utility of our system that can be used to make useful hypotheses about the cause of the evolution and to provide new insights into more complex changes. GO undergoes fast evolutionary changes. A snapshot of GO, as presented by each version of GO alone, overlooks such evolutionary aspects, and consequently limits the utilities of GO. The method that highlights the differences of consecutive versions or two different versions of an evolving ontology with colour-coding enhances the utility of GO for users as well as for developers. To the best of our knowledge, this is the first proposal to visualize the evolutionary aspect of GO.

  17. Evolutionary games with coordination and self-dependent interactions

    NASA Astrophysics Data System (ADS)

    Király, Balázs; Szabó, György

    2017-01-01

    Multistrategy evolutionary games are studied on a square lattice when the pair interactions are composed of coordinations between strategy pairs and an additional term with self-dependent payoff. We describe a method for determining the strength of each elementary coordination component in n -strategy potential games. Using analytical and numerical methods, the presence and absence of Ising-type order-disorder phase transitions are studied when a single pair coordination is extended by some types of self-dependent elementary games. We also introduce noise-dependent three-strategy equivalents of the n -strategy elementary coordination games.

  18. Multiscale global identification of porous structures

    NASA Astrophysics Data System (ADS)

    Hatłas, Marcin; Beluch, Witold

    2018-01-01

    The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.

  19. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    PubMed

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non-recombining region of both the chromosomes.

  20. Co-evolutionary data mining for fuzzy rules: automatic fitness function creation phase space, and experiments

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Blank, Joseph A.

    2003-03-01

    An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.

  1. Simple versus complex models of trait evolution and stasis as a response to environmental change

    NASA Astrophysics Data System (ADS)

    Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott

    2015-04-01

    Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.

  2. Multi Agent Systems with Symbiotic Learning and Evolution using GNP

    NASA Astrophysics Data System (ADS)

    Eguchi, Toru; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi

    Recently, various attempts relevant to Multi Agent Systems (MAS) which is one of the most promising systems based on Distributed Artificial Intelligence have been studied to control large and complicated systems efficiently. In these trends of MAS, Multi Agent Systems with Symbiotic Learning and Evolution named Masbiole has been proposed. In Masbiole, symbiotic phenomena among creatures are considered in the process of learning and evolution of MAS. So we can expect more flexible and sophisticated solutions than conventional MAS. In this paper, we apply Masbiole to Iterative Prisoner’s Dilemma Games (IPD Games) using Genetic Network Programming (GNP) which is a newly developed evolutionary computation method for constituting agents. Some characteristics of Masbiole using GNP in IPD Games are clarified.

  3. Anticipatory Mechanisms in Evolutionary Living Systems

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence, it is possible to formulate a new principle of evolution, i.e. the principle of Double Anticipatory Loop (DAL) of evolution: Biological evolution is driven by interaction between a mindless environment that is passively selecting the fittest inhabitants and purposeful anticipatory living systems, which are actively selecting and creating their own environment. Evolution on the genome level is trigged by environmental stress but guided by an inherent program.

  4. Evolving binary classifiers through parallel computation of multiple fitness cases.

    PubMed

    Cagnoni, Stefano; Bergenti, Federico; Mordonini, Monica; Adorni, Giovanni

    2005-06-01

    This paper describes two versions of a novel approach to developing binary classifiers, based on two evolutionary computation paradigms: cellular programming and genetic programming. Such an approach achieves high computation efficiency both during evolution and at runtime. Evolution speed is optimized by allowing multiple solutions to be computed in parallel. Runtime performance is optimized explicitly using parallel computation in the case of cellular programming or implicitly taking advantage of the intrinsic parallelism of bitwise operators on standard sequential architectures in the case of genetic programming. The approach was tested on a digit recognition problem and compared with a reference classifier.

  5. Evolutionary foundations for cancer biology.

    PubMed

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  6. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  7. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    PubMed

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  8. Scalable computing for evolutionary genomics.

    PubMed

    Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project, BioNode encourages creating free and open source VM images, for multiple targets, through one central project. BioNode can be deployed on Windows, OSX, Linux, and in the Cloud. Next to the downloadable BioNode images, we provide tutorials online, which empower bioinformaticians to install and run BioNode in different environments, as well as information for future initiatives, on creating and building such images.

  9. Modelling formulations using gene expression programming--a comparative analysis with artificial neural networks.

    PubMed

    Colbourn, E A; Roskilly, S J; Rowe, R C; York, P

    2011-10-09

    This study has investigated the utility and potential advantages of gene expression programming (GEP)--a new development in evolutionary computing for modelling data and automatically generating equations that describe the cause-and-effect relationships in a system--to four types of pharmaceutical formulation and compared the models with those generated by neural networks, a technique now widely used in the formulation development. Both methods were capable of discovering subtle and non-linear relationships within the data, with no requirement from the user to specify the functional forms that should be used. Although the neural networks rapidly developed models with higher values for the ANOVA R(2) these were black box and provided little insight into the key relationships. However, GEP, although significantly slower at developing models, generated relatively simple equations describing the relationships that could be interpreted directly. The results indicate that GEP can be considered an effective and efficient modelling technique for formulation data. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  11. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions.

    PubMed

    Schumann, A; Priegnitz, M; Schoene, S; Enghardt, W; Rohling, H; Fiedler, F

    2016-10-07

    Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.

  12. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  13. Evolutionary use of nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.

  14. Evolutionary Development of the Simulation by Logical Modeling System (SIBYL)

    NASA Technical Reports Server (NTRS)

    Wu, Helen

    1995-01-01

    Through the evolutionary development of the Simulation by Logical Modeling System (SIBYL) we have re-engineered the expensive and complex IBM mainframe based Long-term Hardware Projection Model (LHPM) to a robust cost-effective computer based mode that is easy to use. We achieved significant cost reductions and improved productivity in preparing long-term forecasts of Space Shuttle Main Engine (SSME) hardware. The LHPM for the SSME is a stochastic simulation model that projects the hardware requirements over 10 years. SIBYL is now the primary modeling tool for developing SSME logistics proposals and Program Operating Plan (POP) for NASA and divisional marketing studies.

  15. HBC-Evo: predicting human breast cancer by exploiting amino acid sequence-based feature spaces and evolutionary ensemble system.

    PubMed

    Majid, Abdul; Ali, Safdar

    2015-01-01

    We developed genetic programming (GP)-based evolutionary ensemble system for the early diagnosis, prognosis and prediction of human breast cancer. This system has effectively exploited the diversity in feature and decision spaces. First, individual learners are trained in different feature spaces using physicochemical properties of protein amino acids. Their predictions are then stacked to develop the best solution during GP evolution process. Finally, results for HBC-Evo system are obtained with optimal threshold, which is computed using particle swarm optimization. Our novel approach has demonstrated promising results compared to state of the art approaches.

  16. GENOME-WIDE COMPARATIVE ANALYSIS OF PHYLOGENETIC TREES: THE PROKARYOTIC FOREST OF LIFE

    PubMed Central

    Puigbò, Pere; Wolf, Yuri I.; Koonin, Eugene V.

    2013-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance (SD) method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the applications methods used to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a ‘species tree’. PMID:22399455

  17. Genome-wide comparative analysis of phylogenetic trees: the prokaryotic forest of life.

    PubMed

    Puigbò, Pere; Wolf, Yuri I; Koonin, Eugene V

    2012-01-01

    Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a "species tree."

  18. Research on Novel Algorithms for Smart Grid Reliability Assessment and Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Luo, Wenjin

    In this dissertation, several studies of electric power system reliability and economy assessment methods are presented. To be more precise, several algorithms in evaluating power system reliability and economy are studied. Furthermore, two novel algorithms are applied to this field and their simulation results are compared with conventional results. As the electrical power system develops towards extra high voltage, remote distance, large capacity and regional networking, the application of a number of new technique equipments and the electric market system have be gradually established, and the results caused by power cut has become more and more serious. The electrical power system needs the highest possible reliability due to its complication and security. In this dissertation the Boolean logic Driven Markov Process (BDMP) method is studied and applied to evaluate power system reliability. This approach has several benefits. It allows complex dynamic models to be defined, while maintaining its easy readability as conventional methods. This method has been applied to evaluate IEEE reliability test system. The simulation results obtained are close to IEEE experimental data which means that it could be used for future study of the system reliability. Besides reliability, modern power system is expected to be more economic. This dissertation presents a novel evolutionary algorithm named as quantum evolutionary membrane algorithm (QEPS), which combines the concept and theory of quantum-inspired evolutionary algorithm and membrane computation, to solve the economic dispatch problem in renewable power system with on land and offshore wind farms. The case derived from real data is used for simulation tests. Another conventional evolutionary algorithm is also used to solve the same problem for comparison. The experimental results show that the proposed method is quick and accurate to obtain the optimal solution which is the minimum cost for electricity supplied by wind farm system.

  19. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements, and past and present distribution within its native range

    USDA-ARS?s Scientific Manuscript database

    The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. We integrated classic and Bayesian phylogeographic methods with a paleodistribution modeling approach to study the demographic patterns that shaped the distribut...

  20. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  1. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  2. Evidence Combination From an Evolutionary Game Theory Perspective

    PubMed Central

    Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu

    2017-01-01

    Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion because it is good at dealing with uncertain information. This theory provides a Dempster’s rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multi-evidence system. Within the proposed ECR, we develop a Jaccard matrix game (JMG) to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution’s stability and convergence, have been mathematically proved as well. PMID:26285231

  3. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  4. How does cognition evolve? Phylogenetic comparative psychology.

    PubMed

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  5. The Saturn management concept

    NASA Technical Reports Server (NTRS)

    Bilstein, R. E.

    1974-01-01

    Management of the Saturn launch vehicles was an evolutionary process, requiring constant interaction between NASA Headquarters, the Marshall Space Flight Center (particularly the Saturn 5 Program Office), and the various prime contractors. Successful Saturn management was a blend of the decades of experience of the von Braun team, management concepts from the Army, Navy, Air Force, and Government, and private industry. The Saturn 5 Program Office shared a unique relationship with the Apollo Program Office at NASA Headquarters. Much of the success of the Saturn 5 Program Office was based on its painstaking attention to detail, emphasis on individual responsibilities (backed up by comprehensive program element plans and management matrices), and a high degree of visibility as embodied in the Program Control Center.

  6. Darwin in Mind: New Opportunities for Evolutionary Psychology

    PubMed Central

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  7. Evolutionary orbital period change in BH Virginis

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Berdnikov, L. N.

    2017-04-01

    The study of orbital period change of close binaries, such as BH Virginis (BH Vir), using very long time baseline is vital to understand evolutionary processes of the system. In this paper, we use photometric data to analyze the evolutionary orbital period change of the short period RS CVn-type binary system, BH Vir, with a time baseline spanning 123 years. We used the software version of the Hertzsprung method to describe the O-C curve of the system, and we found that the orbital period secularly decreases at a rate of dp/dt=-(0.0013000 ± 0.0000863) s yr^{-1}. Because BH Vir is a typical detached binary system and both components are late type (G0 V + G2 V) stars, the evolutionary period change could be caused by the angular momentum loss due to tides coupled with magnetic breaking.

  8. Evolutionary conceptual analysis: faith community nursing.

    PubMed

    Ziebarth, Deborah

    2014-12-01

    The aim of the study was to report an evolutionary concept analysis of faith community nursing (FCN). FCN is a source of healthcare delivery in the USA which has grown in comprehensiveness and complexity. With increasing healthcare cost and a focus on access and prevention, FCN has extended beyond the physical walls of the faith community building. Faith communities and healthcare organizations invest in FCN and standardized training programs exist. Using Rodgers' evolutionary analysis, the literature was examined for antecedents, attributes, and consequences of the concept. This design allows for understanding the historical and social nature of the concept and how it changes over time. A search of databases using the keywords FCN, faith community nurse, parish nursing, and parish nurse was done. The concept of FCN was explored using research and theoretical literature. A theoretical definition and model were developed with relevant implications. The search results netted a sample of 124 reports of research and theoretical articles from multiple disciplines: medicine, education, religion and philosophy, international health, and nursing. Theoretical definition: FCN is a method of healthcare delivery that is centered in a relationship between the nurse and client (client as person, family, group, or community). The relationship occurs in an iterative motion over time when the client seeks or is targeted for wholistic health care with the goal of optimal wholistic health functioning. Faith integrating is a continuous occurring attribute. Health promoting, disease managing, coordinating, empowering and accessing health care are other essential attributes. All essential attributes occur with intentionality in a faith community, home, health institution and other community settings with fluidity as part of a community, national, or global health initiative. A new theoretical definition and corresponding conceptual model of FCN provides a basis for future nursing knowledge and model-based applications for evidence-based practice and research.

  9. Introducing survival ethics into engineering education and practice.

    PubMed

    Verharen, C; Tharakan, J; Middendorf, G; Castro-Sitiriche, M; Kadoda, G

    2013-06-01

    Given the possibilities of synthetic biology, weapons of mass destruction and global climate change, humans may achieve the capacity globally to alter life. This crisis calls for an ethics that furnishes effective motives to take global action necessary for survival. We propose a research program for understanding why ethical principles change across time and culture. We also propose provisional motives and methods for reaching global consensus on engineering field ethics. Current interdisciplinary research in ethics, psychology, neuroscience and evolutionary theory grounds these proposals. Experimental ethics, the application of scientific principles to ethical studies, provides a model for developing policies to advance solutions. A growing literature proposes evolutionary explanations for moral development. Connecting these approaches necessitates an experimental or scientific ethics that deliberately examines theories of morality for reliability. To illustrate how such an approach works, we cover three areas. The first section analyzes cross-cultural ethical systems in light of evolutionary theory. While such research is in its early stages, its assumptions entail consequences for engineering education. The second section discusses Howard University and University of Puerto Rico/Mayagüez (UPRM) courses that bring ethicists together with scientists and engineers to unite ethical theory and practice. We include a syllabus for engineering and STEM (Science, Technology, Engineering and Mathematics) ethics courses and a checklist model for translating educational theory and practice into community action. The model is based on aviation, medicine and engineering practice. The third and concluding section illustrates Howard University and UPRM efforts to translate engineering educational theory into community action. Multidisciplinary teams of engineering students and instructors take their expertise from the classroom to global communities to examine further the ethicality of prospective technologies and the decision-making processes that lead to them.

  10. Unity and disunity in evolutionary sciences: process-based analogies open common research avenues for biology and linguistics.

    PubMed

    List, Johann-Mattis; Pathmanathan, Jananan Sylvestre; Lopez, Philippe; Bapteste, Eric

    2016-08-20

    For a long time biologists and linguists have been noticing surprising similarities between the evolution of life forms and languages. Most of the proposed analogies have been rejected. Some, however, have persisted, and some even turned out to be fruitful, inspiring the transfer of methods and models between biology and linguistics up to today. Most proposed analogies were based on a comparison of the research objects rather than the processes that shaped their evolution. Focusing on process-based analogies, however, has the advantage of minimizing the risk of overstating similarities, while at the same time reflecting the common strategy to use processes to explain the evolution of complexity in both fields. We compared important evolutionary processes in biology and linguistics and identified processes specific to only one of the two disciplines as well as processes which seem to be analogous, potentially reflecting core evolutionary processes. These new process-based analogies support novel methodological transfer, expanding the application range of biological methods to the field of historical linguistics. We illustrate this by showing (i) how methods dealing with incomplete lineage sorting offer an introgression-free framework to analyze highly mosaic word distributions across languages; (ii) how sequence similarity networks can be used to identify composite and borrowed words across different languages; (iii) how research on partial homology can inspire new methods and models in both fields; and (iv) how constructive neutral evolution provides an original framework for analyzing convergent evolution in languages resulting from common descent (Sapir's drift). Apart from new analogies between evolutionary processes, we also identified processes which are specific to either biology or linguistics. This shows that general evolution cannot be studied from within one discipline alone. In order to get a full picture of evolution, biologists and linguists need to complement their studies, trying to identify cross-disciplinary and discipline-specific evolutionary processes. The fact that we found many process-based analogies favoring transfer from biology to linguistics further shows that certain biological methods and models have a broader scope than previously recognized. This opens fruitful paths for collaboration between the two disciplines. This article was reviewed by W. Ford Doolittle and Eugene V. Koonin.

  11. Evaluating phylogenetic congruence in the post-genomic era.

    PubMed

    Leigh, Jessica W; Lapointe, François-Joseph; Lopez, Philippe; Bapteste, Eric

    2011-01-01

    Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures.

  12. Evaluating Phylogenetic Congruence in the Post-Genomic Era

    PubMed Central

    Leigh, Jessica W.; Lapointe, François-Joseph; Lopez, Philippe; Bapteste, Eric

    2011-01-01

    Congruence is a broadly applied notion in evolutionary biology used to justify multigene phylogeny or phylogenomics, as well as in studies of coevolution, lateral gene transfer, and as evidence for common descent. Existing methods for identifying incongruence or heterogeneity using character data were designed for data sets that are both small and expected to be rarely incongruent. At the same time, methods that assess incongruence using comparison of trees test a null hypothesis of uncorrelated tree structures, which may be inappropriate for phylogenomic studies. As such, they are ill-suited for the growing number of available genome sequences, most of which are from prokaryotes and viruses, either for phylogenomic analysis or for studies of the evolutionary forces and events that have shaped these genomes. Specifically, many existing methods scale poorly with large numbers of genes, cannot accommodate high levels of incongruence, and do not adequately model patterns of missing taxa for different markers. We propose the development of novel incongruence assessment methods suitable for the analysis of the molecular evolution of the vast majority of life and support the investigation of homogeneity of evolutionary process in cases where markers do not share identical tree structures. PMID:21712432

  13. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    PubMed

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.

  14. Identifying predictors of time-inhomogeneous viral evolutionary processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Rodrigo, Allen G; Suchard, Marc A; Lemey, Philippe

    2016-07-01

    Various factors determine the rate at which mutations are generated and fixed in viral genomes. Viral evolutionary rates may vary over the course of a single persistent infection and can reflect changes in replication rates and selective dynamics. Dedicated statistical inference approaches are required to understand how the complex interplay of these processes shapes the genetic diversity and divergence in viral populations. Although evolutionary models accommodating a high degree of complexity can now be formalized, adequately informing these models by potentially sparse data, and assessing the association of the resulting estimates with external predictors, remains a major challenge. In this article, we present a novel Bayesian evolutionary inference method, which integrates multiple potential predictors and tests their association with variation in the absolute rates of synonymous and non-synonymous substitutions along the evolutionary history. We consider clinical and virological measures as predictors, but also changes in population size trajectories that are simultaneously inferred using coalescent modelling. We demonstrate the potential of our method in an application to within-host HIV-1 sequence data sampled throughout the infection of multiple patients. While analyses of individual patient populations lack statistical power, we detect significant evidence for an abrupt drop in non-synonymous rates in late stage infection and a more gradual increase in synonymous rates over the course of infection in a joint analysis across all patients. The former is predicted by the immune relaxation hypothesis while the latter may be in line with increasing replicative fitness during the asymptomatic stage.

  15. Estimating true evolutionary distances under the DCJ model.

    PubMed

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  16. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby

    2015-01-01

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they “lock” the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  17. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    PubMed

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  18. Applied evolutionary theories for engineering of secondary metabolic pathways.

    PubMed

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests

    PubMed Central

    Sander, P. Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267

  20. Identifying Evolutionary Patterns of SMBHS Using Characteristic Variables of the Quasar AGNs of eBOSS

    NASA Astrophysics Data System (ADS)

    Martens, Sarah Katherine; Wilcots, Eric M.

    2017-01-01

    We investigate the redshift distribution and environmental conditions of quasar AGNs. The importance of studying these relationships is to use the evolutionary patterns of QSOs (features with many quantifiable characteristics) to gain insight into the evolutionary paths and environmental dependencies of their host super massive black holes (SMBHs), which are more difficult to study directly. We employ specific redshift bins within Data Release 13 of the Sloan Digital Sky Survey's (SDSS) Extended Baryonic Oscillation Spectroscopic Survey (eBOSS) and begin with a sample of 595,025 QSOs. We then incorporate overlapping data sets: The Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) which provides the HI detected QSOs in our sample, along with the galaxy group and cluster sample from Tempel, Tago, Liivamägi 2012 which we cross referenced with our QSO sample to see which of them exist in group environments. The addition of these data sets allows us to create a more holistic view of the processes at work within our sample of QSOs. Understanding the HI presence in different evolutionary phases will allow us to draw conclusions on potential star formation rates or quenching, and by understanding the populations of QSOs in galaxy groups we can determine if QSOs exist overwhelmingly in one particular environment and how environmental conditions effect the other characteristics of QSOs. Overall we provide a multi-faceted analysis of some of the evolutionary patterns and cycles of the eBOSS Data Release 13 QSOs and their implications on the evolutionary paths of SMBHs. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  1. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    PubMed

    Sander, P Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  2. Genomic clocks and evolutionary timescales

    NASA Technical Reports Server (NTRS)

    Blair Hedges, S.; Kumar, Sudhir

    2003-01-01

    For decades, molecular clocks have helped to illuminate the evolutionary timescale of life, but now genomic data pose a challenge for time estimation methods. It is unclear how to integrate data from many genes, each potentially evolving under a different model of substitution and at a different rate. Current methods can be grouped by the way the data are handled (genes considered separately or combined into a 'supergene') and the way gene-specific rate models are applied (global versus local clock). There are advantages and disadvantages to each of these approaches, and the optimal method has not yet emerged. Fortunately, time estimates inferred using many genes or proteins have greater precision and appear to be robust to different approaches.

  3. Evolutionary Data Mining Approach to Creating Digital Logic

    DTIC Science & Technology

    2010-01-01

    To deal with this problem a genetic program (GP) based data mining ( DM ) procedure has been invented (Smith 2005). A genetic program is an algorithm...that can operate on the variables. When a GP was used as a DM function in the past to automatically create fuzzy decision trees, the Report...rules represents an approach to the determining the effect of linguistic imprecision, i.e., the inability of experts to provide crisp rules. The

  4. Blockmodeling and the Estimation of Evolutionary Architectural Growth in Major Defense Acquisition Programs

    DTIC Science & Technology

    2016-04-30

    Dabkowski, and Dixit (2015), we demonstrate that the DoDAF models required pre–MS A map to 14 of the 18 parameters of the Constructive Systems...engineering effort in complex systems. Saarbrücken, Germany: VDM Verlag. Valerdi, R., Dabkowski, M., & Dixit , I. (2015). Reliability improvement of...R., Dabkowski, M., & Dixit , I. (2015). Reliability Improvement of Major Defense Acquisition Program Cost Estimates – Mapping DoDAF to COSYSMO

  5. Forecasting Caspian Sea level changes using satellite altimetry data (June 1992-December 2013) based on evolutionary support vector regression algorithms and gene expression programming

    NASA Astrophysics Data System (ADS)

    Imani, Moslem; You, Rey-Jer; Kuo, Chung-Yen

    2014-10-01

    Sea level forecasting at various time intervals is of great importance in water supply management. Evolutionary artificial intelligence (AI) approaches have been accepted as an appropriate tool for modeling complex nonlinear phenomena in water bodies. In the study, we investigated the ability of two AI techniques: support vector machine (SVM), which is mathematically well-founded and provides new insights into function approximation, and gene expression programming (GEP), which is used to forecast Caspian Sea level anomalies using satellite altimetry observations from June 1992 to December 2013. SVM demonstrates the best performance in predicting Caspian Sea level anomalies, given the minimum root mean square error (RMSE = 0.035) and maximum coefficient of determination (R2 = 0.96) during the prediction periods. A comparison between the proposed AI approaches and the cascade correlation neural network (CCNN) model also shows the superiority of the GEP and SVM models over the CCNN.

  6. Evolutionary construction by staying together and coming together.

    PubMed

    Tarnita, Corina E; Taubes, Clifford H; Nowak, Martin A

    2013-03-07

    The evolutionary trajectory of life on earth is one of increasing size and complexity. Yet the standard equations of evolutionary dynamics describe mutation and selection among similar organisms that compete on the same level of organization. Here we begin to outline a mathematical theory that might help to explore how evolution can be constructive, how natural selection can lead from lower to higher levels of organization. We distinguish two fundamental operations, which we call 'staying together' and 'coming together'. Staying together means that individuals form larger units by not separating after reproduction, while coming together means that independent individuals form aggregates. Staying together can lead to specialization and division of labor, but the developmental program must evolve in the basic unit. Coming together can be creative by combining units with different properties. Both operations have been identified in the context of multicellularity, but they have been treated very similarly. Here we point out that staying together and coming together can be found at every level of biological construction and moreover that they face different evolutionary problems. The distinction is particularly clear in the context of cooperation and defection. For staying together the stability of cooperation takes the form of a developmental error threshold, while coming together leads to evolutionary games and requires a mechanism for the evolution of cooperation. We use our models to discuss simple aspects of the evolution of protocells, eukarya, multi-cellularity and animal societies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Quality assurance program for molecular medicine laboratories.

    PubMed

    Hajia, M; Safadel, N; Samiee, S Mirab; Dahim, P; Anjarani, S; Nafisi, N; Sohrabi, A; Rafiee, M; Sabzavi, F; Entekhabi, B

    2013-01-01

    Molecular diagnostic methods have played and continuing to have a critical role in clinical laboratories in recent years. Therefore, standardization is an evolutionary process that needs to be upgrade with increasing scientific knowledge, improvement of the instruments and techniques. The aim of this study was to design a quality assurance program in order to have similar conditions for all medical laboratories engaging with molecular tests. We had to design a plan for all four elements; required space conditions, equipments, training, and basic guidelines. Necessary guidelines was prepared and confirmed by the launched specific committee at the Health Reference Laboratory. Several workshops were also held for medical laboratories directors and staffs, quality control manager of molecular companies, directors and nominees from universities. Accreditation of equipments and molecular material was followed parallel with rest of program. Now we are going to accredit medical laboratories and to evaluate the success of the program. Accreditation of medical laboratory will be succeeding if its basic elements are provided in advance. Professional practice guidelines, holding training and performing accreditation the molecular materials and equipments ensured us that laboratories are aware of best practices, proper interpretation, limitations of techniques, and technical issues. Now, active external auditing can improve the applied laboratory conditions toward the defined standard level.

  8. Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.

    PubMed

    M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W

    2016-12-01

    The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.

  9. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Plank, James; Disney, Adam

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  10. Automated discovery of local search heuristics for satisfiability testing.

    PubMed

    Fukunaga, Alex S

    2008-01-01

    The development of successful metaheuristic algorithms such as local search for a difficult problem such as satisfiability testing (SAT) is a challenging task. We investigate an evolutionary approach to automating the discovery of new local search heuristics for SAT. We show that several well-known SAT local search algorithms such as Walksat and Novelty are composite heuristics that are derived from novel combinations of a set of building blocks. Based on this observation, we developed CLASS, a genetic programming system that uses a simple composition operator to automatically discover SAT local search heuristics. New heuristics discovered by CLASS are shown to be competitive with the best Walksat variants, including Novelty+. Evolutionary algorithms have previously been applied to directly evolve a solution for a particular SAT instance. We show that the heuristics discovered by CLASS are also competitive with these previous, direct evolutionary approaches for SAT. We also analyze the local search behavior of the learned heuristics using the depth, mobility, and coverage metrics proposed by Schuurmans and Southey.

  11. Fear and Loving in Las Vegas: Evolution, Emotion, and Persuasion

    PubMed Central

    Griskevicius, Vladas; Goldstein, Noah J.; Mortensen, Chad R.; Sundie, Jill M.; Cialdini, Robert B.; Kenrick, Douglas T.

    2009-01-01

    How do arousal-inducing contexts, such as frightening or romantic television programs, influence the effectiveness of basic persuasion heuristics? Different predictions are made by three theoretical models: A general arousal model predicts that arousal should increase effectiveness of heuristics; an affective valence model predicts that effectiveness should depend on whether the context elicits positive or negative affect; an evolutionary model predicts that persuasiveness should depend on both the specific emotion that is elicited and the content of the particular heuristic. Three experiments examined how fear-inducing versus romantic contexts influenced the effectiveness of two widely used heuristics—social proof (e.g., “most popular”) and scarcity (e.g., “limited edition”). Results supported predictions from an evolutionary model, showing that fear can lead scarcity appeals to be counter-persuasive, and that romantic desire can lead social proof appeals to be counter-persuasive. The findings highlight how an evolutionary theoretical approach can lead to novel theoretical and practical marketing insights. PMID:19727416

  12. Toward a method for tracking virus evolutionary trajectory applied to the pandemic H1N1 2009 influenza virus.

    PubMed

    Squires, R Burke; Pickett, Brett E; Das, Sajal; Scheuermann, Richard H

    2014-12-01

    In 2009 a novel pandemic H1N1 influenza virus (H1N1pdm09) emerged as the first official influenza pandemic of the 21st century. Early genomic sequence analysis pointed to the swine origin of the virus. Here we report a novel computational approach to determine the evolutionary trajectory of viral sequences that uses data-driven estimations of nucleotide substitution rates to track the gradual accumulation of observed sequence alterations over time. Phylogenetic analysis and multiple sequence alignments show that sequences belonging to the resulting evolutionary trajectory of the H1N1pdm09 lineage exhibit a gradual accumulation of sequence variations and tight temporal correlations in the topological structure of the phylogenetic trees. These results suggest that our evolutionary trajectory analysis (ETA) can more effectively pinpoint the evolutionary history of viruses, including the host and geographical location traversed by each segment, when compared against either BLAST or traditional phylogenetic analysis alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A molecular signaling approach to linking intraspecific variation and macro-evolutionary patterns.

    PubMed

    Swanson, Eli M; Snell-Rood, Emilie C

    2014-11-01

    Macro-evolutionary comparisons are a valued tool in evolutionary biology. Nevertheless, our understanding of how systems involved in molecular signaling change in concert with phenotypic diversification has lagged. We argue that integrating our understanding of the evolution of molecular signaling systems with phylogenetic comparative methods is an important step toward understanding the processes linking variation among individuals with variation among species. Focusing mostly on the endocrine system, we discuss how the complexity and mechanistic nature of molecular signaling systems may influence the application and interpretation of macro-evolutionary comparisons. We also detail five hypotheses concerning the role that physiological mechanisms can play in shaping macro-evolutionary patterns, and discuss ways in which these hypotheses could influence phenotypic diversification. Finally, we review a series of tools able to analyze the complexity of physiological systems and the way they change in concert with the phenotypes for which they coordinate development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. The locus of sexual selection: moving sexual selection studies into the post-genomics era.

    PubMed

    Wilkinson, G S; Breden, F; Mank, J E; Ritchie, M G; Higginson, A D; Radwan, J; Jaquiery, J; Salzburger, W; Arriero, E; Barribeau, S M; Phillips, P C; Renn, S C P; Rowe, L

    2015-04-01

    Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  16. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2.

    PubMed

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users.

  17. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2

    PubMed Central

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. Availability PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users. PMID:26339154

  18. Generalized Buneman Pruning for Inferring the Most Parsimonious Multi-state Phylogeny

    NASA Astrophysics Data System (ADS)

    Misra, Navodit; Blelloch, Guy; Ravi, R.; Schwartz, Russell

    Accurate reconstruction of phylogenies remains a key challenge in evolutionary biology. Most biologically plausible formulations of the problem are formally NP-hard, with no known efficient solution. The standard in practice are fast heuristic methods that are empirically known to work very well in general, but can yield results arbitrarily far from optimal. Practical exact methods, which yield exponential worst-case running times but generally much better times in practice, provide an important alternative. We report progress in this direction by introducing a provably optimal method for the weighted multi-state maximum parsimony phylogeny problem. The method is based on generalizing the notion of the Buneman graph, a construction key to efficient exact methods for binary sequences, so as to apply to sequences with arbitrary finite numbers of states with arbitrary state transition weights. We implement an integer linear programming (ILP) method for the multi-state problem using this generalized Buneman graph and demonstrate that the resulting method is able to solve data sets that are intractable by prior exact methods in run times comparable with popular heuristics. Our work provides the first method for provably optimal maximum parsimony phylogeny inference that is practical for multi-state data sets of more than a few characters.

  19. SHARP's systems engineering challenge: rectifying integrated product team requirements with performance issues in an evolutionary spiral development acquisition

    NASA Astrophysics Data System (ADS)

    Kuehl, C. Stephen

    2003-08-01

    Completing its final development and early deployment on the Navy's multi-role aircraft, the F/A-18 E/F Super Hornet, the SHAred Reconnaissance Pod (SHARP) provides the war fighter with the latest digital tactical reconnaissance (TAC Recce) Electro-Optical/Infrared (EO/IR) sensor system. The SHARP program is an evolutionary acquisition that used a spiral development process across a prototype development phase tightly coupled into overlapping Engineering and Manufacturing Development (EMD) and Low Rate Initial Production (LRIP) phases. Under a tight budget environment with a highly compressed schedule, SHARP challenged traditional acquisition strategies and systems engineering (SE) processes. Adopting tailored state-of-the-art systems engineering process models allowd the SHARP program to overcome the technical knowledge transition challenges imposed by a compressed program schedule. The program's original goal was the deployment of digital TAC Recce mission capabilities to the fleet customer by summer of 2003. Hardware and software integration technical challenges resulted from requirements definition and analysis activities performed across a government-industry led Integrated Product Team (IPT) involving Navy engineering and test sites, Boeing, and RTSC-EPS (with its subcontracted hardware and government furnished equipment vendors). Requirements development from a bottoms-up approach was adopted using an electronic requirements capture environment to clarify and establish the SHARP EMD product baseline specifications as relevant technical data became available. Applying Earned-Value Management (EVM) against an Integrated Master Schedule (IMS) resulted in efficiently managing SE task assignments and product deliveries in a dynamically evolving customer requirements environment. Application of Six Sigma improvement methodologies resulted in the uncovering of root causes of errors in wiring interconnectivity drawings, pod manufacturing processes, and avionics requirements specifications. Utilizing the draft NAVAIR SE guideline handbook and the ANSI/EIA-632 standard: Processes for Engineering a System, a systems engineering tailored process approach was adopted for the accelerated SHARP EMD prgram. Tailoring SE processes in this accelerated product delivery environment provided unique opportunities to be technically creative in the establishment of a product performance baseline. This paper provides an historical overview of the systems engineering activities spanning the prototype phase through the EMD SHARP program phase, the performance requirement capture activities and refinement process challenges, and what SE process improvements can be applied to future SHARP-like programs adopting a compressed, evolutionary spiral development acquisition paradigm.

  20. Rooting phylogenetic trees under the coalescent model using site pattern probabilities.

    PubMed

    Tian, Yuan; Kubatko, Laura

    2017-12-19

    Phylogenetic tree inference is a fundamental tool to estimate ancestor-descendant relationships among different species. In phylogenetic studies, identification of the root - the most recent common ancestor of all sampled organisms - is essential for complete understanding of the evolutionary relationships. Rooted trees benefit most downstream application of phylogenies such as species classification or study of adaptation. Often, trees can be rooted by using outgroups, which are species that are known to be more distantly related to the sampled organisms than any other species in the phylogeny. However, outgroups are not always available in evolutionary research. In this study, we develop a new method for rooting species tree under the coalescent model, by developing a series of hypothesis tests for rooting quartet phylogenies using site pattern probabilities. The power of this method is examined by simulation studies and by application to an empirical North American rattlesnake data set. The method shows high accuracy across the simulation conditions considered, and performs well for the rattlesnake data. Thus, it provides a computationally efficient way to accurately root species-level phylogenies that incorporates the coalescent process. The method is robust to variation in substitution model, but is sensitive to the assumption of a molecular clock. Our study establishes a computationally practical method for rooting species trees that is more efficient than traditional methods. The method will benefit numerous evolutionary studies that require rooting a phylogenetic tree without having to specify outgroups.

  1. XTALOPT version r11: An open-source evolutionary algorithm for crystal structure prediction

    NASA Astrophysics Data System (ADS)

    Avery, Patrick; Falls, Zackary; Zurek, Eva

    2018-01-01

    Version 11 of XTALOPT, an evolutionary algorithm for crystal structure prediction, has now been made available for download from the CPC library or the XTALOPT website, http://xtalopt.github.io. Whereas the previous versions of XTALOPT were published under the Gnu Public License (GPL), the current version is made available under the 3-Clause BSD License, which is an open source license that is recognized by the Open Source Initiative. Importantly, the new version can be executed via a command line interface (i.e., it does not require the use of a Graphical User Interface). Moreover, the new version is written as a stand-alone program, rather than an extension to AVOGADRO.

  2. The QTN program and the alleles that matter for evolution: all that's gold does not glitter.

    PubMed

    Rockman, Matthew V

    2012-01-01

    The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  3. Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems

    PubMed Central

    Carroll, Scott P

    2011-01-01

    Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967

  4. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  5. Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips

    DTIC Science & Technology

    2010-05-12

    Sequence Types. The evolutionary history of all the B. cereus MLST concatenated Sequence Types (545 taxa, 2,394 nucleotide positions) was inferred using...the Neighbor-Joining method [28]. The bootstrap consensus tree inferred from 100 replicates was taken to represent the evolutionary history of the... Chlamydia (manuscript in preparation) and performed pilot studies on Staphylococcus aureus and Streptoccus pneumoniae (Data S4 and Text S2). Another potential

  6. Trends in the sand: Directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae).

    PubMed

    Sherratt, Emma; Alejandrino, Alvin; Kraemer, Andrew C; Serb, Jeanne M; Adams, Dean C

    2016-09-01

    Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Evolutionary distances in the twilight zone--a rational kernel approach.

    PubMed

    Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian

    2010-12-31

    Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.

  8. Using modified fruit fly optimisation algorithm to perform the function test and case studies

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Tsao

    2013-06-01

    Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.

  9. Propulsion and fluid management - Station keeping will eat energy on a new scale

    NASA Technical Reports Server (NTRS)

    Petrash, D. A.

    1983-01-01

    An attempt is made to identify technologies that could be brought to a state of minimal development risk in the near term, yet offer the potential for evolutionary growth consistent with future space station propulsion requirements. Prospective auxiliary propulsion propellants will be usable by other systems, thereby offering resupply benefits and a benign rather than corrosive or toxic handling environment. NASA programs are currently underway to develop the storage and supply methods for cryogenic liquids in orbit. The recovery of unused propellants from the Space Shuttle Orbiter and External Tank are being evaluated in order to define Shuttle modifications and performance penalties. Fluid management subsystem requirements and characteristics cannot, however, be fully defined until a firm mission scenario has been established and other space station subsystems are more clearly defined.

  10. On the numerical treatment of selected oscillatory evolutionary problems

    NASA Astrophysics Data System (ADS)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  11. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  12. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

  13. Dynamic programming algorithms for biological sequence comparison.

    PubMed

    Pearson, W R; Miller, W

    1992-01-01

    Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.

  14. Cultural macroevolution matters

    PubMed Central

    Gray, Russell D.

    2017-01-01

    Evolutionary thinking can be applied to both cultural microevolution and macroevolution. However, much of the current literature focuses on cultural microevolution. In this article, we argue that the growing availability of large cross-cultural datasets facilitates the use of computational methods derived from evolutionary biology to answer broad-scale questions about the major transitions in human social organization. Biological methods can be extended to human cultural evolution. We illustrate this argument with examples drawn from our recent work on the roles of Big Gods and ritual human sacrifice in the evolution of large, stratified societies. These analyses show that, although the presence of Big Gods is correlated with the evolution of political complexity, in Austronesian cultures at least, they do not play a causal role in ratcheting up political complexity. In contrast, ritual human sacrifice does play a causal role in promoting and sustaining the evolution of stratified societies by maintaining and legitimizing the power of elites. We briefly discuss some common objections to the application of phylogenetic modeling to cultural evolution and argue that the use of these methods does not require a commitment to either gene-like cultural inheritance or to the view that cultures are like vertebrate species. We conclude that the careful application of these methods can substantially enhance the prospects of an evolutionary science of human history. PMID:28739960

  15. Using single cell sequencing data to model the evolutionary history of a tumor.

    PubMed

    Kim, Kyung In; Simon, Richard

    2014-01-24

    The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.

  16. Efficiency of the neighbor-joining method in reconstructing deep and shallow evolutionary relationships in large phylogenies.

    PubMed

    Kumar, S; Gadagkar, S R

    2000-12-01

    The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages.

  17. Lifemap: Exploring the Entire Tree of Life.

    PubMed

    de Vienne, Damien M

    2016-12-01

    The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.

  18. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  19. Measuring telomere length and telomere dynamics in evolutionary biology and ecology

    PubMed Central

    Nussey, Daniel H; Baird, Duncan; Barrett, Emma; Boner, Winnie; Fairlie, Jennifer; Gemmell, Neil; Hartmann, Nils; Horn, Thorsten; Haussmann, Mark; Olsson, Mats; Turbill, Chris; Verhulst, Simon; Zahn, Sandrine; Monaghan, Pat

    2014-01-01

    Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ. PMID:25834722

  20. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.

  1. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

    PubMed

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A

    2016-07-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

  2. Aerospace Safety Advisory Panel report to the NASA acting administrator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The level of activity of the Aerospace Safety Advisory Panel was increased smewhat during 1985 in concert with the increased mission rate of the National Space Transportation System, the evolutionary changes in management and operation of that program, and the preparation of the Vandenberg Launch Site; the implementation of the Program Definition Phase of the Space Station Program; and the actual flight testing of the X-29 research aircraft. Impending payload STS missions and NASA's overall aircraft operations are reviewed. The safety aspects of the LEASAT salvage mission were assessed. The findings and recommendation of the committee are summerized.

  3. The opportunities and challenges of large-scale molecular approaches to songbird neurobiology

    PubMed Central

    Mello, C.V.; Clayton, D.F.

    2014-01-01

    High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907

  4. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  5. Phylogenetic Quantification of Intra-tumour Heterogeneity

    PubMed Central

    Schwarz, Roland F.; Trinh, Anne; Sipos, Botond; Brenton, James D.; Goldman, Nick; Markowetz, Florian

    2014-01-01

    Intra-tumour genetic heterogeneity is the result of ongoing evolutionary change within each cancer. The expansion of genetically distinct sub-clonal populations may explain the emergence of drug resistance, and if so, would have prognostic and predictive utility. However, methods for objectively quantifying tumour heterogeneity have been missing and are particularly difficult to establish in cancers where predominant copy number variation prevents accurate phylogenetic reconstruction owing to horizontal dependencies caused by long and cascading genomic rearrangements. To address these challenges, we present MEDICC, a method for phylogenetic reconstruction and heterogeneity quantification based on a Minimum Event Distance for Intra-tumour Copy-number Comparisons. Using a transducer-based pairwise comparison function, we determine optimal phasing of major and minor alleles, as well as evolutionary distances between samples, and are able to reconstruct ancestral genomes. Rigorous simulations and an extensive clinical study show the power of our method, which outperforms state-of-the-art competitors in reconstruction accuracy, and additionally allows unbiased numerical quantification of tumour heterogeneity. Accurate quantification and evolutionary inference are essential to understand the functional consequences of tumour heterogeneity. The MEDICC algorithms are independent of the experimental techniques used and are applicable to both next-generation sequencing and array CGH data. PMID:24743184

  6. Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction.

    PubMed

    Araújo, Ricardo de A

    2010-12-01

    This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  8. Multiple alignment analysis on phylogenetic tree of the spread of SARS epidemic using distance method

    NASA Astrophysics Data System (ADS)

    Amiroch, S.; Pradana, M. S.; Irawan, M. I.; Mukhlash, I.

    2017-09-01

    Multiple Alignment (MA) is a particularly important tool for studying the viral genome and determine the evolutionary process of the specific virus. Application of MA in the case of the spread of the Severe acute respiratory syndrome (SARS) epidemic is an interesting thing because this virus epidemic a few years ago spread so quickly that medical attention in many countries. Although there has been a lot of software to process multiple sequences, but the use of pairwise alignment to process MA is very important to consider. In previous research, the alignment between the sequences to process MA algorithm, Super Pairwise Alignment, but in this study used a dynamic programming algorithm Needleman wunchs simulated in Matlab. From the analysis of MA obtained and stable region and unstable which indicates the position where the mutation occurs, the system network topology that produced the phylogenetic tree of the SARS epidemic distance method, and system area networks mutation.

  9. Evolution of vortex-surface fields in transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Zhao, Yaomin; Xiong, Shiying

    2016-11-01

    We apply the vortex-surface field (VSF), a Lagrangian-based structure-identification method, to the DNS database of transitional boundary layers. The VSFs are constructed from the vorticity fields within a sliding window at different times and locations using a recently developed boundary-constraint method. The isosurfaces of VSF, representing vortex surfaces consisting of vortex lines with different wall distances in the laminar stage, show different evolutionary geometries in transition. We observe that the vortex surfaces with significant deformation evolve from wall-parallel planar sheets through hairpin-like structures and packets into a turbulent spot with regeneration of small-scale hairpins. From quantitative analysis, we show that a small number of representative or influential vortex surfaces can contribute significantly to the increase of the drag coefficient in transition, which implies a reduced-order model based on VSF. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11472015, 11522215 and 11521091), and the Thousand Young Talents Program of China.

  10. Decision-making and problem-solving methods in automation technology

    NASA Technical Reports Server (NTRS)

    Hankins, W. W.; Pennington, J. E.; Barker, L. K.

    1983-01-01

    The state of the art in the automation of decision making and problem solving is reviewed. The information upon which the report is based was derived from literature searches, visits to university and government laboratories performing basic research in the area, and a 1980 Langley Research Center sponsored conferences on the subject. It is the contention of the authors that the technology in this area is being generated by research primarily in the three disciplines of Artificial Intelligence, Control Theory, and Operations Research. Under the assumption that the state of the art in decision making and problem solving is reflected in the problems being solved, specific problems and methods of their solution are often discussed to elucidate particular aspects of the subject. Synopses of the following major topic areas comprise most of the report: (1) detection and recognition; (2) planning; and scheduling; (3) learning; (4) theorem proving; (5) distributed systems; (6) knowledge bases; (7) search; (8) heuristics; and (9) evolutionary programming.

  11. Tetrapods on the EDGE: Overcoming data limitations to identify phylogenetic conservation priorities

    PubMed Central

    Gray, Claudia L.; Wearn, Oliver R.; Owen, Nisha R.

    2018-01-01

    The scale of the ongoing biodiversity crisis requires both effective conservation prioritisation and urgent action. As extinction is non-random across the tree of life, it is important to prioritise threatened species which represent large amounts of evolutionary history. The EDGE metric prioritises species based on their Evolutionary Distinctiveness (ED), which measures the relative contribution of a species to the total evolutionary history of their taxonomic group, and Global Endangerment (GE), or extinction risk. EDGE prioritisations rely on adequate phylogenetic and extinction risk data to generate meaningful priorities for conservation. However, comprehensive phylogenetic trees of large taxonomic groups are extremely rare and, even when available, become quickly out-of-date due to the rapid rate of species descriptions and taxonomic revisions. Thus, it is important that conservationists can use the available data to incorporate evolutionary history into conservation prioritisation. We compared published and new methods to estimate missing ED scores for species absent from a phylogenetic tree whilst simultaneously correcting the ED scores of their close taxonomic relatives. We found that following artificial removal of species from a phylogenetic tree, the new method provided the closest estimates of their “true” ED score, differing from the true ED score by an average of less than 1%, compared to the 31% and 38% difference of the previous methods. The previous methods also substantially under- and over-estimated scores as more species were artificially removed from a phylogenetic tree. We therefore used the new method to estimate ED scores for all tetrapods. From these scores we updated EDGE prioritisation rankings for all tetrapod species with IUCN Red List assessments, including the first EDGE prioritisation for reptiles. Further, we identified criteria to identify robust priority species in an effort to further inform conservation action whilst limiting uncertainty and anticipating future phylogenetic advances. PMID:29641585

  12. Innovations in Undergraduate Science Education: Going Viral.

    PubMed

    Hatfull, Graham F

    2015-08-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-year undergraduate students to discovery-based research experiences. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 5: Systems engineering/integration research and technology

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Guidelines and ground rules followed in the development of requirements for the SPS are presented. Development planning objectives are specified in each of these areas, and evolutionary SPS program scenarios are described for the various concepts studied during the past one year contract. Program descriptions are presented as planning packages of technical tasks, and schedule phasing. Each package identifies the ground based technology effort that will facilitate SPS definitions, designs, development, and operations.

  14. Evolutionary dynamics on graphs: Efficient method for weak selection

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  15. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time.

    PubMed

    Pinsky, Malin L; Saenz-Agudelo, Pablo; Salles, Océane C; Almany, Glenn R; Bode, Michael; Berumen, Michael L; Andréfouët, Serge; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge

    2017-01-09

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12-24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19-36 km) or 19 km (15-27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Contemporary and historical evolutionary processes interact to shape patterns of within-lake phenotypic divergences in polyphenic pumpkinseed sunfish, Lepomis gibbosus.

    PubMed

    Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W

    2012-03-01

    Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.

  17. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary

    PubMed Central

    Vanneste, Kevin; Baele, Guy; Maere, Steven; Van de Peer, Yves

    2014-01-01

    Ancient whole-genome duplications (WGDs), also referred to as paleopolyploidizations, have been reported in most evolutionary lineages. Their attributed role remains a major topic of discussion, ranging from an evolutionary dead end to a road toward evolutionary success, with evidence supporting both fates. Previously, based on dating WGDs in a limited number of plant species, we found a clustering of angiosperm paleopolyploidizations around the Cretaceous–Paleogene (K–Pg) extinction event about 66 million years ago. Here we revisit this finding, which has proven controversial, by combining genome sequence information for many more plant lineages and using more sophisticated analyses. We include 38 full genome sequences and three transcriptome assemblies in a Bayesian evolutionary analysis framework that incorporates uncorrelated relaxed clock methods and fossil uncertainty. In accordance with earlier findings, we demonstrate a strongly nonrandom pattern of genome duplications over time with many WGDs clustering around the K–Pg boundary. We interpret these results in the context of recent studies on invasive polyploid plant species, and suggest that polyploid establishment is promoted during times of environmental stress. We argue that considering the evolutionary potential of polyploids in light of the environmental and ecological conditions present around the time of polyploidization could mitigate the stark contrast in the proposed evolutionary fates of polyploids. PMID:24835588

  18. Using genomics to characterize evolutionary potential for conservation of wild populations

    PubMed Central

    Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul

    2014-01-01

    Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064

  19. Life is determined by its environment

    NASA Astrophysics Data System (ADS)

    Torday, John S.; Miller, William B.

    2016-10-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.

  20. Evolutionary systems biology: historical and philosophical perspectives on an emerging synthesis.

    PubMed

    O'Malley, Maureen A

    2012-01-01

    Systems biology (SB) is at least a decade old now and maturing rapidly. A more recent field, evolutionary systems biology (ESB), is in the process of further developing system-level approaches through the expansion of their explanatory and potentially predictive scope. This chapter will outline the varieties of ESB existing today by tracing the diverse roots and fusions that make up this integrative project. My approach is philosophical and historical. As well as examining the recent origins of ESB, I will reflect on its central features and the different clusters of research it comprises. In its broadest interpretation, ESB consists of five overlapping approaches: comparative and correlational ESB; network architecture ESB; network property ESB; population genetics ESB; and finally, standard evolutionary questions answered with SB methods. After outlining each approach with examples, I will examine some strong general claims about ESB, particularly that it can be viewed as the next step toward a fuller modern synthesis of evolutionary biology (EB), and that it is also the way forward for evolutionary and systems medicine. I will conclude with a discussion of whether the emerging field of ESB has the capacity to combine an even broader scope of research aims and efforts than it presently does.

  1. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Life is determined by its environment

    PubMed Central

    Torday, John S.; Miller, William B.

    2016-01-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547

  3. The evolutionary origins of Syngnathidae: pipefishes and seahorses.

    PubMed

    Wilson, A B; Orr, J W

    2011-06-01

    Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  4. Adaptive evolution of Mediterranean pines.

    PubMed

    Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C

    2013-09-01

    Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Beyond DNA: integrating inclusive inheritance into an extended theory of evolution.

    PubMed

    Danchin, Étienne; Charmantier, Anne; Champagne, Frances A; Mesoudi, Alex; Pujol, Benoit; Blanchet, Simon

    2011-06-17

    Many biologists are calling for an 'extended evolutionary synthesis' that would 'modernize the modern synthesis' of evolution. Biological information is typically considered as being transmitted across generations by the DNA sequence alone, but accumulating evidence indicates that both genetic and non-genetic inheritance, and the interactions between them, have important effects on evolutionary outcomes. We review the evidence for such effects of epigenetic, ecological and cultural inheritance and parental effects, and outline methods that quantify the relative contributions of genetic and non-genetic heritability to the transmission of phenotypic variation across generations. These issues have implications for diverse areas, from the question of missing heritability in human complex-trait genetics to the basis of major evolutionary transitions.

  6. Evolution in the office: how evolutionary psychology can increase employee health, happiness, and productivity.

    PubMed

    Fitzgerald, Carey J; Danner, Kimberly M

    2012-12-20

    We review the empirical literature that has implemented aspects of our ancestral environment into the workplace and discuss the positive influence these factors have had on employees' physical and psychological health. We focus upon several components of our ancestral environment, including sunlight, greenery, sleep, physical movement, and social interaction with fellow humans as well as animals (specifically, dogs). Employers who are willing to adopt an evolutionary psychological approach to organizing their workplaces may drastically improve their workers' overall physical and psychological health as well as their overall productivity. This will, in turn, decrease employer costs related to medical care, absenteeism, and lack of productivity. Suggestions regarding how to implement these evolutionary psychological methods to the workplace are also discussed.

  7. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors.

    PubMed

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

  8. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors

    PubMed Central

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples. PMID:28035082

  9. System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft

    NASA Technical Reports Server (NTRS)

    Pullen, Samuel P.; Parkinson, Bradford W.

    1994-01-01

    This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.

  10. Using creation science to demonstrate evolution: application of a creationist method for visualizing gaps in the fossil record to a phylogenetic study of coelurosaurian dinosaurs.

    PubMed

    Senter, P

    2010-08-01

    It is important to demonstrate evolutionary principles in such a way that they cannot be countered by creation science. One such way is to use creation science itself to demonstrate evolutionary principles. Some creation scientists use classic multidimensional scaling (CMDS) to quantify and visualize morphological gaps or continuity between taxa, accepting gaps as evidence of independent creation and accepting continuity as evidence of genetic relatedness. Here, I apply CMDS to a phylogenetic analysis of coelurosaurian dinosaurs and show that it reveals morphological continuity between Archaeopteryx, other early birds, and a wide range of nonavian coelurosaurs. Creation scientists who use CMDS must therefore accept that these animals are genetically related. Other uses of CMDS for evolutionary biologists include the identification of taxa with much missing evolutionary history and the tracing of the progressive filling of morphological gaps in the fossil record through successive years of discovery.

  11. Evolution and Vaccination of Influenza Virus.

    PubMed

    Lam, Ham Ching; Bi, Xuan; Sreevatsan, Srinand; Boley, Daniel

    2017-08-01

    In this study, we present an application paradigm in which an unsupervised machine learning approach is applied to the high-dimensional influenza genetic sequences to investigate whether vaccine is a driving force to the evolution of influenza virus. We first used a visualization approach to visualize the evolutionary paths of vaccine-controlled and non-vaccine-controlled influenza viruses in a low-dimensional space. We then quantified the evolutionary differences between their evolutionary trajectories through the use of within- and between-scatter matrices computation to provide the statistical confidence to support the visualization results. We used the influenza surface Hemagglutinin (HA) gene for this study as the HA gene is the major target of the immune system. The visualization is achieved without using any clustering methods or prior information about the influenza sequences. Our results clearly showed that the evolutionary trajectories between vaccine-controlled and non-vaccine-controlled influenza viruses are different and vaccine as an evolution driving force cannot be completely eliminated.

  12. Evolutionary games on graphs

    NASA Astrophysics Data System (ADS)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  13. Relative evolutionary rate inference in HyPhy with LEISR.

    PubMed

    Spielman, Stephanie J; Kosakovsky Pond, Sergei L

    2018-01-01

    We introduce LEISR (Likehood Estimation of Individual Site Rates, pronounced "laser"), a tool to infer relative evolutionary rates from protein and nucleotide data, implemented in HyPhy. LEISR is based on the popular Rate4Site (Pupko et al., 2002) approach for inferring relative site-wise evolutionary rates, primarily from protein data. We extend the original method for more general use in several key ways: (i) we increase the support for nucleotide data with additional models, (ii) we allow for datasets of arbitrary size, (iii) we support analysis of site-partitioned datasets to correct for the presence of recombination breakpoints, (iv) we produce rate estimates at all sites rather than at just a subset of sites, and (v) we implemented LEISR as MPI-enabled to support rapid, high-throughput analysis. LEISR is available in HyPhy starting with version 2.3.8, and it is accessible as an option in the HyPhy analysis menu ("Relative evolutionary rate inference"), which calls the HyPhy batchfile LEISR.bf.

  14. Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates

    PubMed Central

    Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir

    2018-01-01

    Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954

  15. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  16. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  17. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  18. The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures.

    PubMed

    Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir

    2009-01-01

    ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/

  19. The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures

    PubMed Central

    Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir

    2009-01-01

    ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/ PMID:18971256

  20. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  1. Cloning and characterization of new bioluminescent proteins

    NASA Astrophysics Data System (ADS)

    Szent-Gyorgyi, Christopher; Ballou, Byron T.; Dagnal, Erich; Bryan, Bruce

    1999-07-01

    Over the past two years Prolume has undertaken a comprehensive program to clone luciferases and associated 'green fluorescent proteins' (GFPs) from marine animals that use coelenterazine as the luciferin. To data we have cloned several bioluminescent proteins, including two novel copepod luciferases and two anthozoan GFPs. These four proteins have sequences that differ greatly form previously cloned analogous proteins; the sequence diversity apparently is due to independent evolutionary origins and unusual evolutionary constraints. Thus coelenterazine-based bioluminescent systems may also manifest a variety of useful properties. We discuss form this taxonomic perspective the initial biochemical and spectral characterization of our cloned proteins. Emphasis is placed on the anthozoan luciferase-GFP systems, whose efficient resonance energy transfer has elicited much current interest.

  2. Evolutionary origins of the endocannabinoid system.

    PubMed

    McPartland, John M; Matias, Isabel; Di Marzo, Vincenzo; Glass, Michelle

    2006-03-29

    Endocannabinoid system evolution was estimated by searching for functional orthologs in the genomes of twelve phylogenetically diverse organisms: Homo sapiens, Mus musculus, Takifugu rubripes, Ciona intestinalis, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, Plasmodium falciparum, Tetrahymena thermophila, Archaeoglobus fulgidus, and Mycobacterium tuberculosis. Sequences similar to human endocannabinoid exon sequences were derived from filtered BLAST searches, and subjected to phylogenetic testing with ClustalX and tree building programs. Monophyletic clades that agreed with broader phylogenetic evidence (i.e., gene trees displaying topographical congruence with species trees) were considered orthologs. The capacity of orthologs to function as endocannabinoid proteins was predicted with pattern profilers (Pfam, Prosite, TMHMM, and pSORT), and by examining queried sequences for amino acid motifs known to serve critical roles in endocannabinoid protein function (obtained from a database of site-directed mutagenesis studies). This novel transfer of functional information onto gene trees enabled us to better predict the functional origins of the endocannabinoid system. Within this limited number of twelve organisms, the endocannabinoid genes exhibited heterogeneous evolutionary trajectories, with functional orthologs limited to mammals (TRPV1 and GPR55), or vertebrates (CB2 and DAGLbeta), or chordates (MAGL and COX2), or animals (DAGLalpha and CB1-like receptors), or opisthokonta (animals and fungi, NAPE-PLD), or eukaryotes (FAAH). Our methods identified fewer orthologs than did automated annotation systems, such as HomoloGene. Phylogenetic profiles, nonorthologous gene displacement, functional convergence, and coevolution are discussed.

  3. Alignment methods: strategies, challenges, benchmarking, and comparative overview.

    PubMed

    Löytynoja, Ari

    2012-01-01

    Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.

  4. Online Learning of Genetic Network Programming and its Application to Prisoner’s Dilemma Game

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Murata, Junichi

    A new evolutionary model with the network structure named Genetic Network Programming (GNP) has been proposed recently. GNP, that is, an expansion of GA and GP, represents solutions as a network structure and evolves it by using “offline learning (selection, mutation, crossover)”. GNP can memorize the past action sequences in the network flow, so it can deal with Partially Observable Markov Decision Process (POMDP) well. In this paper, in order to improve the ability of GNP, Q learning (an off-policy TD control algorithm) that is one of the famous online methods is introduced for online learning of GNP. Q learning is suitable for GNP because (1) in reinforcement learning, the rewards an agent will get in the future can be estimated, (2) TD control doesn’t need much memory and can learn quickly, and (3) off-policy is suitable in order to search for an optimal solution independently of the policy. Finally, in the simulations, online learning of GNP is applied to a player for “Prisoner’s dilemma game” and its ability for online adaptation is confirmed.

  5. MRI segmentation using dialectical optimization.

    PubMed

    dos Santos, Wellington P; de Assis, Francisco M; de Souza, Ricardo E

    2009-01-01

    Biology, Psychology and Social Sciences are intrinsically connected to the very roots of the development of algorithms and methods in Computational Intelligence, as it is easily seen in approaches like genetic algorithms, evolutionary programming and particle swarm optimization. In this work we propose a new optimization method based on dialectics using fuzzy membership functions to model the influence of interactions between integrating poles in the status of each pole. Poles are the basic units composing dialectical systems. In order to validate our proposal we designed a segmentation method based on the optimization of k-means using dialectics for the segmentation of MR images. As a case study we used 181 MR synthetic multispectral images composed by proton density, T(1)- and T(2)-weighted synthetic brain images of 181 slices with 1 mm, resolution of 1 mm(3), for a normal brain and a noiseless MR tomographic system without field inhomogeneities, amounting a total of 543 images, generated by the simulator BrainWeb [2]. Our principal target here is comparing our proposal to k-means, fuzzy c-means, and Kohonen's self-organized maps, concerning the quantization error, we proved that our method can improved results obtained using k-means.

  6. Darwinian Theory, Functionalism, and the First American Psychological Revolution

    ERIC Educational Resources Information Center

    Green, Christopher D.

    2009-01-01

    American functionalist psychology constituted an effort to model scientific psychology on the successes of English evolutionary theory. In part it was a response to the stagnation of Wundt's psychological research program, which had been grounded in German experimental physiology. In part it was an attempt to make psychology more appealing within…

  7. A Review of the Foundational Processes that Influence Beliefs in Climate Change: Opportunities for Environmental Education Research

    ERIC Educational Resources Information Center

    Brownlee, Matthew T.J.; Powell, Robert B.; Hallo, Jeffery C.

    2013-01-01

    Recently, many organizations involved in environmental education have initiated programs that aim to educate visitors or other publics who interact with nature-based resources about the impacts and landscape transformations occurring because of climatic changes. However, many psychological, human-evolutionary, and social-ecological processes that…

  8. PBTE (Performance-Based Teacher Education); Vol 2, No, 2, May 1973.

    ERIC Educational Resources Information Center

    Andrews, Theodore E., Ed.

    This issue of the Multi-State Consortium for Performance-Based Teacher Education (PBTE) newsletter discusses (1) the evolutionary approach adopted by the state of Minnesota toward the implementation of PBTE, which includes discussion of what is known about PBTE, whether Minnesota ought (or wishes) to adopt the program, and state participation in…

  9. Mexico's Federal Education Law of 1973; Its Implications for Nonformal Education.

    ERIC Educational Resources Information Center

    Dobson-Ingram, John R. A.

    An evolutionary step in Mexico's nonformal educational development, the Federal Education Law of 1973 was ratified by the President in December 1973. This law covers the purpose of education in Mexico, the national system of education, distribution of responsibilities for education, programs of study, rights and obligations of institutions,…

  10. The Historical Evolutionary Process, by Organization and Function, of the Office of Strategic Services’ Assessment and Selection Program.

    DTIC Science & Technology

    1999-06-04

    This study examines the historical evolution, by organization and functional process, of the Office of Strategic Services (OSS) Assessment and...the organizational evolution is traced through examination of America’s first central intelligence agency, the Office of the Coordinator of Information

  11. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  12. Stochastic Evolutionary Algorithms for Planning Robot Paths

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard

    2006-01-01

    A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.

  13. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    PubMed

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-07

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.

  14. Development of an Evolutionary Algorithm for the ab Initio Discovery of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Revard, Benjamin Charles

    Crystal structure prediction is an important first step on the path toward computational materials design. Increasingly robust methods have become available in recent years for computing many materials properties, but because properties are largely a function of crystal structure, the structure must be known before these methods can be brought to bear. In addition, structure prediction is particularly useful for identifying low-energy structures of subperiodic materials, such as two-dimensional (2D) materials, which may adopt unexpected structures that differ from those of the corresponding bulk phases. Evolutionary algorithms, which are heuristics for global optimization inspired by biological evolution, have proven to be a fruitful approach for tackling the problem of crystal structure prediction. This thesis describes the development of an improved evolutionary algorithm for structure prediction and several applications of the algorithm to predict the structures of novel low-energy 2D materials. The first part of this thesis contains an overview of evolutionary algorithms for crystal structure prediction and presents our implementation, including details of extending the algorithm to search for clusters, wires, and 2D materials, improvements to efficiency when running in parallel, improved composition space sampling, and the ability to search for partial phase diagrams. We then present several applications of the evolutionary algorithm to 2D systems, including InP, the C-Si and Sn-S phase diagrams, and several group-IV dioxides. This thesis makes use of the Cornell graduate school's "papers" option. Chapters 1 and 3 correspond to the first-author publications of Refs. [131] and [132], respectively, and chapter 2 will soon be submitted as a first-author publication. The material in chapter 4 is taken from Ref. [144], in which I share joint first-authorship. In this case I have included only my own contributions.

  15. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems

    PubMed Central

    Sauterey, Boris; Ward, Ben A.; Follows, Michael J.; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that “Everything is everywhere, but the environment selects”, we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean. PMID:25852217

  16. When everything is not everywhere but species evolve: an alternative method to model adaptive properties of marine ecosystems.

    PubMed

    Sauterey, Boris; Ward, Ben A; Follows, Michael J; Bowler, Chris; Claessen, David

    2015-01-01

    The functional and taxonomic biogeography of marine microbial systems reflects the current state of an evolving system. Current models of marine microbial systems and biogeochemical cycles do not reflect this fundamental organizing principle. Here, we investigate the evolutionary adaptive potential of marine microbial systems under environmental change and introduce explicit Darwinian adaptation into an ocean modelling framework, simulating evolving phytoplankton communities in space and time. To this end, we adopt tools from adaptive dynamics theory, evaluating the fitness of invading mutants over annual timescales, replacing the resident if a fitter mutant arises. Using the evolutionary framework, we examine how community assembly, specifically the emergence of phytoplankton cell size diversity, reflects the combined effects of bottom-up and top-down controls. When compared with a species-selection approach, based on the paradigm that "Everything is everywhere, but the environment selects", we show that (i) the selected optimal trait values are similar; (ii) the patterns emerging from the adaptive model are more robust, but (iii) the two methods lead to different predictions in terms of emergent diversity. We demonstrate that explicitly evolutionary approaches to modelling marine microbial populations and functionality are feasible and practical in time-varying, space-resolving settings and provide a new tool for exploring evolutionary interactions on a range of timescales in the ocean.

  17. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    PubMed

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  18. InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information

    PubMed Central

    Yu, Jinchao; Vavrusa, Marek; Andreani, Jessica; Rey, Julien; Tufféry, Pierre; Guerois, Raphaël

    2016-01-01

    The structural modeling of protein–protein interactions is key in understanding how cell machineries cross-talk with each other. Molecular docking simulations provide efficient means to explore how two unbound protein structures interact. InterEvDock is a server for protein docking based on a free rigid-body docking strategy. A systematic rigid-body docking search is performed using the FRODOCK program and the resulting models are re-scored with InterEvScore and SOAP-PP statistical potentials. The InterEvScore potential was specifically designed to integrate co-evolutionary information in the docking process. InterEvDock server is thus particularly well suited in case homologous sequences are available for both binding partners. The server returns 10 structures of the most likely consensus models together with 10 predicted residues most likely involved in the interface. In 91% of all complexes tested in the benchmark, at least one residue out of the 10 predicted is involved in the interface, providing useful guidelines for mutagenesis. InterEvDock is able to identify a correct model among the top10 models for 49% of the rigid-body cases with evolutionary information, making it a unique and efficient tool to explore structural interactomes under an evolutionary perspective. The InterEvDock web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock/. PMID:27131368

  19. The response analysis of fractional-order stochastic system via generalized cell mapping method.

    PubMed

    Wang, Liang; Xue, Lili; Sun, Chunyan; Yue, Xiaole; Xu, Wei

    2018-01-01

    This paper is concerned with the response of a fractional-order stochastic system. The short memory principle is introduced to ensure that the response of the system is a Markov process. The generalized cell mapping method is applied to display the global dynamics of the noise-free system, such as attractors, basins of attraction, basin boundary, saddle, and invariant manifolds. The stochastic generalized cell mapping method is employed to obtain the evolutionary process of probability density functions of the response. The fractional-order ϕ 6 oscillator and the fractional-order smooth and discontinuous oscillator are taken as examples to give the implementations of our strategies. Studies have shown that the evolutionary direction of the probability density function of the fractional-order stochastic system is consistent with the unstable manifold. The effectiveness of the method is confirmed using Monte Carlo results.

  20. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  1. Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.

    PubMed

    Oakley, Todd H; Gu, Zhenglong; Abouheif, Ehab; Patel, Nipam H; Li, Wen-Hsiung

    2005-01-01

    Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.

  2. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    PubMed

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  3. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances

    PubMed Central

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272

  4. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    PubMed

    Kress, W John; Erickson, David L; Swenson, Nathan G; Thompson, Jill; Uriarte, Maria; Zimmerman, Jess K

    2010-11-09

    Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  5. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans.

    PubMed

    Sinha, Amit; Sommer, Ralf J; Dieterich, Christoph

    2012-06-19

    An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution.

  6. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans

    PubMed Central

    2012-01-01

    Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution. PMID:22712530

  7. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  8. Molecular Phylogenetics: Concepts for a Newcomer.

    PubMed

    Ajawatanawong, Pravech

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  9. Space station automation study-satellite servicing. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A plan for advancing the state of automation and robotics technology as an integral part of the U.S. space station development effort was studied. This study was undertaken: (1) to determine the benefits that will accrue from using automated systems onboard the space station in support of satellite servicing; (2) to define methods for increasing the capacity for, and effectiveness of satellite servicing while reducing demands on crew time and effort and on ground support; (3) to find optimum combinations of men/machine activities in the performance of servicing functions; and (4) project the evolution of automation technology needed to enhance or enable satellite servicing capabilities to match the evolutionary growth of the space station. A secondary intent is to accelerate growth and utilization of robotics in terrestrial applications as a spin-off from the space station program.

  10. Algorithmic Trading with Developmental and Linear Genetic Programming

    NASA Astrophysics Data System (ADS)

    Wilson, Garnett; Banzhaf, Wolfgang

    A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.

  11. Programmed cell death as a defence against infection

    PubMed Central

    Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A.

    2017-01-01

    Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via programmed cell death upon stimulation of specific signalling pathways. Here we discuss the utility of four cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary arms race with pathogens. Finally, we describe how the resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) — promote clearance of infection. PMID:28138137

  12. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  13. Post-AGB Stars in Nearby Galaxies as Calibrators for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    2003-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program under Grant NAG 5-6821. The Principal Investigator is Howard E. Bond (Space Telescope Science Institute). STScI Postdoctoral Associates Laura K. Fullton (1998), David Alves (1998-2001), and Michael Siegel (2001) were partially supported by this grant. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic- giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The argument is that, in old populations, the stars that are evolving through the PAGB region of the HR diagram arise from only a single main-sequence turnoff mass. In addition, theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, PAGB stars of these spectral types are very easily identified. because of their large Balmer jumps, which are due to their very low surface gravities. Our approach is first to identify PAGB stars in Milky Way globular clusters and in other Local Group galaxies, which are at known distances, and thus to measure accurate absolute magnitudes for the PAGB stars. With this Milky Way and Local Group luminosity calibration, we will then be in a position to find PAGB stars in more distant galaxies from the ground, and ultimately from the Hubble Space Telescope. and thus derive distances. These PAGB stars are, as noted above, the visually brightest members of Population II, and hence will allow distance measurements to galaxies that do not contain Cepheids, such as elliptical galaxies, as well as distances to spirals using PAGB stars in their halos. Moreover, the method is entirely independent of Cepheids. and thus provides a direct test of the Cepheid distance scale. The program will also provide information on the evolutionary lifetimes of PAGB stars.

  14. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila.

    PubMed

    Wallau, Gabriel Luz; Capy, Pierre; Loreto, Elgion; Le Rouzic, Arnaud; Hua-Van, Aurélie

    2016-04-01

    Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Molecular evolution and phylodynamics of hepatitis B virus infection circulating in Iran.

    PubMed

    Mozhgani, Sayed-Hamidreza; Malekpour, Seyed Amir; Norouzi, Mehdi; Ramezani, Fatemeh; Rezaee, Seyed Abdolrahim; Poortahmasebi, Vahdat; Sadeghi, Mehdi; Alavian, Seyed Moayed; Zarei-Ghobadi, Mohadeseh; Ghaziasadi, Azam; Karimzadeh, Hadi; Malekzadeh, Reza; Ziaee, Masood; Abedi, Farshid; Ataei, Behrooz; Yaran, Majid; Sayad, Babak; Jahantigh, Hamid Reza; Somi, Mohammad Hossein; Sarizadeh, Gholamreza; Sanei-Moghaddam, Ismail; Mansour-Ghanaei, Fariborz; Keyvani, Hossein; Kalantari, Ebrahim; Fakhari, Zahra; Geravand, Babak; Jazayeri, Seyed Mohammad

    2018-06-01

    Previous local and national Iranian publications indicate that all Iranian hepatitis B virus (HBV) strains belong to HBV genotype D. The aim of this study was to analyze the evolutionary history of HBV infection in Iran for the first time, based on an intensive phylodynamic study. The evolutionary parameters, time to most recent common ancestor (tMRCA), and the population dynamics of infections were investigated using the Bayesian Monte Carlo Markov chain (BMCMC). The effective sample size (ESS) and sampling convergence were then monitored. After sampling from the posterior distribution of the nucleotide substitution rate and other evolutionary parameters, the point estimations (median) of these parameters were obtained. All Iranian HBV isolates were of genotype D, sub-type ayw2. The origin of HBV is regarded as having evolved first on the eastern border, before moving westward, where Isfahan province then hosted the virus. Afterwards, the virus moved to the south and west of the country. The tMRCA of HBV in Iran was estimated to be around 1894, with a 95% credible interval between the years 1701 and 1957. The effective number of infections increased exponentially from around 1925 to 1960. Conversely, from around 1992 onwards, the effective number of HBV infections has decreased at a very high rate. Phylodynamic inference clearly demonstrates a unique homogenous pattern of HBV genotype D compatible with a steady configuration of the decreased effective number of infections in the population in recent years, possibly due to the implementation of blood donation screening and vaccination programs. Adequate molecular epidemiology databases for HBV are crucial for infection prevention and treatment programs.

  16. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw

    PubMed Central

    Kuratani, Shigeru

    2005-01-01

    The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390

  17. The Evolution of Biological Complexity in Digital Organisms

    NASA Astrophysics Data System (ADS)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  18. Deuterium and 15N fractionation in N2H+ during the formation of a Sun-like star

    NASA Astrophysics Data System (ADS)

    De Simone, M.; Fontani, F.; Codella, C.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.; López-Sepulcre, A.; Caux, E.; Vastel, C.; Soldateschi, J.

    2018-05-01

    Although chemical models predict that the deuterium fractionation in N2H+ is a good evolutionary tracer in the star formation process, the fractionation of nitrogen is still a poorly understood process. Recent models have questioned the similar evolutionary trend expected for the two fractionation mechanisms in N2H+, based on a classical scenario in which ion-neutral reactions occurring in cold gas should have caused an enhancement of the abundance of N2D+, 15NNH+, and N15NH+. In the framework of the ASAI IRAM-30m large program, we have investigated the fractionation of deuterium and 15N in N2H+ in the best known representatives of the different evolutionary stages of the Sun-like star formation process. The goal is to ultimately confirm (or deny) the classical `ion-neutral reactions' scenario that predicts a similar trend for D and 15N fractionation. We do not find any evolutionary trend of the 14N/15N ratio from both the 15NNH+ and N15NH+ isotopologues. Therefore, our findings confirm that, during the formation of a Sun-like star, the core evolution is irrelevant in the fractionation of 15N. The independence of the 14N/15N ratio with time, found also in high-mass star-forming cores, indicates that the enrichment in 15N revealed in comets and protoplanetary discs is unlikely to happen at core scales. Nevertheless, we have firmly confirmed the evolutionary trend expected for the H/D ratio, with the N2H+/N2D+ ratio decreasing before the pre-stellar core phase, and increasing monotonically during the protostellar phase. We have also confirmed clearly that the two fractionation mechanisms are not related.

  19. Ancient Biomolecules and Evolutionary Inference.

    PubMed

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske

    2018-04-25

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Plastic and evolutionary responses to climate change in fish

    PubMed Central

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549

Top