Sample records for evolutionary stable strategy

  1. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  2. Local Nash Equilibrium in Social Networks

    PubMed Central

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-01-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150

  3. Local Nash Equilibrium in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong

    2014-08-01

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  4. Bistability of Evolutionary Stable Vaccination Strategies in the Reinfection SIRI Model.

    PubMed

    Martins, José; Pinto, Alberto

    2017-04-01

    We use the reinfection SIRI epidemiological model to analyze the impact of education programs and vaccine scares on individuals decisions to vaccinate or not. The presence of the reinfection provokes the novelty of the existence of three Nash equilibria for the same level of the morbidity relative risk instead of a single Nash equilibrium as occurs in the SIR model studied by Bauch and Earn (PNAS 101:13391-13394, 2004). The existence of three Nash equilibria, with two of them being evolutionary stable, introduces two scenarios with relevant and opposite features for the same level of the morbidity relative risk: the low-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a low probability; and the high-vaccination scenario corresponding to the evolutionary stable vaccination strategy, where individuals will vaccinate with a high probability. We introduce the evolutionary vaccination dynamics for the SIRI model and we prove that it is bistable. The bistability of the evolutionary dynamics indicates that the damage provoked by false scares on the vaccination perceived morbidity risks can be much higher and much more persistent than in the SIR model. Furthermore, the vaccination education programs to be efficient they need to implement a mechanism to suddenly increase the vaccination coverage level.

  5. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. A strategy with novel evolutionary features for the iterated prisoner's dilemma.

    PubMed

    Li, Jiawei; Kendall, Graham

    2009-01-01

    In recent iterated prisoner's dilemma tournaments, the most successful strategies were those that had identification mechanisms. By playing a predetermined sequence of moves and learning from their opponents' responses, these strategies managed to identify their opponents. We believe that these identification mechanisms may be very useful in evolutionary games. In this paper one such strategy, which we call collective strategy, is analyzed. Collective strategies apply a simple but efficient identification mechanism (that just distinguishes themselves from other strategies), and this mechanism allows them to only cooperate with their group members and defect against any others. In this way, collective strategies are able to maintain a stable population in evolutionary iterated prisoner's dilemma. By means of an invasion barrier, this strategy is compared with other strategies in evolutionary dynamics in order to demonstrate its evolutionary features. We also find that this collective behavior assists the evolution of cooperation in specific evolutionary environments.

  7. Research on Duplication Dynamics and Evolutionary Stable of Reverse Supply Chain

    NASA Astrophysics Data System (ADS)

    Huizhong, Dong; Hongli, Song

    An evolutionary game model of Reverse Supply Chain(RSC) is established based on duplication dynamics function and evolutionary stable strategy. Using the model framework, this paper provides insights into a deeper understanding on how each supplier make strategic decision independently in reverse supply chain to determine their performance. The main conclusion is as follow: Under the market mechanism, not unless the extra income derived from the implementation of RSC exceeds zero point would the suppliers implement RSC strategy. When those suppliers are passive to RSC, the effective solution is that the government takes macro-control measures, for example, to force those suppliers implement RSC through punishment mechanism.

  8. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  9. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    PubMed

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  10. Adaptive Topographies and Equilibrium Selection in an Evolutionary Game

    PubMed Central

    Osinga, Hinke M.; Marshall, James A. R.

    2015-01-01

    It has long been known in the field of population genetics that adaptive topographies, in which population equilibria maximise mean population fitness for a trait regardless of its genetic bases, do not exist. Whether one chooses to model selection acting on a single locus or multiple loci does matter. In evolutionary game theory, analysis of a simple and general game involving distinct roles for the two players has shown that whether strategies are modelled using a single ‘locus’ or one ‘locus’ for each role, the stable population equilibria are unchanged and correspond to the fitness-maximising evolutionary stable strategies of the game. This is curious given the aforementioned population genetical results on the importance of the genetic bases of traits. Here we present a dynamical systems analysis of the game with roles detailing how, while the stable equilibria in this game are unchanged by the number of ‘loci’ modelled, equilibrium selection may differ under the two modelling approaches. PMID:25706762

  11. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  12. Evolution with Reinforcement Learning in Negotiation

    PubMed Central

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm. PMID:25048108

  13. Evolution with reinforcement learning in negotiation.

    PubMed

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.

  14. Darwinism in quantum systems?

    NASA Astrophysics Data System (ADS)

    Iqbal, A.; Toor, A. H.

    2002-03-01

    We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.

  15. Evolutionary Stability in the Traveler's Dilemma

    ERIC Educational Resources Information Center

    Barker, Andrew T.

    2009-01-01

    The traveler's dilemma is a generalization of the prisoner's dilemma which shows clearly a paradox of game theory. In the traveler's dilemma, the strategy chosen by analysis and theory seems obviously wrong intuitively. Here we develop a measure of evolutionary stability and show that the evolutionarily stable equilibrium is in some sense not very…

  16. Evolutionary stability concepts in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  17. Evolutionary Study of Interethnic Cooperation

    NASA Astrophysics Data System (ADS)

    Kvasnicka, Vladimir; Pospichal, Jiri

    The purpose of this communication is to present an evolutionary study of cooperation between two ethnic groups. The used model is stimulated by the seminal paper of J. D. Fearon and D. D. Laitin (Explaining Interethnic Cooperation, American Political Science Review, 90 (1996), pp. 715-735), where the iterated prisoner's dilemma was used to model intra- and interethnic interactions. We reformulated their approach in a form of evolutionary prisoner's dilemma method, where a population of strategies is evolved by applying simple reproduction process with a Darwin metaphor of natural selection (a probability of selection to the reproduction is proportional to a fitness). Our computer simulations show that an application of a principle of collective guilt does not lead to an emergence of an interethnic cooperation. When an administrator is introduced, then an emergence of interethnic cooperation may be observed. Furthermore, if the ethnic groups are of very different sizes, then the principle of collective guilt may be very devastating for smaller group so that intraethnic cooperation is destroyed. The second strategy of cooperation is called the personal responsibility, where agents that defected within interethnic interactions are punished inside of their ethnic groups. It means, unlikely to the principle of collective guilt, that there exists only one type of punishment, loosely speaking, agents are punished "personally." All the substantial computational results were checked and interpreted analytically within the theory of evolutionary stable strategies. Moreover, this theoretical approach offers mechanisms of simple scenarios explaining why some particular strategies are stable or not.

  18. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. On the preservation of cooperation in two-strategy games with nonlocal interactions.

    PubMed

    Aydogmus, Ozgur; Zhou, Wen; Kang, Yun

    2017-03-01

    Nonlocal interactions such as spatial interaction are ubiquitous in nature and may alter the equilibrium in evolutionary dynamics. Models including nonlocal spatial interactions can provide a further understanding on the preservation and emergence of cooperation in evolutionary dynamics. In this paper, we consider a variety of two-strategy evolutionary spatial games with nonlocal interactions based on an integro-differential replicator equation. By defining the invasion speed and minimal traveling wave speed for the derived model, we study the effects of the payoffs, the selection pressure and the spatial parameter on the preservation of cooperation. One of our most interesting findings is that, for the Prisoners Dilemma games in which the defection is the only evolutionary stable strategy for unstructured populations, analyses on its asymptotic speed of propagation suggest that, in contrast with spatially homogeneous games, the cooperators can invade the habitat under proper conditions. Other two-strategy evolutionary spatial games are also explored. Both our theoretical and numerical studies show that the nonlocal spatial interaction favors diversity in strategies in a population and is able to preserve cooperation in a competing environment. A real data application in a virus mutation study echoes our theoretical observations. In addition, we compare the results of our model to the partial differential equation approach to demonstrate the importance of including non-local interaction component in evolutionary game models. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evolutionary dynamics of fearfulness and boldness.

    PubMed

    Ji, Ting; Zhang, Boyu; Sun, Yuehua; Tao, Yi

    2009-02-21

    A negative relationship between reproductive effort and survival is consistent with life-history. Evolutionary dynamics and evolutionarily stable strategy (ESS) for the trade-off between survival and reproduction are investigated using a simple model with two phenotypes, fearfulness and boldness. The dynamical stability of the pure strategy model and analysis of ESS conditions reveal that: (i) the simple coexistence of fearfulness and boldness is impossible; (ii) a small population size is favorable to fearfulness, but a large population size is favorable to boldness, i.e., neither fearfulness, nor boldness is always favored by natural selection; and (iii) the dynamics of population density is crucial for a proper understanding of the strategy dynamics.

  1. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  2. Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything.

    PubMed

    Adami, Christoph; Hintze, Arend

    2013-01-01

    Zero-determinant strategies are a new class of probabilistic and conditional strategies that are able to unilaterally set the expected payoff of an opponent in iterated plays of the Prisoner's Dilemma irrespective of the opponent's strategy (coercive strategies), or else to set the ratio between the player's and their opponent's expected payoff (extortionate strategies). Here we show that zero-determinant strategies are at most weakly dominant, are not evolutionarily stable, and will instead evolve into less coercive strategies. We show that zero-determinant strategies with an informational advantage over other players that allows them to recognize each other can be evolutionarily stable (and able to exploit other players). However, such an advantage is bound to be short-lived as opposing strategies evolve to counteract the recognition.

  3. Doves and hawks in economics revisited: An evolutionary quantum game theory based analysis of financial crises

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Kunz, Jennifer; Bernius, Steffen; König, Wolfgang

    2010-11-01

    The last financial and economic crisis demonstrated the dysfunctional long-term effects of aggressive behaviour in financial markets. Yet, evolutionary game theory predicts that under the condition of strategic dependence a certain degree of aggressive behaviour remains within a given population of agents. However, as a consequence of the financial crisis, it would be desirable to change the “rules of the game” in a way that prevents the occurrence of any aggressive behaviour and thereby also the danger of market crashes. The paper picks up this aspect. Through the extension of the well-known hawk-dove game by a quantum approach, we can show that dependent on entanglement, evolutionary stable strategies also can emerge, which are not predicted by the classical evolutionary game theory and where the total economic population uses a non-aggressive quantum strategy.

  4. Evolutionary Game Analysis of Government Regulation and Enterprise Emission from the Perspective of Environmental Tax

    NASA Astrophysics Data System (ADS)

    Mai, Yazong

    2017-12-01

    In the context of the upcoming implementation of the environmental tax policy, there is a need for a focus on the relationship between government regulation and corporate emissions. To achieve the real effect of environmental tax policy, government need to regulate the illegal emissions of enterprises. Based on the hypothesis of bounded rationality, this paper analyses the strategic set of government regulators and polluting enterprises in the implementation of environmental tax policy. By using the evolutionary game model, the utility function and payoff matrix of the both sides are constructed, and the evolutionary analysis and strategy adjustment of the environmental governance target and the actual profit of the stakeholders are carried out. Thus, the wrong behaviours could be corrected so that the equilibrium of the evolutionary system can be achieved gradually, which could also get the evolutionary stable strategies of the government and the polluting enterprises in the implementation of environmental tax policy.

  5. Evolutionary stability for matrix games under time constraints.

    PubMed

    Garay, József; Csiszár, Villő; Móri, Tamás F

    2017-02-21

    Game theory focuses on payoffs and typically ignores time constraints that play an important role in evolutionary processes where the repetition of games can depend on the strategies, too. We introduce a matrix game under time constraints, where each pairwise interaction has two consequences: both players receive a payoff and they cannot play the next game for a specified time duration. Thus our model is defined by two matrices: a payoff matrix and an average time duration matrix. Maynard Smith's concept of evolutionary stability is extended to this class of games. We illustrate the effect of time constraints by the well-known prisoner's dilemma game, where additional time constraints can ensure the existence of unique evolutionary stable strategies (ESS), both pure and mixed, or the coexistence of two pure ESS. Our general results may be useful in several fields of biology where evolutionary game theory is applied, principally in ecological games, where time constraints play an inevitable role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games.

    PubMed

    Duong, Manh Hong; Han, The Anh

    2016-12-01

    In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, [Formula: see text], and the expected number, E(n, d), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as [Formula: see text] as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained.

  7. Evolutionary fate of memory-one strategies in repeated prisoner's dilemma game in structured populations

    NASA Astrophysics Data System (ADS)

    Liu, Xu-Sheng; Wu, Zhi-Xi; Chen, Michael Z. Q.; Guan, Jian-Yue

    2017-07-01

    We study evolutionary spatial prisoner's dilemma game involving a one-step memory mechanism of the individuals whenever making strategy updating. In particular, during the process of strategy updating, each individual keeps in mind all the outcome of the action pairs adopted by himself and each of his neighbors in the last interaction, and according to which the individuals decide what actions they will take in the next round. Computer simulation results imply that win-stay-lose-shift like strategy win out of the memory-one strategy set in the stationary state. This result is robust in a large range of the payoff parameter, and does not depend on the initial state of the system. Furthermore, theoretical analysis with mean field and quasi-static approximation predict the same result. Thus, our studies suggest that win-stay-lose-shift like strategy is a stable dominant strategy in repeated prisoner's dilemma game in homogeneous structured populations.

  8. Weight of fitness deviation governs strict physical chaos in replicator dynamics

    NASA Astrophysics Data System (ADS)

    Pandit, Varun; Mukhopadhyay, Archan; Chakraborty, Sagar

    2018-03-01

    Replicator equation—a paradigm equation in evolutionary game dynamics—mathematizes the frequency dependent selection of competing strategies vying to enhance their fitness (quantified by the average payoffs) with respect to the average fitnesses of the evolving population under consideration. In this paper, we deal with two discrete versions of the replicator equation employed to study evolution in a population where any two players' interaction is modelled by a two-strategy symmetric normal-form game. There are twelve distinct classes of such games, each typified by a particular ordinal relationship among the elements of the corresponding payoff matrix. Here, we find the sufficient conditions for the existence of asymptotic solutions of the replicator equations such that the solutions—fixed points, periodic orbits, and chaotic trajectories—are all strictly physical, meaning that the frequency of any strategy lies inside the closed interval zero to one at all times. Thus, we elaborate on which of the twelve types of games are capable of showing meaningful physical solutions and for which of the two types of replicator equation. Subsequently, we introduce the concept of the weight of fitness deviation that is the scaling factor in a positive affine transformation connecting two payoff matrices such that the corresponding one-shot games have exactly same Nash equilibria and evolutionary stable states. The weight also quantifies how much the excess of fitness of a strategy over the average fitness of the population affects the per capita change in the frequency of the strategy. Intriguingly, the weight's variation is capable of making the Nash equilibria and the evolutionary stable states, useless by introducing strict physical chaos in the replicator dynamics based on the normal-form game.

  9. Weight of fitness deviation governs strict physical chaos in replicator dynamics.

    PubMed

    Pandit, Varun; Mukhopadhyay, Archan; Chakraborty, Sagar

    2018-03-01

    Replicator equation-a paradigm equation in evolutionary game dynamics-mathematizes the frequency dependent selection of competing strategies vying to enhance their fitness (quantified by the average payoffs) with respect to the average fitnesses of the evolving population under consideration. In this paper, we deal with two discrete versions of the replicator equation employed to study evolution in a population where any two players' interaction is modelled by a two-strategy symmetric normal-form game. There are twelve distinct classes of such games, each typified by a particular ordinal relationship among the elements of the corresponding payoff matrix. Here, we find the sufficient conditions for the existence of asymptotic solutions of the replicator equations such that the solutions-fixed points, periodic orbits, and chaotic trajectories-are all strictly physical, meaning that the frequency of any strategy lies inside the closed interval zero to one at all times. Thus, we elaborate on which of the twelve types of games are capable of showing meaningful physical solutions and for which of the two types of replicator equation. Subsequently, we introduce the concept of the weight of fitness deviation that is the scaling factor in a positive affine transformation connecting two payoff matrices such that the corresponding one-shot games have exactly same Nash equilibria and evolutionary stable states. The weight also quantifies how much the excess of fitness of a strategy over the average fitness of the population affects the per capita change in the frequency of the strategy. Intriguingly, the weight's variation is capable of making the Nash equilibria and the evolutionary stable states, useless by introducing strict physical chaos in the replicator dynamics based on the normal-form game.

  10. The puzzle of partial migration: Adaptive dynamics and evolutionary game theory perspectives.

    PubMed

    De Leenheer, Patrick; Mohapatra, Anushaya; Ohms, Haley A; Lytle, David A; Cushing, J M

    2017-01-07

    We consider the phenomenon of partial migration which is exhibited by populations in which some individuals migrate between habitats during their lifetime, but others do not. First, using an adaptive dynamics approach, we show that partial migration can be explained on the basis of negative density dependence in the per capita fertilities alone, provided that this density dependence is attenuated for increasing abundances of the subtypes that make up the population. We present an exact formula for the optimal proportion of migrants which is expressed in terms of the vital rates of migrant and non-migrant subtypes only. We show that this allocation strategy is both an evolutionary stable strategy (ESS) as well as a convergence stable strategy (CSS). To establish the former, we generalize the classical notion of an ESS because it is based on invasion exponents obtained from linearization arguments, which fail to capture the stabilizing effects of the nonlinear density dependence. These results clarify precisely when the notion of a "weak ESS", as proposed in Lundberg (2013) for a related model, is a genuine ESS. Secondly, we use an evolutionary game theory approach, and confirm, once again, that partial migration can be attributed to negative density dependence alone. In this context, the result holds even when density dependence is not attenuated. In this case, the optimal allocation strategy towards migrants is the same as the ESS stemming from the analysis based on the adaptive dynamics. The key feature of the population models considered here is that they are monotone dynamical systems, which enables a rather comprehensive mathematical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evolutionary stability in continuous nonlinear public goods games.

    PubMed

    Molina, Chai; Earn, David J D

    2017-01-01

    We investigate a type of public goods games played in groups of individuals who choose how much to contribute towards the production of a common good, at a cost to themselves. In these games, the common good is produced based on the sum of contributions from all group members, then equally distributed among them. In applications, the dependence of the common good on the total contribution is often nonlinear (e.g., exhibiting synergy or diminishing returns). To date, most theoretical and experimental studies have addressed scenarios in which the set of possible contributions is discrete. However, in many real-world situations, contributions are continuous (e.g., individuals volunteering their time). The "n-player snowdrift games" that we analyze involve continuously varying contributions. We establish under what conditions populations of contributing (or "cooperating") individuals can evolve and persist. Previous work on snowdrift games, using adaptive dynamics, has found that what we term an "equally cooperative" strategy is locally convergently and evolutionarily stable. Using static evolutionary game theory, we find conditions under which this strategy is actually globally evolutionarily stable. All these results refer to stability to invasion by a single mutant. We broaden the scope of existing stability results by showing that the equally cooperative strategy is locally stable to potentially large population perturbations, i.e., allowing for the possibility that mutants make up a non-negligible proportion of the population (due, for example, to genetic drift, environmental variability or dispersal).

  12. Evolution of proliferation and the angiogenic switch in tumors with high clonal diversity.

    PubMed

    Bickel, Scott T; Juliano, Joseph D; Nagy, John D

    2014-01-01

    Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark--the angiogenic switch--has suggested that selection for angiogenesis can "run away" and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

  13. Evolution of cooperation with shared costs and benefits

    PubMed Central

    Brown, Joel S; Vincent, Thomas L

    2008-01-01

    The quest to determine how cooperation evolves can be based on evolutionary game theory, in spite of the fact that evolutionarily stable strategies (ESS) for most non-zero-sum games are not cooperative. We analyse the evolution of cooperation for a family of evolutionary games involving shared costs and benefits with a continuum of strategies from non-cooperation to total cooperation. This cost–benefit game allows the cooperator to share in the benefit of a cooperative act, and the recipient to be burdened with a share of the cooperator's cost. The cost–benefit game encompasses the Prisoner's Dilemma, Snowdrift game and Partial Altruism. The models produce ESS solutions of total cooperation, partial cooperation, non-cooperation and coexistence between cooperation and non-cooperation. Cooperation emerges from an interplay between the nonlinearities in the cost and benefit functions. If benefits increase at a decelerating rate and costs increase at an accelerating rate with the degree of cooperation, then the ESS has an intermediate level of cooperation. The game also exhibits non-ESS points such as unstable minima, convergent-stable minima and unstable maxima. The emergence of cooperative behaviour in this game represents enlightened self-interest, whereas non-cooperative solutions illustrate the Tragedy of the Commons. Games having either a stable maximum or a stable minimum have the property that small changes in the incentive structure (model parameter values) or culture (starting frequencies of strategies) result in correspondingly small changes in the degree of cooperation. Conversely, with unstable maxima or unstable minima, small changes in the incentive structure or culture can result in a switch from non-cooperation to total cooperation (and vice versa). These solutions identify when human or animal societies have the potential for cooperation and whether cooperation is robust or fragile. PMID:18495622

  14. Quantum Prisoner’s Dilemma game on hypergraph networks

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz; Sładkowski, Jan

    2013-02-01

    We study the possible advantages of adopting quantum strategies in multi-player evolutionary games. We base our study on the three-player Prisoner’s Dilemma (PD) game. In order to model the simultaneous interaction between three agents we use hypergraphs and hypergraph networks. In particular, we study two types of networks: a random network and a SF-like network. The obtained results show that in the case of a three-player game on a hypergraph network, quantum strategies are not necessarily stochastically stable strategies. In some cases, the defection strategy can be as good as a quantum one.

  15. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    NASA Astrophysics Data System (ADS)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  16. Fixation of strategies with the Moran and Fermi processes in evolutionary games

    NASA Astrophysics Data System (ADS)

    Liu, Xuesong; He, Mingfeng; Kang, Yibin; Pan, Qiuhui

    2017-10-01

    A model of stochastic evolutionary game dynamics with finite population was built. It combines the standard Moran and Fermi rules with two strategies cooperation and defection. We obtain the expressions of fixation probabilities and fixation times. The one-third rule which has been found in the frequency dependent Moran process also holds for our model. We obtain the conditions of strategy being an evolutionarily stable strategy in our model, and then make a comparison with the standard Moran process. Besides, the analytical results show that compared with the standard Moran process, fixation occurs with higher probabilities under a prisoner's dilemma game and coordination game, but with lower probabilities under a coexistence game. The simulation result shows that the fixation time in our mixed process is lower than that in the standard Fermi process. In comparison with the standard Moran process, fixation always takes more time on average in spatial populations, regardless of the game. In addition, the fixation time decreases with the growth of the number of neighbors.

  17. The rock-paper-scissors game and the evolution of alternative male strategies

    NASA Astrophysics Data System (ADS)

    Sinervo, B.; Lively, C. M.

    1996-03-01

    MANY species exhibit colour polymorphisms associated with alternative male reproductive strategies, including territorial males and 'sneaker males' that behave and look like females1-3. The prevalence of multiple morphs is a challenge to evolutionary theory because a single strategy should prevail unless morphs have exactly equal fitness4,5 or a fitness advantage when rare6,7. We report here the application of an evolutionary stable strategy model to a three-morph mating system in the side-blotched lizard. Using parameter estimates from field data, the model predicted oscillations in morph frequency, and the frequencies of the three male morphs were found to oscillate over a six-year period in the field. The fitnesses of each morph relative to other morphs were non-transitive in that each morph could invade another morph when rare, but was itself invadable by another morph when common. Concordance between frequency-dependent selection and the among-year changes in morph fitnesses suggest that male interactions drive a dynamic 'rock-paper-scissors' game7.

  18. Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory

    PubMed Central

    Zhuang, Qian; Di, Zengru; Wu, Jinshan

    2014-01-01

    Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502

  19. Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy.

    PubMed

    Holland, J Nathaniel; DeAngelis, Donald L; Schultz, Stewart T

    2004-09-07

    Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.

  20. Evolution of extortion in Iterated Prisoner's Dilemma games.

    PubMed

    Hilbe, Christian; Nowak, Martin A; Sigmund, Karl

    2013-04-23

    Iterated games are a fundamental component of economic and evolutionary game theory. They describe situations where two players interact repeatedly and have the ability to use conditional strategies that depend on the outcome of previous interactions, thus allowing for reciprocation. Recently, a new class of strategies has been proposed, so-called "zero-determinant" strategies. These strategies enforce a fixed linear relationship between one's own payoff and that of the other player. A subset of those strategies allows "extortioners" to ensure that any increase in one player's own payoff exceeds that of the other player by a fixed percentage. Here, we analyze the evolutionary performance of this new class of strategies. We show that in reasonably large populations, they can act as catalysts for the evolution of cooperation, similar to tit-for-tat, but that they are not the stable outcome of natural selection. In very small populations, however, extortioners hold their ground. Extortion strategies do particularly well in coevolutionary arms races between two distinct populations. Significantly, they benefit the population that evolves at the slower rate, an example of the so-called "Red King" effect. This may affect the evolution of interactions between host species and their endosymbionts.

  1. Evolution of extortion in Iterated Prisoner’s Dilemma games

    PubMed Central

    Hilbe, Christian; Nowak, Martin A.; Sigmund, Karl

    2013-01-01

    Iterated games are a fundamental component of economic and evolutionary game theory. They describe situations where two players interact repeatedly and have the ability to use conditional strategies that depend on the outcome of previous interactions, thus allowing for reciprocation. Recently, a new class of strategies has been proposed, so-called “zero-determinant” strategies. These strategies enforce a fixed linear relationship between one’s own payoff and that of the other player. A subset of those strategies allows “extortioners” to ensure that any increase in one player’s own payoff exceeds that of the other player by a fixed percentage. Here, we analyze the evolutionary performance of this new class of strategies. We show that in reasonably large populations, they can act as catalysts for the evolution of cooperation, similar to tit-for-tat, but that they are not the stable outcome of natural selection. In very small populations, however, extortioners hold their ground. Extortion strategies do particularly well in coevolutionary arms races between two distinct populations. Significantly, they benefit the population that evolves at the slower rate, an example of the so-called “Red King” effect. This may affect the evolution of interactions between host species and their endosymbionts. PMID:23572576

  2. Evolutionary performance of zero-determinant strategies in multiplayer games.

    PubMed

    Hilbe, Christian; Wu, Bin; Traulsen, Arne; Nowak, Martin A

    2015-06-07

    Repetition is one of the key mechanisms to maintain cooperation. In long-term relationships, in which individuals can react to their peers׳ past actions, evolution can promote cooperative strategies that would not be stable in one-shot encounters. The iterated prisoner׳s dilemma illustrates the power of repetition. Many of the key strategies for this game, such as ALLD, ALLC, Tit-for-Tat, or generous Tit-for-Tat, share a common property: players using these strategies enforce a linear relationship between their own payoff and their co-player׳s payoff. Such strategies have been termed zero-determinant (ZD). Recently, it was shown that ZD strategies also exist for multiplayer social dilemmas, and here we explore their evolutionary performance. For small group sizes, ZD strategies play a similar role as for the repeated prisoner׳s dilemma: extortionate ZD strategies are critical for the emergence of cooperation, whereas generous ZD strategies are important to maintain cooperation. In large groups, however, generous strategies tend to become unstable and selfish behaviors gain the upper hand. Our results suggest that repeated interactions alone are not sufficient to maintain large-scale cooperation. Instead, large groups require further mechanisms to sustain cooperation, such as the formation of alliances or institutions, or additional pairwise interactions between group members. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  4. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  5. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  6. Cancer heterogeneity and multilayer spatial evolutionary games.

    PubMed

    Świerniak, Andrzej; Krześlak, Michał

    2016-10-13

    Evolutionary game theory (EGT) has been widely used to simulate tumour processes. In almost all studies on EGT models analysis is limited to two or three phenotypes. Our model contains four main phenotypes. Moreover, in a standard approach only heterogeneity of populations is studied, while cancer cells remain homogeneous. A multilayer approach proposed in this paper enables to study heterogeneity of single cells. In the extended model presented in this paper we consider four strategies (phenotypes) that can arise by mutations. We propose multilayer spatial evolutionary games (MSEG) played on multiple 2D lattices corresponding to the possible phenotypes. It enables simulation and investigation of heterogeneity on the player-level in addition to the population-level. Moreover, it allows to model interactions between arbitrary many phenotypes resulting from the mixture of basic traits. Different equilibrium points and scenarios (monomorphic and polymorphic populations) have been achieved depending on model parameters and the type of played game. However, there is a possibility of stable quadromorphic population in MSEG games for the same set of parameters like for the mean-field game. The model assumes an existence of four possible phenotypes (strategies) in the population of cells that make up tumour. Various parameters and relations between cells lead to complex analysis of this model and give diverse results. One of them is a possibility of stable coexistence of different tumour cells within the population, representing almost arbitrary mixture of the basic phenotypes. This article was reviewed by Tomasz Lipniacki, Urszula Ledzewicz and Jacek Banasiak.

  7. Evolutionary dynamics of a smoothed war of attrition game.

    PubMed

    Iyer, Swami; Killingback, Timothy

    2016-05-07

    In evolutionary game theory the War of Attrition game is intended to model animal contests which are decided by non-aggressive behavior, such as the length of time that a participant will persist in the contest. The classical War of Attrition game assumes that no errors are made in the implementation of an animal׳s strategy. However, it is inevitable in reality that such errors must sometimes occur. Here we introduce an extension of the classical War of Attrition game which includes the effect of errors in the implementation of an individual׳s strategy. This extension of the classical game has the important feature that the payoff is continuous, and as a consequence admits evolutionary behavior that is fundamentally different from that possible in the original game. We study the evolutionary dynamics of this new game in well-mixed populations both analytically using adaptive dynamics and through individual-based simulations, and show that there are a variety of possible outcomes, including simple monomorphic or dimorphic configurations which are evolutionarily stable and cannot occur in the classical War of Attrition game. In addition, we study the evolutionary dynamics of this extended game in a variety of spatially and socially structured populations, as represented by different complex network topologies, and show that similar outcomes can also occur in these situations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The replicator equation and other game dynamics

    PubMed Central

    Cressman, Ross; Tao, Yi

    2014-01-01

    The replicator equation is the first and most important game dynamics studied in connection with evolutionary game theory. It was originally developed for symmetric games with finitely many strategies. Properties of these dynamics are briefly summarized for this case, including the convergence to and stability of the Nash equilibria and evolutionarily stable strategies. The theory is then extended to other game dynamics for symmetric games (e.g., the best response dynamics and adaptive dynamics) and illustrated by examples taken from the literature. It is also extended to multiplayer, population, and asymmetric games. PMID:25024202

  9. Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Schultz, Stewart T.

    2004-01-01

    Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite–host or predator–prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii) – senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre–adult survival of the pollinating seed–consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.

  10. Adaptive evolution of defense ability leads to diversification of prey species.

    PubMed

    Zu, Jian; Wang, Jinliang; Du, Jianqiang

    2014-06-01

    In this paper, by using the adaptive dynamics approach, we investigate how the adaptive evolution of defense ability promotes the diversity of prey species in an initial one-prey-two-predator community. We assume that the prey species can evolve to a safer strategy such that it can reduce the predation risk, but a prey with a high defense ability for one predator may have a low defense ability for the other and vice versa. First, by using the method of critical function analysis, we find that if the trade-off is convex in the vicinity of the evolutionarily singular strategy, then this singular strategy is a continuously stable strategy. However, if the trade-off is weakly concave near the singular strategy and the competition between the two predators is relatively weak, then the singular strategy may be an evolutionary branching point. Second, we find that after the branching has occurred in the prey strategy, if the trade-off curve is globally concave, then the prey species might eventually evolve into two specialists, each caught by only one predator species. However, if the trade-off curve is convex-concave-convex, the prey species might eventually branch into two partial specialists, each being caught by both of the two predators and they can stably coexist on the much longer evolutionary timescale.

  11. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    PubMed Central

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  12. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate of those species that rely on cooperation for their survival. PMID:23637571

  13. An evolutionarily stable strategy and the critical point of hog futures trading entities based on replicator dynamic theory: 2006–2015 data for China’s 22 provinces

    PubMed Central

    Pang, Jinbo; Deng, Lingfei

    2017-01-01

    Although frequent fluctuations in domestic hog prices seriously affect the stability and robustness of the hog supply chain, hog futures (an effective hedging instrument) have not been listed in China. To better understand hog futures market hedging, it is important to study the steady state of intersubjective bidding. This paper uses evolutionary game theory to construct a game model between hedgers and speculators in the hog futures market, and replicator dynamic equations are then used to obtain the steady state between the two trading entities. The results show that the steady state is one in which hedgers adopt a “buy” strategy and speculators adopt a “do not speculate” strategy, but this type of extreme steady state is not easily realized. Thus, to explore the rational proportion of hedgers and speculators in the evolutionary stabilization strategy, bidding processes were simulated using weekly average hog prices from 2006 to 2015, such that the conditions under which hedgers and speculators achieve a steady state could be analyzed. This task was performed to achieve the stability critical point, and we show that only when the value of λ is satisfied and the conditions of hog futures price changes and futures price are satisfied can hedgers and speculators achieve a rational proportion and a stable hog futures market. This market can thus provide a valuable reference for the development of the Chinese hog futures market and the formulation and guidance of relevant departmental policies. PMID:28241024

  14. An evolutionarily stable strategy and the critical point of hog futures trading entities based on replicator dynamic theory: 2006-2015 data for China's 22 provinces.

    PubMed

    Pang, Jinbo; Deng, Lingfei; Wang, Gangyi

    2017-01-01

    Although frequent fluctuations in domestic hog prices seriously affect the stability and robustness of the hog supply chain, hog futures (an effective hedging instrument) have not been listed in China. To better understand hog futures market hedging, it is important to study the steady state of intersubjective bidding. This paper uses evolutionary game theory to construct a game model between hedgers and speculators in the hog futures market, and replicator dynamic equations are then used to obtain the steady state between the two trading entities. The results show that the steady state is one in which hedgers adopt a "buy" strategy and speculators adopt a "do not speculate" strategy, but this type of extreme steady state is not easily realized. Thus, to explore the rational proportion of hedgers and speculators in the evolutionary stabilization strategy, bidding processes were simulated using weekly average hog prices from 2006 to 2015, such that the conditions under which hedgers and speculators achieve a steady state could be analyzed. This task was performed to achieve the stability critical point, and we show that only when the value of λ is satisfied and the conditions of hog futures price changes and futures price are satisfied can hedgers and speculators achieve a rational proportion and a stable hog futures market. This market can thus provide a valuable reference for the development of the Chinese hog futures market and the formulation and guidance of relevant departmental policies.

  15. Quantifying male attractiveness.

    PubMed Central

    McNamara, John M; Houston, Alasdair I; Marques Dos Santos, Miguel; Kokko, Hanna; Brooks, Rob

    2003-01-01

    Genetic models of sexual selection are concerned with a dynamic process in which female preference and male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female population members determines how attractive females should find each male, and a population is evolutionarily stable if population members are actually behaving in this way. This provides a justification of phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Furthermore, the phenotypic approach also has enormous advantages over a genetic approach when computing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can occur when there is phenotypic inheritance of the male trait. PMID:14561306

  16. Evolutionary behaviour, trade-offs and cyclic and chaotic population dynamics.

    PubMed

    Hoyle, Andy; Bowers, Roger G; White, Andy

    2011-05-01

    Many studies of the evolution of life-history traits assume that the underlying population dynamical attractor is stable point equilibrium. However, evolutionary outcomes can change significantly in different circumstances. We present an analysis based on adaptive dynamics of a discrete-time demographic model involving a trade-off whose shape is also an important determinant of evolutionary behaviour. We derive an explicit expression for the fitness in the cyclic region and consequently present an adaptive dynamic analysis which is algebraic. We do this fully in the region of 2-cycles and (using a symbolic package) almost fully for 4-cycles. Simulations illustrate and verify our results. With equilibrium population dynamics, trade-offs with accelerating costs produce a continuously stable strategy (CSS) whereas trade-offs with decelerating costs produce a non-ES repellor. The transition to 2-cycles produces a discontinuous change: the appearance of an intermediate region in which branching points occur. The size of this region decreases as we move through the region of 2-cycles. There is a further discontinuous fall in the size of the branching region during the transition to 4-cycles. We extend our results numerically and with simulations to higher-period cycles and chaos. Simulations show that chaotic population dynamics can evolve from equilibrium and vice-versa.

  17. Fostering cooperation of selfish agents through public goods in relation to the loners

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Chen, Zengqiang; Liu, Zhongxin

    2016-03-01

    Altruistic behaviors in multiplayer groups have obtained great attention in the context of the public goods game, which poses a riddle from the evolutionary viewpoint. Here we focus on a particular type of public goods game model in which the benefits of cooperation are either discounted or synergistically enhanced at the appearance of multiple cooperators in a group. Moreover, we focus on the three-strategies profile by adding the role of loners, besides the often-used cooperation and defection. Using the replicator dynamic equations, we investigate a range of dynamical portraits that characterizes the properties of the steady state. Analysis results indicate that loners and cooperators both have chances to be the stable equilibrium points in the presence of perturbations, while defectors fail to do so in this three-strategy competition. Moreover, the coexistence state, in which all three strategies exist in equilibrium, can be led by suitable parameters and stabilized for perturbations. These results elucidate the interplay between the characteristics of the public goods game and evolutionary dynamics in well-mixed systems.

  18. Evolution of tag-based cooperation on Erdős-Rényi random graphs

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich

    2014-12-01

    Here, we study an agent-based model of the evolution of tag-mediated cooperation on Erdős-Rényi random graphs. In our model, agents with heritable phenotypic traits play pairwise Prisoner's Dilemma-like games and follow one of the four possible strategies: Ethnocentric, altruistic, egoistic and cosmopolitan. Ethnocentric and cosmopolitan strategies are conditional, i.e. their selection depends upon the shared phenotypic similarity among interacting agents. The remaining two strategies are always unconditional, meaning that egoists always defect while altruists always cooperate. Our simulations revealed that ethnocentrism can win in both early and later evolutionary stages on directed random graphs when reproduction of artificial agents was asexual; however, under the sexual mode of reproduction on a directed random graph, we found that altruists dominate initially for a rather short period of time, whereas ethnocentrics and egoists suppress other strategists and compete for dominance in the intermediate and later evolutionary stages. Among our results, we also find surprisingly regular oscillations which are not damped in the course of time even after half a million Monte Carlo steps. Unlike most previous studies, our findings highlight conditions under which ethnocentrism is less stable or suppressed by other competing strategies.

  19. Chaos and the evolution of cooperation.

    PubMed

    Nowak, M; Sigmund, K

    1993-06-01

    The "iterated prisoner's dilemma" is the most widely used model for the evolution of cooperation in biological societies. Here we show that a heterogeneous population consisting of simple strategies, whose behavior is totally specified by the outcome of the previous round, can lead to persistent periodic or highly irregular (chaotic) oscillations in the frequencies of the strategies and the overall level of cooperation. The levels of cooperation jump up and down in an apparently unpredictable fashion. Small recurrent and simultaneous invasion attempts (caused by mutation) can change the evolutionary dynamics from converging to an evolutionarily stable strategy to periodic oscillations and chaos. Evolution can be twisted away from defection, toward cooperation. Adding "generous tit-for-tat" greatly increases the overall level of cooperation and can lead to long periods of steady cooperation. Since May's paper [May, R. M. (1976) Nature (London) 261, 459-467], "simple mathematical models with very complicated dynamics" have been found in many biological applications, but here we provide an example of a biologically relevant evolutionary game whose dynamics display deterministic chaos. The simulations bear some resemblance to the irregular cycles displayed by the frequencies of host genotypes and specialized parasites in evolutionary "arms races" [Hamilton, W. D., Axelrod, R. & Tanese, R. (1990) Proc. Natl. Acad. Sci. USA 87, 3566-3573; Seger, J. (1988) Philos. Trans. R. Soc. London B 319, 541-555].

  20. How competitive is drought deciduousness in tropical forests? A combined eco-hydrological and eco-evolutionary approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Dralle, David; Feng, Xue; Thompson, Sally; Manzoni, Stefano

    2017-06-01

    Drought-deciduous and evergreen species are both common in tropical forests, where there is the need to cope with water shortages during periodic dry spells and over the course of the dry season. Which phenological strategy is favored depends on the long-term balance of carbon costs and gains that leaf phenology imposes as a result of the alternation of wet and dry seasons and the unpredictability of rainfall events. This study integrates a stochastic eco-hydrological framework with key plant economy traits to derive the long-term average annual net carbon gain of trees exhibiting different phenological strategies in tropical forests. The average net carbon gain is used as a measure of fitness to assess which phenological strategies are more productive and more evolutionarily stable (i.e. not prone to invasion by species with a different strategy). The evergreen strategy results in a higher net carbon gain and more evolutionarily stable communities with increasing wet season lengths. Reductions in the length of the wet season or the total rainfall, as predicted under climate change scenarios, should promote a shift towards more drought-deciduous communities, with ensuing implications for ecosystem functioning.

  1. Evolutionary behavior of generalized zero-determinant strategies in iterated prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Y.; Xu, C.; Hui, P. M.

    2015-07-01

    We study the competition and strategy selections between a class of generalized zero-determinant (ZD) strategies and the classic strategies of always cooperate (AllC), always defect (AllD), tit-for-tat (TFT), and win-stay-lose-shift (WSLS) strategies in an iterated prisoner's dilemma comprehensively. Using the generalized ZD strategy, a player could get a payoff that is χ (χ > 1) times that of his opponent's, when the payoff is measured with respect to a referencing baseline parameterized by 0 ≤ σ ≤ 1. Varying σ gives ZD strategies of tunable generosity from the extortionate-like ZD strategy for σ ≪ 1 to the compliance-like strategy at σ ≈ 1. Expected payoffs when ZD strategy competes with each one of the classic strategies are presented. Strategy evolution based on adopting the strategy of a better performing neighbor is studied in a well-mixed population of finite size and a population on a square lattice. Depending on the parameters, extortion-like strategies may not be evolutionarily stable despite a positive surplus over cooperative strategies, while extortion-like strategies may dominate or coexist with other strategies that tend to defect despite a negative surplus. The dependence of the equilibrium fraction of ZD strategy players on the model parameters in a well-mixed population can be understood analytically by comparing the average payoffs to the competing strategies. On a square lattice, the success of the ZD strategy can be qualitatively understood by focusing on the relative alignments of the finite number of payoff values that the two competing strategies could attain when the spatial structure is imposed. ZD strategies with properly chosen generosity could be more successful in evolutionary competing systems.

  2. Disturbances, organisms and ecosystems: a global change perspective

    PubMed Central

    Ponge, Jean-François

    2013-01-01

    The present text exposes a theory of the role of disturbances in the assemblage and evolution of species within ecosystems, based principally, but not exclusively, on terrestrial ecosystems. Two groups of organisms, doted of contrasted strategies when faced with environmental disturbances, are presented, based on the classical r-K dichotomy, but enriched with more modern concepts from community and evolutionary ecology. Both groups participate in the assembly of known animal, plant, and microbial communities, but with different requirements about environmental fluctuations. The so-called “civilized” organisms are doted with efficient anticipatory mechanisms, allowing them to optimize from an energetic point of view their performances in a predictable environment (stable or fluctuating cyclically at the scale of life expectancy), and they developed advanced specializations in the course of evolutionary time. On the opposite side, the so-called “barbarians” are weakly efficient in a stable environment because they waste energy for foraging, growth, and reproduction, but they are well adapted to unpredictably changing conditions, in particular during major ecological crises. Both groups of organisms succeed or alternate each other in the course of spontaneous or geared successional processes, as well as in the course of evolution. The balance of “barbarians” against “civilized” strategies within communities is predicted to shift in favor of the first type under present-day anthropic pressure, exemplified among others by climate warming, land use change, pollution, and biological invasions. PMID:23610648

  3. Disturbances, organisms and ecosystems: a global change perspective.

    PubMed

    Ponge, Jean-François

    2013-04-01

    The present text exposes a theory of the role of disturbances in the assemblage and evolution of species within ecosystems, based principally, but not exclusively, on terrestrial ecosystems. Two groups of organisms, doted of contrasted strategies when faced with environmental disturbances, are presented, based on the classical r-K dichotomy, but enriched with more modern concepts from community and evolutionary ecology. Both groups participate in the assembly of known animal, plant, and microbial communities, but with different requirements about environmental fluctuations. The so-called "civilized" organisms are doted with efficient anticipatory mechanisms, allowing them to optimize from an energetic point of view their performances in a predictable environment (stable or fluctuating cyclically at the scale of life expectancy), and they developed advanced specializations in the course of evolutionary time. On the opposite side, the so-called "barbarians" are weakly efficient in a stable environment because they waste energy for foraging, growth, and reproduction, but they are well adapted to unpredictably changing conditions, in particular during major ecological crises. Both groups of organisms succeed or alternate each other in the course of spontaneous or geared successional processes, as well as in the course of evolution. The balance of "barbarians" against "civilized" strategies within communities is predicted to shift in favor of the first type under present-day anthropic pressure, exemplified among others by climate warming, land use change, pollution, and biological invasions.

  4. Accuracy in strategy imitations promotes the evolution of fairness in the spatial ultimatum game

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž; Szabó, György

    2012-10-01

    Spatial structure has a profound effect on the outcome of evolutionary games. In the ultimatum game, it leads to the dominance of much fairer players than those predicted to evolve in well-mixed settings. Here we show that spatiality leads to fair ultimatums only if the intervals from which the players are able to choose how much to offer and how little to accept are sufficiently fine-grained. Small sets of discrete strategies lead to the stable coexistence of the two most rational strategies in the set, while larger sets lead to the dominance of a single yet not necessarily the fairest strategy. The fairest outcome is obtained for the most accurate strategy imitation, that is in the limit of a continuous strategy set. Having a multitude of choices is thus crucial for the evolution of fairness, but not necessary for the evolution of empathy.

  5. The Hawk-Dove game in phenotypically homogeneous and heterogeneous populations of finite dimension

    NASA Astrophysics Data System (ADS)

    Laruelle, Annick; da Silva Rocha, André Barreira; Escobedo, Ramón

    2018-02-01

    The Hawk-Dove game played between individuals in populations of finite dimension is analyzed by means of a stochastic model. We take into account both cases when all individuals in the population are either phenotypically homogeneous or heterogeneous. A strategy in the model is a gene representing the probability of playing the Hawk strategy. Individual interactions at the microscopic level are described by a genetic algorithm where evolution results from the interplay among selection, mutation, drift and cross-over of genes. We show that the behavioral patterns observed at the macroscopic level can be reproduced as the emergent result of individual interactions governed by the rules of the Hawk-Dove game at the microscopic level. We study how the results of the genetic algorithm compare with those obtained in evolutionary game theory, finding that, although genes continuously change both their presence and frequency in the population over time, the population average behavior always achieves stationarity and, when this happens, the final average strategy played in the population oscillates around the evolutionarily stable strategy in the homogeneous population case or the neutrally stable set in the heterogeneous population case.

  6. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  7. Relative importance of evolutionary dynamics depends on the composition of microbial predator–prey community

    PubMed Central

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-01-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities. PMID:26684728

  8. Drought-related leaf phenology in tropical forests - Insights from a stochastic eco-hydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.

    2016-12-01

    Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.

  9. Dangerous nutrients: evolution of phytoplankton resource uptake subject to virus attack.

    PubMed

    Menge, Duncan N L; Weitz, Joshua S

    2009-03-07

    Phytoplankton need multiple resources to grow and reproduce (such as nitrogen, phosphorus, and iron), but the receptors through which they acquire resources are, in many cases, the same channels through which viruses attack. Therefore, phytoplankton can face a bottom-up vs. top-down tradeoff in receptor allocation: Optimize resource uptake or minimize virus attack? We investigate this top-down vs. bottom-up tradeoff using an evolutionary ecology model of multiple essential resources, specialist viruses that attack through the resource receptors, and a phytoplankton population that can evolve to alter the fraction of receptors used for each resource/virus type. Without viruses present the singular continuously stable strategy is to allocate receptors such that resources are co-limiting, which also minimizes the equilibrium concentrations of both resources. Only one virus type can be present at equilibrium (because phytoplankton, in this model, are a single resource for viruses), and when a virus type is present, it controls the equilibrium phytoplankton population size. Despite this top-down control on equilibrium densities, bottom-up control determines the evolutionary outcome. Regardless of which virus type is present, the allocation strategy that yields co-limitation between the two resources is continuously stable. This is true even when the virus type attacking through the limiting resource channel is present, even though selection for co-limitation in this case decreases the equilibrium phytoplankton population and does not decrease the equilibrium concentration of the limiting resource. Therefore, although moving toward co-limitation and decreasing the equilibrium concentration of the limiting resource often co-occur in models, it is co-limitation, and not necessarily the lowest equilibrium concentration of the limiting resource, that is the result of selection. This result adds to the growing body of literature suggesting that co-limitation at equilibrium is a winning strategy.

  10. Assortment of encounters and evolution of cooperativeness.

    PubMed

    Eshel, I; Cavalli-Sforza, L L

    1982-02-01

    The method of evolutionary stable strategies (ESS), in its current form, is confronted with a difficulty when it tries to explain how some social behaviors initiate their evolution. We show that this difficulty may be removed by changing the assumption made tacitly in game theory (and in ESS) of randomness of meetings or encounters. In reality, such randomness seems to be rare in nature. Family, population and social structure, customs, and habits impose various types of deviation from randomness. Introducing nonrandomness of meeting in a way formally similar to assortative mating, we show that the bar to initial increase of inherited cooperative or altruistic behaviors can be removed, provided there is sufficient assortment of meetings. Family structure may cause contacts predominantly between certain types of relatives, and one can reconstruct some results of classical kin selection in terms of evolutionary stable strategy with assortative meetings. Neighbor effects and group selection might be similarly treated. Assortment need not be a passive consequence of population and social structure, but it can also be actively pursued. Behaviors favoring the choice of cooperative companions will have the effect of favoring the evolution of cooperativeness. It can be shown that discrimination in the choice of companions, especially if combined with assortment, can favor the development of cooperativeness, making initial increase of cooperative behavior possible even at levels of assortment passively imposed which would not be adequate, per se, to guarantee the increase of cooperativeness. It is possible that, in some cases, cooperativeness and behavior favoring some type of assortment are coselected.

  11. Robust enzyme design: bioinformatic tools for improved protein stability.

    PubMed

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Detecting reciprocity at a global scale

    PubMed Central

    Frank, Morgan R.; Obradovich, Nick; Sun, Lijun; Woon, Wei Lee; LeVeck, Brad L.; Rahwan, Iyad

    2018-01-01

    Reciprocity stabilizes cooperation from the level of microbes all the way up to humans interacting in small groups, but does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states? Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving international cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale data set that records state interactions with high temporal resolution. Doing so, we detect reciprocity between many country pairs in the international system and find that these reciprocating country pairs exhibit qualitatively different cooperative dynamics when compared to nonreciprocating pairs. Consistent with evolutionary theories of cooperation, reciprocating country pairs exhibit higher levels of stable cooperation and are more likely to punish instances of noncooperation. However, countries in reciprocity-based relationships are also quicker to forgive single acts of noncooperation by eventually returning to previous levels of mutual cooperation. By contrast, nonreciprocating pairs are more likely to exploit each other’s cooperation via higher rates of defection. Together, these findings provide the strongest evidence to date that reciprocity is a widespread mechanism for achieving international cooperation. PMID:29326983

  13. Detecting reciprocity at a global scale.

    PubMed

    Frank, Morgan R; Obradovich, Nick; Sun, Lijun; Woon, Wei Lee; LeVeck, Brad L; Rahwan, Iyad

    2018-01-01

    Reciprocity stabilizes cooperation from the level of microbes all the way up to humans interacting in small groups, but does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states? Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving international cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale data set that records state interactions with high temporal resolution. Doing so, we detect reciprocity between many country pairs in the international system and find that these reciprocating country pairs exhibit qualitatively different cooperative dynamics when compared to nonreciprocating pairs. Consistent with evolutionary theories of cooperation, reciprocating country pairs exhibit higher levels of stable cooperation and are more likely to punish instances of noncooperation. However, countries in reciprocity-based relationships are also quicker to forgive single acts of noncooperation by eventually returning to previous levels of mutual cooperation. By contrast, nonreciprocating pairs are more likely to exploit each other's cooperation via higher rates of defection. Together, these findings provide the strongest evidence to date that reciprocity is a widespread mechanism for achieving international cooperation.

  14. Beyond pairwise strategy updating in the prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Perc, Matjaž; Liu, Yongkui; Chen, Xiaojie; Wang, Long

    2012-10-01

    In spatial games players typically alter their strategy by imitating the most successful or one randomly selected neighbor. Since a single neighbor is taken as reference, the information stemming from other neighbors is neglected, which begets the consideration of alternative, possibly more realistic approaches. Here we show that strategy changes inspired not only by the performance of individual neighbors but rather by entire neighborhoods introduce a qualitatively different evolutionary dynamics that is able to support the stable existence of very small cooperative clusters. This leads to phase diagrams that differ significantly from those obtained by means of pairwise strategy updating. In particular, the survivability of cooperators is possible even by high temptations to defect and over a much wider uncertainty range. We support the simulation results by means of pair approximations and analysis of spatial patterns, which jointly highlight the importance of local information for the resolution of social dilemmas.

  15. The importance of mechanisms for the evolution of cooperation

    PubMed Central

    van den Berg, Pieter; Weissing, Franz J.

    2015-01-01

    Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554

  16. The evolution of the competition-dispersal trade-off affects α- and β-diversity in a heterogeneous metacommunity.

    PubMed

    Laroche, Fabien; Jarne, Philippe; Perrot, Thomas; Massol, Francois

    2016-04-27

    Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and β-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities. © 2016 The Author(s).

  17. Efficiency in evolutionary games: Darwin, Nash and the secret handshake.

    PubMed

    Robson, A J

    1990-06-07

    This paper considers any evolutionary game possessing several evolutionarily stable strategies, or ESSs, with differing payoffs. A mutant is introduced which will "destroy" any ESS which yields a lower payoff than another. This mutant possesses a costless signal and also conditions on the presence of this signal in each opponent. The mutant then can protect itself against a population playing an inefficient ESS by matching this against these non-signalers. At the same time, the mutants can achieve the more efficient ESS against the signaling mutant population itself. This construction is illustrated by means of the simplest possible example, a co-ordination game. The one-shot prisoner's dilemma is used to illustrate how a superior outcome which is not induced by an ESS may be temporarily but not permanently attained. In the case of the repeated prisoner's dilemma, the present argument seems to render the "evolution of co-operation" ultimately inevitable.

  18. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-09-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.

  1. Boosting cooperation by involving extortion in spatial prisoner's dilemma games

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Xi; Rong, Zhihai

    2014-12-01

    We study the evolution of cooperation in spatial prisoner's dilemma games with and without extortion by adopting the aspiration-driven strategy updating rule. We focus explicitly on how the strategy updating manner (whether synchronous or asynchronous) and also the introduction of extortion strategy affect the collective outcome of the games. By means of Monte Carlo simulations as well as dynamical cluster techniques, we find that the involvement of extortioners facilitates the boom of cooperators in the population (and whom can always dominate the population if the temptation to defect is not too large) for both synchronous and asynchronous strategy updating, in stark contrast to the other case, where cooperation is promoted for an intermediate aspiration level with synchronous strategy updating, but is remarkably inhibited if the strategy updating is implemented asynchronously. We explain the results by configurational analysis and find that the presence of extortion leads to the checkerboard-like ordering of cooperators and extortioners, which enable cooperators to prevail in the population with both strategy updating manners. Moreover, extortion itself is evolutionary stable, and therefore acts as the incubator for the evolution of cooperation.

  2. Incest versus abstinence: reproductive trade-offs between mate limitation and progeny fitness in a self-incompatible invasive plant

    PubMed Central

    Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G

    2013-01-01

    Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system. PMID:24455137

  3. Incest versus abstinence: reproductive trade-offs between mate limitation and progeny fitness in a self-incompatible invasive plant.

    PubMed

    Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G

    2013-12-01

    Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.

  4. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    PubMed

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  5. Evolution of extortion in the social-influenced prisoner’s dilemma

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Li, Miao; Wang, Dan; Chen, Qinghe

    2016-01-01

    The introduction of extortion strategy has attracted much attention since it dominates any evolutionary opponent in iterated prisoner’s dilemma games. Despite several studies argue that extortion is difficult to survive under strategy imitation and birth-death updating rules in well-mixed populations, it has recently been proven that a myopic best response rule facilitate the evolution of cooperation and extortion. However, such updating rules require a strong assumption of complete knowledge of all players, which is unlikely to hold in social networks in reality. To solve this problem, we introduce the concept of social influence into the model to limit players’ knowledge within their neighborhood. It turns out that this myopia initiated by social influence prevents players from observing superior strategies and therefore enables cooperators and extortioners to be evolutionarily stable. We also suggest that heterogeneous networks contribute to the evolution of cooperation and extortion under such social influence.

  6. Selfishness as second-order altruism

    PubMed Central

    Eldakar, Omar Tonsi; Wilson, David Sloan

    2008-01-01

    Selfishness is seldom considered a group-beneficial strategy. In the typical evolutionary formulation, altruism benefits the group, selfishness undermines altruism, and the purpose of the model is to identify mechanisms, such as kinship or reciprocity, that enable altruism to evolve. Recent models have explored punishment as an important mechanism favoring the evolution of altruism, but punishment can be costly to the punisher, making it a form of second-order altruism. This model identifies a strategy called “selfish punisher” that involves behaving selfishly in first-order interactions and altruistically in second-order interactions by punishing other selfish individuals. Selfish punishers cause selfishness to be a self-limiting strategy, enabling altruists to coexist in a stable equilibrium. This polymorphism can be regarded as a division of labor, or mutualism, in which the benefits obtained by first-order selfishness help to “pay” for second-order altruism. PMID:18448681

  7. The price of being seen to be just: an intention signalling strategy for indirect reciprocity.

    PubMed

    Tanaka, Hiroki; Ohtsuki, Hisashi; Ohtsubo, Yohsuke

    2016-07-27

    Cooperation among strangers is a marked characteristic of human sociality. One prominent evolutionary explanation for this form of human cooperation is indirect reciprocity, whereby each individual selectively helps people with a 'good' reputation, but not those with a 'bad' reputation. Some evolutionary analyses have underscored the importance of second-order reputation information (the reputation of a current partner's previous partner) for indirect reciprocity as it allows players to discriminate justified 'good' defectors, who selectively deny giving help to 'bad' partners, from unjustified 'bad' defectors. Nevertheless, it is not clear whether people in fact make use of second-order information in indirect reciprocity settings. As an alternative, we propose the intention signalling strategy, whereby defectors are given the option to abandon a resource as a means of expunging their 'bad' reputation. Our model deviates from traditional modelling approaches in the indirect reciprocity literature in a crucial way-we show that first-order information is sufficient to maintain cooperation if players are given an option to signal their intention. Importantly, our model is robust against invasion by both unconditionally cooperative and uncooperative strategies, a first step towards demonstrating its viability as an evolutionarily stable strategy. Furthermore, in two behavioural experiments, when participants were given the option to abandon a resource so as to mend a tarnished reputation, participants not only spontaneously began to use this option, they also interpreted others' use of this option as a signal of cooperative intent. © 2016 The Author(s).

  8. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Tit for tat in heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; Sigmund, Karl

    1992-01-01

    THE 'iterated prisoner's dilemma' is now the orthodox paradigm for the evolution of cooperation among selfish individuals. This viewpoint is strongly supported by Axelrod's computer tournaments, where 'tit for tat' (TFT) finished first1. This has stimulated interest in the role of reciprocity in biological societies1-8. Most theoretical investigations, however, assumed homogeneous populations (the setting for evolutionary stable strategies9,10) and programs immune to errors. Here we try to come closer to the biological situation by following a program6 that takes stochasticities into account and investigates representative samples. We find that a small fraction of TFT players is essential for the emergence of reciprocation in a heterogeneous population, but only paves the way for a more generous strategy. TFT is the pivot, rather than the aim, of an evolution towards cooperation.

  10. Understanding Recurrent Crime as System-Immanent Collective Behavior

    PubMed Central

    Perc, Matjaž; Donnay, Karsten; Helbing, Dirk

    2013-01-01

    Containing the spreading of crime is a major challenge for society. Yet, since thousands of years, no effective strategy has been found to overcome crime. To the contrary, empirical evidence shows that crime is recurrent, a fact that is not captured well by rational choice theories of crime. According to these, strong enough punishment should prevent crime from happening. To gain a better understanding of the relationship between crime and punishment, we consider that the latter requires prior discovery of illicit behavior and study a spatial version of the inspection game. Simulations reveal the spontaneous emergence of cyclic dominance between “criminals”, “inspectors”, and “ordinary people” as a consequence of spatial interactions. Such cycles dominate the evolutionary process, in particular when the temptation to commit crime or the cost of inspection are low or moderate. Yet, there are also critical parameter values beyond which cycles cease to exist and the population is dominated either by a stable mixture of criminals and inspectors or one of these two strategies alone. Both continuous and discontinuous phase transitions to different final states are possible, indicating that successful strategies to contain crime can be very much counter-intuitive and complex. Our results demonstrate that spatial interactions are crucial for the evolutionary outcome of the inspection game, and they also reveal why criminal behavior is likely to be recurrent rather than evolving towards an equilibrium with monotonous parameter dependencies. PMID:24124533

  11. Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior.

    PubMed

    Tooby, John; Cosmides, Leda; Price, Michael E

    2006-03-01

    Organizations are composed of stable, predominantly cooperative interactions or n -person exchanges. Humans have been engaging in n -person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n -party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations.

  12. Evolution of local facilitation in arid ecosystems.

    PubMed

    Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel

    2008-07-01

    In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.

  13. Cognitive Adaptations for n-person Exchange: The Evolutionary Roots of Organizational Behavior

    PubMed Central

    Tooby, John; Cosmides, Leda; Price, Michael E.

    2013-01-01

    Organizations are composed of stable, predominantly cooperative interactions or n-person exchanges. Humans have been engaging in n-person exchanges for a great enough period of evolutionary time that we appear to have evolved a distinct constellation of species-typical mechanisms specialized to solve the adaptive problems posed by this form of social interaction. These mechanisms appear to have been evolutionarily elaborated out of the cognitive infrastructure that initially evolved for dyadic exchange. Key adaptive problems that these mechanisms are designed to solve include coordination among individuals, and defense against exploitation by free riders. Multi-individual cooperation could not have been maintained over evolutionary time if free riders reliably benefited more than contributors to collective enterprises, and so outcompeted them. As a result, humans evolved mechanisms that implement an aversion to exploitation by free riding, and a strategy of conditional cooperation, supplemented by punitive sentiment towards free riders. Because of the design of these mechanisms, how free riding is treated is a central determinant of the survival and health of cooperative organizations. The mapping of the evolved psychology of n-party exchange cooperation may contribute to the construction of a principled theoretical foundation for the understanding of human behavior in organizations. PMID:23814325

  14. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  15. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  16. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  17. Modelling and strategy optimisation for a kind of networked evolutionary games with memories under the bankruptcy mechanism

    NASA Astrophysics Data System (ADS)

    Fu, Shihua; Li, Haitao; Zhao, Guodong

    2018-05-01

    This paper investigates the evolutionary dynamic and strategy optimisation for a kind of networked evolutionary games whose strategy updating rules incorporate 'bankruptcy' mechanism, and the situation that each player's bankruptcy is due to the previous continuous low profits gaining from the game is considered. First, by using semi-tensor product of matrices method, the evolutionary dynamic of this kind of games is expressed as a higher order logical dynamic system and then converted into its algebraic form, based on which, the evolutionary dynamic of the given games can be discussed. Second, the strategy optimisation problem is investigated, and some free-type control sequences are designed to maximise the total payoff of the whole game. Finally, an illustrative example is given to show that our new results are very effective.

  18. Historical Contingency in Controlled Evolution

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2014-12-01

    A basic question in evolution is dealing with the nature of an evolutionary memory. At thermodynamic equilibrium, at stable stationary states or other stable attractors the memory on the path leading to the long-time solution is erased, at least in part. Similar arguments hold for unique optima. Optimality in biology is discussed on the basis of microbial metabolism. Biology, on the other hand, is characterized by historical contingency, which has recently become accessible to experimental test in bacterial populations evolving under controlled conditions. Computer simulations give additional insight into the nature of the evolutionary memory, which is ultimately caused by the enormous space of possibilities that is so large that it escapes all attempts of visualization. In essence, this contribution is dealing with two questions of current evolutionary theory: (i) Are organisms operating at optimal performance? and (ii) How is the evolutionary memory built up in populations?

  19. Birth of the first ESS: George Price, John Maynard Smith, and the discovery of the lost "Antlers" paper.

    PubMed

    Harman, Oren

    2011-01-15

    The application of game theory to evolutionary problems is so commonplace today, that few stop to consider how it all began. John Maynard Smith and George R. Price's 1973 Nature article, "The Logic of Animal Conflict," is often referred to as the first description in the literature of the concept of an evolutionary stable strategy (ESS), but what was the "behind the scenes" of the writing of that seminal paper? This article tracks the little known story of the curious American polymath, George Price. As will be shown, it was an earlier paper, the lost "Antlers, Intraspecific Combat, and Altruism," sent by Price to Nature in August 1968 (Unpublished), and refereed by Maynard Smith, which instigated the birth of the first ESS. Recently, the "Antlers" paper has been re-discovered by the author, shedding new light, together with letters and journals from the personal papers of George Price and John Maynard Smith, on their historical paper. © 2010 Wiley-Liss, Inc.

  20. Unfolding of a ClC chloride transporter retains memory of its evolutionary history.

    PubMed

    Min, Duyoung; Jefferson, Robert E; Qi, Yifei; Wang, Jing Yang; Arbing, Mark A; Im, Wonpil; Bowie, James U

    2018-05-01

    ClC chloride channels and transporters are important for chloride homeostasis in species from bacteria to human. Mutations in ClC proteins cause genetically inherited diseases, some of which are likely to involve folding defects. The ClC proteins present a challenging and unusual biological folding problem because they are large membrane proteins possessing a complex architecture, with many reentrant helices that go only partway through membrane and loop back out. Here we were able to examine the unfolding of the Escherichia coli ClC transporter, ClC-ec1, using single-molecule forced unfolding methods. We found that the protein could be separated into two stable halves that unfolded independently. The independence of the two domains is consistent with an evolutionary model in which the two halves arose from independently folding subunits that later fused together. Maintaining smaller folding domains of lesser complexity within large membrane proteins may be an advantageous strategy to avoid misfolding traps.

  1. Resolving the iterated prisoner's dilemma: theory and reality.

    PubMed

    Raihani, N J; Bshary, R

    2011-08-01

    Pairs of unrelated individuals face a prisoner's dilemma if cooperation is the best mutual outcome, but each player does best to defect regardless of his partner's behaviour. Although mutual defection is the only evolutionarily stable strategy in one-shot games, cooperative solutions based on reciprocity can emerge in iterated games. Among the most prominent theoretical solutions are the so-called bookkeeping strategies, such as tit-for-tat, where individuals copy their partner's behaviour in the previous round. However, the lack of empirical data conforming to predicted strategies has prompted the suggestion that the iterated prisoner's dilemma (IPD) is neither a useful nor realistic basis for investigating cooperation. Here, we discuss several recent studies where authors have used the IPD framework to interpret their data. We evaluate the validity of their approach and highlight the diversity of proposed solutions. Strategies based on precise accounting are relatively uncommon, perhaps because the full set of assumptions of the IPD model are rarely satisfied. Instead, animals use a diverse array of strategies that apparently promote cooperation, despite the temptation to cheat. These include both positive and negative reciprocity, as well as long-term mutual investments based on 'friendships'. Although there are various gaps in these studies that remain to be filled, we argue that in most cases, individuals could theoretically benefit from cheating and that cooperation cannot therefore be explained with the concept of positive pseudo-reciprocity. We suggest that by incorporating empirical data into the theoretical framework, we may gain fundamental new insights into the evolution of mutual reciprocal investment in nature. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  2. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  3. Optimization of stable quadruped locomotion using mutual information

    NASA Astrophysics Data System (ADS)

    Silva, Pedro; Santos, Cristina P.; Polani, Daniel

    2013-10-01

    Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.

  4. Random and non-random mating populations: Evolutionary dynamics in meiotic drive.

    PubMed

    Sarkar, Bijan

    2016-01-01

    Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. PROTECTED POLYMORPHISMS AND EVOLUTIONARY STABILITY OF PATCH-SELECTION STRATEGIES IN STOCHASTIC ENVIRONMENTS

    PubMed Central

    EVANS, STEVEN N.; HENING, ALEXANDRU; SCHREIBER, SEBASTIAN J.

    2015-01-01

    We consider a population living in a patchy environment that varies stochastically in space and time. The population is composed of two morphs (that is, individuals of the same species with different genotypes). In terms of survival and reproductive success, the associated phenotypes differ only in their habitat selection strategies. We compute invasion rates corresponding to the rates at which the abundance of an initially rare morph increases in the presence of the other morph established at equilibrium. If both morphs have positive invasion rates when rare, then there is an equilibrium distribution such that the two morphs coexist; that is, there is a protected polymorphism for habitat selection. Alternatively, if one morph has a negative invasion rate when rare, then it is asymptotically displaced by the other morph under all initial conditions where both morphs are present. We refine the characterization of an evolutionary stable strategy for habitat selection from [Schreiber, 2012] in a mathematically rigorous manner. We provide a necessary and sufficient condition for the existence of an ESS that uses all patches and determine when using a single patch is an ESS. We also provide an explicit formula for the ESS when there are two habitat types. We show that adding environmental stochasticity results in an ESS that, when compared to the ESS for the corresponding model without stochasticity, spends less time in patches with larger carrying capacities and possibly makes use of sink patches, thereby practicing a spatial form of bet hedging. PMID:25151369

  6. Evolutionary stability and resistance to cheating in an indirect reciprocity model based on reputation.

    PubMed

    Martinez-Vaquero, Luis A; Cuesta, José A

    2013-05-01

    Indirect reciprocity is one of the main mechanisms to explain the emergence and sustainment of altruism in societies. The standard approach to indirect reciprocity is reputation models. These are games in which players base their decisions on their opponent's reputation gained in past interactions with other players (moral assessment). The combination of actions and moral assessment leads to a large diversity of strategies; thus determining the stability of any of them against invasions by all the others is a difficult task. We use a variant of a previously introduced reputation-based model that let us systematically analyze all these invasions and determine which ones are successful. Accordingly, we are able to identify the third-order strategies (those which, apart from the action, judge considering both the reputation of the donor and that of the recipient) that are evolutionarily stable. Our results reveal that if a strategy resists the invasion of any other one sharing its same moral assessment, it can resist the invasion of any other strategy. However, if actions are not always witnessed, cheaters (i.e., individuals with a probability of defecting regardless of the opponent's reputation) have a chance to defeat the stable strategies for some choices of the probabilities of cheating and of being witnessed. Remarkably, by analyzing this issue with adaptive dynamics we find that whether an honest population resists the invasion of cheaters is determined by a Hamilton-like rule, with the probability that the cheat is discovered playing the role of the relatedness parameter.

  7. Evolutionary stability and resistance to cheating in an indirect reciprocity model based on reputation

    NASA Astrophysics Data System (ADS)

    Martinez-Vaquero, Luis A.; Cuesta, José A.

    2013-05-01

    Indirect reciprocity is one of the main mechanisms to explain the emergence and sustainment of altruism in societies. The standard approach to indirect reciprocity is reputation models. These are games in which players base their decisions on their opponent's reputation gained in past interactions with other players (moral assessment). The combination of actions and moral assessment leads to a large diversity of strategies; thus determining the stability of any of them against invasions by all the others is a difficult task. We use a variant of a previously introduced reputation-based model that let us systematically analyze all these invasions and determine which ones are successful. Accordingly, we are able to identify the third-order strategies (those which, apart from the action, judge considering both the reputation of the donor and that of the recipient) that are evolutionarily stable. Our results reveal that if a strategy resists the invasion of any other one sharing its same moral assessment, it can resist the invasion of any other strategy. However, if actions are not always witnessed, cheaters (i.e., individuals with a probability of defecting regardless of the opponent's reputation) have a chance to defeat the stable strategies for some choices of the probabilities of cheating and of being witnessed. Remarkably, by analyzing this issue with adaptive dynamics we find that whether an honest population resists the invasion of cheaters is determined by a Hamilton-like rule, with the probability that the cheat is discovered playing the role of the relatedness parameter.

  8. Evolutionary game theory and multiple chemical sensitivity.

    PubMed

    Newlin, D B

    1999-01-01

    Newlin's [Newlin D.B. Evolutionary game theory of tolerance and sensitization in substance abuse. Paper presented to the Research Society on Alcoholism, Hilton Head, SC, 1998] evolutionary game theory of addictive behavior specifies how evolutionarily stable strategies for survival and reproduction may lead to addiction. The game theory of multiple chemical sensitivity (MCS) assumes that: (1) the MCS patient responds to low-level toxicants as stressors or as direct threats to their survival and reproductive fitness, (2) this activates the cortico-mesolimbic dopamine system, (3) this system is a survival motivation center--not a 'reward center', (4) the subject emits a counter-response that is in the same direction as the naive response to the chemicals, (5) previously neutral stimuli associated with chemicals also trigger conditioned responses that mimic those to the chemicals, (6) these counter-responses further activate the dopaminergic survival motivation system, and (7) this produces a positive feedback loop that leads to strong neural sensitization in these structures and in behavior controlled by this system, despite a small initial response. Psychologically, the MCS patient with a sensitized cortico-mesolimbic dopamine system is behaving as though his/her survival is directly threatened by these chemicals. Non-MCS subjects have counter-responses opposite in direction to those of the chemicals and show tolerance. An autoshaping/sign-tracking model of this game is discussed. This evolutionary game makes several specific, testable predictions about differences between MCS subjects, non-MCS controls, and substance abusers in laboratory experiments, and between sensitized and nonsensitized animals.

  9. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    PubMed

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations.

    PubMed

    Cordero, Otto X; Ventouras, Laure-Anne; DeLong, Edward F; Polz, Martin F

    2012-12-04

    A common strategy among microbes living in iron-limited environments is the secretion of siderophores, which can bind poorly soluble iron and make it available to cells via active transport mechanisms. Such siderophore-iron complexes can be thought of as public goods that can be exploited by local communities and drive diversification, for example by the evolution of "cheating." However, it is unclear whether bacterial populations in the environment form stable enough communities such that social interactions significantly impact evolutionary dynamics. Here we show that public good games drive the evolution of iron acquisition strategies in wild populations of marine bacteria. We found that within nonclonal but ecologically cohesive genotypic clusters of closely related Vibrionaceae, only an intermediate percentage of genotypes are able to produce siderophores. Nonproducers within these clusters exhibited selective loss of siderophore biosynthetic pathways, whereas siderophore transport mechanisms were retained, suggesting that these nonproducers can act as cheaters that benefit from siderophore producers in their local environment. In support of this hypothesis, these nonproducers in iron-limited media suffer a significant decrease in growth, which can be alleviated by siderophores, presumably owing to the retention of transport mechanisms. Moreover, using ecological data of resource partitioning, we found that cheating coevolves with the ecological specialization toward association with larger particles in the water column, suggesting that these can harbor stable enough communities for dependencies among organisms to evolve.

  11. Stationary stability for evolutionary dynamics in finite populations

    DOE PAGES

    Harper, Marc; Fryer, Dashiell

    2016-08-25

    Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less

  12. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  13. Second-Order Free-Riding on Antisocial Punishment Restores the Effectiveness of Prosocial Punishment

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2017-10-01

    Economic experiments have shown that punishment can increase public goods game contributions over time. However, the effectiveness of punishment is challenged by second-order free-riding and antisocial punishment. The latter implies that noncooperators punish cooperators, while the former implies unwillingness to shoulder the cost of punishment. Here, we extend the theory of cooperation in the spatial public goods game by considering four competing strategies, which are traditional cooperators and defectors, as well as cooperators who punish defectors and defectors who punish cooperators. We show that if the synergistic effects are high enough to sustain cooperation based on network reciprocity alone, antisocial punishment does not deter public cooperation. Conversely, if synergistic effects are low and punishment is actively needed to sustain cooperation, antisocial punishment does is viable, but only if the cost-to-fine ratio is low. If the costs are relatively high, cooperation again dominates as a result of spatial pattern formation. Counterintuitively, defectors who do not punish cooperators, and are thus effectively second-order free-riding on antisocial punishment, form an active layer around punishing cooperators, which protects them against defectors that punish cooperators. A stable three-strategy phase that is sustained by the spontaneous emergence of cyclic dominance is also possible via the same route. The microscopic mechanism behind the reported evolutionary outcomes can be explained by the comparison of invasion rates that determine the stability of subsystem solutions. Our results reveal an unlikely evolutionary escape from adverse effects of antisocial punishment, and they provide a rationale for why second-order free-riding is not always an impediment to the evolutionary stability of punishment.

  14. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  15. When Reputation Enforces Evolutionary Cooperation in Unreliable MANETs.

    PubMed

    Tang, Changbing; Li, Ang; Li, Xiang

    2015-10-01

    In self-organized mobile ad hoc networks (MANETs), network functions rely on cooperation of self-interested nodes, where a challenge is to enforce their mutual cooperation. In this paper, we study cooperative packet forwarding in a one-hop unreliable channel which results from loss of packets and noisy observation of transmissions. We propose an indirect reciprocity framework based on evolutionary game theory, and enforce cooperation of packet forwarding strategies in both structured and unstructured MANETs. Furthermore, we analyze the evolutionary dynamics of cooperative strategies and derive the threshold of benefit-to-cost ratio to guarantee the convergence of cooperation. The numerical simulations verify that the proposed evolutionary game theoretic solution enforces cooperation when the benefit-to-cost ratio of the altruistic exceeds the critical condition. In addition, the network throughput performance of our proposed strategy in structured MANETs is measured, which is in close agreement with that of the full cooperative strategy.

  16. Evolutionary Dynamics of Biological Auctions

    PubMed Central

    Chatterjee, Krishnendu; Reiter, Johannes G.; Nowak, Martin A.

    2011-01-01

    Many scenarios in the living world, where individual organisms compete for winning positions (or resources), have properties of auctions. Here we study the evolution of bids in biological auctions. For each auction n individuals are drawn at random from a population of size N. Each individual makes a bid which entails a cost. The winner obtains a benefit of a certain value. Costs and benefits are translated into reproductive success (fitness). Therefore, successful bidding strategies spread in the population. We compare two types of auctions. In “biological all-pay auctions” the costs are the bid for every participating individual. In “biological second price all-pay auctions” the cost for everyone other than the winner is the bid, but the cost for the winner is the second highest bid. Second price all-pay auctions are generalizations of the “war of attrition” introduced by Maynard Smith. We study evolutionary dynamics in both types of auctions. We calculate pairwise invasion plots and evolutionarily stable distributions over the continuous strategy space. We find that the average bid in second price all-pay auctions is higher than in all-pay auctions, but the average cost for the winner is similar in both auctions. In both cases the average bid is a declining function of the number of participants, n. The more individuals participate in an auction the smaller is the chance of winning, and thus expensive bids must be avoided. PMID:22120126

  17. Aspiration dynamics of multi-player games in finite populations

    PubMed Central

    Du, Jinming; Wu, Bin; Altrock, Philipp M.; Wang, Long

    2014-01-01

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics. PMID:24598208

  18. Aspiration dynamics of multi-player games in finite populations.

    PubMed

    Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long

    2014-05-06

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.

  19. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  20. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  1. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  2. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.

  3. More efficient evolutionary strategies for model calibration with watershed model for demonstration

    NASA Astrophysics Data System (ADS)

    Baggett, J. S.; Skahill, B. E.

    2008-12-01

    Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer Kern, S., N. Hansen and P. Koumoutsakos (2006). Local Meta-Models for Optimization Using Evolution Strategies. In Ninth International Conference on Parallel Problem Solving from Nature PPSN IX, Proceedings, pp.939-948, Berlin: Springer. Tahk, M., Woo, H., and Park. M, (2007). A hybrid optimization of evolutionary and gradient search. Engineering Optimization, (39), 87-104.

  4. Costly Advertising and the Evolution of Cooperation

    PubMed Central

    Brede, Markus

    2013-01-01

    In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary ‘advertising’ strategy (advertise or don’t advertise). Advertising, which comes at a cost , allows investment into faster propagation of the agents’ traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations. PMID:23861752

  5. Costly advertising and the evolution of cooperation.

    PubMed

    Brede, Markus

    2013-01-01

    In this paper, I investigate the co-evolution of fast and slow strategy spread and game strategies in populations of spatially distributed agents engaged in a one off evolutionary dilemma game. Agents are characterized by a pair of traits, a game strategy (cooperate or defect) and a binary 'advertising' strategy (advertise or don't advertise). Advertising, which comes at a cost [Formula: see text], allows investment into faster propagation of the agents' traits to adjacent individuals. Importantly, game strategy and advertising strategy are subject to the same evolutionary mechanism. Via analytical reasoning and numerical simulations I demonstrate that a range of advertising costs exists, such that the prevalence of cooperation is significantly enhanced through co-evolution. Linking costly replication to the success of cooperators exposes a novel co-evolutionary mechanism that might contribute towards a better understanding of the origins of cooperation-supporting heterogeneity in agent populations.

  6. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry.

    PubMed

    Duthie, A B; Bocedi, G; Germain, R R; Reid, J M

    2018-01-01

    Inbreeding depression is widely hypothesized to drive adaptive evolution of precopulatory and post-copulatory mechanisms of inbreeding avoidance, which in turn are hypothesized to affect evolution of polyandry (i.e. female multiple mating). However, surprisingly little theory or modelling critically examines selection for precopulatory or post-copulatory inbreeding avoidance, or both strategies, given evolutionary constraints and direct costs, or examines how evolution of inbreeding avoidance strategies might feed back to affect evolution of polyandry. Selection for post-copulatory inbreeding avoidance, but not for precopulatory inbreeding avoidance, requires polyandry, whereas interactions between precopulatory and post-copulatory inbreeding avoidance might cause functional redundancy (i.e. 'degeneracy') potentially generating complex evolutionary dynamics among inbreeding strategies and polyandry. We used individual-based modelling to quantify evolution of interacting precopulatory and post-copulatory inbreeding avoidance and associated polyandry given strong inbreeding depression and different evolutionary constraints and direct costs. We found that evolution of post-copulatory inbreeding avoidance increased selection for initially rare polyandry and that evolution of a costly inbreeding avoidance strategy became negligible over time given a lower-cost alternative strategy. Further, fixed precopulatory inbreeding avoidance often completely precluded evolution of polyandry and hence post-copulatory inbreeding avoidance, but fixed post-copulatory inbreeding avoidance did not preclude evolution of precopulatory inbreeding avoidance. Evolution of inbreeding avoidance phenotypes and associated polyandry is therefore affected by evolutionary feedbacks and degeneracy. All else being equal, evolution of precopulatory inbreeding avoidance and resulting low polyandry is more likely when post-copulatory inbreeding avoidance is precluded or costly, and evolution of post-copulatory inbreeding avoidance greatly facilitates evolution of costly polyandry. © The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  7. Preferential selection based on strategy persistence and memory promotes cooperation in evolutionary prisoner's dilemma games

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Huang, Changwei; Dai, Qionglin

    2018-06-01

    Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.

  8. Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent

    PubMed Central

    Press, William H.; Dyson, Freeman J.

    2012-01-01

    The two-player Iterated Prisoner’s Dilemma game is a model for both sentient and evolutionary behaviors, especially including the emergence of cooperation. It is generally assumed that there exists no simple ultimatum strategy whereby one player can enforce a unilateral claim to an unfair share of rewards. Here, we show that such strategies unexpectedly do exist. In particular, a player X who is witting of these strategies can (i) deterministically set her opponent Y’s score, independently of his strategy or response, or (ii) enforce an extortionate linear relation between her and his scores. Against such a player, an evolutionary player’s best response is to accede to the extortion. Only a player with a theory of mind about his opponent can do better, in which case Iterated Prisoner’s Dilemma is an Ultimatum Game. PMID:22615375

  9. A security mechanism based on evolutionary game in fog computing.

    PubMed

    Sun, Yan; Lin, Fuhong; Zhang, Nan

    2018-02-01

    Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  10. Understanding Evolutionary Change within the Framework of Geological Time

    ERIC Educational Resources Information Center

    Dodick, Jeff

    2007-01-01

    This paper focuses on a learning strategy designed to overcome students' difficulty in understanding evolutionary change within the framework of geological time. Incorporated into the learning program "From Dinosaurs to Darwin: Evolution from the Perspective of Time," this strategy consists of four scaffolded investigations in which…

  11. On the evolution of specialization with a mechanistic underpinning in structured metapopulations.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2008-03-01

    We analyze the evolution of specialization in resource utilization in a discrete-time metapopulation model using the adaptive dynamics approach. The local dynamics in the metapopulation are based on the Beverton-Holt model with mechanistic underpinnings. The consumer faces a trade-off in the abilities to consume two resources that are spatially heterogeneously distributed to patches that are prone to local catastrophes. We explore the factors favoring the spread of generalist or specialist strategies. Increasing fecundity or decreasing catastrophe probability favors the spread of the generalist strategy and increasing environmental heterogeneity enlarges the parameter domain where the evolutionary branching is possible. When there are no catastrophes, increasing emigration diminishes the parameter domain where the evolutionary branching may occur. Otherwise, the effect of emigration on evolutionary dynamics is non-monotonous: both small and large values of emigration probability favor the spread of the specialist strategies whereas the parameter domain where evolutionary branching may occur is largest when the emigration probability has intermediate values. We compare how different forms of spatial heterogeneity and different models of local growth affect the evolutionary dynamics. We show that even small changes in the resource dynamics may have outstanding evolutionary effects to the consumers.

  12. Evolutionary Models of Irregular Warfare

    DTIC Science & Technology

    2013-03-01

    repro- duction. These adaptations include both physiological and behavioral strategies ranging from armour and immunity to complex nervous sys- tems...evolutionary principles to the level of grand strategy and international politics. This has given rise to some unexpected results: for example, work...forces, while only needing a small number of parameters to do so. Furthermore, they allow one to explore the effect of alternative strategies —whether

  13. A hybrid neural learning algorithm using evolutionary learning and derivative free local search method.

    PubMed

    Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil

    2006-06-01

    In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.

  14. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi

    PubMed Central

    Hynson, Nicole A.; Schiebold, Julienne M.-I.; Gebauer, Gerhard

    2016-01-01

    Background and Aims Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species’ dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Methods Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ13C and δ15N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, 13C and 15N enrichment among plant families and trophic strategies. Key Results We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. Conclusions We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. PMID:27451987

  15. Diversity in times of adversity: probabilistic strategies in microbial survival games.

    PubMed

    Wolf, Denise M; Vazirani, Vijay V; Arkin, Adam P

    2005-05-21

    Population diversification strategies are ubiquitous among microbes, encompassing random phase-variation (RPV) of pathogenic bacteria, viral latency as observed in some bacteriophage and HIV, and the non-genetic diversity of bacterial stress responses. Precise conditions under which these diversification strategies confer an advantage have not been well defined. We develop a model of population growth conditioned on dynamical environmental and cellular states. Transitions among cellular states, in turn, may be biased by possibly noisy readings of the environment from cellular sensors. For various types of environmental dynamics and cellular sensor capability, we apply game-theoretic analysis to derive the evolutionarily stable strategy (ESS) for an organism and determine when that strategy is diversification. We find that: (1) RPV, effecting a sort of Parrondo paradox wherein random alternations between losing strategies produce a winning strategy, is selected when transitions between different selective environments cannot be sensed, (2) optimal RPV cell switching rates are a function of environmental lifecycle asymmetries and environmental autocorrelation, (3) probabilistic diversification upon entering a new environment is selected when sensors can detect environmental transitions but have poor precision in identifying new environments, and (4) in the presence of excess additive noise, low-pass filtering is required for evolutionary stability. We show that even when RPV is not the ESS, it may minimize growth rate variance and the risk of extinction due to 'unlucky' environmental dynamics.

  16. Threat-detection in child development: an evolutionary perspective.

    PubMed

    Boyer, Pascal; Bergstrom, Brian

    2011-03-01

    Evidence for developmental aspects of fear-targets and anxiety suggests a complex but stable pattern whereby specific kinds of fears emerge at different periods of development. This developmental schedule seems appropriate to dangers encountered repeatedly during human evolution. Also consistent with evolutionary perspective, the threat-detection systems are domain-specific, comprising different kinds of cues to do with predation, intraspecific violence, contamination-contagion and status loss. Proper evolutionary models may also be relevant to outstanding issues in the domain, notably the connections between typical development and pathology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed

    Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  18. The evolution of cooperative turn-taking in animal conflict

    PubMed Central

    2011-01-01

    Background A fundamental assumption in animal socio-ecology is that animals compete over limited resources. This view has been challenged by the finding that individuals might cooperatively partition resources by "taking turns". Turn-taking occurs when two individuals coordinate their agonistic behaviour in a way that leads to an alternating pattern in who obtains a resource without engaging in costly fights. Cooperative turn-taking has been largely ignored in models of animal conflict and socio-ecological models that explain the evolution of social behaviours based only on contest and scramble competition. Currently it is unclear whether turn-taking should be included in socio-ecological models because the evolution of turn-taking is not well understood. In particular, it is unknown whether turn-taking can evolve when fighting costs and assessment of fighting abilities are not fixed but emerge from evolved within-fight behaviour. We address this problem with an evolutionary agent-based model. Results We found that turn-taking evolves for small resource values, alongside a contest strategy that leads to stable dominance relationships. Turn-taking leads to egalitarian societies with unclear dominance relationships and non-linear dominance hierarchies. Evolutionary stability of turn-taking emerged despite strength differences among individuals and the possibility to evolve within-fight behaviour that allows good assessment of fighting abilities. Evolutionary stability emerged from frequency-dependent effects on fitness, which are modulated by feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies. Conclusions Our results reveal the impact of feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies, such as turn-taking. Similar feedbacks might be important for the evolution of other conflict strategies such as winner-loser effects or coalitions. However, we are not aware of any study that investigated such feedbacks. Furthermore, our model suggests that turn-taking could be used by animals to partition low value resources, but to our knowledge this has never been tested. The existence of turn-taking might have been overlooked because it leads to societies with similar characteristics that have been expected to emerge from scramble competition. Analyses of temporal interaction patterns could be used to test whether turn-taking occurs in animals. PMID:22054254

  19. The evolution of cooperative turn-taking in animal conflict.

    PubMed

    Franz, Mathias; van der Post, Daniel; Schülke, Oliver; Ostner, Julia

    2011-11-03

    A fundamental assumption in animal socio-ecology is that animals compete over limited resources. This view has been challenged by the finding that individuals might cooperatively partition resources by "taking turns". Turn-taking occurs when two individuals coordinate their agonistic behaviour in a way that leads to an alternating pattern in who obtains a resource without engaging in costly fights. Cooperative turn-taking has been largely ignored in models of animal conflict and socio-ecological models that explain the evolution of social behaviours based only on contest and scramble competition. Currently it is unclear whether turn-taking should be included in socio-ecological models because the evolution of turn-taking is not well understood. In particular, it is unknown whether turn-taking can evolve when fighting costs and assessment of fighting abilities are not fixed but emerge from evolved within-fight behaviour. We address this problem with an evolutionary agent-based model. We found that turn-taking evolves for small resource values, alongside a contest strategy that leads to stable dominance relationships. Turn-taking leads to egalitarian societies with unclear dominance relationships and non-linear dominance hierarchies. Evolutionary stability of turn-taking emerged despite strength differences among individuals and the possibility to evolve within-fight behaviour that allows good assessment of fighting abilities. Evolutionary stability emerged from frequency-dependent effects on fitness, which are modulated by feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies. Our results reveal the impact of feedbacks between the evolution of within-fight behaviour and the evolution of higher-level conflict strategies, such as turn-taking. Similar feedbacks might be important for the evolution of other conflict strategies such as winner-loser effects or coalitions. However, we are not aware of any study that investigated such feedbacks. Furthermore, our model suggests that turn-taking could be used by animals to partition low value resources, but to our knowledge this has never been tested. The existence of turn-taking might have been overlooked because it leads to societies with similar characteristics that have been expected to emerge from scramble competition. Analyses of temporal interaction patterns could be used to test whether turn-taking occurs in animals.

  20. An experimental investigation of evolutionary dynamics in the Rock-Paper-Scissors game.

    PubMed

    Hoffman, Moshe; Suetens, Sigrid; Gneezy, Uri; Nowak, Martin A

    2015-03-06

    Game theory describes social behaviors in humans and other biological organisms. By far, the most powerful tool available to game theorists is the concept of a Nash Equilibrium (NE), which is motivated by perfect rationality. NE specifies a strategy for everyone, such that no one would benefit by deviating unilaterally from his/her strategy. Another powerful tool available to game theorists are evolutionary dynamics (ED). Motivated by evolutionary and learning processes, ED specify changes in strategies over time in a population, such that more successful strategies typically become more frequent. A simple game that illustrates interesting ED is the generalized Rock-Paper-Scissors (RPS) game. The RPS game extends the children's game to situations where winning or losing can matter more or less relative to tying. Here we investigate experimentally three RPS games, where the NE is always to randomize with equal probability, but the evolutionary stability of this strategy changes. Consistent with the prediction of ED we find that aggregate behavior is far away from NE when it is evolutionarily unstable. Our findings add to the growing literature that demonstrates the predictive validity of ED in large-scale incentivized laboratory experiments with human subjects.

  1. Evolution of long-term coloration trends with biochemically unstable ingredients

    PubMed Central

    Davis, Sarah N.; Andrews, John E.; Badyaev, Alexander V.

    2016-01-01

    The evolutionarily persistent and widespread use of carotenoid pigments in animal coloration contrasts with their biochemical instability. Consequently, evolution of carotenoid-based displays should include mechanisms to accommodate or limit pigment degradation. In birds, this could involve two strategies: (i) evolution of a moult immediately prior to the mating season, enabling the use of particularly fast-degrading carotenoids and (ii) evolution of the ability to stabilize dietary carotenoids through metabolic modification or association with feather keratins. Here, we examine evolutionary lability and transitions between the two strategies across 126 species of birds. We report that species that express mostly unmodified, fast-degrading, carotenoids have pre-breeding moults, and a particularly short time between carotenoid deposition and the subsequent breeding season. Species that expressed mostly slow-degrading carotenoids in their plumage accomplished this through increased metabolic modification of dietary carotenoids, and the selective expression of these slow-degrading compounds. In these species, the timing of moult was not associated with carotenoid composition of plumage displays. Using repeated samples from individuals of one species, we found that metabolic modification of dietary carotenoids significantly slowed their degradation between moult and breeding season. Thus, the most complex and colourful ornamentation is likely the most biochemically stable in birds, and depends less on ecological factors, such as moult timing and migration tendency. We suggest that coevolution of metabolic modification, selective expression and biochemical stability of plumage carotenoids enables the use of unstable pigments in long-term evolutionary trends in plumage coloration. PMID:27194697

  2. On the evolution of misunderstandings about evolutionary psychology.

    PubMed

    Young, J; Persell, R

    2000-04-01

    Some of the controversy surrounding evolutionary explanations of human behavior may be due to cognitive information-processing patterns that are themselves the result of evolutionary processes. Two such patterns are (1) the tendency to oversimplify information so as to reduce demand on cognitive resources and (2) our strong desire to generate predictability and stability from perceptions of the external world. For example, research on social stereotyping has found that people tend to focus automatically on simplified social-categorical information, to use such information when deciding how to behave, and to rely on such information even in the face of contradictory evidence. Similarly, an undying debate over nature vs. nurture is shaped by various data-reduction strategies that frequently oversimplify, and thus distort, the intent of the supporting arguments. This debate is also often marked by an assumption that either the nature or the nurture domain may be justifiably excluded at an explanatory level because one domain appears to operate in a sufficiently stable and predictable way for a particular argument. As a result, critiques in-veighed against evolutionary explanations of behavior often incorporate simplified--and erroneous--assumptions about either the mechanics of how evolution operates or the inevitable implications of evolution for understanding human behavior. The influences of these tendencies are applied to a discussion of the heritability of behavioral characteristics. It is suggested that the common view that Mendelian genetics can explain the heritability of complex behaviors, with a one-gene-one-trait process, is misguided. Complex behaviors are undoubtedly a product of a more complex interaction between genes and environment, ensuring that both nature and nurture must be accommodated in a yet-to-be-developed post-Mendelian model of genetic influence. As a result, current public perceptions of evolutionary explanations of behavior are handicapped by the lack of clear articulation of the relationship between inherited genes and manifest behavior.

  3. Quantitative Proteomics by Metabolic Labeling of Model Organisms*

    PubMed Central

    Gouw, Joost W.; Krijgsveld, Jeroen; Heck, Albert J. R.

    2010-01-01

    In the biological sciences, model organisms have been used for many decades and have enabled the gathering of a large proportion of our present day knowledge of basic biological processes and their derailments in disease. Although in many of these studies using model organisms, the focus has primarily been on genetics and genomics approaches, it is important that methods become available to extend this to the relevant protein level. Mass spectrometry-based proteomics is increasingly becoming the standard to comprehensively analyze proteomes. An important transition has been made recently by moving from charting static proteomes to monitoring their dynamics by simultaneously quantifying multiple proteins obtained from differently treated samples. Especially the labeling with stable isotopes has proved an effective means to accurately determine differential expression levels of proteins. Among these, metabolic incorporation of stable isotopes in vivo in whole organisms is one of the favored strategies. In this perspective, we will focus on methodologies to stable isotope label a variety of model organisms in vivo, ranging from relatively simple organisms such as bacteria and yeast to Caenorhabditis elegans, Drosophila, and Arabidopsis up to mammals such as rats and mice. We also summarize how this has opened up ways to investigate biological processes at the protein level in health and disease, revealing conservation and variation across the evolutionary tree of life. PMID:19955089

  4. A holistic image segmentation framework for cloud detection and extraction

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  5. Cheating is evolutionarily assimilated with cooperation in the continuous snowdrift game

    PubMed Central

    Sasaki, Tatsuya; Okada, Isamu

    2015-01-01

    It is well known that in contrast to the Prisoner’s Dilemma, the snowdrift game can lead to a stable coexistence of cooperators and cheaters. Recent theoretical evidence on the snowdrift game suggests that gradual evolution for individuals choosing to contribute in continuous degrees can result in the social diversification to a 100% contribution and 0% contribution through so-called evolutionary branching. Until now, however, game-theoretical studies have shed little light on the evolutionary dynamics and consequences of the loss of diversity in strategy. Here, we analyze continuous snowdrift games with quadratic payoff functions in dimorphic populations. Subsequently, conditions are clarified under which gradual evolution can lead a population consisting of those with 100% contribution and those with 0% contribution to merge into one species with an intermediate contribution level. The key finding is that the continuous snowdrift game is more likely to lead to assimilation of different cooperation levels rather than maintenance of diversity. Importantly, this implies that allowing the gradual evolution of cooperative behavior can facilitate social inequity aversion in joint ventures that otherwise could cause conflicts that are based on commonly accepted notions of fairness. PMID:25868940

  6. Cheating is evolutionarily assimilated with cooperation in the continuous snowdrift game.

    PubMed

    Sasaki, Tatsuya; Okada, Isamu

    2015-05-01

    It is well known that in contrast to the Prisoner's Dilemma, the snowdrift game can lead to a stable coexistence of cooperators and cheaters. Recent theoretical evidence on the snowdrift game suggests that gradual evolution for individuals choosing to contribute in continuous degrees can result in the social diversification to a 100% contribution and 0% contribution through so-called evolutionary branching. Until now, however, game-theoretical studies have shed little light on the evolutionary dynamics and consequences of the loss of diversity in strategy. Here, we analyze continuous snowdrift games with quadratic payoff functions in dimorphic populations. Subsequently, conditions are clarified under which gradual evolution can lead a population consisting of those with 100% contribution and those with 0% contribution to merge into one species with an intermediate contribution level. The key finding is that the continuous snowdrift game is more likely to lead to assimilation of different cooperation levels rather than maintenance of diversity. Importantly, this implies that allowing the gradual evolution of cooperative behavior can facilitate social inequity aversion in joint ventures that otherwise could cause conflicts that are based on commonly accepted notions of fairness. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Brood parasitism selects for no defence in a cuckoo host

    PubMed Central

    Krüger, Oliver

    2011-01-01

    In coevolutionary arms races, like between cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti-parasitism behaviour, such as egg rejection, which can lead to parasites evolving remarkable adaptations to ‘trick’ their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host does not act against it? Classically, such apparently non-adaptive behaviour is put down to evolutionary lag: given enough time, egg mimicry and parasite avoidance strategies will evolve. An alternative is that absence of egg mimicry and of anti-parasite behaviour is stable. Such stability is at first sight highly paradoxical. I show, using both field and experimental data to parametrize a simulation model, that the absence of defence behaviour by Cape bulbuls (Pycnonotus capensis) against parasitic eggs of the Jacobin cuckoo (Clamator jacobinus) is optimal behaviour. The cuckoo has evolved massive eggs (double the size of bulbul eggs) with thick shells, making it very hard or impossible for the host to eject the cuckoo egg. The host could still avoid brood parasitism by nest desertion. However, higher predation and parasitism risks later in the season makes desertion more costly than accepting the cuckoo egg, a strategy aided by the fact that many cuckoo eggs are incorrectly timed, so do not hatch in time and hence do not reduce host fitness to zero. Selection will therefore prevent the continuation of any coevolutionary arms race. Non-mimetic eggs and absence of defence strategies against cuckoo eggs will be the stable, if at first sight paradoxical, result. PMID:21288944

  8. Evolutionary games with coordination and self-dependent interactions

    NASA Astrophysics Data System (ADS)

    Király, Balázs; Szabó, György

    2017-01-01

    Multistrategy evolutionary games are studied on a square lattice when the pair interactions are composed of coordinations between strategy pairs and an additional term with self-dependent payoff. We describe a method for determining the strength of each elementary coordination component in n -strategy potential games. Using analytical and numerical methods, the presence and absence of Ising-type order-disorder phase transitions are studied when a single pair coordination is extended by some types of self-dependent elementary games. We also introduce noise-dependent three-strategy equivalents of the n -strategy elementary coordination games.

  9. The evolution of resource adaptation: how generalist and specialist consumers evolve.

    PubMed

    Ma, Junling; Levin, Simon A

    2006-07-01

    Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.

  10. Extrapolating Weak Selection in Evolutionary Games

    PubMed Central

    Wu, Bin; García, Julián; Hauert, Christoph; Traulsen, Arne

    2013-01-01

    In evolutionary games, reproductive success is determined by payoffs. Weak selection means that even large differences in game outcomes translate into small fitness differences. Many results have been derived using weak selection approximations, in which perturbation analysis facilitates the derivation of analytical results. Here, we ask whether results derived under weak selection are also qualitatively valid for intermediate and strong selection. By “qualitatively valid” we mean that the ranking of strategies induced by an evolutionary process does not change when the intensity of selection increases. For two-strategy games, we show that the ranking obtained under weak selection cannot be carried over to higher selection intensity if the number of players exceeds two. For games with three (or more) strategies, previous examples for multiplayer games have shown that the ranking of strategies can change with the intensity of selection. In particular, rank changes imply that the most abundant strategy at one intensity of selection can become the least abundant for another. We show that this applies already to pairwise interactions for a broad class of evolutionary processes. Even when both weak and strong selection limits lead to consistent predictions, rank changes can occur for intermediate intensities of selection. To analyze how common such games are, we show numerically that for randomly drawn two-player games with three or more strategies, rank changes frequently occur and their likelihood increases rapidly with the number of strategies . In particular, rank changes are almost certain for , which jeopardizes the predictive power of results derived for weak selection. PMID:24339769

  11. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    PubMed Central

    Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors’ workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems. PMID:28931033

  12. Kramers problem in evolutionary strategies

    NASA Astrophysics Data System (ADS)

    Dunkel, J.; Ebeling, W.; Schimansky-Geier, L.; Hänggi, P.

    2003-06-01

    We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corresponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas the Fisher-Eigen process is based on a global coupling (nonlocal interaction). If considered in the context of numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologically inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolutionary strategy.

  13. A piecewise smooth model of evolutionary game for residential mobility and segregation

    NASA Astrophysics Data System (ADS)

    Radi, D.; Gardini, L.

    2018-05-01

    The paper proposes an evolutionary version of a Schelling-type dynamic system to model the patterns of residential segregation when two groups of people are involved. The payoff functions of agents are the individual preferences for integration which are empirically grounded. Differently from Schelling's model, where the limited levels of tolerance are the driving force of segregation, in the current setup agents benefit from integration. Despite the differences, the evolutionary model shows a dynamics of segregation that is qualitatively similar to the one of the classical Schelling's model: segregation is always a stable equilibrium, while equilibria of integration exist only for peculiar configurations of the payoff functions and their asymptotic stability is highly sensitive to parameter variations. Moreover, a rich variety of integrated dynamic behaviors can be observed. In particular, the dynamics of the evolutionary game is regulated by a one-dimensional piecewise smooth map with two kink points that is rigorously analyzed using techniques recently developed for piecewise smooth dynamical systems. The investigation reveals that when a stable internal equilibrium exists, the bimodal shape of the map leads to several different kinds of bifurcations, smooth, and border collision, in a complicated interplay. Our global analysis can give intuitions to be used by a social planner to maximize integration through social policies that manipulate people's preferences for integration.

  14. The amazing evolutionary dynamics of non-linear optical systems with feedback

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, Leonid

    2013-09-01

    Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.

  15. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  16. Spatial evolutionary public goods game on complete graph and dense complex networks

    NASA Astrophysics Data System (ADS)

    Kim, Jinho; Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-03-01

    We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor r, illustrating how the ``tragedy of the commons'' and ``an anomalous state without any active participants'' occurs in real-life situations. When r is low (), the state with only loners is stable, and the state with only defectors is stable when r is high (). We also derive the exact scaling relation for r*. All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, , decreases. We also investigate the scaling dependence of the emergence of cooperation on r and . These results show how ``tragedy of the commons'' disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

  17. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  18. Modeling the stylized facts in finance through simple nonlinear adaptive systems

    PubMed Central

    Hommes, Cars H.

    2002-01-01

    Recent work on adaptive systems for modeling financial markets is discussed. Financial markets are viewed as evolutionary systems between different, competing trading strategies. Agents are boundedly rational in the sense that they tend to follow strategies that have performed well, according to realized profits or accumulated wealth, in the recent past. Simple technical trading rules may survive evolutionary competition in a heterogeneous world where prices and beliefs co-evolve over time. Evolutionary models can explain important stylized facts, such as fat tails, clustered volatility, and long memory, of real financial series. PMID:12011401

  19. Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131.

    PubMed

    Stoesser, Nicole; Sheppard, Anna E; Pankhurst, Louise; De Maio, Nicola; Moore, Catrin E; Sebra, Robert; Turner, Paul; Anson, Luke W; Kasarskis, Andrew; Batty, Elizabeth M; Kos, Veronica; Wilson, Daniel J; Phetsouvanh, Rattanaphone; Wyllie, David; Sokurenko, Evgeni; Manges, Amee R; Johnson, Timothy J; Price, Lance B; Peto, Timothy E A; Johnson, James R; Didelot, Xavier; Walker, A Sarah; Crook, Derrick W

    2016-03-22

    Escherichia colisequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n= 215) of sequenced ST131E. coliisolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of ablaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration ofblaCTX-Mwithin subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, theblaCTX-M-14/14-likegroup. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages ofE. coli These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. Escherichia coli, perennially a major bacterial pathogen, is becoming increasingly difficult to manage due to emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.

  20. Ecological perspectives on synthetic biology: insights from microbial population biology

    PubMed Central

    Escalante, Ana E.; Rebolleda-Gómez, María; Benítez, Mariana; Travisano, Michael

    2015-01-01

    The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the synthetic ecology is that consortia are frequently unstable, largely because evolution by constituent members affects their interactions, which are the basis of collective metabolic functionality. Current practices in modeling consortia largely consider interactions as fixed circuits of chemical reactions, which greatly increases their tractability. This simplification comes at the cost of essential biological realism, stripping out the ecological context in which the metabolic actions occur and the potential for evolutionary change. In other words, evolutionary stability is not engineered into the system. This realization highlights the necessity to better identify the key components that influence the stable coexistence of microorganisms. Inclusion of ecological and evolutionary principles, in addition to biophysical variables and stoichiometric modeling of metabolism, is critical for microbial consortia design. This review aims to bring ecological and evolutionary concepts to the discussion on the stability of microbial consortia. In particular, we focus on the combined effect of spatial structure (connectivity of molecules and cells within the system) and ecological interactions (reciprocal and non-reciprocal) on the persistence of microbial consortia. We discuss exemplary cases to illustrate these ideas from published studies in evolutionary biology and biotechnology. We conclude by making clear the relevance of incorporating evolutionary and ecological principles to the design of microbial consortia, as a way of achieving evolutionarily stable and sustainable systems. PMID:25767468

  1. A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw

    2001-01-01

    An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).

  2. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  3. Discovering new materials and new phenomena with evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Oganov, Artem

    Thanks to powerful evolutionary algorithms, in particular the USPEX method, it is now possible to predict both the stable compounds and their crystal structures at arbitrary conditions, given just the set of chemical elements. Recent developments include major increases of efficiency and extensions to low-dimensional systems and molecular crystals (which allowed large structures to be handled easily, e.g. Mg(BH4)2 and H2O-H2) and new techniques called evolutionary metadynamics and Mendelevian search. Some of the results that I will discuss include: 1. Theoretical and experimental evidence for a new partially ionic phase of boron, γ-B and an insulating and optically transparent form of sodium. 2. Predicted stability of ``impossible'' chemical compounds that become stable under pressure - e.g. Na3Cl, Na2Cl, Na3Cl2, NaCl3, NaCl7, Mg3O2 and MgO2. 3. Novel surface phases (e.g. boron surface reconstructions). 4. Novel dielectric polymers, and novel permanent magnets confirmed by experiment and ready for applications. 5. Prediction of new ultrahard materials and computational proof that diamond is the hardest possible material.

  4. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  5. Simulation of the evolution of root water foraging strategies in dry and shallow soils.

    PubMed

    Renton, Michael; Poot, Pieter

    2014-09-01

    The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model. A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally--the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies.

  6. Cooperation in spatial evolutionary games with historical payoffs

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Nie, Sen; Jiang, Luo-Luo; Wang, Bing-Hong; Chen, Shi-Ming

    2016-08-01

    The most common of strategy adoption in evolutionary games relies on players' payoffs of the last round. While a rational player usually fixes the coming strategy by comprehensively considering certain amount of payoff information within its memory length. Here, we explore several measures of historical payoffs in getting the weighted average payoff. Then, player sets the strategy by comparing the weighted average payoff of neighbour's and itself. We show that, cooperators can resist the invasion by referring to the most payoff information, when strategy and measure coevolve. In contrast, strategy adoption of defectors only relies on the nearest one round. Especially, our results suggest that, excessive attention of past payoffs is not favorable to spread cooperative behaviors.

  7. Evolving learning rules and emergence of cooperation in spatial prisoner's dilemma.

    PubMed

    Moyano, Luis G; Sánchez, Angel

    2009-07-07

    In the evolutionary Prisoner's dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, interact only with their neighbours, thus mimicking the existing of a social or contact network that defines who interacts with whom. In this work, we explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update (reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules remain fixed for the entire evolution of the system; in the second case, agents update both strategy and update rule in every generation. We show that in a well-mixed population the evolutionary outcome is always full defection. We subsequently focus on two-strategy competition with nearest-neighbour interactions on the contact network and synchronised update of strategies. Our results show that, for an important range of the parameters of the game, the final state of the system is largely different from that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very different if update rules are fixed or evolve with the strategies. In these respect, we have studied representative update rules, finding that some of them may become extinct while others prevail. We describe the new and rich variety of final outcomes that arise from this co-evolutionary dynamics. We include examples of other neighbourhoods and asynchronous updating that confirm the robustness of our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions through game theory with a preferred set of update rules.

  8. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  9. Ecological Change in the Turkana Basin Over the Past 4 Ma

    NASA Astrophysics Data System (ADS)

    Cerling, T. E.

    2014-12-01

    The fossil record of C4 grasses is extremely sparse so that much speculation on their importance through time is based solely on stable carbon isotope ratios in derived materials, such as tooth enamel, soil carbonate, leaf waxes. I present stable isotope analyses of modern large mammals from different 25 sites in East and Central Africa, primarily from national parks and national reserves, that show patterns of dietary strategies in environments ranging from closed forests to open grasslands. This uses isotope values from each locality for each taxon to estimate diet, rather to assume a constant diet for a taxon across all localities. Each taxon can be represented on the dietary continuum from pure C3-browsing to pure C4-grazing. Fossil assemblages from the Turkana basin are evaluated in the same way over the past 4.2 million years. The fossil record shows patterns with no modern analogue in the national parks and reserves of East and Central Africa for significant periods of time. Significant patterns shifts occur between 2.0 and 2.5 million years ago, and also in the past million years. These dietary changes at the community level occur during the evolutionary backdrop of C4 grasses, which have gone from less than 1% Net Primary Productivity (NPP) at 10 million years ago to more than 50% NPP in the tropics today. It is likely that C4 plants have also undergone important changes in nutrient content, defense against herbivory, fire adaptation, and propagation strategies in the past 10 million years; such issues could signficantly influence dietary strategies at the community level through time.

  10. Brood parasitism selects for no defence in a cuckoo host.

    PubMed

    Krüger, Oliver

    2011-09-22

    In coevolutionary arms races, like between cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti-parasitism behaviour, such as egg rejection, which can lead to parasites evolving remarkable adaptations to 'trick' their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host does not act against it? Classically, such apparently non-adaptive behaviour is put down to evolutionary lag: given enough time, egg mimicry and parasite avoidance strategies will evolve. An alternative is that absence of egg mimicry and of anti-parasite behaviour is stable. Such stability is at first sight highly paradoxical. I show, using both field and experimental data to parametrize a simulation model, that the absence of defence behaviour by Cape bulbuls (Pycnonotus capensis) against parasitic eggs of the Jacobin cuckoo (Clamator jacobinus) is optimal behaviour. The cuckoo has evolved massive eggs (double the size of bulbul eggs) with thick shells, making it very hard or impossible for the host to eject the cuckoo egg. The host could still avoid brood parasitism by nest desertion. However, higher predation and parasitism risks later in the season makes desertion more costly than accepting the cuckoo egg, a strategy aided by the fact that many cuckoo eggs are incorrectly timed, so do not hatch in time and hence do not reduce host fitness to zero. Selection will therefore prevent the continuation of any coevolutionary arms race. Non-mimetic eggs and absence of defence strategies against cuckoo eggs will be the stable, if at first sight paradoxical, result. This journal is © 2011 The Royal Society

  11. Applied evolutionary theories for engineering of secondary metabolic pathways.

    PubMed

    Bachmann, Brian O

    2016-12-01

    An expanded definition of 'secondary metabolism' is emerging. Once the exclusive provenance of naturally occurring organisms, evolved over geological time scales, secondary metabolism increasingly encompasses molecules generated via human engineered biocatalysts and biosynthetic pathways. Many of the tools and strategies for enzyme and pathway engineering can find origins in evolutionary theories. This perspective presents an overview of selected proposed evolutionary strategies in the context of engineering secondary metabolism. In addition to the wealth of biocatalysts provided via secondary metabolic pathways, improving the understanding of biosynthetic pathway evolution will provide rich resources for methods to adapt to applied laboratory evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004

  13. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi.

    PubMed

    Hynson, Nicole A; Schiebold, Julienne M-I; Gebauer, Gerhard

    2016-09-01

    Mycoheterotrophy entails plants meeting all or a portion of their carbon (C) demands via symbiotic interactions with root-inhabiting mycorrhizal fungi. Ecophysiological traits of mycoheterotrophs, such as their C stable isotope abundances, strongly correlate with the degree of species' dependency on fungal C gains relative to C gains via photosynthesis. Less explored is the relationship between plant evolutionary history and mycoheterotrophic plant ecophysiology. We hypothesized that the C and nitrogen (N) stable isotope compositions, and N concentrations of fully and partially mycoheterotrophic species differentiate them from autotrophs, and that plant family identity would be an additional and significant explanatory factor for differences in these traits among species. We focused on mycoheterotrophic species that associate with ectomycorrhizal fungi from plant families Ericaceae and Orchidaceae. Published and unpublished data were compiled on the N concentrations, C and N stable isotope abundances (δ(13)C and δ(15)N) of fully (n = 18) and partially (n = 22) mycoheterotrophic species from each plant family as well as corresponding autotrophic reference species (n = 156). These data were used to calculate site-independent C and N stable isotope enrichment factors (ε). Then we tested for differences in N concentration, (13)C and (15)N enrichment among plant families and trophic strategies. We found that in addition to differentiating partially and fully mycoheterotrophic species from each other and from autotrophs, C and N stable isotope enrichment also differentiates plant species based on familial identity. Differences in N concentrations clustered at the plant family level rather than the degree of dependency on mycoheterotrophy. We posit that differences in stable isotope composition and N concentrations are related to plant family-specific physiological interactions with fungi and their environments. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The limits of weak selection and large population size in evolutionary game theory.

    PubMed

    Sample, Christine; Allen, Benjamin

    2017-11-01

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  15. An evolutionary perspective on health psychology: new approaches and applications.

    PubMed

    Tybur, Joshua M; Bryan, Angela D; Hooper, Ann E Caldwell

    2012-12-20

    Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.

  16. Teleology and its constitutive role for biology as the science of organized systems in nature.

    PubMed

    Toepfer, Georg

    2012-03-01

    'Nothing in biology makes sense, except in the light of teleology'. This could be the first sentence in a textbook about the methodology of biology. The fundamental concepts in biology, e.g. 'organism' and 'ecosystem', are only intelligible given a teleological framework. Since early modern times, teleology has often been considered methodologically unscientific. With the acceptance of evolutionary theory, one popular strategy for accommodating teleological reasoning was to explain it by reference to selection in the past: functions were reconstructed as 'selected effects'. But the theory of evolution obviously presupposes the existence of organisms as organized and regulated, i.e. functional systems. Therefore, evolutionary theory cannot provide the foundation for teleology. The underlying reason for the central methodological role of teleology in biology is not its potential to offer particular forms of (evolutionary) explanations for the presence of parts, but rather an ontological one: organisms and other basic biological entities do not exist as physical bodies do, as amounts of matter with a definite form. Rather, they are dynamic systems in stable equilibrium; despite changes of their matter and form (in metabolism and metamorphosis) they maintain their identity. What remains constant in these kinds of systems is their 'organization', i.e. the causal pattern of interdependence of parts with certain effects of each part being relevant for the working of the system. Teleological analysis consists in the identification of these system-relevant effects and at the same time of the system as a whole. Therefore, the identity of biological systems cannot be specified without teleological reasoning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Competition of tolerant strategies in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2016-08-01

    Tolerance implies enduring trying circumstances with a fair and objective attitude. To determine whether evolutionary advantages might be stemming from diverse levels of tolerance in a population, we study a spatial public goods game, where in addition to cooperators, defectors, and loners, tolerant players are also present. Depending on the number of defectors within a group, a tolerant player can either cooperate in or abstain from a particular instance of the game. We show that the diversity of tolerance can give rise to synergistic effects, wherein players with a different threshold in terms of the tolerated number of defectors in a group compete most effectively against defection and default abstinence. Such synergistic associations can stabilise states of full cooperation where otherwise defection would dominate. We observe complex pattern formation that gives rise to an intricate phase diagram, where invisible yet stable strategy alliances require outmost care lest they are overlooked. Our results highlight the delicate importance of diversity and tolerance for the provisioning of public goods, and they reveal fascinating subtleties of the spatiotemporal dynamics that is due to the competition of subsystem solutions in structured populations.

  18. Pattern formation, social forces, and diffusion instability in games with success-driven motion

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk

    2009-02-01

    A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

  19. The σ law of evolutionary dynamics in community-structured population.

    PubMed

    Tang, Changbing; Li, Xiang; Cao, Lang; Zhan, Jingyuan

    2012-08-07

    Evolutionary game dynamics in finite populations provide a new framework to understand the selection of traits with frequency-dependent fitness. Recently, a simple but fundamental law of evolutionary dynamics, which we call σ law, describes how to determine the selection between two competing strategies: in most evolutionary processes with two strategies, A and B, strategy A is favored over B in weak selection if and only if σR+S>T+σP. This relationship holds for a wide variety of structured populations with mutation rate and weak selection under certain assumptions. In this paper, we propose a model of games based on a community-structured population and revisit this law under the Moran process. By calculating the average payoffs of A and B individuals with the method of effective sojourn time, we find that σ features not only the structured population characteristics, but also the reaction rate between individuals. That is to say, an interaction between two individuals are not uniform, and we can take σ as a reaction rate between any two individuals with the same strategy. We verify this viewpoint by the modified replicator equation with non-uniform interaction rates in a simplified version of the prisoner's dilemma game (PDG). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Modeling Misbehavior in Cooperative Diversity: A Dynamic Game Approach

    NASA Astrophysics Data System (ADS)

    Dehnie, Sintayehu; Memon, Nasir

    2009-12-01

    Cooperative diversity protocols are designed with the assumption that terminals always help each other in a socially efficient manner. This assumption may not be valid in commercial wireless networks where terminals may misbehave for selfish or malicious intentions. The presence of misbehaving terminals creates a social-dilemma where terminals exhibit uncertainty about the cooperative behavior of other terminals in the network. Cooperation in social-dilemma is characterized by a suboptimal Nash equilibrium where wireless terminals opt out of cooperation. Hence, without establishing a mechanism to detect and mitigate effects of misbehavior, it is difficult to maintain a socially optimal cooperation. In this paper, we first examine effects of misbehavior assuming static game model and show that cooperation under existing cooperative protocols is characterized by a noncooperative Nash equilibrium. Using evolutionary game dynamics we show that a small number of mutants can successfully invade a population of cooperators, which indicates that misbehavior is an evolutionary stable strategy (ESS). Our main goal is to design a mechanism that would enable wireless terminals to select reliable partners in the presence of uncertainty. To this end, we formulate cooperative diversity as a dynamic game with incomplete information. We show that the proposed dynamic game formulation satisfied the conditions for the existence of perfect Bayesian equilibrium.

  1. Biomechanical Diversity of Mating Structures among Harvestmen Species Is Consistent with a Spectrum of Precopulatory Strategies

    PubMed Central

    Burns, Mercedes; Shultz, Jeffrey W.

    2015-01-01

    Diversity in reproductive structures is frequently explained by selection acting at individual to generational timescales, but interspecific differences predicted by such models (e.g., female choice or sexual conflict) are often untestable in a phylogenetic framework. An alternative approach focuses on clade- or function-specific hypotheses that predict evolutionary patterns in terms neutral to specific modes of sexual selection. Here we test a hypothesis that diversity of reproductive structures in leiobunine harvestmen (daddy longlegs) of eastern North America reflects two sexually coevolved but non-overlapping precopulatory strategies, a primitive solicitous strategy (females enticed by penis-associated nuptial gifts), and a multiply derived antagonistic strategy (penis exerts mechanical force against armature of the female pregenital opening). Predictions of sexual coevolution and fidelity to precopulatory categories were tested using 10 continuously varying functional traits from 28 species. Multivariate analyses corroborated sexual coevolution but failed to partition species by precopulatory strategy, with multiple methods placing species along a spectrum of mechanical antagonistic potential. These findings suggest that precopulatory features within species reflect different co-occurring levels of solicitation and antagonism, and that gradualistic evolutionary pathways exist between extreme strategies. The ability to quantify antagonistic potential of precopulatory structures invites comparison with ecological variables that may promote evolutionary shifts in precopulatory strategies. PMID:26352413

  2. Biomechanical Diversity of Mating Structures among Harvestmen Species Is Consistent with a Spectrum of Precopulatory Strategies.

    PubMed

    Burns, Mercedes; Shultz, Jeffrey W

    2015-01-01

    Diversity in reproductive structures is frequently explained by selection acting at individual to generational timescales, but interspecific differences predicted by such models (e.g., female choice or sexual conflict) are often untestable in a phylogenetic framework. An alternative approach focuses on clade- or function-specific hypotheses that predict evolutionary patterns in terms neutral to specific modes of sexual selection. Here we test a hypothesis that diversity of reproductive structures in leiobunine harvestmen (daddy longlegs) of eastern North America reflects two sexually coevolved but non-overlapping precopulatory strategies, a primitive solicitous strategy (females enticed by penis-associated nuptial gifts), and a multiply derived antagonistic strategy (penis exerts mechanical force against armature of the female pregenital opening). Predictions of sexual coevolution and fidelity to precopulatory categories were tested using 10 continuously varying functional traits from 28 species. Multivariate analyses corroborated sexual coevolution but failed to partition species by precopulatory strategy, with multiple methods placing species along a spectrum of mechanical antagonistic potential. These findings suggest that precopulatory features within species reflect different co-occurring levels of solicitation and antagonism, and that gradualistic evolutionary pathways exist between extreme strategies. The ability to quantify antagonistic potential of precopulatory structures invites comparison with ecological variables that may promote evolutionary shifts in precopulatory strategies.

  3. Strategy selection in structured populations.

    PubMed

    Tarnita, Corina E; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A

    2009-08-07

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix(abcd). We study a mutation and selection process. For weak selection strategy A is favored over B if and only if sigma a+b>c+sigma d. This means the effect of population structure on strategy selection can be described by a single parameter, sigma. We present the values of sigma for various examples including the well-mixed population, games on graphs, games in phenotype space and games on sets. We give a proof for the existence of such a sigma, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between sigma and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, sigma, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games.

  4. Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.

    PubMed

    Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A

    2016-10-01

    Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory

    PubMed Central

    Jiang, Xiaowei; Ji, Yanjie; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455

  6. A study of driver's route choice behavior based on evolutionary game theory.

    PubMed

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  7. Structural symmetry in evolutionary games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-10-06

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).

  8. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  9. Le Chatelier's principle in replicator dynamics

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  10. Le Chatelier's principle in replicator dynamics.

    PubMed

    Allahverdyan, Armen E; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  11. Iron silicides at pressures of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Zhang, Feiwu; Oganov, Artem R.

    2010-01-01

    The Earth's core is expected to contain around 10 wt % light elements (S, Si, O, possibly C, H, etc.) alloyed with Fe and Ni. Very little is known about these alloys at pressures and temperatures of the core. Here, using the evolutionary crystal structure prediction methodology, we investigate Fe-Si compounds at pressures of up to 400 GPa, i.e. covering the pressure range of the Earth's core. Evolutionary simulations correctly find that at atmospheric pressure the known non-trivial structure with P213 symmetry is stable, while at pressures above 20 GPa the CsCl-type structure is stable. We show that among the possible Fe silicides (Fe3Si, Fe2Si, Fe5Si3, FeSi, FeSi2 and FeSi3) only FeSi with CsCl-type structure is thermodynamically stable at core pressures, while the other silicides are unstable to decomposition into Fe + FeSi or FeSi + Si. This is consistent with previous works and suggests that Si impurities contribute to stabilization of the body-centered cubic phase of Fe in the inner core.

  12. Evolution of optimal Lévy-flight strategies in human mental searches

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Baronchelli, Andrea

    2012-06-01

    Recent analysis of empirical data [Radicchi, Baronchelli, and Amaral, PloS ONE1932-620310.1371/journal.pone.0029910 7, e029910 (2012)] showed that humans adopt Lévy-flight strategies when exploring the bid space in online auctions. A game theoretical model proved that the observed Lévy exponents are nearly optimal, being close to the exponent value that guarantees the maximal economical return to players. Here, we rationalize these findings by adopting an evolutionary perspective. We show that a simple evolutionary process is able to account for the empirical measurements with the only assumption that the reproductive fitness of the players is proportional to their search ability. Contrary to previous modeling, our approach describes the emergence of the observed exponent without resorting to any strong assumptions on the initial searching strategies. Our results generalize earlier research, and open novel questions in cognitive, behavioral, and evolutionary sciences.

  13. Older partner selection promotes the prevalence of cooperation in evolutionary games.

    PubMed

    Yang, Guoli; Huang, Jincai; Zhang, Weiming

    2014-10-21

    Evolutionary games typically come with the interplays between evolution of individual strategy and adaptation to network structure. How these dynamics in the co-evolution promote (or obstruct) the cooperation is regarded as an important topic in social, economic, and biological fields. Combining spatial selection with partner choice, the focus of this paper is to identify which neighbour should be selected as a role to imitate during the process of co-evolution. Age, an internal attribute and kind of local piece of information regarding the survivability of the agent, is a significant consideration for the selection strategy. The analysis and simulations presented, demonstrate that older partner selection for strategy imitation could foster the evolution of cooperation. The younger partner selection, however, may decrease the level of cooperation. Our model highlights the importance of agent׳s age on the promotion of cooperation in evolutionary games, both efficiently and effectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Competition-Colonization Trade-Offs, Competitive Uncertainty, and the Evolutionary Assembly of Species

    PubMed Central

    Pillai, Pradeep; Guichard, Frédéric

    2012-01-01

    We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species. PMID:22448253

  15. To Cooperate or Not to Cooperate: Why Behavioural Mechanisms Matter

    PubMed Central

    2016-01-01

    Mutualistic cooperation often requires multiple individuals to behave in a coordinated fashion. Hence, while the evolutionary stability of mutualistic cooperation poses no particular theoretical difficulty, its evolutionary emergence faces a chicken and egg problem: an individual cannot benefit from cooperating unless other individuals already do so. Here, we use evolutionary robotic simulations to study the consequences of this problem for the evolution of cooperation. In contrast with standard game-theoretic results, we find that the transition from solitary to cooperative strategies is very unlikely, whether interacting individuals are genetically related (cooperation evolves in 20% of all simulations) or unrelated (only 3% of all simulations). We also observe that successful cooperation between individuals requires the evolution of a specific and rather complex behaviour. This behavioural complexity creates a large fitness valley between solitary and cooperative strategies, making the evolutionary transition difficult. These results reveal the need for research on biological mechanisms which may facilitate this transition. PMID:27148874

  16. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  17. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs.

    PubMed

    Stollmeier, Frank; Nagler, Jan

    2018-02-02

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  18. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs

    NASA Astrophysics Data System (ADS)

    Stollmeier, Frank; Nagler, Jan

    2018-02-01

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  19. Tangled nature: a model of evolutionary ecology.

    PubMed

    Christensen, Kim; di Collobiano, Simone A; Hall, Matt; Jensen, Henrik J

    2002-05-07

    We discuss a simple model of co-evolution. In order to emphasize the effect of interaction between individuals, the entire population is subjected to the same physical environment. Species are emergent structures and extinction, origination and diversity are entirely a consequence of co-evolutionary interaction between individuals. For comparison, we consider both asexual and sexually reproducing populations. In either case, the system evolves through periods of hectic reorganization separated by periods of coherent stable coexistence. Copyright 2002 Elsevier Science Ltd. All rights reserved.

  20. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  1. Small groups and long memories promote cooperation.

    PubMed

    Stewart, Alexander J; Plotkin, Joshua B

    2016-06-01

    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low.

  2. Co-evolutionary data mining for fuzzy rules: automatic fitness function creation phase space, and experiments

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Blank, Joseph A.

    2003-03-01

    An approach is being explored that involves embedding a fuzzy logic based resource manager in an electronic game environment. Game agents can function under their own autonomous logic or human control. This approach automates the data mining problem. The game automatically creates a cleansed database reflecting the domain expert's knowledge, it calls a data mining function, a genetic algorithm, for data mining of the data base as required and allows easy evaluation of the information extracted. The co-evolutionary fitness functions, chromosomes and stopping criteria for ending the game are discussed. Genetic algorithm and genetic program based data mining procedures are discussed that automatically discover new fuzzy rules and strategies. The strategy tree concept and its relationship to co-evolutionary data mining are examined as well as the associated phase space representation of fuzzy concepts. The overlap of fuzzy concepts in phase space reduces the effective strategies available to adversaries. Co-evolutionary data mining alters the geometric properties of the overlap region known as the admissible region of phase space significantly enhancing the performance of the resource manager. Procedures for validation of the information data mined are discussed and significant experimental results provided.

  3. Fixation probabilities of evolutionary coordination games on two coupled populations

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Ying, Limin; Zhou, Jie; Guan, Shuguang; Zou, Yong

    2016-09-01

    Evolutionary forces resulted from competitions between different populations are common, which change the evolutionary behavior of a single population. In an isolated population of coordination games of two strategies (e.g., s1 and s2), the previous studies focused on determining the fixation probability that the system is occupied by only one strategy (s1) and their expectation times, given an initial mixture of two strategies. In this work, we propose a model of two interdependent populations, disclosing the effects of the interaction strength on fixation probabilities. In the well-mixing limit, a detailed linear stability analysis is performed, which allows us to find and to classify the different equilibria, yielding a clear picture of the bifurcation patterns in phase space. We demonstrate that the interactions between populations crucially alter the dynamic behavior. More specifically, if the coupling strength is larger than some threshold value, the critical initial density of one strategy (s1) that corresponds to fixation is significantly delayed. Instead, the two populations evolve to the opposite state of all (s2) strategy, which are in favor of the red queen hypothesis. We delineate the extinction time of strategy (s1) explicitly, which is an exponential form. These results are validated by systematic numerical simulations.

  4. Systems metabolic engineering strategies for the production of amino acids.

    PubMed

    Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning

    2017-06-01

    Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.

  5. Self-emergence of Lexicon Consensus in a Population of Autonomous Agents by Means of Evolutionary Strategies

    NASA Astrophysics Data System (ADS)

    Maravall, Darío; de Lope, Javier; Domínguez, Raúl

    In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of evolutionary strategies to the self-emergence of a common lexicon in a population of agents. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the agents or the states of the environment itself) into symbols or signals we check whether it is possible for the population to converge in an autonomous, decentralized way to a common lexicon, so that the communication efficiency of the entire population is optimal. We have conducted several experiments, from the simplest case of a 2×2 association matrix (i.e. two meanings and two symbols) to a 3×3 lexicon case and in both cases we have attained convergence to the optimal communication system by means of evolutionary strategies. To analyze the convergence of the population of agents we have defined the population's consensus when all the agents (i.e. the 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that evolutionary strategies are powerful enough optimizers to guarantee the convergence to lexicon consensus in a population of autonomous agents.

  6. Simulation of the evolution of root water foraging strategies in dry and shallow soils

    PubMed Central

    Renton, Michael; Poot, Pieter

    2014-01-01

    Background and Aims The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional–structural root growth model. Methods A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally – the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. Key Results The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Conclusions Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies. PMID:24651371

  7. The property 'instinct'.

    PubMed Central

    Stake, Jeffrey Evans

    2004-01-01

    Evolutionary theory and empirical studies suggest that many animals, including humans, have a genetic predisposition to acquire and retain property. This is hardly surprising because survival is closely bound up with the acquisition of things: food, shelter, tools and territory. But the root of these general urges may also run to quite specific and detailed rules about property acquisition, retention and disposition. The great variation in property-related behaviours across species may mask some important commonalities grounded in adaptive utility. Experiments and observations in the field and laboratory suggest that the legal rules of temporal priority and possession are grounded in what were evolutionarily stable strategies in the ancestral environment. Moreover, the preferences that humans exhibit in disposing of their property on their deaths, both by dispositions made in wills and by the laws of intestacy, tend to advance reproductive success as a result of inclusive fitness pay-offs. PMID:15590617

  8. The property 'instinct'.

    PubMed

    Stake, Jeffrey Evans

    2004-11-29

    Evolutionary theory and empirical studies suggest that many animals, including humans, have a genetic predisposition to acquire and retain property. This is hardly surprising because survival is closely bound up with the acquisition of things: food, shelter, tools and territory. But the root of these general urges may also run to quite specific and detailed rules about property acquisition, retention and disposition. The great variation in property-related behaviours across species may mask some important commonalities grounded in adaptive utility. Experiments and observations in the field and laboratory suggest that the legal rules of temporal priority and possession are grounded in what were evolutionarily stable strategies in the ancestral environment. Moreover, the preferences that humans exhibit in disposing of their property on their deaths, both by dispositions made in wills and by the laws of intestacy, tend to advance reproductive success as a result of inclusive fitness pay-offs.

  9. The evolution of conformist transmission in social learning when the environment changes periodically.

    PubMed

    Nakahashi, Wataru

    2007-08-01

    Conformity is often observed in human social learning. Social learners preferentially imitate the majority or most common behavior in many situations, though the strength of conformity varies with the situation. Why has such a psychological tendency evolved? I investigate this problem by extending a standard model of social learning evolution with infinite environmental states (Feldman, M.W., Aoki, K., Kumm, J., 1996. Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104, 209-231) to include conformity bias. I mainly focus on the relationship between the strength of conformity bias that evolves and environmental stability, which is one of the most important factors in the evolution of social learning. Using the evolutionarily stable strategy (ESS) approach, I show that conformity always evolves when environmental stability and the cost of adopting a wrong behavior are small, though environmental stability and the cost of individual learning both negatively affect the strength of conformity.

  10. Are there really no evolutionarily stable strategies in the iterated prisoner's dilemma?

    PubMed

    Lorberbaum, Jeffrey P; Bohning, Daryl E; Shastri, Ananda; Sine, Lauren E

    2002-01-21

    The evolutionary form of the iterated prisoner's dilemma (IPD) is a repeated game where players strategically choose whether to cooperate with or exploit opponents and reproduce in proportion to game success. It has been widely used to study the evolution of cooperation among selfish agents. In the past 15 years, researchers proved over a series of papers that there is no evolutionarily stable strategy (ESS) in the IPD when players maintain long-term relationships. This makes it difficult to make predictions about what strategies can actually persist as prevalent in a population over time. Here, we show that this no ESS finding may be a mathematical technicality, relying on implausible players who are "too perfect" in that their probability of cooperating on any move is arbitrarily close to either 0 or 1. Specifically, in the no ESS proof, all strategies were allowed, meaning that after a strategy X experiences any history H, X cooperates with an unrestricted probability p (X, H) where 0< or =p (X, H)< or =1. Here, we restrict strategies to the set S in which X is a member of S [corrected] if after any H, X cooperates with a restricted probability p (X, H) where e< or =p (X, H)< or =1-e and 0

  11. USING ECO-EVOLUTIONARY INDIVIDUAL-BASED MODELS TO INVESTIGATE SPATIALLY-DEPENDENT PROCESSES IN CONSERVATION GENETICS

    EPA Science Inventory

    Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...

  12. Major Hurdles for the Evolution of Sociality.

    PubMed

    Korb, Judith; Heinze, Jürgen

    2016-01-01

    Why do most animals live solitarily, while complex social life is restricted to a few cooperatively breeding vertebrates and social insects? Here, we synthesize concepts and theories in social evolution and discuss its underlying ecological causes. Social evolution can be partitioned into (a) formation of stable social groups, (b) evolution of helping, and (c) transition to a new evolutionary level. Stable social groups rarely evolve due to competition over food and/or reproduction. Food competition is overcome in social insects with central-place foraging or bonanza-type food resources, whereas competition over reproduction commonly occurs because staying individuals are rarely sterile. Hence, the evolution of helping is shaped by direct and indirect fitness options and helping is only altruism if it reduces the helper's direct fitness. The helper's capability to gain direct fitness also creates within-colony conflict. This prevents transition to a new evolutionary level.

  13. Co-Evolution of Opinion and Strategy in Persuasion Dynamics:. AN Evolutionary Game Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Liu, Yun; Li, Yong

    In this paper, a new model of opinion formation within the framework of evolutionary game theory is presented. The model simulates strategic situations when people are in opinion discussion. Heterogeneous agents adjust their behaviors to the environment during discussions, and their interacting strategies evolve together with opinions. In the proposed game, we take into account payoff discount to join a discussion, and the situation that people might drop out of an unpromising game. Analytical and emulational results show that evolution of opinion and strategy always tend to converge, with utility threshold, memory length, and decision uncertainty parameters influencing the convergence time. The model displays different dynamical regimes when we set differently the rule when people are at a loss in strategy.

  14. Reactive strategies in indirect reciprocity.

    PubMed

    Ohtsuki, Hisashi

    2004-04-07

    Evolution of reactive strategy of indirect reciprocity is discussed, where individuals interact with others through the one-shot Prisoner's Dilemma game, changing their partners in every round. We investigate all of the reactive strategies that are stochastic, including deterministic ones as special cases. First we study adaptive dynamics of reactive strategies by assuming monomorphic population. Results are very similar to the corresponding evolutionary dynamics of direct reciprocity. The discriminating strategy, which prescribes cooperation only with those who cooperated in the previous round, cannot be an outcome of the evolution. Next we examine the case where the population includes a diversity of strategies. We find that only the mean 'discriminatoriness' in the population is the parameter that affects the evolutionary dynamics. The discriminating strategy works as a promoter of cooperation there. However, it is again not the end point of the evolution. This is because retaliatory defection, which was prescribed by the discriminating strategy, is regarded as another defection toward the society. These results caution that we have to reconsider the role of retaliatory defection much more carefully.

  15. Cooperation in two-person evolutionary games with complex personality profiles.

    PubMed

    Płatkowski, Tadeusz

    2010-10-21

    We propose a theory of evolution of social systems which generalizes the standard proportional fitness rule of the evolutionary game theory. The formalism is applied to describe the dynamics of two-person one-shot population games. In particular it predicts the non-zero level of cooperation in the long run for the Prisoner's Dilemma games, the increase of the fraction of cooperators for general classes of the Snow-Drift game, and stable nonzero cooperation level for coordination games. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Effect of the spatial autocorrelation of empty sites on the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Li; Hou, Dongshuang

    2016-02-01

    An evolutionary game model is constructed to investigate the spatial autocorrelation of empty sites on the evolution of cooperation. Each individual is assumed to imitate the strategy of the one who scores the highest in its neighborhood including itself. Simulation results illustrate that the evolutionary dynamics based on the Prisoner's Dilemma game (PD) depends severely on the initial conditions, while the Snowdrift game (SD) is hardly affected by that. A high degree of autocorrelation of empty sites is beneficial for the evolution of cooperation in the PD, whereas it shows diversification effects depending on the parameter of temptation to defect in the SD. Moreover, for the repeated game with three strategies, 'always defect' (ALLD), 'tit-for-tat' (TFT), and 'always cooperate' (ALLC), simulations reveal that an amazing evolutionary diversity appears for varying of parameters of the temptation to defect and the probability of playing in the next round of the game. The spatial autocorrelation of empty sites can have profound effects on evolutionary dynamics (equilibrium and oscillation) and spatial distribution.

  17. Analytical model for minority games with evolutionary learning

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Méndez, Vicenç; Llebot, Josep E.; Hernández, Germán A.

    2010-06-01

    In a recent work [D. Campos, J.E. Llebot, V. Méndez, Theor. Popul. Biol. 74 (2009) 16] we have introduced a biological version of the Evolutionary Minority Game that tries to reproduce the intraspecific competition for limited resources in an ecosystem. In comparison with the complex decision-making mechanisms used in standard Minority Games, only two extremely simple strategies ( juveniles and adults) are accessible to the agents. Complexity is introduced instead through an evolutionary learning rule that allows younger agents to learn taking better decisions. We find that this game shows many of the typical properties found for Evolutionary Minority Games, like self-segregation behavior or the existence of an oscillation phase for a certain range of the parameter values. However, an analytical treatment becomes much easier in our case, taking advantage of the simple strategies considered. Using a model consisting of a simple dynamical system, the phase diagram of the game (which differentiates three phases: adults crowd, juveniles crowd and oscillations) is reproduced.

  18. Stability of Zero-Sum Games in Evolutionary Game Theory

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Krueger, Torben; Weber, Markus F.; Frey, Erwin

    2014-03-01

    Evolutionary game theory has evolved into a successful theoretical concept to study mechanisms that govern the evolution of ecological communities. On a mathematical level, this theory was formalized in the framework of the celebrated replicator equations (REs) and its stochastic generalizations. In our work, we analyze the long-time behavior of the REs for zero-sum games with arbitrarily many strategies, which are generalized versions of the children's game Rock-Paper-Scissors.[1] We demonstrate how to determine the strategies that survive and those that become extinct in the long run. Our results show that extinction of strategies is exponentially fast in generic setups, and that conditions for the survival can be formulated in terms of the Pfaffian of the REs' antisymmetric payoff matrix. Consequences for the stochastic dynamics, which arise in finite populations, are reflected by a generalized scaling law for the extinction time in the vicinity of critical reaction rates. Our findings underline the relevance of zero-sum games as a reference for the analysis of other models in evolutionary game theory.

  19. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  20. Evolutionary stability of egg trading and parceling in simultaneous hermaphrodites: the chalk bass revisited.

    PubMed

    Crowley, Philip H; Hart, Mary K

    2007-06-07

    Several species of simultaneously hermaphroditic seabasses living on coral reefs mate by alternating male and female roles with a partner. This is known as egg trading, one of the classic and most widely cited examples of social reciprocity among animals. Some of the egg-trading seabass species, including the chalk bass, Serranus tortugarum, switch mating roles repeatedly, having subdivided their clutch of eggs into parcels offered to the partner for fertilization. Here we attempt to understand these dynamics as a pair of evolutionary games, modifying some previous approaches to better reflect the biological system. We find that the trading of egg clutches is evolutionarily stable via byproduct mutualism and resistant to invasion by rare individuals that take the male role exclusively. We note why and how parceling may reflect sexual conflict between individuals in the mating pair. We estimate evolutionarily stable parcel numbers and show how they depend on parameter values. Typically, two or more sequential parcel numbers are evolutionarily stable, though the lowest of these yields the highest fitness. Assuming that parcel numbers are adjusted to local conditions, we predict that parcel numbers in nature are inversely related both to mating group density (except at low density) and predation risk.

  1. The Evolution of Generosity in the Ultimatum Game

    PubMed Central

    Hintze, Arend; Hertwig, Ralph

    2016-01-01

    When humans fail to make optimal decisions in strategic games and economic gambles, researchers typically try to explain why that behaviour is biased. To this end, they search for mechanisms that cause human behaviour to deviate from what seems to be the rational optimum. But perhaps human behaviour is not biased; perhaps research assumptions about the optimality of strategies are incomplete. In the one-shot anonymous symmetric ultimatum game (UG), humans fail to play optimally as defined by the Nash equilibrium. However, the distinction between kin and non-kin—with kin detection being a key evolutionary adaption—is often neglected when deriving the “optimal” strategy. We computationally evolved strategies in the UG that were equipped with an evolvable probability to discern kin from non-kin. When an opponent was not kin, agents evolved strategies that were similar to those used by humans. We therefore conclude that the strategy humans play is not irrational. The deviation between behaviour and the Nash equilibrium may rather be attributable to key evolutionary adaptations, such as kin detection. Our findings further suggest that social preference models are likely to capture mechanisms that permit people to play optimally in an evolutionary context. Once this context is taken into account, human behaviour no longer appears irrational. PMID:27677330

  2. The Evolution of Generosity in the Ultimatum Game.

    PubMed

    Hintze, Arend; Hertwig, Ralph

    2016-09-28

    When humans fail to make optimal decisions in strategic games and economic gambles, researchers typically try to explain why that behaviour is biased. To this end, they search for mechanisms that cause human behaviour to deviate from what seems to be the rational optimum. But perhaps human behaviour is not biased; perhaps research assumptions about the optimality of strategies are incomplete. In the one-shot anonymous symmetric ultimatum game (UG), humans fail to play optimally as defined by the Nash equilibrium. However, the distinction between kin and non-kin-with kin detection being a key evolutionary adaption-is often neglected when deriving the "optimal" strategy. We computationally evolved strategies in the UG that were equipped with an evolvable probability to discern kin from non-kin. When an opponent was not kin, agents evolved strategies that were similar to those used by humans. We therefore conclude that the strategy humans play is not irrational. The deviation between behaviour and the Nash equilibrium may rather be attributable to key evolutionary adaptations, such as kin detection. Our findings further suggest that social preference models are likely to capture mechanisms that permit people to play optimally in an evolutionary context. Once this context is taken into account, human behaviour no longer appears irrational.

  3. Cancer treatment as a game: integrating evolutionary game theory into the optimal control of chemotherapy

    NASA Astrophysics Data System (ADS)

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2012-12-01

    Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors ‘choose’ an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor ‘chooses’ its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients.

  4. Formal Darwinism, the individual-as-maximizing-agent analogy and bet-hedging

    PubMed Central

    Grafen, A.

    1999-01-01

    The central argument of The origin of species was that mechanical processes (inheritance of features and the differential reproduction they cause) can give rise to the appearance of design. The 'mechanical processes' are now mathematically represented by the dynamic systems of population genetics, and the appearance of design by optimization and game theory in which the individual plays the part of the maximizing agent. Establishing a precise individual-as-maximizing-agent (IMA) analogy for a population-genetics system justifies optimization approaches, and so provides a modern formal representation of the core of Darwinism. It is a hitherto unnoticed implication of recent population-genetics models that, contrary to a decades-long consensus, an IMA analogy can be found in models with stochastic environments (subject to a convexity assumption), in which individuals maximize expected reproductive value. The key is that the total reproductive value of a species must be considered as constant, so therefore reproductive value should always be calculated in relative terms. This result removes a major obstacle from the theoretical challenge to find a unifying framework which establishes the IMA analogy for all of Darwinian biology, including as special cases inclusive fitness, evolutionarily stable strategies, evolutionary life-history theory, age-structured models and sex ratio theory. This would provide a formal, mathematical justification of fruitful and widespread but 'intentional' terms in evolutionary biology, such as 'selfish', 'altruism' and 'conflict'.

  5. Stochastic eco-evolutionary model of a prey-predator community.

    PubMed

    Costa, Manon; Hauzy, Céline; Loeuille, Nicolas; Méléard, Sylvie

    2016-02-01

    We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.

  6. The evolutionary psychology of left and right: costs and benefits of lateralization.

    PubMed

    Vallortigara, Giorgio

    2006-09-01

    Why do the left and right sides of the vertebrate brain play different functions? Having a lateralized brain, in which each hemisphere carries out different functions, is ubiquitous among vertebrates. The different specialization of the left and right side of the brain may increase brain efficiency--and some evidence for that is reported here. However, lateral biases due to brain lateralization (such as preferences in the use of a limb or, in animals with laterally placed eyes, of a visual hemifield) usually occur at the population level, with most individuals showing similar direction of bias. Individual brain efficiency does not require the alignment of lateralization in the population. Why then are not left--and right-type individuals equally common? Not only humans, but most vertebrates show a similar pattern. For instance, in the paper I report evidence that most toads, chickens, and fish react faster when a predator approaches from the left. I argue that invoking individual brain efficiency (lateralization may increase fitness), evolutionary chance or direct genetic mechanisms cannot explain this widespread pattern. Instead, using concepts from mathematical theory of games, I show that alignment of lateralization at the population level may arise as an "evolutionarily stable strategy" when individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. Thus, the population structure of lateralization may result from genes specifying the direction of asymmetries which have been selected under "social" pressures.

  7. Individual variation and the resolution of conflict over parental care in penduline tits

    PubMed Central

    van Dijk, René E.; Székely, Tamás; Komdeur, Jan; Pogány, Ákos; Fawcett, Tim W.; Weissing, Franz J.

    2012-01-01

    Eurasian penduline tits (Remiz pendulinus) have an unusually diverse breeding system consisting of frequent male and female polygamy, and uniparental care by the male or the female. Intriguingly, 30 to 40 per cent of all nests are deserted by both parents. To understand the evolution of this diverse breeding system and frequent clutch desertion, we use 6 years of field data to derive fitness expectations for males and females depending on whether or not they care for their offspring. The resulting payoff matrix corresponds to an asymmetric Snowdrift Game with two alternative evolutionarily stable strategies (ESSs): female-only and male-only care. This, however, does not explain the polymorphism in care strategies and frequent biparental desertion, because theory predicts that one of the two ESSs should have spread to fixation. Using a bootstrapping approach, we demonstrate that taking account of individual variation in payoffs explains the patterns of care better than a model based on the average population payoff matrix. In particular, a model incorporating differences in male attractiveness closely predicts the observed frequencies of male and female desertion. Our work highlights the need for a new generation of individual-based evolutionary game-theoretic models. PMID:22189404

  8. Individual variation and the resolution of conflict over parental care in penduline tits.

    PubMed

    van Dijk, René E; Székely, Tamás; Komdeur, Jan; Pogány, Akos; Fawcett, Tim W; Weissing, Franz J

    2012-05-22

    Eurasian penduline tits (Remiz pendulinus) have an unusually diverse breeding system consisting of frequent male and female polygamy, and uniparental care by the male or the female. Intriguingly, 30 to 40 per cent of all nests are deserted by both parents. To understand the evolution of this diverse breeding system and frequent clutch desertion, we use 6 years of field data to derive fitness expectations for males and females depending on whether or not they care for their offspring. The resulting payoff matrix corresponds to an asymmetric Snowdrift Game with two alternative evolutionarily stable strategies (ESSs): female-only and male-only care. This, however, does not explain the polymorphism in care strategies and frequent biparental desertion, because theory predicts that one of the two ESSs should have spread to fixation. Using a bootstrapping approach, we demonstrate that taking account of individual variation in payoffs explains the patterns of care better than a model based on the average population payoff matrix. In particular, a model incorporating differences in male attractiveness closely predicts the observed frequencies of male and female desertion. Our work highlights the need for a new generation of individual-based evolutionary game-theoretic models.

  9. Beating Cheaters at Their Own Game

    NASA Astrophysics Data System (ADS)

    Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro

    2014-03-01

    Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.

  10. Exploring Predation and Animal Coloration through Outdoor Activity

    ERIC Educational Resources Information Center

    Fontaine, Joseph J.; Decker, Karie L.

    2009-01-01

    Although children often characterize animals by the animals' color or pattern, the children seldom understand the evolutionary and ecological factors that favor particular colors. In this article, we describe two activities that help students understand the distinct evolutionary strategies of warning coloration and camouflage. Because both of…

  11. Population genetics and the evolution of geographic range limits in an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  12. Coevolution of patch-type dependent emigration and patch-type dependent immigration.

    PubMed

    Weigang, Helene C

    2017-08-07

    The three phases of dispersal - emigration, transfer and immigration - are affecting each other and the former and latter decisions may depend on patch types. Despite the inevitable fact of the complexity of the dispersal process, patch-type dependencies of dispersal decisions modelled as emigration and immigration are usually missing in theoretical dispersal models. Here, I investigate the coevolution of patch-type dependent emigration and patch-type dependent immigration in an extended Hamilton-May model. The dispersing population inhabits a landscape structured into many patches of two types and disperses during a continuous-time season. The trait under consideration is a four dimensional vector consisting of two values for emigration probability from the patches and two values for immigration probability into the patches of each type. Using the adaptive dynamics approach I show that four qualitatively different dispersal strategies may evolve in different parameter regions, including a counterintuitive strategy, where patches of one type are fully dispersed from (emigration probability is one) but individuals nevertheless always immigrate into them during the dispersal season (immigration probability is one). I present examples of evolutionary branching in a wide parameter range, when the patches with high local death rate during the dispersal season guarantee a high expected disperser output. I find that two dispersal strategies can coexist after evolutionary branching: a strategy with full immigration only into the patches with high expected disperser output coexists with a strategy that immigrates into any patch. Stochastic simulations agree with the numerical predictions. Since evolutionary branching is also found when immigration evolves alone, the present study is adding coevolutionary constraints on the emigration traits and hence finds that the coevolution of a higher dimensional trait sometimes hinders evolutionary diversification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. From Teeth to Baleen and Raptorial to Bulk Filter Feeding in Mysticete Cetaceans: The Role of Paleontological, Genetic, and Geochemical Data in Feeding Evolution and Ecology.

    PubMed

    Berta, Annalisa; Lanzetti, Agnese; Ekdale, Eric G; Deméré, Thomas A

    2016-12-01

    The origin of baleen and filter feeding in mysticete cetaceans occurred sometime between approximately 34 and 24 million years ago and represents a major macroevolutionary shift in cetacean morphology (teeth to baleen) and ecology (raptorial to filter feeding). We explore this dramatic change in feeding strategy by employing a diversity of tools and approaches: morphology, molecules, development, and stable isotopes from the geological record. Adaptations for raptorial feeding in extinct toothed mysticetes provide the phylogenetic context for evaluating morphological apomorphies preserved in the skeletons of stem and crown edentulous mysticetes. In this light, the presence of novel vascular structures on the palates of certain Oligocene toothed mysticetes is interpreted as the earliest evidence of baleen and points to an intermediate condition between an ancestral condition with teeth only and a derived condition with baleen only. Supporting this step-wise evolutionary hypothesis, evidence from stable isotopes show how changes in dental chemistry in early toothed mysticetes tracked the changes in diet and environment. Recent discoveries also demonstrate how this transition was made possible by radical changes in cranial ontogeny. In addition, genetic mutations and the possession of dental pseudogenes in extant baleen whales support a toothed ancestry for mysticetes. Molecular and morphological data also document the dramatic developmental shifts that take place in extant fetal baleen whales, in skull development, resorption of a fetal dentition and growth of baleen. The mechanisms involved in this complex evolutionary transition that entails multiple, integrated aspects of anatomy and ecology are only beginning to be understood, and future work will further clarify the processes underlying this macroevolutionary pattern. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Aspiration dynamics in structured population acts as if in a well-mixed one.

    PubMed

    Du, Jinming; Wu, Bin; Wang, Long

    2015-01-26

    Understanding the evolution of human interactive behaviors is important. Recent experimental results suggest that human cooperation in spatial structured population is not enhanced as predicted in previous works, when payoff-dependent imitation updating rules are used. This constraint opens up an avenue to shed light on how humans update their strategies in real life. Studies via simulations show that, instead of comparison rules, self-evaluation driven updating rules may explain why spatial structure does not alter the evolutionary outcome. Though inspiring, there is a lack of theoretical result to show the existence of such evolutionary updating rule. Here we study the aspiration dynamics, and show that it does not alter the evolutionary outcome in various population structures. Under weak selection, by analytical approximation, we find that the favored strategy in regular graphs is invariant. Further, we show that this is because the criterion under which a strategy is favored is the same as that of a well-mixed population. By simulation, we show that this holds for random networks. Although how humans update their strategies is an open question to be studied, our results provide a theoretical foundation of the updating rules that may capture the real human updating rules.

  15. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    PubMed Central

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  16. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    ERIC Educational Resources Information Center

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  17. Space, time and thrips: biogeographic issues in the evolutionary ecology of Thysanoptera

    Treesearch

    John R. Grehan

    1991-01-01

    Most participants of this symposium will be concerned with understanding thrips ecology primarily in order to develop practical and effective control strategies. Questions dealing with historical aspects (evolution) may seem of only isolated "theoretical" interest with little significance for everyday pragmatic concerns. Evolutionary theory is widely...

  18. Evolutionary games combining two or three pair coordinations on a square lattice

    NASA Astrophysics Data System (ADS)

    Király, Balázs; Szabó, György

    2017-10-01

    We study multiagent logit-rule-driven evolutionary games on a square lattice whose pair interactions are composed of a maximal number of nonoverlapping elementary coordination games describing Ising-type interactions between just two of the available strategies. Using Monte Carlo simulations we investigate the macroscopic noise-level-dependent behavior of the two- and three-pair games and the critical properties of the continuous phase transtitions these systems exhibit. The four-strategy game is shown to be equivalent to a system that consists of two independent and identical Ising models.

  19. Evolutionary games combining two or three pair coordinations on a square lattice.

    PubMed

    Király, Balázs; Szabó, György

    2017-10-01

    We study multiagent logit-rule-driven evolutionary games on a square lattice whose pair interactions are composed of a maximal number of nonoverlapping elementary coordination games describing Ising-type interactions between just two of the available strategies. Using Monte Carlo simulations we investigate the macroscopic noise-level-dependent behavior of the two- and three-pair games and the critical properties of the continuous phase transtitions these systems exhibit. The four-strategy game is shown to be equivalent to a system that consists of two independent and identical Ising models.

  20. Evolution of cooperation in Axelrod tournament using cellular automata

    NASA Astrophysics Data System (ADS)

    Schimit, P. H. T.; Santos, B. O.; Soares, C. A.

    2015-11-01

    Results of the Axelrod Tournament were published in 1981, and since then, evolutionary game theory emerged as an idea for understanding relations, like conflict and cooperation, between rational decision-makers. Robert Axelrod organized it as a round-robin tournament where strategies for iterated Prisoner's Dilemma were faced in a sequence of two players game. Here, we attempt to simulate the strategies submitted to the tournament in a multi-agent context, where individuals play a two-player game with their neighbors. Each individual has one of the strategies, and it plays the Prisoner's Dilemma with its neighbors. According to actions chosen (cooperate or defect), points of life are subtracted from their profiles. When an individual dies, some fitness functions are defined to choose the most successful strategy which the new individual will copy. Although tit-for-tat was the best strategy, on average, in the tournament, in our evolutionary multi-agent context, it has not been successful.

  1. Mutation-selection equilibrium in games with multiple strategies.

    PubMed

    Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E; Nowak, Martin A

    2009-06-21

    In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of nxn games in the limit of weak selection.

  2. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  3. Conservation of sex chromosomes in lacertid lizards.

    PubMed

    Rovatsos, Michail; Vukić, Jasna; Altmanová, Marie; Johnson Pokorná, Martina; Moravec, Jiří; Kratochvíl, Lukáš

    2016-07-01

    Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group, sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z-specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages. © 2016 John Wiley & Sons Ltd.

  4. Study on system dynamics of evolutionary mix-game models

    NASA Astrophysics Data System (ADS)

    Gou, Chengling; Guo, Xiaoqian; Chen, Fang

    2008-11-01

    Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.

  5. Evolution of acuteness in pathogen metapopulations: conflicts between “classical” and invasion-persistence trade-offs

    PubMed Central

    Shrestha, Sourya; Bjørnstad, Ottar N.; King, Aaron A.

    2014-01-01

    Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen’s short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum—in large well-mixed populations—pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum—when the host population is broken into many small patches—selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence tradeoff dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales. PMID:25214895

  6. The Proposal of a Evolutionary Strategy Generating the Data Structures Based on a Horizontal Tree for the Tests

    NASA Astrophysics Data System (ADS)

    Żukowicz, Marek; Markiewicz, Michał

    2016-09-01

    The aim of the article is to present a mathematical definition of the object model, that is known in computer science as TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathematical model of the object TreeList and the parameters, used in determining the utility of structures created through this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a brief summary and plans for future research related to the algorithm presented in the article.

  7. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    NASA Astrophysics Data System (ADS)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural-/cognitive-focused learning goals. Chapter 5 explores the cognitive effects that "teaching evolution" has on the learner. This chapter examines the effects that a course on evolutionary theory has on university undergraduate students in understanding and applying evolution and how learning the evolutionary toolkit affects critical thinking skills and domain transfer of knowledge. The results demonstrate that a single course on evolutionary theory increases students' acceptance and understanding of evolution and science, and, in effect, increases critical thinking performance.

  8. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    PubMed

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  9. Options for the human settlement of the moon and Mars

    NASA Technical Reports Server (NTRS)

    Fairchild, Kyle O.; Roberts, Barney B.

    1989-01-01

    The evolutionary approach to space development is discussed in the framework of three overall strategies encompassing four case studies. The first strategy, human expeditions, places emphasis on highly visible, near-term manned missions to Mars or to one of the two moons of Mars. These expeditions are similar in scope and objectives to the Apollo program, with infrastructure development only conducted to the degree necessary to support one or two short-duration trips. Two such expeditionary scenarios, one to Phobus and the other to the Mars surface, are discussed. The second strategy involves the construction of science outposts, and emphasizes scientific exploration as well as investigation of technologies and operations needed for permanent habitation. A third strategy, evolutionary expansion, would explore and settle the inner solar system in a series of steps, with continued development of technologies, experience, and infrastructure.

  10. Adaptive therapy.

    PubMed

    Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy

    2009-06-01

    A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.

  11. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  12. An Examination of the Impact of Harsh Parenting Contexts on Children's Adaptation within an Evolutionary Framework

    ERIC Educational Resources Information Center

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Martin, Meredith J.; Cicchetti, Dante; Hentges, Rochelle F.

    2012-01-01

    The current study tests whether propositions set forth in an evolutionary model of temperament (Korte, Koolhaas, Wingfield, & McEwen, 2005) may enhance our understanding of children's differential susceptibility to unsupportive and harsh caregiving practices. Guided by this model, we examined whether children's behavioral strategies for coping…

  13. Preschoolers' Social Dominance, Moral Cognition, and Moral Behavior: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Hawley, Patricia H.; Geldhof, G. John

    2012-01-01

    Various aspects of moral functioning, aggression, and positive peer regard were assessed in 153 preschool children. Our hypotheses were inspired by an evolutionary approach to morality that construes moral norms as tools of the social elite. Accordingly, children were also rated for social dominance and strategies for its attainment. We predicted…

  14. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evolution, the loss of diversity and the role of trade-offs.

    PubMed

    Best, Alex; Bowers, Roger; White, Andy

    2015-06-01

    We investigate how the loss of previously evolved diversity in host resistance to disease is dependent on the complexity of the underlying evolutionary trade-off. Working within the adaptive dynamics framework, using graphical tools (pairwise invasion plots, PIPs; trait evolution plots, TEPs) and algebraic analysis we consider polynomial trade-offs of increasing degree. Our focus is on the evolutionary trajectory of the dimorphic population after it has been attracted to an evolutionary branching point. We show that for sufficiently complex trade-offs (here, polynomials of degree three or higher) the resulting invasion boundaries can form closed 'oval' areas of invadability and strategy coexistence. If no attracting singular strategies exist within this region, then the population is destined to evolve outside of the region of coexistence, resulting in the loss of one strain. In particular, the loss of diversity in this model always occurs in such a way that the remaining strain is not attracted back to the branching point but to an extreme of the trade-off, meaning the diversity is lost forever. We also show similar results for a non-polynomial but complex trade-off, and for a different eco-evolutionary model. Our work further highlights the importance of trade-offs to evolutionary behaviour. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture.

    PubMed

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-10-01

    This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  17. Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture

    PubMed Central

    Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S

    2014-01-01

    BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115

  18. Diverse strategy-learning styles promote cooperation in evolutionary spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Jia, Chun-Xiao; Rong, Zhihai

    2015-11-01

    Observational learning and practice learning are two important learning styles and play important roles in our information acquisition. In this paper, we study a spacial evolutionary prisoner's dilemma game, where players can choose the observational learning rule or the practice learning rule when updating their strategies. In the proposed model, we use a parameter p controlling the preference of players choosing the observational learning rule, and found that there exists an optimal value of p leading to the highest cooperation level, which indicates that the cooperation can be promoted by these two learning rules collaboratively and one single learning rule is not favor the promotion of cooperation. By analysing the dynamical behavior of the system, we find that the observational learning rule can make the players residing on cooperative clusters more easily realize the bad sequence of mutual defection. However, a too high observational learning probability suppresses the players to form compact cooperative clusters. Our results highlight the importance of a strategy-updating rule, more importantly, the observational learning rule in the evolutionary cooperation.

  19. Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.

    PubMed

    Wolf, Harald

    2014-08-01

    Miniaturisation of somatic cells in animals is limited, for reasons ranging from the accommodation of organelles to surface-to-volume ratio. Consequently, muscle and nerve cells vary in diameters by about two orders of magnitude, in animals covering 12 orders of magnitude in body mass. Small animals thus have to control their behaviour with few muscle fibres and neurons. Hexapod leg muscles, for instance, may consist of a single to a few 100 fibres, and they are controlled by one to, rarely, 19 motoneurons. A typical mammal has thousands of fibres per muscle supplied by hundreds of motoneurons for comparable behavioural performances. Arthopods--crustaceans, hexapods, spiders, and their kin--are on average much smaller than vertebrates, and they possess inhibitory motoneurons for a motor control strategy that allows a broad performance spectrum despite necessarily small cell numbers. This arthropod motor control strategy is reviewed from functional and evolutionary perspectives and its components are described with a focus on inhibitory motoneurons. Inhibitory motoneurons are particularly interesting for a number of reasons: evolutionary and phylogenetic comparison of functional specialisations, evolutionary and developmental origin and diversification, and muscle fibre recruitment strategies.

  20. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    PubMed

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-04-01

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Using Evolutionary Theory to Guide Mental Health Research.

    PubMed

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  2. Using Evolutionary Theory to Guide Mental Health Research

    PubMed Central

    Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.

    2016-01-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091

  3. The Paradox of Isochrony in the Evolution of Human Rhythm

    PubMed Central

    Ravignani, Andrea; Madison, Guy

    2017-01-01

    Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general. PMID:29163252

  4. Learning Strategies at Work and Professional Development

    ERIC Educational Resources Information Center

    Haemer, Hannah Deborah; Borges-Andrade, Jairo Eduardo; Cassiano, Simone Kelli

    2017-01-01

    Purpose: This paper aims to investigate the prediction of current and evolutionary perceptions of professional development through five learning strategies at work and through training and how individual and job characteristics predict those strategies. Design/methodology/approach: Variables were measured in a cross-sectional survey, with 962…

  5. The dynamics of strangling among forest trees.

    PubMed

    Okamoto, Kenichi W

    2015-11-07

    Strangler trees germinate and grow on other trees, eventually enveloping and potentially even girdling their hosts. This allows them to mitigate fitness costs otherwise incurred by germinating and competing with other trees on the forest floor, as well as minimize risks associated with host tree-fall. If stranglers can themselves host other strangler trees, they may not even seem to need non-stranglers to persist. Yet despite their high fitness potential, strangler trees neither dominate the communities in which they occur nor is the strategy particularly common outside of figs (genus Ficus). Here we analyze how dynamic interactions between strangling and non-strangling trees can shape the adaptive landscape for strangling mutants and mutant trees that have lost the ability to strangle. We find a threshold which strangler germination rates must exceed for selection to favor the evolution of strangling, regardless of how effectively hemiepiphytic stranglers may subsequently replace their hosts. This condition describes the magnitude of the phenotypic displacement in the ability to germinate on other trees necessary for invasion by a mutant tree that could potentially strangle its host following establishment as an epiphyte. We show how the relative abilities of strangling and non-strangling trees to occupy empty sites can govern whether strangling is an evolutionarily stable strategy, and obtain the conditions for strangler coexistence with non-stranglers. We then elucidate when the evolution of strangling can disrupt stable coexistence between commensal epiphytic ancestors and their non-strangling host trees. This allows us to highlight parallels between the invasion fitness of strangler trees arising from commensalist ancestors, and cases where strangling can arise in concert with the evolution of hemiepiphytism among free-standing ancestors. Finally, we discuss how our results can inform the evolutionary ecology of antagonistic interactions more generally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A stable compound of helium and sodium at high pressure

    DOE PAGES

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  7. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  8. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  9. How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies.

    PubMed

    Ng'oma, Enoch; Perinchery, Anna M; King, Elizabeth G

    2017-06-28

    All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the 'omic' opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. © 2017 The Author(s).

  10. How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies

    PubMed Central

    2017-01-01

    All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the ‘omic’ opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. PMID:28637856

  11. Evolutionarily stable range limits set by interspecific competition.

    PubMed

    Price, Trevor D; Kirkpatrick, Mark

    2009-04-22

    A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutionarily stable range limits even in the absence of the disruptive effect of gene flow. We model two competing species occupying different segments of the resource spectrum. If one segment of the resource spectrum declines across space, a species that specializes on that segment can be driven to extinction, even though in the absence of competition it would evolve to exploit other abundant resources and so be saved. The result is that a species range limit is set in both evolutionary and ecological time, as the resources associated with its niche decline. Factors promoting this outcome include: (i) inherent gaps in the resource distribution, (ii) relatively high fitness of the species when in its own niche, and low fitness in the alternative niche, even when resource abundances are similar in each niche, (iii) strong interspecific competition, and (iv) asymmetric interspecific competition. We suggest that these features are likely to be common in multispecies communities, thereby setting evolutionarily stable range limits.

  12. Evolutionarily stable range limits set by interspecific competition

    PubMed Central

    Price, Trevor D.; Kirkpatrick, Mark

    2009-01-01

    A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutionarily stable range limits even in the absence of the disruptive effect of gene flow. We model two competing species occupying different segments of the resource spectrum. If one segment of the resource spectrum declines across space, a species that specializes on that segment can be driven to extinction, even though in the absence of competition it would evolve to exploit other abundant resources and so be saved. The result is that a species range limit is set in both evolutionary and ecological time, as the resources associated with its niche decline. Factors promoting this outcome include: (i) inherent gaps in the resource distribution, (ii) relatively high fitness of the species when in its own niche, and low fitness in the alternative niche, even when resource abundances are similar in each niche, (iii) strong interspecific competition, and (iv) asymmetric interspecific competition. We suggest that these features are likely to be common in multispecies communities, thereby setting evolutionarily stable range limits. PMID:19324813

  13. The evolution of cooperation by negotiation in a noisy world.

    PubMed

    Ito, K; McNamara, J M; Yamauchi, A; Higginson, A D

    2017-03-01

    Cooperative interactions among individuals are ubiquitous despite the possibility of exploitation by selfish free riders. One mechanism that may promote cooperation is 'negotiation': individuals altering their behaviour in response to the behaviour of others. Negotiating individuals decide their actions through a recursive process of reciprocal observation, thereby reducing the possibility of free riding. Evolutionary games with response rules have shown that infinitely many forms of the rule can be evolutionarily stable simultaneously, unless there is variation in individual quality. This potentially restricts the conditions under which negotiation could maintain cooperation. Organisms interact with one another in a noisy world in which cooperative effort and the assessment of effort may be subject to error. Here, we show that such noise can make the number of evolutionarily stable rules finite, even without quality variation, and so noise could help maintain cooperative behaviour. We show that the curvature of the benefit function is the key factor determining whether individuals invest more or less as their partner's investment increases, investing less when the benefit to investment has diminishing returns. If the benefits of low investment are very small then behavioural flexibility tends to promote cooperation, because negotiation enables cooperators to reach large benefits. Under some conditions, this leads to a repeating cycle in which cooperative behaviour rises and falls over time, which may explain between-population differences in cooperative behaviour. In other conditions, negotiation leads to extremely high levels of cooperative behaviour, suggesting that behavioural flexibility could facilitate the evolution of eusociality in the absence of high relatedness. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-08-03

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. An Application of Evolutionary Game Theory to Social Dilemmas: The Traveler's Dilemma and the Minimum Effort Coordination Game

    PubMed Central

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851

  16. An application of evolutionary game theory to social dilemmas: the traveler's dilemma and the minimum effort coordination game.

    PubMed

    Iyer, Swami; Reyes, Joshua; Killingback, Timothy

    2014-01-01

    The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.

  17. Evolutionary psychology in the modern world: applications, perspectives, and strategies.

    PubMed

    Roberts, S Craig; van Vugt, Mark; Dunbar, Robin I M

    2012-12-20

    An evolutionary approach is a powerful framework which can bring new perspectives on any aspect of human behavior, to inform and complement those from other disciplines, from psychology and anthropology to economics and politics. Here we argue that insights from evolutionary psychology may be increasingly applied to address practical issues and help alleviate social problems. We outline the promise of this endeavor, and some of the challenges it faces. In doing so, we draw parallels between an applied evolutionary psychology and recent developments in Darwinian medicine, which similarly has the potential to complement conventional approaches. Finally, we describe some promising new directions which are developed in the associated papers accompanying this article.

  18. Remembering the Forest While Viewing the Trees: Evolutionary Thinking in the Teaching of Molecular Biology

    ERIC Educational Resources Information Center

    Saraswati, Sitaraman; Sitaraman, Ramakrishnan

    2014-01-01

    Given the centrality of evolutionary theory to the study of biology, we present a strategy for reinforcing its importance by appropriately recontextualizing classic and well-known experiments that are not explicitly linked with evolution in conventional texts. This exercise gives students an appreciation of the applicability of the theory of…

  19. The formal Darwinism project: a mid-term report.

    PubMed

    Grafen, A

    2007-07-01

    For 8 years I have been pursuing in print an ambitious and at times highly technical programme of work, the 'Formal Darwinism Project', whose essence is to underpin and formalize the fitness optimization ideas used by behavioural ecologists, using a new kind of argument linking the mathematics of motion and the mathematics of optimization. The value of the project is to give stronger support to current practices, and at the same time sharpening theoretical ideas and suggesting principled resolutions of some untidy areas, for example, how to define fitness. The aim is also to unify existing free-standing theoretical structures, such as inclusive fitness theory, Evolutionary Stable Strategy (ESS) theory and bet-hedging theory. The 40-year-old misunderstanding over the meaning of fitness optimization between mathematicians and biologists is explained. Most of the elements required for a general theory have now been implemented, but not together in the same framework, and 'general time' remains to be developed and integrated with the other elements to produce a final unified theory of neo-Darwinian natural selection.

  20. Competitive helping increases with the size of biological markets and invades defection.

    PubMed

    Barclay, Pat

    2011-07-21

    Cooperation between unrelated individuals remains a puzzle in evolutionary biology. Recent work indicates that partner choice can select for high levels of helping. More generally, helping can be seen as but one strategy used to compete for partners within a broader biological market, yet giving within such markets has received little mathematical investigation. In the present model, individuals help others to attract attention from them and thus receive a larger share of any help actively or passively provided by those others. The evolutionarily stable level of helping increases with the size of the biological market and the degree of partner choice. Furthermore, if individuals passively produce some no-cost help to partners, competitive helping can then invade populations of non-helpers because helpers directly benefit from increasing their access to potential partners. This framework of competitive helping demonstrates how high helping can be achieved and why different populations may differ in helping levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The best men are (not always) already taken: female preference for single versus attached males depends on conception risk.

    PubMed

    Bressan, Paola; Stranieri, Debora

    2008-02-01

    Because men of higher genetic quality tend to be poorer partners and parents than men of lower genetic quality, women may profit from securing a stable investment from the latter, while obtaining good genes via extrapair mating with the former. Only if conception occurs, however, do the evolutionary benefits of such a strategy overcome its costs. Accordingly, we predicted that (a) partnered women should prefer attached men, because such men are more likely than single men to have pair-bonding qualities, and hence to be good replacement partners, and (b) this inclination should reverse when fertility rises, because attached men are less available for impromptu sex than single men. In this study, 208 women rated the attractiveness of men described as single or attached. As predicted, partnered women favored attached men at the low-fertility phases of the menstrual cycle, but preferred single men (if masculine, i.e., advertising good genetic quality) when conception risk was high.

  2. Anisotropic invasion and its consequences in two-strategy evolutionary games on a square lattice

    NASA Astrophysics Data System (ADS)

    Szabó, György; Varga, Levente; Szabó, Mátyás

    2016-11-01

    We have studied invasion processes in two-strategy evolutionary games on a square lattice for imitation rule when the players interact with their nearest neighbors. Monte Carlo simulations are performed for systems where the pair interactions are composed of a unit strength coordination game when varying the strengths of the self-dependent and cross-dependent components at a fixed noise level. The visualization of strategy distributions has clearly indicated that circular homogeneous domains evolve into squares with an orientation dependent on the composition. This phenomenon is related to the anisotropy of invasion velocities along the interfaces separating the two homogeneous regions. The quantified invasion velocities indicate the existence of a parameter region in which the invasions are opposite for the horizontal (or vertical) and the tilted interfaces. In this parameter region faceted islands of both strategies shrink and the system evolves from a random initial state into the homogeneous state that first percolated.

  3. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application

    PubMed Central

    Farkas, Timothy E

    2015-01-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038

  4. Spatial pattern dynamics due to the fitness gradient flux in evolutionary games.

    PubMed

    deForest, Russ; Belmonte, Andrew

    2013-06-01

    We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.

  5. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application.

    PubMed

    Farkas, Timothy E

    2015-10-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.

  6. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  7. Spatial pattern dynamics due to the fitness gradient flux in evolutionary games

    NASA Astrophysics Data System (ADS)

    deForest, Russ; Belmonte, Andrew

    2013-06-01

    We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.

  8. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  9. Prediction of stock markets by the evolutionary mix-game model

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Gou, Chengling; Guo, Xiaoqian; Gao, Jieping

    2008-06-01

    This paper presents the efforts of using the evolutionary mix-game model, which is a modified form of the agent-based mix-game model, to predict financial time series. Here, we have carried out three methods to improve the original mix-game model by adding the abilities of strategy evolution to agents, and then applying the new model referred to as the evolutionary mix-game model to forecast the Shanghai Stock Exchange Composite Index. The results show that these modifications can improve the accuracy of prediction greatly when proper parameters are chosen.

  10. The evolutionary psychology of violence.

    PubMed

    Goetz, Aaron T

    2010-02-01

    This paper reviews theory and research on the evolutionary psychology of violence. First, I examine evidence suggesting that humans have experienced an evolutionary history of violence. Next, I discuss violence as a context-sensitive strategy that might have provided benefits to our ancestors under certain circumstances. I then focus on the two most common forms of violence that plague humans -violence over status contests and intimate partner violence- outlining psychological mechanisms involved in each. Finally, I suggest that greater progress will be made by shifting the study from contexts to mechanisms.

  11. Evolutionary games in the multiverse.

    PubMed

    Gokhale, Chaitanya S; Traulsen, Arne

    2010-03-23

    Evolutionary game dynamics of two players with two strategies has been studied in great detail. These games have been used to model many biologically relevant scenarios, ranging from social dilemmas in mammals to microbial diversity. Some of these games may, in fact, take place between a number of individuals and not just between two. Here we address one-shot games with multiple players. As long as we have only two strategies, many results from two-player games can be generalized to multiple players. For games with multiple players and more than two strategies, we show that statements derived for pairwise interactions no longer hold. For two-player games with any number of strategies there can be at most one isolated internal equilibrium. For any number of players with any number of strategies , there can be at most isolated internal equilibria. Multiplayer games show a great dynamical complexity that cannot be captured based on pairwise interactions. Our results hold for any game and can easily be applied to specific cases, such as public goods games or multiplayer stag hunts.

  12. Strategy evolution driven by switching probabilities in structured multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Chen, Zengqiang; Li, Zhiqi

    2017-10-01

    Evolutionary mechanism driving the commonly seen cooperation among unrelated individuals is puzzling. Related models for evolutionary games on graphs traditionally assume that players imitate their successful neighbours with higher benefits. Notably, an implicit assumption here is that players are always able to acquire the required pay-off information. To relax this restrictive assumption, a contact-based model has been proposed, where switching probabilities between strategies drive the strategy evolution. However, the explicit and quantified relation between a player's switching probability for her strategies and the number of her neighbours remains unknown. This is especially a key point in heterogeneously structured system, where players may differ in the numbers of their neighbours. Focusing on this, here we present an augmented model by introducing an attenuation coefficient and evaluate its influence on the evolution dynamics. Results show that the individual influence on others is negatively correlated with the contact numbers specified by the network topologies. Results further provide the conditions under which the coexisting strategies can be calculated analytically.

  13. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  14. Genome chaos: survival strategy during crisis.

    PubMed

    Liu, Guo; Stevens, Joshua B; Horne, Steven D; Abdallah, Batoul Y; Ye, Karen J; Bremer, Steven W; Ye, Christine J; Chen, David J; Heng, Henry H

    2014-01-01

    Genome chaos, a process of complex, rapid genome re-organization, results in the formation of chaotic genomes, which is followed by the potential to establish stable genomes. It was initially detected through cytogenetic analyses, and recently confirmed by whole-genome sequencing efforts which identified multiple subtypes including "chromothripsis", "chromoplexy", "chromoanasynthesis", and "chromoanagenesis". Although genome chaos occurs commonly in tumors, both the mechanism and detailed aspects of the process are unknown due to the inability of observing its evolution over time in clinical samples. Here, an experimental system to monitor the evolutionary process of genome chaos was developed to elucidate its mechanisms. Genome chaos occurs following exposure to chemotherapeutics with different mechanisms, which act collectively as stressors. Characterization of the karyotype and its dynamic changes prior to, during, and after induction of genome chaos demonstrates that chromosome fragmentation (C-Frag) occurs just prior to chaotic genome formation. Chaotic genomes seem to form by random rejoining of chromosomal fragments, in part through non-homologous end joining (NHEJ). Stress induced genome chaos results in increased karyotypic heterogeneity. Such increased evolutionary potential is demonstrated by the identification of increased transcriptome dynamics associated with high levels of karyotypic variance. In contrast to impacting on a limited number of cancer genes, re-organized genomes lead to new system dynamics essential for cancer evolution. Genome chaos acts as a mechanism of rapid, adaptive, genome-based evolution that plays an essential role in promoting rapid macroevolution of new genome-defined systems during crisis, which may explain some unwanted consequences of cancer treatment.

  15. Invisible hand effect in an evolutionary minority game model

    NASA Astrophysics Data System (ADS)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  16. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  17. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  18. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle.

    PubMed

    Sheffer, Efrat; Batterman, Sarah A; Levin, Simon A; Hedin, Lars O

    2015-11-23

    Dinitrogen fixation by plants (in symbiosis with root bacteria) is a major source of new nitrogen for land ecosystems(1). A long-standing puzzle(2) is that trees capable of nitrogen fixation are abundant in nitrogen-rich tropical forests, but absent or restricted to early successional stages in nitrogen-poor extra-tropical forests. This biome-scale pattern presents an evolutionary paradox(3), given that the physiological cost(4) of nitrogen fixation predicts the opposite pattern: fixers should be out-competed by non-fixers in nitrogen-rich conditions, but competitively superior in nitrogen-poor soils. Here we evaluate whether this paradox can be explained by the existence of different fixation strategies in tropical versus extra-tropical trees: facultative fixers (capable of downregulating fixation(5,6) by sanctioning mutualistic bacteria(7)) are common in the tropics, whereas obligate fixers (less able to downregulate fixation) dominate at higher latitudes. Using a game-theoretic approach, we assess the ecological and evolutionary conditions under which these fixation strategies emerge, and examine their dependence on climate-driven differences in the nitrogen cycle. We show that in the tropics, transient soil nitrogen deficits following disturbance and rapid tree growth favour a facultative strategy and the coexistence of fixers and non-fixers. In contrast, sustained nitrogen deficits following disturbance in extra-tropical forests favour an obligate fixation strategy, and cause fixers to be excluded in late successional stages. We conclude that biome-scale differences in the abundance of nitrogen fixers can be explained by the interaction between individual plant strategies and climatic constraints on the nitrogen cycle over evolutionary time.

  19. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  20. Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma.

    PubMed

    Harper, Marc; Knight, Vincent; Jones, Martin; Koutsovoulos, Georgios; Glynatsi, Nikoleta E; Campbell, Owen

    2017-01-01

    We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.

  1. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  2. Relative size predicts competitive outcome through 2 million years.

    PubMed

    Liow, Lee Hsiang; Di Martino, Emanuela; Krzeminska, Malgorzata; Ramsfjell, Mali; Rust, Seabourne; Taylor, Paul D; Voje, Kjetil L

    2017-08-01

    Competition is an important biotic interaction that influences survival and reproduction. While competition on ecological timescales has received great attention, little is known about competition on evolutionary timescales. Do competitive abilities change over hundreds of thousands to millions of years? Can we predict competitive outcomes using phenotypic traits? How much do traits that confer competitive advantage and competitive outcomes change? Here we show, using communities of encrusting marine bryozoans spanning more than 2 million years, that size is a significant determinant of overgrowth outcomes: colonies with larger zooids tend to overgrow colonies with smaller zooids. We also detected temporally coordinated changes in average zooid sizes, suggesting that different species responded to a common external driver. Although species-specific average zooid sizes change over evolutionary timescales, species-specific competitive abilities seem relatively stable, suggesting that traits other than zooid size also control overgrowth outcomes and/or that evolutionary constraints are involved. © 2017 John Wiley & Sons Ltd/CNRS.

  3. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics

    NASA Astrophysics Data System (ADS)

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  4. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics.

    PubMed

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  5. Distributed Evaluation Functions for Fault Tolerant Multi-Rover Systems

    NASA Technical Reports Server (NTRS)

    Agogino, Adrian; Turner, Kagan

    2005-01-01

    The ability to evolve fault tolerant control strategies for large collections of agents is critical to the successful application of evolutionary strategies to domains where failures are common. Furthermore, while evolutionary algorithms have been highly successful in discovering single-agent control strategies, extending such algorithms to multiagent domains has proven to be difficult. In this paper we present a method for shaping evaluation functions for agents that provide control strategies that both are tolerant to different types of failures and lead to coordinated behavior in a multi-agent setting. This method neither relies of a centralized strategy (susceptible to single point of failures) nor a distributed strategy where each agent uses a system wide evaluation function (severe credit assignment problem). In a multi-rover problem, we show that agents using our agent-specific evaluation perform up to 500% better than agents using the system evaluation. In addition we show that agents are still able to maintain a high level of performance when up to 60% of the agents fail due to actuator, communication or controller faults.

  6. Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya J.; Sughiyama, Yuki

    2017-07-01

    Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

  7. Comparing reactive and memory-one strategies of direct reciprocity

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Jeong, Hyeong-Chai; Hilbe, Christian; Nowak, Martin A.

    2016-05-01

    Direct reciprocity is a mechanism for the evolution of cooperation based on repeated interactions. When individuals meet repeatedly, they can use conditional strategies to enforce cooperative outcomes that would not be feasible in one-shot social dilemmas. Direct reciprocity requires that individuals keep track of their past interactions and find the right response. However, there are natural bounds on strategic complexity: Humans find it difficult to remember past interactions accurately, especially over long timespans. Given these limitations, it is natural to ask how complex strategies need to be for cooperation to evolve. Here, we study stochastic evolutionary game dynamics in finite populations to systematically compare the evolutionary performance of reactive strategies, which only respond to the co-player’s previous move, and memory-one strategies, which take into account the own and the co-player’s previous move. In both cases, we compare deterministic strategy and stochastic strategy spaces. For reactive strategies and small costs, we find that stochasticity benefits cooperation, because it allows for generous-tit-for-tat. For memory one strategies and small costs, we find that stochasticity does not increase the propensity for cooperation, because the deterministic rule of win-stay, lose-shift works best. For memory one strategies and large costs, however, stochasticity can augment cooperation.

  8. Mutation-selection equilibrium in games with mixed strategies.

    PubMed

    Tarnita, Corina E; Antal, Tibor; Nowak, Martin A

    2009-11-07

    We develop a new method for studying stochastic evolutionary game dynamics of mixed strategies. We consider the general situation: there are n pure strategies whose interactions are described by an nxn payoff matrix. Players can use mixed strategies, which are given by the vector (p(1),...,p(n)). Each entry specifies the probability to use the corresponding pure strategy. The sum over all entries is one. Therefore, a mixed strategy is a point in the simplex S(n). We study evolutionary dynamics in a well-mixed population of finite size. Individuals reproduce proportional to payoff. We consider the case of weak selection, which means the payoff from the game is only a small contribution to overall fitness. Reproduction can be subject to mutation; a mutant adopts a randomly chosen mixed strategy. We calculate the average abundance of every mixed strategy in the stationary distribution of the mutation-selection process. We find the crucial conditions that specify if a strategy is favored or opposed by selection. One condition holds for low mutation rate, another for high mutation rate. The result for any mutation rate is a linear combination of those two. As a specific example we study the Hawk-Dove game. We prove general statements about the relationship between games with pure and with mixed strategies.

  9. Comparing reactive and memory-one strategies of direct reciprocity

    PubMed Central

    Baek, Seung Ki; Jeong, Hyeong-Chai; Hilbe, Christian; Nowak, Martin A.

    2016-01-01

    Direct reciprocity is a mechanism for the evolution of cooperation based on repeated interactions. When individuals meet repeatedly, they can use conditional strategies to enforce cooperative outcomes that would not be feasible in one-shot social dilemmas. Direct reciprocity requires that individuals keep track of their past interactions and find the right response. However, there are natural bounds on strategic complexity: Humans find it difficult to remember past interactions accurately, especially over long timespans. Given these limitations, it is natural to ask how complex strategies need to be for cooperation to evolve. Here, we study stochastic evolutionary game dynamics in finite populations to systematically compare the evolutionary performance of reactive strategies, which only respond to the co-player’s previous move, and memory-one strategies, which take into account the own and the co-player’s previous move. In both cases, we compare deterministic strategy and stochastic strategy spaces. For reactive strategies and small costs, we find that stochasticity benefits cooperation, because it allows for generous-tit-for-tat. For memory one strategies and small costs, we find that stochasticity does not increase the propensity for cooperation, because the deterministic rule of win-stay, lose-shift works best. For memory one strategies and large costs, however, stochasticity can augment cooperation. PMID:27161141

  10. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  11. Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist" apex predator.

    PubMed

    Rosenblatt, Adam E; Nifong, James C; Heithaus, Michael R; Mazzotti, Frank J; Cherkiss, Michael S; Jeffery, Brian M; Elsey, Ruth M; Decker, Rachel A; Silliman, Brian R; Guillette, Louis J; Lowers, Russell H; Larson, Justin C

    2015-05-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  12. Manager’s Guide to Technology Transition in an Evolutionary Acquisition Environment

    DTIC Science & Technology

    2005-06-01

    program managers, product managers, staffs, and organizations that manage the development , procurement, production, and fielding of systems...rapidly advancing technologies. Technology transitions can occur during the development of systems, or even after a system has been in the field ...Documentation Evolutionary acquisition is an acquisition strategy that defines, develops , produces or acquires, and fields an initial hardware or software

  13. NREL, International Colleagues Propose Strategy for Stable, Commercial

    Science.gov Websites

    , Commercial Perovskite Solar Cells News Release: NREL, International Colleagues Propose Strategy for Stable , Commercial Perovskite Solar Cells October 17, 2016 Photo of two men in a lab. NREL Scientists Keith Emery and stable commercial PSCs-that includes the following: Developing a reproducible manufacturing method that

  14. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    PubMed

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  15. Islamic Medicine and Evolutionary Medicine: A Comparative Analysis

    PubMed Central

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings’ susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration. PMID:23864992

  16. Islamic medicine and evolutionary medicine: a comparative analysis.

    PubMed

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.

  17. Nonequivalence of updating rules in evolutionary games under high mutation rates.

    PubMed

    Kaiping, G A; Jacobs, G S; Cox, S J; Sluckin, T J

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  18. Nonequivalence of updating rules in evolutionary games under high mutation rates

    NASA Astrophysics Data System (ADS)

    Kaiping, G. A.; Jacobs, G. S.; Cox, S. J.; Sluckin, T. J.

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  19. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  1. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex*

    PubMed Central

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P.; Chait, Brian T.

    2014-01-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. PMID:25161197

  3. Reinforcement learning produces dominant strategies for the Iterated Prisoner’s Dilemma

    PubMed Central

    Jones, Martin; Koutsovoulos, Georgios; Glynatsi, Nikoleta E.; Campbell, Owen

    2017-01-01

    We present tournament results and several powerful strategies for the Iterated Prisoner’s Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also. PMID:29228001

  4. Sociosexuality from Argentina to Zimbabwe: a 48-nation study of sex, culture, and strategies of human mating.

    PubMed

    Schmitt, David P

    2005-04-01

    The Sociosexual Orientation Inventory (SOI; Simpson & Gangestad 1991) is a self-report measure of individual differences in human mating strategies. Low SOI scores signify that a person is sociosexually restricted, or follows a more monogamous mating strategy. High SOI scores indicate that an individual is unrestricted, or has a more promiscuous mating strategy. As part of the International Sexuality Description Project (ISDP), the SOI was translated from English into 25 additional languages and administered to a total sample of 14,059 people across 48 nations. Responses to the SOI were used to address four main issues. First, the psychometric properties of the SOI were examined in cross-cultural perspective. The SOI possessed adequate reliability and validity both within and across a diverse range of modem cultures. Second, theories concerning the systematic distribution of sociosexuality across cultures were evaluated. Both operational sex ratios and reproductively demanding environments related in evolutionary-predicted ways to national levels of sociosexuality. Third, sex differences in sociosexuality were generally large and demonstrated cross-cultural universality across the 48 nations of the ISDP, confirming several evolutionary theories of human mating. Fourth, sex differences in sociosexuality were significantly larger when reproductive environments were demanding but were reduced to more moderate levels in cultures with more political and economic gender equality. Implications for evolutionary and social role theories of human sexuality are discussed.

  5. Quantum games on evolving random networks

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz

    2016-09-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  6. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  7. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  8. Reclaiming Family Privilege

    ERIC Educational Resources Information Center

    Seita, John

    2012-01-01

    The pull for family is strong, almost primeval, most likely it is evolutionary, and for those lacking the benefit of family or Family Privilege, the loss of family is painful and profoundly sad. Young people who struggle to cope without stable family connections are profoundly aware of their lack of "Family Privilege." In this article, the author…

  9. No strategy is evolutionarily stable in the repeated prisoner's dilemma.

    PubMed

    Lorberbaum, J

    1994-05-21

    Following the influential work of Axelrod, the repeated Prisoner's Dilemma game has become the theoretical gold standard for understanding the evolution of co-operative behavior among unrelated individuals. Using the game, several authors have found that a reciprocal strategy known as Tit for Tat (TFT) has done quite well in a wide range of environments. TFT strategists start out co-operating and then do what the other player did on the previous move. Despite the success of TFT and similar strategies in experimental studies of the game, Boyd & Lorberbaum (1987, Nature, Lond. 327, 58) have shown that no pure strategy, including TFT, is evolutionarily stable in the sense that each can be invaded by the joint effect of two invading strategies when long-term interaction occurs in the repeated game and future moves are discounted. Farrell & Ware (1989, Theor. Popul. Biol. 36, 161) have since extended these results to include finite mixes of pure strategies as well. Here, it is proven that no strategy is evolutionarily stable when long-term relationships are maintained in the repeated Prisoner's Dilemma and future moves are discounted. Namely, it is shown each completely probabilistic strategy (i.e. one that both co-operates and defects with positive probability after every sequence of behavior) may be invaded by a single deviant strategy. This completes the proof started by Boyd and Lorberbaum and extended by Farrell and Ware. This paper goes on to prove that no reactive strategy with a memory restricted to the opponent's preceding move is evolutionarily stable when there is no discounting of future moves. This is true despite the success of a more forgiving variant of TFT called GTFT in a recent tournament among reactive strategies conducted by Nowak & Sigmund (1992, Nature 355, 250) where future moves were not discounted. GTFT, for example, may be invaded by a pair of reactive mutants. Since no strategy is evolutionarily stable when future moves are discounted in the repeated game, the restriction of strategy types to those actually maintained by mutation and phenotypic and environmental variability in natural populations may be the key to understanding the evolution of co-operation. However, the result presented here that the somewhat realistic reactive strategies are also not evolutionarily stable at least in the non-discounted game suggests something else may be going on. For one, the proof that no reactive strategy is evolutionarily stable ironically shows the robustness of TFT-like strategies.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. How did Earth not End up like Venus?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  11. Competition among cooperators: Altruism and reciprocity

    PubMed Central

    Danielson, Peter

    2002-01-01

    Levine argues that neither self-interest nor altruism explains experimental results in bargaining and public goods games. Subjects' preferences appear also to be sensitive to their opponents' perceived altruism. Sethi and Somanathan provide a general account of reciprocal preferences that survive under evolutionary pressure. Although a wide variety of reciprocal strategies pass this evolutionary test, Sethi and Somanthan conjecture that fewer are likely to survive when reciprocal strategies compete with each other. This paper develops evolutionary agent-based models to test their conjecture in cases where reciprocal preferences can differ in a variety of games. We confirm that reciprocity is necessary but not sufficient for optimal cooperation. We explore the theme of competition among reciprocal cooperators and display three interesting emergent organizations: racing to the “moral high ground,” unstable cycles of preference change, and, when we implement reciprocal mechanisms, hierarchies resulting from exploiting fellow cooperators. If reciprocity is a basic mechanism facilitating cooperation, we can expect interaction that evolves around it to be complex, non-optimal, and resistant to change. PMID:12011403

  12. Lineage interests and nonreproductive strategies : An evolutionary approach to medieval religious women.

    PubMed

    Hill, E

    1999-06-01

    The nonreproductive role of religious women in the European Middle Ages presents the ideal forum for the discussion of elite family strategies within a historical context. I apply the evolutionary concept of kin selection to this group of women in order to explain how a social formation in which religious women failed to reproduce benefited medieval noble lineages. After a brief review of the roles of noble women in the later Middle Ages, I identify two benefits that nonreproductive women provided within a patrilineal inheritance system. First, spatial segregation and Christian ideology together served to curtail the production of offspring who could pose a threat to lineage interests. Second, cloistered noble women served as a strong political and economic bloc that could further lineage interests within a religious context. Finally, I discuss the evolutionary basis for the formation of groups of nonreproductive women. Using the foundation provided by animal behavioral studies, I apply the twin concepts of cooperative breeding and parental manipulation to noble lineages of the medieval period.

  13. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    PubMed Central

    Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng

    2014-01-01

    How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330

  14. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions

    PubMed Central

    Laine, Elodie; Carbone, Alessandra

    2015-01-01

    Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/JET2. PMID:26690684

  15. Optimizing a realistic large-scale frequency assignment problem using a new parallel evolutionary approach

    NASA Astrophysics Data System (ADS)

    Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.

    2011-08-01

    This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.

  16. The effects of extra-somatic weapons on the evolution of human cooperation towards non-kin.

    PubMed

    Phillips, Tim; Li, Jiawei; Kendall, Graham

    2014-01-01

    Human cooperation and altruism towards non-kin is a major evolutionary puzzle, as is 'strong reciprocity' where no present or future rewards accrue to the co-operator/altruist. Here, we test the hypothesis that the development of extra-somatic weapons could have influenced the evolution of human cooperative behaviour, thus providing a new explanation for these two puzzles. Widespread weapons use could have made disputes within hominin groups far more lethal and also equalized power between individuals. In such a cultural niche non-cooperators might well have become involved in such lethal disputes at a higher frequency than cooperators, thereby increasing the relative fitness of genes associated with cooperative behaviour. We employ two versions of the evolutionary Iterated Prisoner's Dilemma (IPD) model--one where weapons use is simulated and one where it is not. We then measured the performance of 25 IPD strategies to evaluate the effects of weapons use on them. We found that cooperative strategies performed significantly better, and non-cooperative strategies significantly worse, under simulated weapons use. Importantly, the performance of an 'Always Cooperate' IPD strategy, equivalent to that of 'strong reciprocity', improved significantly more than that of all other cooperative strategies. We conclude that the development of extra-somatic weapons throws new light on the evolution of human altruistic and cooperative behaviour, and particularly 'strong reciprocity'. The notion that distinctively human altruism and cooperation could have been an adaptive trait in a past environment that is no longer evident in the modern world provides a novel addition to theory that seeks to account for this major evolutionary puzzle.

  17. Evolutionary games in the multiverse

    PubMed Central

    Gokhale, Chaitanya S.; Traulsen, Arne

    2010-01-01

    Evolutionary game dynamics of two players with two strategies has been studied in great detail. These games have been used to model many biologically relevant scenarios, ranging from social dilemmas in mammals to microbial diversity. Some of these games may, in fact, take place between a number of individuals and not just between two. Here we address one-shot games with multiple players. As long as we have only two strategies, many results from two-player games can be generalized to multiple players. For games with multiple players and more than two strategies, we show that statements derived for pairwise interactions no longer hold. For two-player games with any number of strategies there can be at most one isolated internal equilibrium. For any number of players with any number of strategies , there can be at most isolated internal equilibria. Multiplayer games show a great dynamical complexity that cannot be captured based on pairwise interactions. Our results hold for any game and can easily be applied to specific cases, such as public goods games or multiplayer stag hunts. PMID:20212124

  18. Neighbourhood reaction in the evolution of cooperation.

    PubMed

    Yang, Guoli; Zhang, Weiming; Xiu, Baoxin

    2015-05-07

    Combining evolutionary games with adaptive networks, an entangled model between strategy evolution and structure adaptation is researched in this paper. We consider a large population of cooperators C and defectors D placed in the networks, playing the repeated prisoner׳s dilemma (PD) games. Because of the conflicts between social welfare and personal rationality, both strategy and structure are allowed to change. In this paper, the dynamics of strategy originates form the partner imitation based on social learning and the dynamics of structure is driven by the active linking and neighbourhood reaction. Notably, the neighbourhood reaction is investigated considering the changes of interfaces between cooperators and defectors, where some neighbours may get away from the interface once the focal agent changes to different strategy. A rich landscape is demonstrated by changing various embedding parameters, which sheds light upon that reacting promptly to the shifted neighbour will promote the prevalence of cooperation. Our model encapsulates the dynamics of strategy, reaction and structure into the evolutionary games, which manifests some intriguing principles in the competition between two groups in natural populations, artificial systems and even human societies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals

    PubMed Central

    Sunagar, Kartik; Moran, Yehu

    2015-01-01

    Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a ‘two-speed’ mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species–the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia–the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal venoms. PMID:26492532

  20. Harnessing recombination to speed adaptive evolution in Escherichia coli.

    PubMed

    Winkler, James; Kao, Katy C

    2012-09-01

    Evolutionary engineering typically involves asexual propagation of a strain to improve a desired phenotype. However, asexual populations suffer from extensive clonal interference, a phenomenon where distinct lineages of beneficial clones compete and are often lost from the population given sufficient time. Improved adaptive mutants can likely be generated by genetic exchange between lineages, thereby reducing clonal interference. We present a system that allows continuous in situ recombination by using an Esherichia coli F-based conjugation system lacking surface exclusion. Evolution experiments revealed that Hfr-mediated recombination significantly speeds adaptation in certain circumstances. These results show that our system is stable, effective, and suitable for use in evolutionary engineering applications. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The Origin of Species by Means of Mathematical Modelling.

    PubMed

    Bessonov, Nikolai; Reinberg, Natalia; Banerjee, Malay; Volpert, Vitaly

    2018-04-30

    Darwin described biological species as groups of morphologically similar individuals. These groups of individuals can split into several subgroups due to natural selection, resulting in the emergence of new species. Some species can stay stable without the appearance of a new species, some others can disappear or evolve. Some of these evolutionary patterns were described in our previous works independently of each other. In this work we have developed a single model which allows us to reproduce the principal patterns in Darwin's diagram. Some more complex evolutionary patterns are also observed. The relation between Darwin's definition of species, stated above, and Mayr's definition of species (group of individuals that can reproduce) is also discussed.

  2. Hierarchical classification with a competitive evolutionary neural tree.

    PubMed

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  3. Evolutionary Technologies: Fundamentals and Applications to Information/Communication Systems and Manufacturing/Logistics Systems

    NASA Astrophysics Data System (ADS)

    Gen, Mitsuo; Kawakami, Hiroshi; Tsujimura, Yasuhiro; Handa, Hisashi; Lin, Lin; Okamoto, Azuma

    As efficient utilization of computational resources is increasing, evolutionary technology based on the Genetic Algorithm (GA), Genetic Programming (GP), Evolution Strategy (ES) and other Evolutionary Computations (ECs) is making rapid progress, and its social recognition and the need as applied technology are increasing. This is explained by the facts that EC offers higher robustness for knowledge information processing systems, intelligent production and logistics systems, most advanced production scheduling and other various real-world problems compared to the approaches based on conventional theories, and EC ensures flexible applicability and usefulness for any unknown system environment even in a case where accurate mathematical modeling fails in the formulation. In this paper, we provide a comprehensive survey of the current state-of-the-art in the fundamentals and applications of evolutionary technologies.

  4. The evolutionary origins of Lévy walk foraging

    PubMed Central

    Wosniack, Marina E.

    2017-01-01

    We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. PMID:28972973

  5. Effective seeding strategy in evolutionary prisoner's dilemma games on online social networks

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Shi, Huibin; Wang, Jianwei; Huang, Yun

    2015-04-01

    This paper explores effective seeding strategies in prisoner's dilemma game (PDG) on online social networks, i.e. the optimal strategy to obtain global cooperation with minimum cost. Three distinct seeding strategies are compared by performing computer simulations on real online social network datasets. Our finding suggests that degree centrality seeding outperforms other strategies regardless of the initial payoff setting or network size. Celebrities of online social networks play key roles in preserving cooperation.

  6. Attachment within life history theory: an evolutionary perspective on individual differences in attachment.

    PubMed

    Szepsenwol, Ohad; Simpson, Jeffry A

    2018-03-15

    In this article, we discuss theory and research on how individual differences in adult attachment mediate the adaptive calibration of reproductive strategies, cognitive schemas, and emotional expression and regulation. We first present an integration of attachment theory and life history theory. Then, we discuss how early harsh and/or unpredictable environments may promote insecure attachment by hampering parents' ability to provide sensitive and reliable care to their children. Finally, we discuss how, in the context of harsh and/or unpredictable environments, different types of insecure attachment (i.e. anxiety and avoidance) may promote evolutionary adaptive reproductive strategies, cognitive schemas, and emotional expression and regulation profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  8. Thermodynamical stability of FRW models with quintessence

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Ashraf, Sara

    2018-03-01

    In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.

  9. Recombination in maize is stable, predictable, and associated with genetic load: a joint study of the US and Chinese maize NAM populations

    USDA-ARS?s Scientific Manuscript database

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favora...

  10. Multi-Objective and Multidisciplinary Design Optimisation (MDO) of UAV Systems using Hierarchical Asynchronous Parallel Evolutionary Algorithms

    DTIC Science & Technology

    2007-09-17

    been proposed; these include a combination of variable fidelity models, parallelisation strategies and hybridisation techniques (Coello, Veldhuizen et...Coello et al (Coello, Veldhuizen et al. 2002). 4.4.2 HIERARCHICAL POPULATION TOPOLOGY A hierarchical population topology, when integrated into...to hybrid parallel Multi-Objective Evolutionary Algorithms (pMOEA) (Cantu-Paz 2000; Veldhuizen , Zydallis et al. 2003); it uses a master slave

  11. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages.

    PubMed

    Ying, Bei-Wen; Honda, Tomoya; Tsuru, Saburo; Seno, Shigeto; Matsuda, Hideo; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-01-01

    Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.

  12. Computationally mapping sequence space to understand evolutionary protein engineering.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce

    2008-01-01

    Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.

  13. An evolutionary model of cooperation, fairness and altruistic punishment in public good games.

    PubMed

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment.

  14. An Evolutionary Model of Cooperation, Fairness and Altruistic Punishment in Public Good Games

    PubMed Central

    Hetzer, Moritz; Sornette, Didier

    2013-01-01

    We identify and explain the mechanisms that account for the emergence of fairness preferences and altruistic punishment in voluntary contribution mechanisms by combining an evolutionary perspective together with an expected utility model. We aim at filling a gap between the literature on the theory of evolution applied to cooperation and punishment, and the empirical findings from experimental economics. The approach is motivated by previous findings on other-regarding behavior, the co-evolution of culture, genes and social norms, as well as bounded rationality. Our first result reveals the emergence of two distinct evolutionary regimes that force agents to converge either to a defection state or to a state of coordination, depending on the predominant set of self- or other-regarding preferences. Our second result indicates that subjects in laboratory experiments of public goods games with punishment coordinate and punish defectors as a result of an aversion against disadvantageous inequitable outcomes. Our third finding identifies disadvantageous inequity aversion as evolutionary dominant and stable in a heterogeneous population of agents endowed initially only with purely self-regarding preferences. We validate our model using previously obtained results from three independently conducted experiments of public goods games with punishment. PMID:24260101

  15. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  16. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations.

    PubMed

    Gibb, Gillian C; Kardailsky, Olga; Kimball, Rebecca T; Braun, Edward L; Penny, David

    2007-01-01

    We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.

  17. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  18. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra.

    PubMed

    Buckley, David; Alcobendas, Marina; García-París, Mario; Wake, Marvalee H

    2007-01-01

    The way in which novelties that lead to macroevolutionary events originate is a major question in evolutionary biology, and one that can be addressed using the fire salamander (Salamandra salamandra) as a model system. It is exceptional among amphibians in displaying intraspecific diversity of reproductive strategies. In S. salamandra, two distinct modes of reproduction co-occur: the common mode, ovoviviparity (females giving birth to many small larvae), and a phylogenetically derived reproductive strategy, viviparity (females producing only a few large, fully metamorphosed juveniles, which are nourished maternally). We examine the relationship between heterochronic modifications of the ontogeny and the evolution of the new reproductive mode in the fire salamander. The in vitro development of embryos of ovoviviparous and viviparous salamanders from fertilization to metamorphosis is compared, highlighting the key events that distinguish the two modes of reproduction. We identify the heterochronic events that, together with the intrauterine cannibalistic behavior, characterize the derived viviparous reproductive strategy. The ways in which evolutionary novelties can arise by modification of developmental programs can be studied in S. salamandra. Moreover, the variation in reproductive modes and the associated variation of sequences of development occur in neighboring, conspecific populations. Thus, S. salamandra is a unique biological system in which evolutionary developmental research questions can be addressed at the level of populations.

  19. Evolutionary Strategies for Protein Folding

    NASA Astrophysics Data System (ADS)

    Murthy Gopal, Srinivasa; Wenzel, Wolfgang

    2006-03-01

    The free energy approach for predicting the protein tertiary structure describes the native state of a protein as the global minimum of an appropriate free-energy forcefield. The low-energy region of the free-energy landscape of a protein is extremely rugged. Efficient optimization methods must therefore speed up the search for the global optimum by avoiding high energy transition states, adapt large scale moves or accept unphysical intermediates. Here we investigate an evolutionary strategies(ES) for optimizing a protein conformation in our all-atom free-energy force field([1],[2]). A set of random conformations is evolved using an ES to get a diverse population containing low energy structure. The ES is shown to balance energy improvement and yet maintain diversity in structures. The ES is implemented as a master-client model for distributed computing. Starting from random structures and by using this optimization technique, we were able to fold a 20 amino-acid helical protein and 16 amino-acid beta hairpin[3]. We compare ES to basin hopping method. [1]T. Herges and W. Wenzel,Biophys.J. 87,3100(2004) [2] A. Verma and W. Wenzel Stabilization and folding of beta-sheet and alpha-helical proteins in an all-atom free energy model(submitted)(2005) [3] S. M. Gopal and W. Wenzel Evolutionary Strategies for Protein Folding (in preparation)

  20. Lessons from applied ecology: cancer control using an evolutionary double bind.

    PubMed

    Gatenby, Robert A; Brown, Joel; Vincent, Thomas

    2009-10-01

    Because the metastatic cascade is largely governed by the ability of malignant cells to adapt and proliferate at the distant tissue site, we propose that disseminated cancers are analogous in many important ways to the evolutionary and ecological dynamics of exotic species. Although pests can be decimated through the application of chemical toxins, this strategy virtually never achieves robust control as evolution of resistant phenotypes typically permits population recovery to pretreatment levels. In general, biological strategies that introduce predators, parasitoids, or pathogens have achieved more durable control of pest populations even after emergence of resistant phenotypes. From this we propose that long term outcome from any treatment strategy for invasive pests, including cancer, is not limited by evolution of resistance, but rather by the phenotypic cost of that resistance. If a cancerous cell's adaptation to therapy is achieved by upregulating xenobiotic metabolism or a redundant signaling pathway, the required investment in resources is small, and the original malignant phenotype remains essentially intact. As a result, the cancer cells' initial high level of fitness is little changed and unconstrained proliferation will resume once resistance evolves. Robust population control is possible if resistance to therapy requires a substantial and costly phenotypic adaptation that also significantly reduces the organism's fitness in its original niche: an evolutionary double bind.

  1. Wavelet evolutionary network for complex-constrained portfolio rebalancing

    NASA Astrophysics Data System (ADS)

    Suganya, N. C.; Vijayalakshmi Pai, G. A.

    2012-07-01

    Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.

  2. Using creation science to demonstrate evolution? Senter's strategy revisited.

    PubMed

    Wood, T C

    2011-04-01

    Senter's strategy of arguing against creationism using their own methodology focused on demonstrating a morphological continuum between birds and nonavian dinosaurs using classical multidimensional scaling (CMDS), a method used by some creationists to assign species to assist in the detection of phylogenetic 'discontinuities.' Because creationists do not typically use CMDS in the manner Senter used it, his results were re-examined using 'distance correlation,' a method used to assign species to 'created kinds.' Distance correlation using Senter's set of taxa and characters supports his conclusion of morphological continuity, but other sets of taxa with more characters do not. These results lessen the potential impact that Senter's strategy might have on creationism; however, it is possible that future fossil discoveries will provide stronger support for morphological continuity between dinosaurs and birds. © 2011 The Author. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  3. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  4. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  5. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  6. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  7. Evolutionary snowdrift game incorporating costly punishment in structured populations

    NASA Astrophysics Data System (ADS)

    Chan, Nat W. H.; Xu, C.; Tey, Siew Kian; Yap, Yee Jiun; Hui, P. M.

    2013-01-01

    The role of punishment and the effects of a structured population in promoting cooperation are important issues. Within a recent model of snowdrift game (SG) incorporating a costly punishing strategy (P), we study the effects of a population connected through a square lattice. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α, β, the cost-to-benefit ratio r in SG, and the initial conditions, the system evolves into different phases that could be homogeneous or inhomogeneous. The spatial structure imposes geometrical constraint on how one agent is affected by neighboring agents. Results of extensive numerical simulations, both for the steady state and the dynamics, are presented. Possible phases are identified and discussed, and isolated phases in the r-β space are identified as special local structures of strategies that are stable due to the lattice structure. In contrast to a well-mixed population where punishers are suppressed due to the cost of punishment, the altruistic punishing strategy can flourish and prevail for appropriate values of the parameters, implying an enhancement in cooperation by imposing punishments in a structured population. The system could evolve to a phase corresponding to the coexistence of C, D, and P strategies at some particular payoff parameters, and such a phase is absent in a well-mixed population. The pair approximation, a commonly used analytic approach, is extended from a two-strategy system to a three-strategy system. We show that the pair approximation can, at best, capture the numerical results only qualitatively. Due to the improper way of including spatial correlation imposed by the lattice structure, the approximation does not give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD and AllP phases.

  8. A contact anti-aphrodisiac pheromone supplied by the spermatophore in the rove beetle Aleochara curtula: mode of transfer and evolutionary significance

    NASA Astrophysics Data System (ADS)

    Schlechter-Helas, Jerry; Schmitt, Thomas; Peschke, Klaus

    2011-10-01

    By reducing the attractiveness of their mating partner via an anti-aphrodisiac pheromone, males can prevent a remating of the female and thus reduce the risk of sperm competition. For females, the main benefit from allowing the chemical manipulation of their attractiveness is probably the avoidance of sexual harassments from rival males. While mating plugs generally constitute a physical barrier which hinders male mating attempts, chemical manipulations must trustfully inform the responding male of the female's reluctance to mate; otherwise, it would be beneficial to ignore the repellent information. In our experiments, males of the polyandrous rove beetle Aleochara curtula chemically manipulated the attractiveness of their mating partner. Coincident with the deposition of a spermatophore into the female genital chamber, an anti-aphrodisiac pheromone was transferred and readily spread onto the female surface, where it was subsequently perceived by rival males via parameres, the claspers of the male genitalia. Males aborted contact with the mated female to avoid further time- and energy-consuming elements of the mating sequence. The chemical mode of action was demonstrated inter alia by spicing virgin females with spermatophore extracts. The action of the anti-aphrodisiac correlated with the persistence of the spermatophore in the female genital chamber and corresponded to the length of stay of the mated female at a carcass, where the density of rival males is highest. The ensuing benefits for all three parties involved in this communication system, which render this post-copulatory mate guarding strategy evolutionary stable, are discussed.

  9. Contrasting behavioral and feeding strategies recorded by tidal-flat bivalve trace fossils from the Upper Carboniferous of eastern Kansas

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.; West, R.R.; Maples, C.G.

    1998-01-01

    Upper Carboniferous tidal-flat deposits near Waverly, eastern Kansas (Stull Shale Member, Kanwaka Shale Formation), host abundant and very well-preserved trace fossils attributed to the activity of burrowing bivalves. Thin shell lenses with an abundant bivalve fauna area associated with the ichnofossil-bearing beds and afford an unusual opportunity to relate trace fossils to their makers. Two distinctive life and feeding strategies can be reconstructed on the basis of trace fossil analysis and functional morphology. Lockeria siliquaria hyporeliefs commonly are connected with vertical to inclined, truncated endichnial shafts in the absence of horizontal locomotion traces. These structures record vertical and oblique displacement through the sediment, and suggest relatively stable domiciles rather than temporary resting traces as typically considered. Crowded bedding surfaces displaying cross-cutting relationships between specimens of L. siliquaria and differential preservation at the top (concave versus convex epireliefs) record a complex history of successive events of colonization, erosion, deposition, and recolonization (time-averaged assemblages). Irregujlar contours of some large hypichnia indicate the cast of the foot, while other outlines closely match the anterior area of Wilkingia, its suggested tracemaker. Relatively stable, vertical to inclined life positions and dominanit vertical mobility suggest a filter-feeding strategy. Moreover, the elongate shell and pallial sinus of Wilkingia providfe a strong independent line of evidence for an opisthosiphonate, moderately deep-tier inhabitant. Wilingia may represent a pioneer attempt at siphon-feeding in the late Paleozoic, preceding the outcome of the Mesozoic infaunal radiation. A second strategy is represented by Lockeia ornata and association locomotionm and locomotion/feding structures. Lockeia ornata is commonly connected with chevron locomotion traces that record the bifurcated foot of a protobranch bivalve. Lockeia ornata exhibits distinctive, fine, parallel lines that mimic the ornamentation of Phestia, a nuculanid protobranch bivalve. Rosary and radial structures give evidence of a patterned search for food. Lockeia ornata and associated Protovirgularia record dominant horizontal locomoton and suggest the activity of deposit-feeding bivalves. Morphologic variability of Protovirgularia was controlled by substrate fluidity, which was dependent on sediment heterogeneity and tidal-cycle dynamics. This study demonstrates that detailed analysis of bivalve traces provides valuable information on bivalve ethology and paleoecology, evolutionary innovations, environmental dynamics, and substrate fluidity.

  10. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour.

    PubMed

    Woo, Kerry J; Elliott, Kyle Hamish; Davidson, Melissa; Gaston, Anthony J; Davoren, Gail K

    2008-11-01

    1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology, specialization likely represents learning and memorizing optimal feeding locations and behaviours. 6. There was no difference in survival or reproductive success between specialists and generalists, suggesting these are largely equivalent strategies in terms of evolutionary fitness, presumably because different strategies were advantageous at different levels of prey abundance or predictability. The development of individual specialization may be an important precursor to diversification among seabirds.

  11. Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions

    PubMed Central

    Helbing, Dirk; Szolnoki, Attila; Perc, Matjaž; Szabó, György

    2010-01-01

    Situations where individuals have to contribute to joint efforts or share scarce resources are ubiquitous. Yet, without proper mechanisms to ensure cooperation, the evolutionary pressure to maximize individual success tends to create a tragedy of the commons (such as over-fishing or the destruction of our environment). This contribution addresses a number of related puzzles of human behavior with an evolutionary game theoretical approach as it has been successfully used to explain the behavior of other biological species many times, from bacteria to vertebrates. Our agent-based model distinguishes individuals applying four different behavioral strategies: non-cooperative individuals (“defectors”), cooperative individuals abstaining from punishment efforts (called “cooperators” or “second-order free-riders”), cooperators who punish non-cooperative behavior (“moralists”), and defectors, who punish other defectors despite being non-cooperative themselves (“immoralists”). By considering spatial interactions with neighboring individuals, our model reveals several interesting effects: First, moralists can fully eliminate cooperators. This spreading of punishing behavior requires a segregation of behavioral strategies and solves the “second-order free-rider problem”. Second, the system behavior changes its character significantly even after very long times (“who laughs last laughs best effect”). Third, the presence of a number of defectors can largely accelerate the victory of moralists over non-punishing cooperators. Fourth, in order to succeed, moralists may profit from immoralists in a way that appears like an “unholy collaboration”. Our findings suggest that the consideration of punishment strategies allows one to understand the establishment and spreading of “moral behavior” by means of game-theoretical concepts. This demonstrates that quantitative biological modeling approaches are powerful even in domains that have been addressed with non-mathematical concepts so far. The complex dynamics of certain social behaviors become understandable as the result of an evolutionary competition between different behavioral strategies. PMID:20454464

  12. How to Handle Speciose Clades? Mass Taxon-Sampling as a Strategy towards Illuminating the Natural History of Campanula (Campanuloideae)

    PubMed Central

    Mansion, Guilhem; Parolly, Gerald; Crowl, Andrew A.; Mavrodiev, Evgeny; Cellinese, Nico; Oganesian, Marine; Fraunhofer, Katharina; Kamari, Georgia; Phitos, Dimitrios; Haberle, Rosemarie; Akaydin, Galip; Ikinci, Nursel; Raus, Thomas; Borsch, Thomas

    2012-01-01

    Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades. PMID:23209646

  13. Mega-evolutionary dynamics of the adaptive radiation of birds.

    PubMed

    Cooney, Christopher R; Bright, Jen A; Capp, Elliot J R; Chira, Angela M; Hughes, Emma C; Moody, Christopher J A; Nouri, Lara O; Varley, Zoë K; Thomas, Gavin H

    2017-02-16

    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow-downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin's finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowdsourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks.

  14. Parasites and deleterious mutations: interactions influencing the evolutionary maintenance of sex.

    PubMed

    Park, A W; Jokela, J; Michalakis, Y

    2010-05-01

    The restrictive assumptions associated with purely genetic and purely ecological mechanisms suggest that neither of the two forces, in isolation, can offer a general explanation for the evolutionary maintenance of sex. Consequently, attention has turned to pluralistic models (i.e. models that apply both ecological and genetic mechanisms). Existing research has shown that combining mutation accumulation and parasitism allows restrictive assumptions about genetic and parasite parameter values to be relaxed while still predicting the maintenance of sex. However, several empirical studies have shown that deleterious mutations and parasitism can reduce fitness to a greater extent than would be expected if the two acted independently. We show how interactions between these genetic and ecological forces can completely reverse predictions about the evolution of reproductive modes. Moreover, we demonstrate that synergistic interactions between infection and deleterious mutations can render sex evolutionarily stable even when there is antagonistic epistasis among deleterious mutations, thereby widening the conditions for the evolutionary maintenance of sex.

  15. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Emergence of a novel prey life history promotes contemporary sympatric diversification in a top predator.

    PubMed

    Brodersen, Jakob; Howeth, Jennifer G; Post, David M

    2015-09-14

    Intraspecific phenotypic variation can strongly impact community and ecosystem dynamics. Effects of intraspecific variation in keystone species have been shown to propagate down through the food web by altering the adaptive landscape for other species and creating a cascade of ecological and evolutionary change. However, similar bottom-up eco-evolutionary effects are poorly described. Here we show that life history diversification in a keystone prey species, the alewife (Alosa pseudoharengus), propagates up through the food web to promote phenotypic diversification in its native top predator, the chain pickerel (Esox niger), on contemporary timescales. The landlocking of alewife by human dam construction has repeatedly created a stable open water prey resource, novel to coastal lakes, that has promoted the parallel emergence of a habitat polymorphism in chain pickerel. Understanding how strong interactions propagate through food webs to influence diversification across multiple trophic levels is critical to understand eco-evolutionary interactions in complex natural ecosystems.

  17. Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission.

    PubMed

    Boldin, Barbara; Kisdi, Éva

    2016-03-01

    Evolutionary suicide is a riveting phenomenon in which adaptive evolution drives a viable population to extinction. Gyllenberg and Parvinen (Bull Math Biol 63(5):981-993, 2001) showed that, in a wide class of deterministic population models, a discontinuous transition to extinction is a necessary condition for evolutionary suicide. An implicit assumption of their proof is that the invasion fitness of a rare strategy is well-defined also in the extinction state of the population. Epidemic models with frequency-dependent incidence, which are often used to model the spread of sexually transmitted infections or the dynamics of infectious diseases within herds, violate this assumption. In these models, evolutionary suicide can occur through a non-catastrophic bifurcation whereby pathogen adaptation leads to a continuous decline of host (and consequently pathogen) population size to zero. Evolutionary suicide of pathogens with frequency-dependent transmission can occur in two ways, with pathogen strains evolving either higher or lower virulence.

  18. Asynchronous spatial evolutionary games.

    PubMed

    Newth, David; Cornforth, David

    2009-02-01

    Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.

  19. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  20. Evo-devo of human adolescence: beyond disease models of early puberty

    PubMed Central

    2013-01-01

    Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research. PMID:23627891

  1. Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes

    PubMed Central

    Augstenová, Barbora; Rovatsos, Michail

    2017-01-01

    The caenophidian (assigned also as “advanced”) snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length. PMID:29283388

  2. The Effects of Extra-Somatic Weapons on the Evolution of Human Cooperation towards Non-Kin

    PubMed Central

    Phillips, Tim; Li, Jiawei; Kendall, Graham

    2014-01-01

    Human cooperation and altruism towards non-kin is a major evolutionary puzzle, as is ‘strong reciprocity’ where no present or future rewards accrue to the co-operator/altruist. Here, we test the hypothesis that the development of extra-somatic weapons could have influenced the evolution of human cooperative behaviour, thus providing a new explanation for these two puzzles. Widespread weapons use could have made disputes within hominin groups far more lethal and also equalized power between individuals. In such a cultural niche non-cooperators might well have become involved in such lethal disputes at a higher frequency than cooperators, thereby increasing the relative fitness of genes associated with cooperative behaviour. We employ two versions of the evolutionary Iterated Prisoner's Dilemma (IPD) model – one where weapons use is simulated and one where it is not. We then measured the performance of 25 IPD strategies to evaluate the effects of weapons use on them. We found that cooperative strategies performed significantly better, and non-cooperative strategies significantly worse, under simulated weapons use. Importantly, the performance of an ‘Always Cooperate’ IPD strategy, equivalent to that of ‘strong reciprocity’, improved significantly more than that of all other cooperative strategies. We conclude that the development of extra-somatic weapons throws new light on the evolution of human altruistic and cooperative behaviour, and particularly ‘strong reciprocity’. The notion that distinctively human altruism and cooperation could have been an adaptive trait in a past environment that is no longer evident in the modern world provides a novel addition to theory that seeks to account for this major evolutionary puzzle. PMID:24796325

  3. Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution.

    PubMed

    Chakrabarti, Shaon; Michor, Franziska

    2017-07-15

    The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. Cancer Res; 77(14); 3908-21. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Comparative statics of games between relatives.

    PubMed

    Milchtaich, Igal

    2006-03-01

    According to Hamilton's theory of kin selection, species tend to evolve behavior such that each organism appears to be attempting to maximize its inclusive fitness. In particular, two neighbors are likely to help each other if the cost of doing so is less than the benefit multiplied by r, their coefficient of relatedness. Since the latter is less than unity, mutual altruism benefits both neighbors. However, is it theoretically possible that acting so as to maximize the inclusive, rather than personal, fitness may harm both parties. This may occur in strategic symmetric pairwise interactions (more specifically, nxn games), in which the outcome depends on both sides' actions. In this case, the equilibrium outcome may be less favorable to the interactants' personal fitness than if each of them acted so as to maximize the latter. This paper shows, however, that such negative effect of relatedness on fitness is incompatible with evolutionary stability. If the symmetric equilibrium strategies are evolutionarily stable, a higher coefficient of relatedness can only entail higher personal fitness for the two neighbors. This suggests that negative comparative statics as above are not likely to occur in nature.

  5. A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks

    PubMed Central

    Liu, Jianhua; Yue, Guangxue; Shang, Huiliang; Li, Hongjie

    2014-01-01

    The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security. PMID:25105171

  6. Stability and robustness analysis of cooperation cycles driven by destructive agents in finite populations

    NASA Astrophysics Data System (ADS)

    Requejo, Rubén J.; Camacho, Juan; Cuesta, José A.; Arenas, Alex

    2012-08-01

    The emergence and promotion of cooperation are two of the main issues in evolutionary game theory, as cooperation is amenable to exploitation by defectors, which take advantage of cooperative individuals at no cost, dooming them to extinction. It has been recently shown that the existence of purely destructive agents (termed jokers) acting on the common enterprises (public goods games) can induce stable limit cycles among cooperation, defection, and destruction when infinite populations are considered. These cycles allow for time lapses in which cooperators represent a relevant fraction of the population, providing a mechanism for the emergence of cooperative states in nature and human societies. Here we study analytically and through agent-based simulations the dynamics generated by jokers in finite populations for several selection rules. Cycles appear in all cases studied, thus showing that the joker dynamics generically yields a robust cyclic behavior not restricted to infinite populations. We also compute the average time in which the population consists mostly of just one strategy and compare the results with numerical simulations.

  7. A theoretical model of the evolution of maternal effects under parent-offspring conflict.

    PubMed

    Uller, Tobias; Pen, Ido

    2011-07-01

    The evolution of maternal effects on offspring phenotype should depend on the extent of parent-offspring conflict and costs and constraints associated with maternal and offspring strategies. Here, we develop a model of maternal effects on offspring dispersal phenotype under parent-offspring conflict to evaluate such dependence. In the absence of evolutionary constraints and costs, offspring evolve dispersal rates from different patch types that reflect their own, rather than the maternal, optima. This result also holds true when offspring are unable to assess their own environment because the maternal phenotype provides an additional source of information. Consequently, maternal effects on offspring diapause, dispersal, and other traits that do not necessarily represent costly resource investment are more likely to maximize offspring than maternal fitness. However, when trait expression was costly, the evolutionarily stable dispersal rates tended to deviate from those under both maternal and offspring control. We use our results to (re)interpret some recent work on maternal effects and their adaptive value and provide suggestions for future work. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  9. A game-theoretic response strategy for coordinator attack in wireless sensor networks.

    PubMed

    Liu, Jianhua; Yue, Guangxue; Shen, Shigen; Shang, Huiliang; Li, Hongjie

    2014-01-01

    The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security.

  10. Multiobjective optimization of temporal processes.

    PubMed

    Song, Zhe; Kusiak, Andrew

    2010-06-01

    This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.

  11. Hawks, doves, and mixed-symmetry games.

    PubMed

    Crowley, P H

    2000-06-21

    The hawk-dove game has proved to be an important tool for understanding the role of aggression in social interactions. Here, the game is presented in a more general form (GHD) to facilitate analyses of interactions between individuals that may differ in "size", where size is interpreted as a surrogate for resource holding power. Three different situations are considered, based on the availability and use of information that interacting individuals have about their sizes: the classical symmetric case, in which no information about sizes is used, the asymmetric case, in which the individuals know their relative sizes and thus their chances of prevailing in combat, and a mixed-symmetry case, in which each individual only knows its own size (or only knows its opponent's size). I describe and use some recently developed methods for multitype games-evolutionary games involving two or more categories of players. With these methods and others, the evolutionarily stable strategies (ESSs) that emerge for the three different cases are identified and compared. A proof of the form and uniqueness of the ESS for the mixed-symmetry case is presented. In this situation, one size category at most can play a mixed strategy; larger individuals are aggressive and smaller individuals are not. As the number of size categories approaches infinity and the size distribution becomes continuous, there is a threshold size, above which all individuals are aggressive, and below which they are not. Copyright 2000 Academic Press.

  12. Specialist Individuals, Generalist Populations, and Gentoo Penguin Foraging Ecology Across the Scotia Arc During a Time of Rapid Environmental Change

    NASA Astrophysics Data System (ADS)

    Herman, R.; Polito, M. J.

    2016-02-01

    Populations of Gentoo penguins (Pygoscelis papua), have increased in the Scotia arc in the last four decades, while sister species such as Chinstrap (P. antarctics) and Adélie penguins (P. adeliae) have experienced substantial declines in numbers. Previous dietary analyses suggest Gentoo penguins have a generalist foraging niche, which may help buffer them from recent climate-driven declines in key prey species, such as Antarctic krill (Euphausia superba). Ecological theory indicates that generalist populations fall under two different categories: Type A generalist populations exhibit large variation within individuals, and little variation between individuals, where Type B generalist populations are comprised of individual specialists, with large variation between individuals. It is important to identify which type of generalist population Gentoo penguins fall under, as these strategies impart differing ecological and evolutionary ramifications under times of environmental change. We conducted stable isotope analysis using tail feathers from Gentoo penguins at four breeding sites across the Scotia arc, including the Falkland Islands, South Georgia, the South Shetland Islands, and the Western Antarctic Peninsula, to assess individual variation in winter diets and determine the type of generalist strategies that Gentoo penguins utilize. Preliminary analysis indicates the presence of individual specialization within the four geographically distinct breeding colonies, suggesting that individual resilience to further shifts in food availability may vary within Gentoo penguin populations.

  13. Night owl women are similar to men in their relationship orientation, risk-taking propensities, and cortisol levels: Implications for the adaptive significance and evolution of eveningness.

    PubMed

    Maestripieri, Dario

    2014-02-24

    Individual differences in morningness/eveningness are relatively stable over time and, in part, genetically based. The night-owl pattern is more prevalent in men than in women, particularly after puberty and before women reach menopause. It has been suggested that eveningness evolved relatively recently in human evolutionary history and that this trait may be advantageous to individuals pursuing short-term mating strategies. Consistent with this hypothesis, eveningness is associated with extraversion, novelty-seeking, and in males, with a higher number of sexual partners. In this study, I investigated whether eveningness is associated with short-term relationship orientation, higher risk-taking, and higher testosterone or cortisol. Both female and male night-owls were more likely to be single than in long-term relationships than early morning individuals. Eveningness was associated with higher risk-taking in women but not in men; this association was not testosterone-dependent but mediated by cortisol. Female night-owls had average cortisol profiles and risk-taking tendencies more similar to those of males than to those of early-morning females. Taken together, these findings provide some support to the hypothesis that eveningness is associated with psychological and behavioral traits that are instrumental in short-term mating strategies, with the evidence being stronger for women than for men.

  14. Cooperation induces other cooperation: Fruiting bodies promote the evolution of macrocysts in Dictyostelium discoideum.

    PubMed

    Shibasaki, Shota; Shirokawa, Yuka; Shimada, Masakazu

    2017-05-21

    Biological studies of the evolution of cooperation are challenging because this process is vulnerable to cheating. Many mechanisms, including kin discrimination, spatial structure, or by-products of self-interested behaviors, can explain this evolution. Here we propose that the evolution of cooperation can be induced by other cooperation. To test this idea, we used a model organism Dictyostelium discoideum because it exhibits two cooperative dormant phases, the fruiting body and the macrocyst. In both phases, the same chemoattractant, cyclic AMP (cAMP), is used to collect cells. This common feature led us to hypothesize that the evolution of macrocyst formation would be induced by coexistence with fruiting bodies. Before forming a mathematical model, we confirmed that macrocysts coexisted with fruiting bodies, at least under laboratory conditions. Next, we analyzed our evolutionary game theory-based model to investigate whether coexistence with fruiting bodies would stabilize macrocyst formation. The model suggests that macrocyst formation represents an evolutionarily stable strategy and a global invader strategy under this coexistence, but is unstable if the model ignores the fruiting body formation. This result indicates that the evolution of macrocyst formation and maintenance is attributable to coexistence with fruiting bodies. Therefore, macrocyst evolution can be considered as an example of evolution of cooperation induced by other cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Why Darwin would have loved evolutionary game theory

    PubMed Central

    2016-01-01

    Humans have marvelled at the fit of form and function, the way organisms' traits seem remarkably suited to their lifestyles and ecologies. While natural selection provides the scientific basis for the fit of form and function, Darwin found certain adaptations vexing or particularly intriguing: sex ratios, sexual selection and altruism. The logic behind these adaptations resides in frequency-dependent selection where the value of a given heritable phenotype (i.e. strategy) to an individual depends upon the strategies of others. Game theory is a branch of mathematics that is uniquely suited to solving such puzzles. While game theoretic thinking enters into Darwin's arguments and those of evolutionists through much of the twentieth century, the tools of evolutionary game theory were not available to Darwin or most evolutionists until the 1970s, and its full scope has only unfolded in the last three decades. As a consequence, game theory is applied and appreciated rather spottily. Game theory not only applies to matrix games and social games, it also applies to speciation, macroevolution and perhaps even to cancer. I assert that life and natural selection are a game, and that game theory is the appropriate logic for framing and understanding adaptations. Its scope can include behaviours within species, state-dependent strategies (such as male, female and so much more), speciation and coevolution, and expands beyond microevolution to macroevolution. Game theory clarifies aspects of ecological and evolutionary stability in ways useful to understanding eco-evolutionary dynamics, niche construction and ecosystem engineering. In short, I would like to think that Darwin would have found game theory uniquely useful for his theory of natural selection. Let us see why this is so. PMID:27605503

  16. Why Darwin would have loved evolutionary game theory.

    PubMed

    Brown, Joel S

    2016-09-14

    Humans have marvelled at the fit of form and function, the way organisms' traits seem remarkably suited to their lifestyles and ecologies. While natural selection provides the scientific basis for the fit of form and function, Darwin found certain adaptations vexing or particularly intriguing: sex ratios, sexual selection and altruism. The logic behind these adaptations resides in frequency-dependent selection where the value of a given heritable phenotype (i.e. strategy) to an individual depends upon the strategies of others. Game theory is a branch of mathematics that is uniquely suited to solving such puzzles. While game theoretic thinking enters into Darwin's arguments and those of evolutionists through much of the twentieth century, the tools of evolutionary game theory were not available to Darwin or most evolutionists until the 1970s, and its full scope has only unfolded in the last three decades. As a consequence, game theory is applied and appreciated rather spottily. Game theory not only applies to matrix games and social games, it also applies to speciation, macroevolution and perhaps even to cancer. I assert that life and natural selection are a game, and that game theory is the appropriate logic for framing and understanding adaptations. Its scope can include behaviours within species, state-dependent strategies (such as male, female and so much more), speciation and coevolution, and expands beyond microevolution to macroevolution. Game theory clarifies aspects of ecological and evolutionary stability in ways useful to understanding eco-evolutionary dynamics, niche construction and ecosystem engineering. In short, I would like to think that Darwin would have found game theory uniquely useful for his theory of natural selection. Let us see why this is so. © 2016 The Author(s).

  17. Group I introns are inherited through common ancestry in the nuclear-encoded rRNA of Zygnematales (Charophyceae).

    PubMed Central

    Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M

    1994-01-01

    Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917

  18. Informational Aspects of Isotopic Diversity in Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2004-10-01

    Use of stable and radioactive isotopes in biology and medicine is intensive, yet informational aspects of isotopes as such are largely neglected (A.A.Berezin, J.Theor.Biol.,1992). Classical distinguishability (``labelability'') of isotopes allows for pattern generation dynamics. Quantum mechanically advantages of isotopicity (diversity of stable isotopes) arise from (almost perfect) degeneracy of various isotopic configurations; this in turn allows for isotopic sweeps (hoppings) by resonance neutron tunneling (Eccles mechanism). Isotopic variations of de Broglie wavelength affect quantum tunneling, diffusivity, magnetic interactions (e.g. by Lorentz force), etc. Ergodicity principle (all isoenergetic states are eventually accessed) implies possibility of fast scanning of library of morphogenetic patterns (cf metaphors of universal ``Platonic'' Library of Patterns: e.g. J.L.Borges, R.Sheldrake) with subsequent Darwinian reinforcement (e.g. by targeted mutations) of evolutionary advantageous patterns and structures. Isotopic shifts in organisms, from viruses and protozoa to mammalians, (e.g. DNA with enriched or depleted C-13) are tools to elucidate possible informational (e.g. Shannon entropy) role of isotopicity in genetic (e.g. evolutionary and morphological), dynamical (e.g. physiological and neurological) as well as medical (e.g. carcinogenesis, aging) aspects of biology and medicine.

  19. Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex.

    PubMed

    Shi, Yi; Fernandez-Martinez, Javier; Tjioe, Elina; Pellarin, Riccardo; Kim, Seung Joong; Williams, Rosemary; Schneidman-Duhovny, Dina; Sali, Andrej; Rout, Michael P; Chait, Brian T

    2014-11-01

    Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (∼ 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia

    PubMed Central

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.

    2016-01-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  2. Games of multicellularity.

    PubMed

    Kaveh, Kamran; Veller, Carl; Nowak, Martin A

    2016-08-21

    Evolutionary game dynamics are often studied in the context of different population structures. Here we propose a new population structure that is inspired by simple multicellular life forms. In our model, cells reproduce but can stay together after reproduction. They reach complexes of a certain size, n, before producing single cells again. The cells within a complex derive payoff from an evolutionary game by interacting with each other. The reproductive rate of cells is proportional to their payoff. We consider all two-strategy games. We study deterministic evolutionary dynamics with mutations, and derive exact conditions for selection to favor one strategy over another. Our main result has the same symmetry as the well-known sigma condition, which has been proven for stochastic game dynamics and weak selection. For a maximum complex size of n=2 our result holds for any intensity of selection. For n≥3 it holds for weak selection. As specific examples we study the prisoner's dilemma and hawk-dove games. Our model advances theoretical work on multicellularity by allowing for frequency-dependent interactions within groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The origin, current diversity and future conservation of the modern lion (Panthera leo)

    PubMed Central

    Barnett, Ross; Yamaguchi, Nobuyuki; Barnes, Ian; Cooper, Alan

    2006-01-01

    Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the ‘recent African origin’ model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African–Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration. PMID:16901830

  4. Evolutionary game theory meets social science: is there a unifying rule for human cooperation?

    PubMed

    Rosas, Alejandro

    2010-05-21

    Evolutionary game theory has shown that human cooperation thrives in different types of social interactions with a PD structure. Models treat the cooperative strategies within the different frameworks as discrete entities and sometimes even as contenders. Whereas strong reciprocity was acclaimed as superior to classic reciprocity for its ability to defeat defectors in public goods games, recent experiments and simulations show that costly punishment fails to promote cooperation in the IR and DR games, where classic reciprocity succeeds. My aim is to show that cooperative strategies across frameworks are capable of a unified treatment, for they are governed by a common underlying rule or norm. An analysis of the reputation and action rules that govern some representative cooperative strategies both in models and in economic experiments confirms that the different frameworks share a conditional action rule and several reputation rules. The common conditional rule contains an option between costly punishment and withholding benefits that provides alternative enforcement methods against defectors. Depending on the framework, individuals can switch to the appropriate strategy and method of enforcement. The stability of human cooperation looks more promising if one mechanism controls successful strategies across frameworks. Published by Elsevier Ltd.

  5. Evolutionary dynamics of division of labor games with selfish agents

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Li, Qiaoyu; Zhang, Chunyan

    2017-11-01

    The division of labor is one of the most basic and widely studied aspects of collective behavior in natural systems. Studies of division of labor are concerned with the integration of the individual worker behavior into a colony level task organization and with the question of how the regulation of the division of labor may contribute to the colony efficiency. This paper investigates the evolution of the division of labor with three strategies by employing the evolutionary game theory. Thus, these available strategies are, respectively, strategy A (performing task A), strategy B (performing task B), and strategy D (not performing any task but only free riding others' contributions). And, two typical networks (i.e., BA scale-free network and lattice network) are employed here for describing the interaction structure among agents. The theoretical analysis together with simulation results reveal that the division of labor can evolve and leads to players that differ in their tendency to take on a given task. The conditions under which the division of labor evolves depend on the costs for performing the task, the benefits led by performing the task, and the interaction structures among the players who are involved with division of labor games.

  6. Selfish punishment with avoiding mechanism can alleviate both first-order and second-order social dilemma.

    PubMed

    Cui, Pengbi; Wu, Zhi-Xi

    2014-11-21

    Punishment, especially selfish punishment, has recently been identified as a potent promoter in sustaining or even enhancing the cooperation among unrelated individuals. However, without other key mechanisms, the first-order social dilemma and second-order social dilemma are still two enduring conundrums in biology and the social sciences even with the presence of punishment. In the present study, we investigate a spatial evolutionary four-strategy prisoner׳s dilemma game model with avoiding mechanism, where the four strategies are cooperation, defection, altruistic and selfish punishment. By introducing the low level of random mutation of strategies, we demonstrate that the presence of selfish punishment with avoiding mechanism can alleviate the two kinds of social dilemmas for various parametrizations. In addition, we propose an extended pair approximation method, whose solutions can essentially estimate the dynamical behaviors and final evolutionary frequencies of the four strategies. At last, considering the analogy between our model and the classical Lotka-Volterra system, we introduce interaction webs based on the spatial replicator dynamics and the transformed payoff matrix to qualitatively characterize the emergent co-exist strategy phases, and its validity are supported by extensive simulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants.

    PubMed

    Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud

    2016-02-05

    Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.

  8. On the numerical treatment of selected oscillatory evolutionary problems

    NASA Astrophysics Data System (ADS)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  9. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  10. Coevolving agent strategies and network topology for the public goods games

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Zhang, J. L.; Xie, G. M.; Wang, L.

    2011-03-01

    Much of human cooperation remains an evolutionary riddle. Coevolutionary public goods games in structured populations are studied where players can change from an unproductive public goods game to a productive one, by evaluating the productivity of the public goods games. In our model, each individual participates in games organized by its neighborhood plus by itself. Coevolution here refers to an evolutionary process entailing both deletion of existing links and addition of new links between agents that accompanies the evolution of their strategies. Furthermore, we investigate the effects of time scale separation of strategy and structure on cooperation level. This study presents the following: Foremost, we observe that high cooperation levels in public goods interactions are attained by the entangled coevolution of strategy and structure. Presented results also confirm that the resulting networks show many features of real systems, such as cooperative behavior and hierarchical clustering. The heterogeneity of the interaction network is held responsible for the observed promotion of cooperation. We hope our work may offer an explanation for the origin of large-scale cooperative behavior among unrelated individuals.

  11. Evolutionary game analysis and regulatory strategies for online group-buying based on system dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Zhong; He, Na; Qin, Xuwei; Ip, W. H.; Wu, C. H.; Yung, K. L.

    2018-07-01

    The emergence of online group-buying provides a new consumption pattern for consumers in e-commerce era. However, many consumers realize that their own interests sometimes can't be guaranteed in the group-buying market due to the lack of being regulated. This paper aims to develop effective regulation strategies for online group-buying market. To the best of our knowledge, most existing studies assume that three parties in online group-buying market, i.e. the retailer, the group-buying platform and the consumer, are perfectly rational. To better understand the decision process, in this paper, we incorporate the concept of bounded rationality into consideration. Firstly, a three-parties evolutionary game model is established to study each player's game strategy based on bounded rationality. Secondly, the game model is simulated as a whole by adopting system dynamics to analyze its stability. Finally, theoretical analysis and extensive computational experiments are conducted to obtain the managerial insights and regulation strategies for online group-buying market. Our results clearly demonstrate that a suitable bonus-penalty measure can promote the healthy development of online group-buying market.

  12. Adiabatic theory for the population distribution in the evolutionary minority game

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Wang, Bing-Hong; Yuan, Baosheng

    2004-02-01

    We study the evolutionary minority game (EMG) using a statistical mechanics approach. We derive a theory for the steady-state population distribution of the agents. The theory is based on an “adiabatic approximation” in which short time fluctuations in the population distribution are integrated out to obtain an effective equation governing the steady-state distribution. We discover the mechanism for the transition from segregation (into opposing groups) to clustering (towards cautious behaviors). The transition is determined by two generic factors: the market impact (of the agents’ own actions) and the short time market inefficiency (arbitrage opportunities) due to fluctuations in the numbers of agents using opposite strategies. A large market impact favors “extreme” players who choose fixed opposite strategies, while large market inefficiency favors cautious players. The transition depends on the number of agents (N) and the effective rate of strategy switching. When N is small, the market impact is relatively large; this favors the extreme behaviors. Frequent strategy switching, on the other hand, leads to a clustering of the cautious agents.

  13. Coexistence of fraternity and egoism for spatial social dilemmas.

    PubMed

    Szabó, György; Szolnoki, Attila; Czakó, Lilla

    2013-01-21

    We have studied an evolutionary game with spatially arranged players who can choose one of the two strategies (named cooperation and defection for social dilemmas) when playing with their neighbors. In addition to the application of the usual strategies in the present model the players are also characterized by one of the two extreme personal features representing the egoist or fraternal behavior. During the evolution each player can modify both her own strategy and/or personal feature via a myopic update process in order to improve her utility. The results of numerical simulations and stability analysis are summarized in phase diagrams representing a wide scale of spatially ordered distribution of strategies and personal features when varying the payoff parameters. In most of the cases only two of the four possible options prevail and may form sublattice ordered spatial structure. The evolutionary advantage of the fraternal attitude is demonstrated within a large range of payoff parameters including the region of prisoner's dilemma where egoist defectors and fraternal cooperators form a role-separating chessboard like pattern. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effect of intermediate defense measures in voluntary vaccination games

    NASA Astrophysics Data System (ADS)

    Iwamura, Yoshiro; Tanimoto, Jun; Fukuda, Eriko

    2016-09-01

    We build a model to reproduce the decision-making process of getting a vaccination based on the evolutionary game theory dovetailed with the SIR model for epidemic spreading. Unlike the two extreme options of whether or not getting a vaccination leads to perfect immunity, we consider whether ‘intermediate defense measures’ including masking, gargling, and hand-washing lead to imperfect effects of preventing infection. We consider introducing not only a ‘third strategy’ as a discrete intermediate measure but also a continuous strategy space connecting the cases of getting and not getting a vaccination. Interestingly, our evolutionary analysis suggests that the introduction of intermediate measures makes no difference for the case of a 2-strategy system in which only either getting or not getting a vaccination is allowed, even does not ameliorate, or say, gets worse to prevent spreading a disease. This seems quite different from what was observed in 2-player and 2-strategy (2  ×  2) prisoner’s dilemma (PD) games with relatively stronger chicken-type dilemma than the stag-hunt one in which the introduction of middle-course strategies significantly enhances cooperation.

  15. A route to possible civil engineering materials: the case of high-pressure phases of lime

    NASA Astrophysics Data System (ADS)

    Bouibes, A.; Zaoui, A.

    2015-07-01

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  16. A route to possible civil engineering materials: the case of high-pressure phases of lime.

    PubMed

    Bouibes, A; Zaoui, A

    2015-07-23

    Lime system has a chemical composition CaO, which is known as thermodynamically stable. The purpose here is to explore further possible phases under pressure, by means of variable-composition ab initio evolutionary algorithm. The present investigation shows surprisingly new stable compounds of lime. At ambient pressure we predict, in addition to CaO, CaO2 as new thermodynamically stable compound. The latter goes through two phases transition from C2/c space group structure to Pna21 at 1.5 GPa, and Pna21 space group structure to I4/mcm at 23.4 GPa. Under increasing pressure, further compounds such as CaO3 become the most stable and stabilize in P-421m space group structure above 65 GPa. For the necessary knowledge of the new predicted compounds, we have computed their mechanical and electronic properties in order to show and to explain the main reasons leading to the structural changes.

  17. Evolutionary graph theory: breaking the symmetry between interaction and replacement

    PubMed Central

    Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.

    2008-01-01

    We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049

  18. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  19. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  20. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  1. Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks.

    PubMed

    Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun

    2017-08-20

    This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ , where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.

  2. Evolutionary genomics and HIV restriction factors.

    PubMed

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  3. Asymmetric Evolutionary Games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  4. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction

    PubMed Central

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-01-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. PMID:25143190

  5. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.

    PubMed

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-10-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  6. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    PubMed

    Mans, Robert; Daran, Jean-Marc G; Pronk, Jack T

    2018-04-01

    Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fitness costs and benefits of novel herbicide tolerance in a noxious weed

    PubMed Central

    Baucom, Regina S.; Mauricio, Rodney

    2004-01-01

    Glyphosate, the active ingredient in the herbicide RoundUp, has increased dramatically in use over the past decade and constitutes a potent anthropogenic source of selection. In the southeastern United States, weedy morning glories have begun to develop tolerance to glyphosate, representing a unique opportunity to examine the evolutionary genetics of a novel trait. We found genetic variation for tolerance, indicating the potential for the population to respond to selection by glyphosate. However, the following significant evolutionary constraint exists: in the absence of glyphosate, tolerant genotypes produced fewer seeds than susceptible genotypes. The combination of strong positive directional selection in the presence of glyphosate and strong negative directional selection in its absence may indicate that the selective landscape of land use could drive the evolutionary trajectory of glyphosate tolerance. Understanding these evolutionary forces is imperative for devising comprehensive management strategies to help slow the rate of the evolution of tolerance. PMID:15326309

  8. The one-third law of evolutionary dynamics.

    PubMed

    Ohtsuki, Hisashi; Bordalo, Pedro; Nowak, Martin A

    2007-11-21

    Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent fitness. Recently, a "one-third law" of evolutionary dynamics has been described, which states that strategy A fixates in a B-population with selective advantage if the fitness of A is greater than that of B when A has a frequency 13. This relationship holds for all evolutionary processes examined so far, from the Moran process to games on graphs. However, the origin of the "number"13 is not understood. In this paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-third law implies that the average Malthusian fitness of A is positive.

  9. Crystal Structure Prediction and its Application in Earth and Materials Sciences

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang

    First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also discuss if these oxides might exist at earth and planetary conditions. If the target properties are set as the global fitness functions while structure relaxations are energy/enthalpy minimization, such hybrid optimization technique could effectively explore the landscape of properties for the given systems. Here we illustrate this function by the case of searching for superdense carbon allotropes. We find three structures (hP3, tI12, and tP12) that have significantly greater density. Furthermore, we find a collection of other superdense structures based on different ways of packing carbon tetrahedral. Superdense carbon allotropes are predicted to have remarkably high refractive indices and strong dispersion of light. Apart from evolutionary approach, there also exist some other methods for structural prediction. One can also combine the features from different methods. We develop a novel method for crystal structure prediction, based on metadynamics and evolutionary algorithms. This technique can be used to produce efficiently both the ground state and metastable states easily reachable from a reasonable initial structure. We use the cell shape as collective variable and evolutionary variation operators developed in the context of the USPEX method to equilibrate the system as a function of the collective variables. We illustrate how this approach helps one to find stable and metastable states for Al2SiO5, SiO2, MgSiO3. Apart from predicting crystal structures, the new method can also provide insight into mechanisms of phase transitions. This method is especially powerful in sampling the metastable structures from a given configuration. Experiments on cold compression indicated the existence of a new superhard carbon allotrope. Numerous metastable candidate structures featuring different topologies have been proposed for this allotrope. We use evolutionary metadynamics to systematically search for possible candidates which could be accessible from graphite. (Abstract shortened by UMI.)

  10. Stable, semi-stable populations and growth potential.

    PubMed

    Bourgeois-Pichat, J

    1971-07-01

    Abstract Starting from the definition of a Malthusian population given by Alfred J. Lotka, the author recalls how the concept of stable population is introduced in demography, first as a particular case of stable populations, and secondly as a limit of a demographic evolutionary process in which female age-specific fertility rates and age-specific mortality rates remain constant. Then he defines a new concept: the semi-stable population which is a population with a constant age distribution. He shows that such a population coincides at any point of time with the stable population corresponding to the mortality and the fertility at this point of time. In the remaining part of the paper it is shown how the concept of a stable population can be used for defining a coefficient of inertia which measures the resistance of a population to modification of its course as a consequence of changing fertility and mortality. Some formulae are established to calculate this coefficient first for an arbitrary population, and secondly for a semistable population. In this second case the formula is particularly simple. It appears as a product of three terms: the expectation of life at birth in years, the crude birth rate, and a coefficient depending on the rate of growth and for which a numerical table is easy to establish.

  11. Effects of immune challenge on the oviposition strategy of a noctuid moth.

    PubMed

    Staudacher, H; Menken, S B J; Groot, A T

    2015-08-01

    Infections can have detrimental effects on the fitness of an animal. Reproducing females may therefore be sensitive to cues of infection and be able to adaptively change their oviposition strategy in the face of infection. As one possibility, females could make a terminal investment and shift reproductive effort from future to current reproduction as life expectancy decreases. We hypothesized that females of the noctuid moth Heliothis virescens make a terminal investment and adapt their oviposition timing as well as their oviposition site selectivity in response to an immune challenge. We indeed found that females that were challenged with the bacterial entomopathogen Serratia entomophila laid more eggs than control females one night after the challenge. Additionally, bacteria-challenged females were less discriminating between oviposition sites than control females. Whereas control females preferred undamaged over damaged plants, immune-challenged females did not differentiate between the two. These results indicate that terminal investment is part of the life history of H. virescens females. Moreover, our results suggest that the strategy of terminal investment in H. virescens oviposition represents a fitness trade-off for females: in the face of infection, an increase in oviposition rate enhances female fitness, whereas low oviposition site selectivity reduces female fitness. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  13. Distribution Patterns Predict Individual Specialization in the Diet of Dolphin Gulls

    PubMed Central

    Masello, Juan F.; Wikelski, Martin; Voigt, Christian C.; Quillfeldt, Petra

    2013-01-01

    Many animals show some degree of individual specialization in foraging strategies and diet. This has profound ecological and evolutionary implications. For example, populations containing diverse individual foraging strategies will respond in different ways to changes in the environment, thus affecting the capacity of the populations to adapt to environmental changes and to diversify. However, patterns of individual specialization have been examined in few species. Likewise it is usually unknown whether specialization is maintained over time, because examining the temporal scale at which specialization occurs can prove difficult in the field. In the present study, we analyzed individual specialization in foraging in Dolphin Gulls Leucophaeus scoresbii, a scavenger endemic to the southernmost coasts of South America. We used GPS position logging and stable isotope analyses (SIA) to investigate individual specialization in feeding strategies and their persistence over time. The analysis of GPS data indicated two major foraging strategies in Dolphin Gulls from New I. (Falkland Is./Islas Malvinas). Tagged individuals repeatedly attended either a site with mussel beds or seabird and seal colonies during 5 to 7 days of tracking. Females foraging at mussel beds were heavier than those foraging at seabird colonies. Nitrogen isotope ratios (δ15N) of Dolphin Gull blood cells clustered in two groups, showing that individuals were consistent in their preferred foraging strategies over a period of at least several weeks. The results of the SIA as well as the foraging patterns recorded revealed a high degree of specialization for particular feeding sites and diets by individual Dolphin Gulls. Individual differences in foraging behavior were not related to sex. Specialization in Dolphin Gulls may be favored by the advantages of learning and memorizing optimal feeding locations and behaviors. Specialized individuals may reduce search and handling time and thus, optimize their energy gain and/or minimize time spent foraging. PMID:23844073

  14. Emergence and dynamics of self-producing information niches as a step towards pre-evolutionary organization

    PubMed Central

    Carter, Richard J.; Wiesner, Karoline

    2018-01-01

    As a step towards understanding pre-evolutionary organization in non-genetic systems, we develop a model to investigate the emergence and dynamics of proto-autopoietic networks in an interacting population of simple information processing entities (automata). Our simulations indicate that dynamically stable strongly connected networks of mutually producing communication channels emerge under specific environmental conditions. We refer to these distinct organizational steady states as information niches. In each case, we measure the information content by the Shannon entropy, and determine the fitness landscape, robustness and transition pathways for information niches subjected to intermittent environmental perturbations under non-evolutionary conditions. By determining the information required to generate each niche, we show that niche transitions are only allowed if accompanied by an equal or increased level of information production that arises internally or via environmental perturbations that serve as an exogenous source of population diversification. Overall, our simulations show how proto-autopoietic networks of basic information processors form and compete, and under what conditions they persist over time or go extinct. These findings may be relevant to understanding how inanimate systems such as chemically communicating protocells can initiate the transition to living matter prior to the onset of contemporary evolutionary and genetic mechanisms. PMID:29343630

  15. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    PubMed

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The evolution of plant virus transmission pathways.

    PubMed

    Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J

    2016-05-07

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mega-evolutionary dynamics of the adaptive radiation of birds

    PubMed Central

    Capp, Elliot J. R.; Chira, Angela M.; Hughes, Emma C.; Moody, Christopher J. A.; Nouri, Lara O.; Varley, Zoë K.; Thomas, Gavin H.

    2017-01-01

    The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear9. Here we address this problem on a global scale by analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We find that bill diversity expanded early in extant avian evolutionary history before transitioning to a phase dominated by morphospace packing. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare but major discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks. PMID:28146475

  18. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby

    2015-01-01

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they “lock” the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  19. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    PubMed

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  20. The ESS and replicator equation in matrix games under time constraints.

    PubMed

    Garay, József; Cressman, Ross; Móri, Tamás F; Varga, Tamás

    2018-06-01

    Recently, we introduced the class of matrix games under time constraints and characterized the concept of (monomorphic) evolutionarily stable strategy (ESS) in them. We are now interested in how the ESS is related to the existence and stability of equilibria for polymorphic populations. We point out that, although the ESS may no longer be a polymorphic equilibrium, there is a connection between them. Specifically, the polymorphic state at which the average strategy of the active individuals in the population is equal to the ESS is an equilibrium of the polymorphic model. Moreover, in the case when there are only two pure strategies, a polymorphic equilibrium is locally asymptotically stable under the replicator equation for the pure-strategy polymorphic model if and only if it corresponds to an ESS. Finally, we prove that a strict Nash equilibrium is a pure-strategy ESS that is a locally asymptotically stable equilibrium of the replicator equation in n-strategy time-constrained matrix games.

  1. Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes.

    PubMed

    Kilner, Rebecca M; Langmore, Naomi E

    2011-11-01

    Avian parents and social insect colonies are victimized by interspecific brood parasites-cheats that procure costly care for their dependent offspring by leaving them in another species' nursery. Birds and insects defend themselves from attack by brood parasites; their defences in turn select counter-strategies in the parasite, thus setting in motion antagonistic co-evolution between the two parties. Despite their considerable taxonomic disparity, here we show striking parallels in the way that co-evolution between brood parasites and their hosts proceeds in insects and birds. First, we identify five types of co-evolutionary arms race from the empirical literature, which are common to both systems. These are: (a) directional co-evolution of weaponry and armoury; (b) furtiveness in the parasite countered by strategies in the host to expose the parasite; (c) specialist parasites mimicking hosts who escape by diversifying their genetic signatures; (d) generalist parasites mimicking hosts who escape by favouring signatures that force specialization in the parasite; and (e) parasites using crypsis to evade recognition by hosts who then simplify their signatures to make the parasite more detectable. Arms races a and c are well characterized in the theoretical literature on co-evolution, but the other types have received little or no formal theoretical attention. Empirical work suggests that hosts are doomed to lose arms races b and e to the parasite, in the sense that parasites typically evade host defences and successfully parasitize the nest. Nevertheless hosts may win when the co-evolutionary trajectory follows arms race a, c or d. Next, we show that there are four common outcomes of the co-evolutionary arms race for hosts. These are: (1) successful resistance; (2) the evolution of defence portfolios (or multiple lines of resistance); (3) acceptance of the parasite; and (4) tolerance of the parasite. The particular outcome is not determined by the type of preceding arms race but depends more on whether hosts or parasites control the co-evolutionary trajectory: tolerance is an outcome that parasites inflict on hosts, whereas the other three outcomes are more dependent on properties intrinsic to the host species. Finally, our review highlights considerable interspecific variation in the complexity and depth of host defence portfolios. Whether this variation is adaptive or merely reflects evolutionary lag is unclear. We propose an adaptive explanation, which centres on the relative strength of two opposing processes: strategy-facilitation, in which one line of host defence promotes the evolution of another form of resistance, and strategy-blocking, in which one line of defence may relax selection on another so completely that it causes it to decay. We suggest that when strategy-facilitation outweighs strategy-blocking, hosts will possess complex defence portfolios and we identify selective conditions in which this is likely to be the case. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  2. Spectacular phenomena and limits to rationality in genetic and cultural evolution.

    PubMed Central

    Enquist, Magnus; Arak, Anthony; Ghirlanda, Stefano; Wachtmeister, Carl-Adam

    2002-01-01

    In studies of both animal and human behaviour, game theory is used as a tool for understanding strategies that appear in interactions between individuals. Game theory focuses on adaptive behaviour, which can be attained only at evolutionary equilibrium. We suggest that behaviour appearing during interactions is often outside the scope of such analysis. In many types of interaction, conflicts of interest exist between players, fuelling the evolution of manipulative strategies. Such strategies evolve out of equilibrium, commonly appearing as spectacular morphology or behaviour with obscure meaning, to which other players may react in non-adaptive, irrational ways. We present a simple model to show some limitations of the game-theory approach, and outline the conditions in which evolutionary equilibria cannot be maintained. Evidence from studies of biological interactions seems to support the view that behaviour is often not at equilibrium. This also appears to be the case for many human cultural traits, which have spread rapidly despite the fact that they have a negative influence on reproduction. PMID:12495515

  3. Bribe and Punishment: An Evolutionary Game-Theoretic Analysis of Bribery.

    PubMed

    Verma, Prateek; Sengupta, Supratim

    2015-01-01

    Harassment bribes, paid by citizens to corrupt officers for services the former are legally entitled to, constitute one of the most widespread forms of corruption in many countries. Nation states have adopted different policies to address this form of corruption. While some countries make both the bribe giver and the bribe taker equally liable for the crime, others impose a larger penalty on corrupt officers. We examine the consequences of asymmetric and symmetric penalties by developing deterministic and stochastic evolutionary game-theoretic models of bribery. We find that the asymmetric penalty scheme can lead to a reduction in incidents of bribery. However, the extent of reduction depends on how the players update their strategies over time. If the interacting members change their strategies with a probability proportional to the payoff of the alternative strategy option, the reduction in incidents of bribery is less pronounced. Our results indicate that changing from a symmetric to an asymmetric penalty scheme may not suffice in achieving significant reductions in incidents of harassment bribery.

  4. Bribe and Punishment: An Evolutionary Game-Theoretic Analysis of Bribery

    PubMed Central

    Verma, Prateek; Sengupta, Supratim

    2015-01-01

    Harassment bribes, paid by citizens to corrupt officers for services the former are legally entitled to, constitute one of the most widespread forms of corruption in many countries. Nation states have adopted different policies to address this form of corruption. While some countries make both the bribe giver and the bribe taker equally liable for the crime, others impose a larger penalty on corrupt officers. We examine the consequences of asymmetric and symmetric penalties by developing deterministic and stochastic evolutionary game-theoretic models of bribery. We find that the asymmetric penalty scheme can lead to a reduction in incidents of bribery. However, the extent of reduction depends on how the players update their strategies over time. If the interacting members change their strategies with a probability proportional to the payoff of the alternative strategy option, the reduction in incidents of bribery is less pronounced. Our results indicate that changing from a symmetric to an asymmetric penalty scheme may not suffice in achieving significant reductions in incidents of harassment bribery. PMID:26204110

  5. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    NASA Astrophysics Data System (ADS)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  6. Spectacular phenomena and limits to rationality in genetic and cultural evolution.

    PubMed

    Enquist, Magnus; Arak, Anthony; Ghirlanda, Stefano; Wachtmeister, Carl-Adam

    2002-11-29

    In studies of both animal and human behaviour, game theory is used as a tool for understanding strategies that appear in interactions between individuals. Game theory focuses on adaptive behaviour, which can be attained only at evolutionary equilibrium. We suggest that behaviour appearing during interactions is often outside the scope of such analysis. In many types of interaction, conflicts of interest exist between players, fuelling the evolution of manipulative strategies. Such strategies evolve out of equilibrium, commonly appearing as spectacular morphology or behaviour with obscure meaning, to which other players may react in non-adaptive, irrational ways. We present a simple model to show some limitations of the game-theory approach, and outline the conditions in which evolutionary equilibria cannot be maintained. Evidence from studies of biological interactions seems to support the view that behaviour is often not at equilibrium. This also appears to be the case for many human cultural traits, which have spread rapidly despite the fact that they have a negative influence on reproduction.

  7. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    NASA Astrophysics Data System (ADS)

    Wu, Yu'E.; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world.

  8. Impact of Social Reward on the Evolution of the Cooperation Behavior in Complex Networks

    PubMed Central

    Wu, Yu’e; Chang, Shuhua; Zhang, Zhipeng; Deng, Zhenghong

    2017-01-01

    Social reward, as a significant mechanism explaining the evolution of cooperation, has attracted great attention both theoretically and experimentally. In this paper, we study the evolution of cooperation by proposing a reward model in network population, where a third strategy, reward, as an independent yet particular type of cooperation is introduced in 2-person evolutionary games. Specifically, a new kind of role corresponding to reward strategy, reward agents, is defined, which is aimed at increasing the income of cooperators by applying to them a social reward. Results from numerical simulations show that consideration of social reward greatly promotes the evolution of cooperation, which is confirmed for different network topologies and two evolutionary games. Moreover, we explore the microscopic mechanisms for the promotion of cooperation in the three-strategy model. As expected, the reward agents play a vital role in the formation of cooperative clusters, thus resisting the aggression of defectors. Our research might provide valuable insights into further exploring the nature of cooperation in the real world. PMID:28112276

  9. Evidence for an Evolutionary Cheater Strategy--Relationships Between Primary and Secondary Psychopathy, Parenting, and Shame and Guilt.

    PubMed

    Lyons, Minna T

    2015-01-01

    In the present study, shame and guilt proneness were investigated in relation to primary and secondary psychopathy, looking at parental care as a possible mediator. A sample of 388 volunteers participated in an on-line study, completing several self-report measurements. Primary psychopathy, robust to parental care and sex of the participant, was associated with lower guilt proneness after a private transgression and lower negative self-evaluations after a public transgression. Secondary psychopathy was not associated with guilt or shame proneness. Paternal care played a mediating role between primary psychopathy and guilt, but only in male participants. High paternal care was associated with lower guilt repair in high psychopathy males, suggesting that a positive father-son relationship might be essential for development of exploitive strategies in primary psychopathy. The results highlight the fundamental differences between primary and secondary psychopathy, and provide support for the idea that primary psychopathy is an evolutionary cheater-strategy.

  10. Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal.

    PubMed

    Lam, King-Yeung; Lou, Yuan

    2014-02-01

    We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.

  11. A Perspective on Micro-Evo-Devo: Progress and Potential

    PubMed Central

    Nunes, Maria D. S.; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P.

    2013-01-01

    The term “micro-evo-devo” refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field. PMID:24190920

  12. A perspective on micro-evo-devo: progress and potential.

    PubMed

    Nunes, Maria D S; Arif, Saad; Schlötterer, Christian; McGregor, Alistair P

    2013-11-01

    The term "micro-evo-devo" refers to the combined study of the genetic and developmental bases of natural variation in populations and the evolutionary forces that have shaped this variation. It thus represents a synthesis of the fields of evolutionary developmental biology and population genetics. As has been pointed out by several others, this synthesis can provide insights into the evolution of organismal form and function that have not been possible within these individual disciplines separately. Despite a number of important successes in micro-evo-devo, however, it appears that evo devo and population genetics remain largely separate spheres of research, limiting their ability to address evolutionary questions. This also risks pushing contemporary evo devo to the fringes of evolutionary biology because it does not describe the causative molecular changes underlying evolution or the evolutionary forces involved. Here we reemphasize the theoretical and practical importance of micro-evo-devo as a strategy for understanding phenotypic evolution, review the key recent insights that it has provided, and present a perspective on both the potential and the remaining challenges of this exciting interdisciplinary field.

  13. Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.

    PubMed

    You, Li; Brown, Joel S; Thuijsman, Frank; Cunningham, Jessica J; Gatenby, Robert A; Zhang, Jingsong; Staňková, Kateřina

    2017-12-21

    Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, resistance typically develops in about 1 year - a clinical condition termed metastatic castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone (T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the environment as a public good (T P ), and (3) those independent of testosterone (T - ). The interactions within and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T -  cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between the spatial game and non-spatial ESS happen because different cell types become more or less clumped in the spatial game - leading to non-random assortative interactions between cell types. Three key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing the radius at which cells experience limits to population growth can cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC provides in general different outcomes than the non-spatial game might suggest that non-spatial models are insufficient for capturing key elements of tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparative modeling of coevolution in communities of unicellular organisms: adaptability and biodiversity.

    PubMed

    Lashin, Sergey A; Suslov, Valentin V; Matushkin, Yuri G

    2010-06-01

    We propose an original program "Evolutionary constructor" that is capable of computationally efficient modeling of both population-genetic and ecological problems, combining these directions in one model of required detail level. We also present results of comparative modeling of stability, adaptability and biodiversity dynamics in populations of unicellular haploid organisms which form symbiotic ecosystems. The advantages and disadvantages of two evolutionary strategies of biota formation--a few generalists' taxa-based biota formation and biodiversity-based biota formation--are discussed.

  15. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    PubMed

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  16. Evolutionary Thinking in Microeconomic Models: Prestige Bias and Market Bubbles

    PubMed Central

    Bell, Adrian Viliami

    2013-01-01

    Evolutionary models broadly support a number of social learning strategies likely important in economic behavior. Using a simple model of price dynamics, I show how prestige bias, or copying of famed (and likely successful) individuals, influences price equilibria and investor disposition in a way that exacerbates or creates market bubbles. I discuss how integrating the social learning and demographic forces important in cultural evolution with economic models provides a fruitful line of inquiry into real-world behavior. PMID:23544100

  17. Introduced species as evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  18. Structure coefficients and strategy selection in multiplayer games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2016-01-01

    Evolutionary processes based on two-player games such as the Prisoner's Dilemma or Snowdrift Game are abundant in evolutionary game theory. These processes, including those based on games with more than two strategies, have been studied extensively under the assumption that selection is weak. However, games involving more than two players have not received the same level of attention. To address this issue, and to relate two-player games to multiplayer games, we introduce a notion of reducibility for multiplayer games that captures what it means to break down a multiplayer game into a sequence of interactions with fewer players. We discuss the role of reducibility in structured populations, and we give examples of games that are irreducible in any population structure. Since the known conditions for strategy selection, otherwise known as [Formula: see text]-rules, have been established only for two-player games with multiple strategies and for multiplayer games with two strategies, we extend these rules to multiplayer games with many strategies to account for irreducible games that cannot be reduced to those simpler types of games. In particular, we show that the number of structure coefficients required for a symmetric game with [Formula: see text]-player interactions and [Formula: see text] strategies grows in [Formula: see text] like [Formula: see text]. Our results also cover a type of ecologically asymmetric game based on payoff values that are derived not only from the strategies of the players, but also from their spatial positions within the population.

  19. Evolutionary Determinants of Morphological Polymorphism in Colonial Animals.

    PubMed

    Simpson, Carl; Jackson, Jeremy B C; Herrera-Cubilla, Amalia

    2017-07-01

    Colonial animals commonly exhibit morphologically polymorphic modular units that are phenotypically distinct and specialize in specific functional tasks. But how and why these polymorphic modules have evolved is poorly understood. Across colonial invertebrates, there is wide variation in the degree of polymorphism, from none in colonial ascidians to extreme polymorphism in siphonophores, such as the Portuguese man-of-war. Bryozoa are a phylum of exclusively colonial invertebrates that uniquely exhibit almost the entire range of polymorphism, from monomorphic species to others that rival siphonophores in their polymorphic complexity. Previous approaches to understanding the evolution of polymorphism have been based on analyses of (1) the functional role of polymorphs or (2) presumed evolutionary costs and benefits based on evolutionary theory that postulates polymorphism should be evolutionarily sustainable only in more stable environments because polymorphism commonly leads to the loss of feeding and sexual competence. Here we use bryozoans from opposite shores of the Isthmus of Panama to revisit the environmental hypothesis by comparison of faunas from distinct oceanographic provinces that differ greatly in environmental variability, and we then examine the correlations between the extent of polymorphism in relation to patterns of ecological succession and variation in life histories. We find no support for the environmental hypothesis. Distributions of the incidence of polymorphism in the oceanographically unstable Eastern Pacific are indistinguishable from those in the more stable Caribbean. In contrast, the temporal position of species in a successional sequence is collinear with the degree of polymorphism because species with fewer types of polymorphs are competitively replaced by species with higher numbers of polymorphs on the same substrata. Competitively dominant species also exhibit patterns of growth that increase their competitive ability. The association between degrees of polymorphism and variations in life histories is fundamental to understanding of the macroevolution of polymorphism.

  20. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    NASA Astrophysics Data System (ADS)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  1. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  2. Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium

    PubMed Central

    Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.

    2008-01-01

    Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These “memory” effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to ‘remember’ 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy. PMID:18324309

  3. Selection of Valid Reference Genes for Reverse Transcription Quantitative PCR Analysis in Heliconius numata (Lepidoptera: Nymphalidae)

    PubMed Central

    Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine

    2016-01-01

    Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata. This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971

  4. Parental effects and the evolution of phenotypic memory.

    PubMed

    Kuijper, B; Johnstone, R A

    2016-02-01

    Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Evolutionary dynamics of fluctuating populations with strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David

    2013-03-01

    Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.

  6. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns.

    PubMed

    Hasebe, M; Omori, T; Nakazawa, M; Sano, T; Kato, M; Iwatsuki, K

    1994-06-07

    Pteriodophytes have a longer evolutionary history than any other vascular land plant and, therefore, have endured greater loss of phylogenetically informative information. This factor has resulted in substantial disagreements in evaluating characters and, thus, controversy in establishing a stable classification. To compare competing classifications, we obtained DNA sequences of a chloroplast gene. The sequence of 1206 nt of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL) was determined from 58 species, representing almost all families of leptosporangiate ferns. Phlogenetic trees were inferred by the neighbor-joining and the parsimony methods. The two methods produced almost identical phylogenetic trees that provided insights concerning major general evolutionary trends in the leptosporangiate ferns. Interesting findings were as follows: (i) two morphologically distinct heterosporous water ferns, Marsilea and Salvinia, are sister genera; (ii) the tree ferns (Cyatheaceae, Dicksoniaceae, and Metaxyaceae) are monophyletic; and (iii) polypodioids are distantly related to the gleichenioids in spite of the similarity of their exindusiate soral morphology and are close to the higher indusiate ferns. In addition, the affinities of several "problematic genera" were assessed.

  7. Stability of the Influenza Virus Hemagglutinin Protein Correlates with Evolutionary Dynamics.

    PubMed

    Klein, Eili Y; Blumenkrantz, Deena; Serohijos, Adrian; Shakhnovich, Eugene; Choi, Jeong-Mo; Rodrigues, João V; Smith, Brendan D; Lane, Andrew P; Feldman, Andrew; Pekosz, Andrew

    2018-01-01

    Protein thermodynamics are an integral determinant of viral fitness and one of the major drivers of protein evolution. Mutations in the influenza A virus (IAV) hemagglutinin (HA) protein can eliminate neutralizing antibody binding to mediate escape from preexisting antiviral immunity. Prior research on the IAV nucleoprotein suggests that protein stability may constrain seasonal IAV evolution; however, the role of stability in shaping the evolutionary dynamics of the HA protein has not been explored. We used the full coding sequence of 9,797 H1N1pdm09 HA sequences and 16,716 human seasonal H3N2 HA sequences to computationally estimate relative changes in the thermal stability of the HA protein between 2009 and 2016. Phylogenetic methods were used to characterize how stability differences impacted the evolutionary dynamics of the virus. We found that pandemic H1N1 IAV strains split into two lineages that had different relative HA protein stabilities and that later variants were descended from the higher-stability lineage. Analysis of the mutations associated with the selective sweep of the higher-stability lineage found that they were characterized by the early appearance of highly stabilizing mutations, the earliest of which was not located in a known antigenic site. Experimental evidence further suggested that H1N1 HA stability may be correlated with in vitro virus production and infection. A similar analysis of H3N2 strains found that surviving lineages were also largely descended from viruses predicted to encode more-stable HA proteins. Our results suggest that HA protein stability likely plays a significant role in the persistence of different IAV lineages. IMPORTANCE One of the constraints on fast-evolving viruses, such as influenza virus, is protein stability, or how strongly the folded protein holds together. Despite the importance of this protein property, there has been limited investigation of the impact of the stability of the influenza virus hemagglutinin protein-the primary antibody target of the immune system-on its evolution. Using a combination of computational estimates of stability and experiments, our analysis found that viruses with more-stable hemagglutinin proteins were associated with long-term persistence in the population. There are two potential reasons for the observed persistence. One is that more-stable proteins tolerate destabilizing mutations that less-stable proteins could not, thus increasing opportunities for immune escape. The second is that greater stability increases the fitness of the virus through increased production of infectious particles. Further research on the relative importance of these mechanisms could help inform the annual influenza vaccine composition decision process.

  8. Fundamental Dimensions of Environmental Risk : The Impact of Harsh versus Unpredictable Environments on the Evolution and Development of Life History Strategies.

    PubMed

    Ellis, Bruce J; Figueredo, Aurelio José; Brumbach, Barbara H; Schlomer, Gabriel L

    2009-06-01

    The current paper synthesizes theory and data from the field of life history (LH) evolution to advance a new developmental theory of variation in human LH strategies. The theory posits that clusters of correlated LH traits (e.g., timing of puberty, age at sexual debut and first birth, parental investment strategies) lie on a slow-to-fast continuum; that harshness (externally caused levels of morbidity-mortality) and unpredictability (spatial-temporal variation in harshness) are the most fundamental environmental influences on the evolution and development of LH strategies; and that these influences depend on population densities and related levels of intraspecific competition and resource scarcity, on age schedules of mortality, on the sensitivity of morbidity-mortality to the organism's resource-allocation decisions, and on the extent to which environmental fluctuations affect individuals versus populations over short versus long timescales. These interrelated factors operate at evolutionary and developmental levels and should be distinguished because they exert distinctive effects on LH traits and are hierarchically operative in terms of primacy of influence. Although converging lines of evidence support core assumptions of the theory, many questions remain unanswered. This review demonstrates the value of applying a multilevel evolutionary-developmental approach to the analysis of a central feature of human phenotypic variation: LH strategy.

  9. The continuous prisoner's dilemma and the evolution of cooperation through reciprocal altruism with variable investment.

    PubMed

    Killingback, Timothy; Doebeli, Michael

    2002-10-01

    Understanding the evolutionary origin and persistence of cooperative behavior is a fundamental biological problem. The standard "prisoner's dilemma," which is the most widely adopted framework for studying the evolution of cooperation through reciprocal altruism between unrelated individuals, does not allow for varying degrees of cooperation. Here we study the continuous iterated prisoner's dilemma, in which cooperative investments can vary continuously in each round. This game has been previously considered for a class of reactive strategies in which current investments are based on the partner's previous investment. In the standard iterated prisoner's dilemma, such strategies are inferior to strategies that take into account both players' previous moves, as is exemplified by the evolutionary dominance of "Pavlov" over "tit for tat." Consequently, we extend the analysis of the continuous prisoner's dilemma to a class of strategies in which current investments depend on previous payoffs and, hence, on both players' previous investments. We show, both analytically and by simulation, that payoff-based strategies, which embody the intuitively appealing idea that individuals invest more in cooperative interactions when they profit from these interactions, provide a natural explanation for the gradual evolution of cooperation from an initially noncooperative state and for the maintenance of cooperation thereafter.

  10. Distinguishing the opponents promotes cooperation in well-mixed populations

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; da Silva, Jafferson K. L.

    2010-03-01

    Cooperation has been widely studied when an individual strategy is adopted against all coplayers. In this context, some extra mechanisms, such as punishment, reward, memory, and network reciprocity must be introduced in order to keep cooperators alive. Here, we adopt a different point of view. We study the adoption of different strategies against different opponents instead of adoption of the same strategy against all of them. In the context of the prisoner dilemma, we consider an evolutionary process in which strategies that provide more benefits are imitated and the players replace the strategy used in one of the interactions furnishing the worst payoff. Individuals are set in a well-mixed population, so that network reciprocity effect is excluded and both synchronous and asynchronous updates are analyzed. As a consequence of the replacement rule, we show that mutual cooperation is never destroyed and the initial fraction of mutual cooperation is a lower bound for the level of cooperation. We show by simulation and mean-field analysis that (i) cooperation dominates for synchronous update and (ii) only the initial mutual cooperation is maintained for asynchronous update. As a side effect of the replacement rule, an “implicit punishment” mechanism comes up in a way that exploitations are always neutralized providing evolutionary stability for cooperation.

  11. [Evolutionary medicine: the future looking at the past].

    PubMed

    Carvalho, Serafim; Rosado, Margarida

    2008-01-01

    Evolutionary medicine is an emergent basic science that offers new and varied perspectives to the comprehension of the human health and disease, considering them as a result of a gap between our modern lives and the environment where human beings evolve. This work's goals are to understand the importance of the evolutionary theories on concepts of health and disease, providing a new insight on medicine investigation. This bibliography review is based on Medline and PsycINFO articles research between 1996 and 2007 about review and experimental studies published in English, using the key words evolutionary and medicine, psychiatry, psychology, behaviour, health, disease, gene. There were selected forty-five articles based on and with special interest on the authors' practice. There were also consulted some allusive books. The present human genome and phenotypes are essentially Palaeolithic ones: they are not adapted to the modern life style, thus favouring the so called diseases of civilization. Fitting evolutionary strategies, apparently protective ones, when excessive, are the core syndromes of many emotional disruptive behaviours and diseases. Having the stone age's genes, we are obliged to live in the space age. With the evolutionary approach, postmodern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases and its preventions and treatment.

  12. Evolutionary public health: introducing the concept.

    PubMed

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  14. Cyclic dominance in evolutionary games: a review

    PubMed Central

    Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M.; Perc, Matjaž

    2014-01-01

    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator–prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock–paper–scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg–Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. PMID:25232048

  15. Use of game-theoretical methods in biochemistry and biophysics.

    PubMed

    Schuster, Stefan; Kreft, Jan-Ulrich; Schroeter, Anja; Pfeiffer, Thomas

    2008-04-01

    Evolutionary game theory can be considered as an extension of the theory of evolutionary optimisation in that two or more organisms (or more generally, units of replication) tend to optimise their properties in an interdependent way. Thus, the outcome of the strategy adopted by one species (e.g., as a result of mutation and selection) depends on the strategy adopted by the other species. In this review, the use of evolutionary game theory for analysing biochemical and biophysical systems is discussed. The presentation is illustrated by a number of instructive examples such as the competition between microorganisms using different metabolic pathways for adenosine triphosphate production, the secretion of extracellular enzymes, the growth of trees and photosynthesis. These examples show that, due to conflicts of interest, the global optimum (in the sense of being the best solution for the whole system) is not always obtained. For example, some yeast species use metabolic pathways that waste nutrients, and in a dense tree canopy, trees grow taller than would be optimal for biomass productivity. From the viewpoint of game theory, the examples considered can be described by the Prisoner's Dilemma, snowdrift game, Tragedy of the Commons and rock-scissors-paper game.

  16. Evolutionary potential games on lattices

    NASA Astrophysics Data System (ADS)

    Szabó, György; Borsos, István

    2016-04-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.

  17. Cyclic dominance in evolutionary games: a review.

    PubMed

    Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M; Perc, Matjaž

    2014-11-06

    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals.

    PubMed

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M

    2010-09-01

    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision.

  19. Public goods games in populations with fluctuating size.

    PubMed

    McAvoy, Alex; Fraiman, Nicolas; Hauert, Christoph; Wakeley, John; Nowak, Martin A

    2018-05-01

    Many mathematical frameworks of evolutionary game dynamics assume that the total population size is constant and that selection affects only the relative frequency of strategies. Here, we consider evolutionary game dynamics in an extended Wright-Fisher process with variable population size. In such a scenario, it is possible that the entire population becomes extinct. Survival of the population may depend on which strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a model that cooperators enable survival, while defectors drive extinction. Although defectors are favored for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator population could survive. On the other hand, if the defectors remain, then the population will quickly go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive. In a mutation-selection model, we find that (i) a steady supply of cooperators can enable long-term population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populations with variable size generate a multifaceted notion of what constitutes a trait's long-term success. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  1. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    PubMed

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  2. A simple mathematical model of gradual Darwinian evolution: emergence of a Gaussian trait distribution in adaptation along a fitness gradient.

    PubMed

    Biktashev, Vadim N

    2014-04-01

    We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.

  3. A theory for the evolution of other-regard integrating proximate and ultimate perspectives.

    PubMed

    Akçay, Erol; Van Cleve, Jeremy; Feldman, Marcus W; Roughgarden, Joan

    2009-11-10

    Although much previous work describes evolutionary mechanisms that promote or stabilize different social behaviors, we still have little understanding of the factors that drive animal behavior proximately. Here we present a modeling approach to answer this question. Our model rests on motivations to achieve objectives as the proximate determinants of behavior. We develop a two-tiered framework by first modeling the dynamics of a social interaction at the behavioral time scale and then find the evolutionarily stable objectives that result from the outcomes these dynamics produce. We use this framework to ask whether "other-regarding" motivations, which result from a kind of nonselfish objective, can evolve when individuals are engaged in a social interaction that entails a conflict between their material payoffs. We find that, at the evolutionarily stable state, individuals can be other-regarding in that they are motivated to increase their partners' payoff as well as their own. In contrast to previous theories, we find that such motivations can evolve because of their direct effect on fitness and do not require kin selection or a special group structure. We also derive general conditions for the evolutionary stability of other-regarding motivations. Our conditions indicate that other-regarding motivations are more likely to evolve when social interactions and behavioral objectives are both synergistic.

  4. The carbon and nitrogen ecophysiologies of two endemic tropical orchids mirrors those of their temperate relatives and the local environment.

    PubMed

    Hynson, Nicole A

    2016-11-01

    Orchids are one of the most widely distributed plant families. However, current research on the ecophysiology of terrestrial orchids is biased towards temperate species. Thus, it is currently unknown whether tropical terrestrial orchids belong to similar trophic guilds as their temperate relatives. To examine the ecophysiologies of two tropical terrestrial orchids, I analysed the carbon and nitrogen stable isotope compositions and nitrogen concentrations of the Hawaiian endemics Anoectochilus sandvicensis and Liparis hawaiensis . I compared these values with those of surrounding vegetation and their temperate relatives. I found that A. sandvicensis was consistently enriched in the heavy isotope of nitrogen ( 15 N) and had higher nitrogen (N) concentrations than surrounding vegetation, and these values were even higher than those of its temperate relatives. Carbon stable isotope composition among populations of A. sandvicensis varied by island. These results point to local environment and evolutionary history determining the ecophysiology of this species. Whereas L.hawaiensis was also enriched in 15 N and had on average higher N concentrations than surrounding vegetation, these values were not significantly different from temperate relatives, indicating that evolutionary history may be a stronger predictor of this orchid species' ecophysiology than environment. I suggest that both Hawaiian species are potentially partially mycoheterotrophic.

  5. The carbon and nitrogen ecophysiologies of two endemic tropical orchids mirrors those of their temperate relatives and the local environment

    PubMed Central

    2016-01-01

    Orchids are one of the most widely distributed plant families. However, current research on the ecophysiology of terrestrial orchids is biased towards temperate species. Thus, it is currently unknown whether tropical terrestrial orchids belong to similar trophic guilds as their temperate relatives. To examine the ecophysiologies of two tropical terrestrial orchids, I analysed the carbon and nitrogen stable isotope compositions and nitrogen concentrations of the Hawaiian endemics Anoectochilus sandvicensis and Liparis hawaiensis. I compared these values with those of surrounding vegetation and their temperate relatives. I found that A. sandvicensis was consistently enriched in the heavy isotope of nitrogen (15N) and had higher nitrogen (N) concentrations than surrounding vegetation, and these values were even higher than those of its temperate relatives. Carbon stable isotope composition among populations of A. sandvicensis varied by island. These results point to local environment and evolutionary history determining the ecophysiology of this species. Whereas L.hawaiensis was also enriched in 15N and had on average higher N concentrations than surrounding vegetation, these values were not significantly different from temperate relatives, indicating that evolutionary history may be a stronger predictor of this orchid species' ecophysiology than environment. I suggest that both Hawaiian species are potentially partially mycoheterotrophic. PMID:28018622

  6. Punctuated equilibrium as an emergent process and its modified thermodynamic characterization.

    PubMed

    Wosniack, M E; da Luz, M G E; Schulman, L S

    2017-01-07

    We address evolutionary dynamics and consider under which conditions the ecosystem interaction network allows punctuated equilibrium (i.e., alternation between hectic and quasi-stable phases). We focus on the links connecting various species and on the strength and sign of those links. For this study we consider the Tangled Nature model, which allows considerable flexibility and plasticity in the analysis of interspecies interactions. We find that it is necessary to have a proper balance of connectivity and interaction intensities so as to establish the kind of mutual cooperation and competition found in nature. It suggests evolutionary punctuated equilibrium as an emergent process, thus displaying features of complex systems. To explicitly demonstrate this fact we consider an extended form of thermodynamics, defining (for the present context) relevant out-of-equilibrium "collective" functions. We then show how to characterize the punctuated equilibrium through entropy-like and free energy-like quantities. Finally, from a close analogy to thermodynamic systems, we propose a protocol similar to simulated annealing. It is based on controlling the species' rate of mutation during the hectic periods, in this way enhancing the exploration of the genome space (similar to the known behavior of bacteria in stressful environments). This allows the system to more rapidly converge to long-duration quasi-stable phases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Gene(s) and individual feeding behavior: Exploring eco-evolutionary dynamics underlying left-right asymmetry in the scale-eating cichlid fish Perissodus microlepis.

    PubMed

    Raffini, Francesca; Fruciano, Carmelo; Meyer, Axel

    2018-06-01

    The scale-eating cichlid fish Perissodus microlepis is a textbook example of bilateral asymmetry due to its left or right-bending heads and of negative frequency-dependent selection, which is proposed to maintain this stable polymorphism. The mechanisms that underlie this asymmetry remain elusive. Several studies had initially postulated a simple genetic basis for this trait, but this explanation has been questioned, particularly by reports observing a unimodal distribution of mouth shapes. We hypothesize that this unimodal distribution might be due to a combination of genetic and phenotypically plastic components. Here, we expanded on previous work by investigating a formerly identified candidate SNP associated to mouth laterality, documenting inter-individual variation in feeding preference using stable isotope analyses, and testing their association with mouth asymmetry. Our results suggest that this polymorphism is influenced by both a polygenic basis and inter-individual non-genetic variation, possibly due to feeding experience, individual specialization, and intraspecific competition. We introduce a hypothesis potentially explaining the simultaneous maintenance of left, right, asymmetric and symmetric mouth phenotypes due to the interaction between diverse eco-evolutionary dynamics including niche construction and balancing selection. Future studies will have to further tease apart the relative contribution of genetic and environmental factors and their interactions in an integrated fashion.

  8. Cooperation and stability through periodic impulses.

    PubMed

    Zhang, Bo-Yu; Cressman, Ross; Tao, Yi

    2010-03-29

    Basic games, where each individual chooses between two strategies, illustrate several issues that immediately emerge from the standard approach that applies strategic reasoning, based on rational decisions, to predict population behavior where no rationality is assumed. These include how mutual cooperation (which corresponds to the best outcome from the population perspective) can evolve when the only individually rational choice is to defect, illustrated by the Prisoner's Dilemma (PD) game, and how individuals can randomize between two strategies when neither is individually rational, illustrated by the Battle of the Sexes (BS) game that models male-female conflict over parental investment in offspring. We examine these questions from an evolutionary perspective where the evolutionary dynamics includes an impulsive effect that models sudden changes in collective population behavior. For the PD game, we show analytically that cooperation can either coexist with defection or completely take over the population, depending on the strength of the impulse. By extending these results for the PD game, we also show that males and females each evolve to a single strategy in the BS game when the impulsive effect is strong and that weak impulses stabilize the randomized strategies of this game.

  9. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Evolutionary Self-Questioning Games with Local Contribution

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Kui; Li, Zhi; Chen, Xiao-Jie; Wang, Long

    2009-08-01

    We investigate the evolutionary Prisoner's Dilemma and the Snowdrift Game on small-world networks in a realistic social context where individuals consider their local contributions to their group and update their strategies by self-questioning. An individual with introspection can determine whether its current strategy is superior by playing a virtual round of the game and its local contribution is defined as the sum of all the payoffs its neighbors collect against it. In our model, the performance of an individual is determined by both its payoff and local contribution through a linear combination. We demonstrate that the present mechanism can produce very robust cooperative behavior in both games. Furthermore, we provide theoretical analysis based on mean-field approximation, and find that the analytical predictions are qualitatively consistent with the simulation results.

  11. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  12. Sex-ratio control erodes sexual selection, revealing evolutionary feedback from adaptive plasticity.

    PubMed

    Fawcett, Tim W; Kuijper, Bram; Weissing, Franz J; Pen, Ido

    2011-09-20

    Female choice is a powerful selective force, driving the elaboration of conspicuous male ornaments. This process of sexual selection has profound implications for many life-history decisions, including sex allocation. For example, females with attractive partners should produce more sons, because these sons will inherit their father's attractiveness and enjoy high mating success, thereby yielding greater fitness returns than daughters. However, previous research has overlooked the fact that there is a reciprocal feedback from life-history strategies to sexual selection. Here, using a simple mathematical model, we show that if mothers adaptively control offspring sex in relation to their partner's attractiveness, sexual selection is weakened and male ornamentation declines. This weakening occurs because the ability to determine offspring sex reduces the fitness difference between females with attractive and unattractive partners. We use individual-based, evolutionary simulations to show that this result holds under more biologically realistic conditions. Sexual selection and sex allocation thus interact in a dynamic fashion: The evolution of conspicuous male ornaments favors sex-ratio adjustment, but this conditional strategy then undermines the very same process that generated it, eroding sexual selection. We predict that, all else being equal, the most elaborate sexual displays should be seen in species with little or no control over offspring sex. The feedback process we have described points to a more general evolutionary principle, in which a conditional strategy weakens directional selection on another trait by reducing fitness differences.

  13. Games of corruption: how to suppress illegal logging.

    PubMed

    Lee, Joung-Hun; Sigmund, Karl; Dieckmann, Ulf; Iwasa, Yoh

    2015-02-21

    Corruption is one of the most serious obstacles for ecosystem management and biodiversity conservation. In particular, more than half of the loss of forested area in many tropical countries is due to illegal logging, with corruption implicated in a lack of enforcement. Here we study an evolutionary game model to analyze the illegal harvesting of forest trees, coupled with the corruption of rule enforcers. We consider several types of harvesters, who may or may not be committed towards supporting an enforcer service, and who may cooperate (log legally) or defect (log illegally). We also consider two types of rule enforcers, honest and corrupt: while honest enforcers fulfill their function, corrupt enforcers accept bribes from defecting harvesters and refrain from fining them. We report three key findings. First, in the absence of strategy exploration, the harvester-enforcer dynamics are bistable: one continuum of equilibria consists of defecting harvesters and a low fraction of honest enforcers, while another consists of cooperating harvesters and a high fraction of honest enforcers. Both continua attract nearby strategy mixtures. Second, even a small rate of strategy exploration removes this bistability, rendering one of the outcomes globally stable. It is the relative rate of exploration among enforcers that then determines whether most harvesters cooperate or defect and most enforcers are honest or corrupt, respectively. This suggests that the education of enforcers, causing their more frequent trialing of honest conduct, can be a potent means of curbing corruption. Third, if information on corrupt enforcers is available, and players react opportunistically to it, the domain of attraction of cooperative outcomes widens considerably. We conclude by discussing policy implications of our results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens

    PubMed Central

    Rey, Jean-François; Barrett, Luke G.; Thrall, Peter H.

    2018-01-01

    Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. PMID:29649208

  15. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  16. Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks

    PubMed Central

    Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun

    2017-01-01

    This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. PMID:28825648

  17. Evolutionary game theory: cells as players.

    PubMed

    Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan

    2014-12-01

    In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.

  18. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  19. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  20. Cost-effectiveness of anatomical and functional test strategies for stable chest pain: public health perspective from a middle-income country.

    PubMed

    Bertoldi, Eduardo G; Stella, Steffen F; Rohde, Luis Eduardo P; Polanczyk, Carisi A

    2017-05-04

    The aim of this research is to evaluate the relative cost-effectiveness of functional and anatomical strategies for diagnosing stable coronary artery disease (CAD), using exercise (Ex)-ECG, stress echocardiogram (ECHO), single-photon emission CT (SPECT), coronary CT angiography (CTA) or stress cardiacmagnetic resonance (C-MRI). Decision-analytical model, comparing strategies of sequential tests for evaluating patients with possible stable angina in low, intermediate and high pretest probability of CAD, from the perspective of a developing nation's public healthcare system. Hypothetical cohort of patients with pretest probability of CAD between 20% and 70%. The primary outcome is cost per correct diagnosis of CAD. Proportion of false-positive or false-negative tests and number of unnecessary tests performed were also evaluated. Strategies using Ex-ECG as initial test were the least costly alternatives but generated more frequent false-positive initial tests and false-negative final diagnosis. Strategies based on CTA or ECHO as initial test were the most attractive and resulted in similar cost-effectiveness ratios (I$ 286 and I$ 305 per correct diagnosis, respectively). A strategy based on C-MRI was highly effective for diagnosing stable CAD, but its high cost resulted in unfavourable incremental cost-effectiveness (ICER) in moderate-risk and high-risk scenarios. Non-invasive strategies based on SPECT have been dominated. An anatomical diagnostic strategy based on CTA is a cost-effective option for CAD diagnosis. Functional strategies performed equally well when based on ECHO. C-MRI yielded acceptable ICER only at low pretest probability, and SPECT was not cost-effective in our analysis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

Top