Evolutionary Optimization of a Geometrically Refined Truss
NASA Technical Reports Server (NTRS)
Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.
Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, Adam; Reynolds, John
2015-01-01
Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.
Bell-Curve Based Evolutionary Strategies for Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
2001-01-01
Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.
Bell-Curve Based Evolutionary Strategies for Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
2000-01-01
Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.
NASA Astrophysics Data System (ADS)
Long, Kim Chenming
Real-world engineering optimization problems often require the consideration of multiple conflicting and noncommensurate objectives, subject to nonconvex constraint regions in a high-dimensional decision space. Further challenges occur for combinatorial multiobjective problems in which the decision variables are not continuous. Traditional multiobjective optimization methods of operations research, such as weighting and epsilon constraint methods, are ill-suited to solving these complex, multiobjective problems. This has given rise to the application of a wide range of metaheuristic optimization algorithms, such as evolutionary, particle swarm, simulated annealing, and ant colony methods, to multiobjective optimization. Several multiobjective evolutionary algorithms have been developed, including the strength Pareto evolutionary algorithm (SPEA) and the non-dominated sorting genetic algorithm (NSGA), for determining the Pareto-optimal set of non-dominated solutions. Although numerous researchers have developed a wide range of multiobjective optimization algorithms, there is a continuing need to construct computationally efficient algorithms with an improved ability to converge to globally non-dominated solutions along the Pareto-optimal front for complex, large-scale, multiobjective engineering optimization problems. This is particularly important when the multiple objective functions and constraints of the real-world system cannot be expressed in explicit mathematical representations. This research presents a novel metaheuristic evolutionary algorithm for complex multiobjective optimization problems, which combines the metaheuristic tabu search algorithm with the evolutionary algorithm (TSEA), as embodied in genetic algorithms. TSEA is successfully applied to bicriteria (i.e., structural reliability and retrofit cost) optimization of the aircraft tail structure fatigue life, which increases its reliability by prolonging fatigue life. A comparison for this application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.
NASA Astrophysics Data System (ADS)
Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz
2017-12-01
This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.
Evolutionary Optimization of a Quadrifilar Helical Antenna
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)
2002-01-01
Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.
Bi-directional evolutionary optimization for photonic band gap structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au
2015-12-01
Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.
Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N
2018-01-01
Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
Combining analysis with optimization at Langley Research Center. An evolutionary process
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1982-01-01
The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.
Collective influence in evolutionary social dilemmas
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž
2016-03-01
When evolutionary games are contested in structured populations, the degree of each player in the network plays an important role. If they exist, hubs often determine the fate of the population in remarkable ways. Recent research based on optimal percolation in random networks has shown, however, that the degree is neither the sole nor the best predictor of influence in complex networks. Low-degree nodes may also be optimal influencers if they are hierarchically linked to hubs. Taking this into account leads to the formalism of collective influence in complex networks, which as we show here, has far-reaching implications for the favorable resolution of social dilemmas. In particular, there exists an optimal hierarchical depth for the determination of collective influence that we use to describe the potency of players for passing their strategies, which depends on the strength of the social dilemma. Interestingly, the degree, which corresponds to the baseline depth zero, is optimal only when the temptation to defect is small. Our research reveals that evolutionary success stories are related to spreading processes which are rooted in favorable hierarchical structures that extend beyond local neighborhoods.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
An evolutionary game approach for determination of the structural conflicts in signed networks
Tan, Shaolin; Lü, Jinhu
2016-01-01
Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581
Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Banachowicz, Marta
2017-10-01
The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.
NASA Astrophysics Data System (ADS)
Palmisano, Fabrizio; Elia, Angelo
2017-10-01
One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.
Morphogenesis and mechanostabilization of complex natural and 3D printed shapes
Tiwary, Chandra Sekhar; Kishore, Sharan; Sarkar, Suman; Mahapatra, Debiprosad Roy; Ajayan, Pulickel M.; Chattopadhyay, Kamanio
2015-01-01
The natural selection and the evolutionary optimization of complex shapes in nature are closely related to their functions. Mechanostabilization of shape of biological structure via morphogenesis has several beautiful examples. With the help of simple mechanics-based modeling and experiments, we show an important causality between natural shape selection as evolutionary outcome and the mechanostabilization of seashells. The effect of biological growth on the mechanostabilization process is identified with examples of two natural shapes of seashells, one having a diametrically converging localization of stresses and the other having a helicoidally concentric localization of stresses. We demonstrate how the evolved shape enables predictable protection of soft body parts of the species. The effect of bioavailability of natural material is found to be a secondary factor compared to shape selectivity, where material microstructure only acts as a constraint to evolutionary optimization. This is confirmed by comparing the mechanostabilization behavior of three-dimensionally printed synthetic polymer structural shapes with that of natural seashells consisting of ceramic and protein. This study also highlights interesting possibilities in achieving a new design of structures made of ordinary materials which have bio-inspired optimization objectives. PMID:26601170
Evolutionary Strategies for Protein Folding
NASA Astrophysics Data System (ADS)
Murthy Gopal, Srinivasa; Wenzel, Wolfgang
2006-03-01
The free energy approach for predicting the protein tertiary structure describes the native state of a protein as the global minimum of an appropriate free-energy forcefield. The low-energy region of the free-energy landscape of a protein is extremely rugged. Efficient optimization methods must therefore speed up the search for the global optimum by avoiding high energy transition states, adapt large scale moves or accept unphysical intermediates. Here we investigate an evolutionary strategies(ES) for optimizing a protein conformation in our all-atom free-energy force field([1],[2]). A set of random conformations is evolved using an ES to get a diverse population containing low energy structure. The ES is shown to balance energy improvement and yet maintain diversity in structures. The ES is implemented as a master-client model for distributed computing. Starting from random structures and by using this optimization technique, we were able to fold a 20 amino-acid helical protein and 16 amino-acid beta hairpin[3]. We compare ES to basin hopping method. [1]T. Herges and W. Wenzel,Biophys.J. 87,3100(2004) [2] A. Verma and W. Wenzel Stabilization and folding of beta-sheet and alpha-helical proteins in an all-atom free energy model(submitted)(2005) [3] S. M. Gopal and W. Wenzel Evolutionary Strategies for Protein Folding (in preparation)
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).
Evolutionary Design of Controlled Structures
NASA Technical Reports Server (NTRS)
Masters, Brett P.; Crawley, Edward F.
1997-01-01
Basic physical concepts of structural delay and transmissibility are provided for simple rod and beam structures. Investigations show the sensitivity of these concepts to differing controlled-structures variables, and to rational system modeling effects. An evolutionary controls/structures design method is developed. The basis of the method is an accurate model formulation for dynamic compensator optimization and Genetic Algorithm based updating of sensor/actuator placement and structural attributes. One and three dimensional examples from the literature are used to validate the method. Frequency domain interpretation of these controlled structure systems provide physical insight as to how the objective is optimized and consequently what is important in the objective. Several disturbance rejection type controls-structures systems are optimized for a stellar interferometer spacecraft application. The interferometric designs include closed loop tracking optics. Designs are generated for differing structural aspect ratios, differing disturbance attributes, and differing sensor selections. Physical limitations in achieving performance are given in terms of average system transfer function gains and system phase loss. A spacecraft-like optical interferometry system is investigated experimentally over several different optimized controlled structures configurations. Configurations represent common and not-so-common approaches to mitigating pathlength errors induced by disturbances of two different spectra. Results show that an optimized controlled structure for low frequency broadband disturbances achieves modest performance gains over a mass equivalent regular structure, while an optimized structure for high frequency narrow band disturbances is four times better in terms of root-mean-square pathlength. These results are predictable given the nature of the physical system and the optimization design variables. Fundamental limits on controlled performance are discussed based on the measured and fit average system transfer function gains and system phase loss.
Educational Tool for Optimal Controller Tuning Using Evolutionary Strategies
ERIC Educational Resources Information Center
Carmona Morales, D.; Jimenez-Hornero, J. E.; Vazquez, F.; Morilla, F.
2012-01-01
In this paper, an optimal tuning tool is presented for control structures based on multivariable proportional-integral-derivative (PID) control, using genetic algorithms as an alternative to traditional optimization algorithms. From an educational point of view, this tool provides students with the necessary means to consolidate their knowledge on…
Brasil, Christiane Regina Soares; Delbem, Alexandre Claudio Botazzo; da Silva, Fernando Luís Barroso
2013-07-30
This article focuses on the development of an approach for ab initio protein structure prediction (PSP) without using any earlier knowledge from similar protein structures, as fragment-based statistics or inference of secondary structures. Such an approach is called purely ab initio prediction. The article shows that well-designed multiobjective evolutionary algorithms can predict relevant protein structures in a purely ab initio way. One challenge for purely ab initio PSP is the prediction of structures with β-sheets. To work with such proteins, this research has also developed procedures to efficiently estimate hydrogen bond and solvation contribution energies. Considering van der Waals, electrostatic, hydrogen bond, and solvation contribution energies, the PSP is a problem with four energetic terms to be minimized. Each interaction energy term can be considered an objective of an optimization method. Combinatorial problems with four objectives have been considered too complex for the available multiobjective optimization (MOO) methods. The proposed approach, called "Multiobjective evolutionary algorithms with many tables" (MEAMT), can efficiently deal with four objectives through the combination thereof, performing a more adequate sampling of the objective space. Therefore, this method can better map the promising regions in this space, predicting structures in a purely ab initio way. In other words, MEAMT is an efficient optimization method for MOO, which explores simultaneously the search space as well as the objective space. MEAMT can predict structures with one or two domains with RMSDs comparable to values obtained by recently developed ab initio methods (GAPFCG , I-PAES, and Quark) that use different levels of earlier knowledge. Copyright © 2013 Wiley Periodicals, Inc.
Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.
Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard
2012-06-07
We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.
Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method
NASA Astrophysics Data System (ADS)
Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen
2008-03-01
The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.
Optimizing a reconfigurable material via evolutionary computation
NASA Astrophysics Data System (ADS)
Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.
2015-08-01
Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.
HOW TO STUDY ADAPTATION (AND WHY TO DO IT THAT WAY).
Olson, Mark E; Arroyo-Santos, Alfonso
2015-06-01
Some adaptationist explanations are regarded as maximally solid and others fanciful just-so stories. Just-so stories are explanations based on very little evidence. Lack of evidence leads to circular-sounding reasoning: "this trait was shaped by selection in unseen ancestral populations and this selection must have occurred because the trait is present." Well-supported adaptationist explanations include evidence that is not only abundant but selected from comparative, populational, and optimality perspectives, the three adaptationist subdisciplines. Each subdiscipline obtains its broad relevance in evolutionary biology via assumptions that can only be tested with the methods of the other subdisciplines. However, even in the best-supported explanations, assumptions regarding variation, heritability, and fitness in unseen ancestral populations are always present. These assumptions are accepted given how well they would explain the data if they were true. This means that some degree of "circularity" is present in all evolutionary explanations. Evolutionary explanation corresponds not to a deductive structure, as biologists usually assert, but instead to ones such as abduction or Bayesianism. With these structures in mind, we show the way to a healthier view of "circularity" in evolutionary biology and why integration across the comparative, populational, and optimality approaches is necessary.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Multi-objective community detection based on memetic algorithm.
Wu, Peng; Pan, Li
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.
Pechmann, Sebastian; Frydman, Judith
2013-02-01
The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
Multiscale global identification of porous structures
NASA Astrophysics Data System (ADS)
Hatłas, Marcin; Beluch, Witold
2018-01-01
The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.
The optimal design of UAV wing structure
NASA Astrophysics Data System (ADS)
Długosz, Adam; Klimek, Wiktor
2018-01-01
The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.
Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.
Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D
2017-10-01
Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.
Cooperative combinatorial optimization: evolutionary computation case study.
Burgin, Mark; Eberbach, Eugene
2008-01-01
This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.
Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana
2016-01-01
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.
Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.
Wilts, Bodo D; Sheng, Xiaoyuan; Holler, Mirko; Diaz, Ana; Guizar-Sicairos, Manuel; Raabe, Jörg; Hoppe, Robert; Liu, Shu-Hao; Langford, Richard; Onelli, Olimpia D; Chen, Duyu; Torquato, Salvatore; Steiner, Ullrich; Schroer, Christian G; Vignolini, Silvia; Sepe, Alessandro
2018-05-01
Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1996-01-01
This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
Pourhassan, Mojgan; Neumann, Frank
2018-06-22
The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
Evolutionary Optimization of Quadrifilar Helical and Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Stoica, Adrian; Clancy, Daniel (Technical Monitor)
2002-01-01
We present optimization results obtained for two type of antennas using evolutionary algorithms. A quadrifilar helical UHF antenna is currently flying aboard NASA's Mars Odyssey spacecraft and is due to reach final Martian orbit insertion in January, 2002. Using this antenna as a benchmark, we ran experiments employing a coevolutionary genetic algorithm to evolve a quadrifilar helical design in-situ - i.e., in the presence of a surrounding structure. Results show a 93% improvement at 400 MHz and a 48% improvement at 438 MHz in the average gain. The evolved antenna is also one-fourth the size. Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain and the inclusion of numerous parasitic elements. Our fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain.
Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
NASA Astrophysics Data System (ADS)
Kolsbjerg, E. L.; Peterson, A. A.; Hammer, B.
2018-05-01
We show that approximate structural relaxation with a neural network enables orders of magnitude faster global optimization with an evolutionary algorithm in a density functional theory framework. The increased speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of a hollow Pt13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.
Development of an Evolutionary Algorithm for the ab Initio Discovery of Two-Dimensional Materials
NASA Astrophysics Data System (ADS)
Revard, Benjamin Charles
Crystal structure prediction is an important first step on the path toward computational materials design. Increasingly robust methods have become available in recent years for computing many materials properties, but because properties are largely a function of crystal structure, the structure must be known before these methods can be brought to bear. In addition, structure prediction is particularly useful for identifying low-energy structures of subperiodic materials, such as two-dimensional (2D) materials, which may adopt unexpected structures that differ from those of the corresponding bulk phases. Evolutionary algorithms, which are heuristics for global optimization inspired by biological evolution, have proven to be a fruitful approach for tackling the problem of crystal structure prediction. This thesis describes the development of an improved evolutionary algorithm for structure prediction and several applications of the algorithm to predict the structures of novel low-energy 2D materials. The first part of this thesis contains an overview of evolutionary algorithms for crystal structure prediction and presents our implementation, including details of extending the algorithm to search for clusters, wires, and 2D materials, improvements to efficiency when running in parallel, improved composition space sampling, and the ability to search for partial phase diagrams. We then present several applications of the evolutionary algorithm to 2D systems, including InP, the C-Si and Sn-S phase diagrams, and several group-IV dioxides. This thesis makes use of the Cornell graduate school's "papers" option. Chapters 1 and 3 correspond to the first-author publications of Refs. [131] and [132], respectively, and chapter 2 will soon be submitted as a first-author publication. The material in chapter 4 is taken from Ref. [144], in which I share joint first-authorship. In this case I have included only my own contributions.
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John
2011-01-01
Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.
Continuum topology optimization considering uncertainties in load locations based on the cloud model
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang
2014-11-01
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.
Structural dynamic interaction with solar tracking control for evolutionary Space Station concepts
NASA Technical Reports Server (NTRS)
Lim, Tae W.; Cooper, Paul A.; Ayers, J. Kirk
1992-01-01
The sun tracking control system design of the Solar Alpha Rotary Joint (SARJ) and the interaction of the control system with the flexible structure of Space Station Freedom (SSF) evolutionary concepts are addressed. The significant components of the space station pertaining to the SARJ control are described and the tracking control system design is presented. Finite element models representing two evolutionary concepts, enhanced operations capability (EOC) and extended operations capability (XOC), are employed to evaluate the influence of low frequency flexible structure on the control system design and performance. The design variables of the control system are synthesized using a constrained optimization technique to meet design requirements, to provide a given level of control system stability margin, and to achieve the most responsive tracking performance. The resulting SARJ control system design and performance of the EOC and XOC configurations are presented and compared to those of the SSF configuration. Performance limitations caused by the low frequency of the dominant flexible mode are discussed.
An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.
Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin
2016-12-01
Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.
Multiobjective Multifactorial Optimization in Evolutionary Multitasking.
Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen
2016-05-03
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
BAYESIAN PROTEIN STRUCTURE ALIGNMENT.
Rodriguez, Abel; Schmidler, Scott C
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806
Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng
2014-01-01
Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.
The application of artificial intelligence in the optimal design of mechanical systems
NASA Astrophysics Data System (ADS)
Poteralski, A.; Szczepanik, M.
2016-11-01
The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.
Sail Plan Configuration Optimization for a Modern Clipper Ship
NASA Astrophysics Data System (ADS)
Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz
2002-11-01
We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).
A theoretical comparison of evolutionary algorithms and simulated annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-08-28
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less
Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.
1997-01-01
An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.
NASA Astrophysics Data System (ADS)
Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang
2018-06-01
This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.
Percolation in insect nest networks: Evidence for optimal wiring
NASA Astrophysics Data System (ADS)
Valverde, Sergi; Corominas-Murtra, Bernat; Perna, Andrea; Kuntz, Pascale; Theraulaz, Guy; Solé, Ricard V.
2009-06-01
Optimization has been shown to be a driving force for the evolution of some biological structures, such as neural maps in the brain or transport networks. Here we show that insect networks also display characteristic traits of optimality. By using a graph representation of the chamber organization of termite nests and a disordered lattice model, it is found that these spatial nests are close to a percolation threshold. This suggests that termites build efficient systems of galleries spanning most of the nest volume at low cost. The evolutionary consequences are outlined.
Evolutionary and biological metaphors for engineering design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakiela, M.
1994-12-31
Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1999-02-10
Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less
Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.
Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.
2014-01-01
Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731
Wu, Kai; Liu, Jing; Wang, Shuai
2016-01-01
Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy. PMID:27886244
Belciug, Smaranda; Gorunescu, Florin
2015-02-01
Scarce healthcare resources require carefully made policies ensuring optimal bed allocation, quality healthcare service, and adequate financial support. This paper proposes a complex analysis of the resource allocation in a hospital department by integrating in the same framework a queuing system, a compartmental model, and an evolutionary-based optimization. The queuing system shapes the flow of patients through the hospital, the compartmental model offers a feasible structure of the hospital department in accordance to the queuing characteristics, and the evolutionary paradigm provides the means to optimize the bed-occupancy management and the resource utilization using a genetic algorithm approach. The paper also focuses on a "What-if analysis" providing a flexible tool to explore the effects on the outcomes of the queuing system and resource utilization through systematic changes in the input parameters. The methodology was illustrated using a simulation based on real data collected from a geriatric department of a hospital from London, UK. In addition, the paper explores the possibility of adapting the methodology to different medical departments (surgery, stroke, and mental illness). Moreover, the paper also focuses on the practical use of the model from the healthcare point of view, by presenting a simulated application. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Jing; Wang, Shuai
2016-11-01
Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-08-20
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ , where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Experimental Validation of an Integrated Controls-Structures Design Methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Walz, Joseph E.
1996-01-01
The first experimental validation of an integrated controls-structures design methodology for a class of large order, flexible space structures is described. Integrated redesign of the controls-structures-interaction evolutionary model, a laboratory testbed at NASA Langley, was described earlier. The redesigned structure was fabricated, assembled in the laboratory, and experimentally tested against the original structure. Experimental results indicate that the structure redesigned using the integrated design methodology requires significantly less average control power than the nominal structure with control-optimized designs, while maintaining the required line-of-sight pointing performance. Thus, the superiority of the integrated design methodology over the conventional design approach is experimentally demonstrated. Furthermore, amenability of the integrated design structure to other control strategies is evaluated, both analytically and experimentally. Using Linear-Quadratic-Guassian optimal dissipative controllers, it is observed that the redesigned structure leads to significantly improved performance with alternate controllers as well.
Comparison of multiobjective evolutionary algorithms: empirical results.
Zitzler, E; Deb, K; Thiele, L
2000-01-01
In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.
Shape and Reinforcement Optimization of Underground Tunnels
NASA Astrophysics Data System (ADS)
Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang
Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.
2017-04-01
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.
NASA Astrophysics Data System (ADS)
Noguchi, Yuki; Yamamoto, Takashi; Yamada, Takayuki; Izui, Kazuhiro; Nishiwaki, Shinji
2017-09-01
This papers proposes a level set-based topology optimization method for the simultaneous design of acoustic and structural material distributions. In this study, we develop a two-phase material model that is a mixture of an elastic material and acoustic medium, to represent an elastic structure and an acoustic cavity by controlling a volume fraction parameter. In the proposed model, boundary conditions at the two-phase material boundaries are satisfied naturally, avoiding the need to express these boundaries explicitly. We formulate a topology optimization problem to minimize the sound pressure level using this two-phase material model and a level set-based method that obtains topologies free from grayscales. The topological derivative of the objective functional is approximately derived using a variational approach and the adjoint variable method and is utilized to update the level set function via a time evolutionary reaction-diffusion equation. Several numerical examples present optimal acoustic and structural topologies that minimize the sound pressure generated from a vibrating elastic structure.
NASA Astrophysics Data System (ADS)
Vitório, Paulo Cezar; Leonel, Edson Denner
2017-12-01
The structural design must ensure suitable working conditions by attending for safe and economic criteria. However, the optimal solution is not easily available, because these conditions depend on the bodies' dimensions, materials strength and structural system configuration. In this regard, topology optimization aims for achieving the optimal structural geometry, i.e. the shape that leads to the minimum requirement of material, respecting constraints related to the stress state at each material point. The present study applies an evolutionary approach for determining the optimal geometry of 2D structures using the coupling of the boundary element method (BEM) and the level set method (LSM). The proposed algorithm consists of mechanical modelling, topology optimization approach and structural reconstruction. The mechanical model is composed of singular and hyper-singular BEM algebraic equations. The topology optimization is performed through the LSM. Internal and external geometries are evolved by the LS function evaluated at its zero level. The reconstruction process concerns the remeshing. Because the structural boundary moves at each iteration, the body's geometry change and, consequently, a new mesh has to be defined. The proposed algorithm, which is based on the direct coupling of such approaches, introduces internal cavities automatically during the optimization process, according to the intensity of Von Mises stress. The developed optimization model was applied in two benchmarks available in the literature. Good agreement was observed among the results, which demonstrates its efficiency and accuracy.
Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.
Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling
2016-05-01
Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Ke; Deb, Kalyanmoy; Zhang, Qingfu; Zhang, Qiang
2017-09-01
Nondominated sorting (NDS), which divides a population into several nondomination levels (NDLs), is a basic step in many evolutionary multiobjective optimization (EMO) algorithms. It has been widely studied in a generational evolution model, where the environmental selection is performed after generating a whole population of offspring. However, in a steady-state evolution model, where a population is updated right after the generation of a new candidate, the NDS can be extremely time consuming. This is especially severe when the number of objectives and population size become large. In this paper, we propose an efficient NDL update method to reduce the cost for maintaining the NDL structure in steady-state EMO. Instead of performing the NDS from scratch, our method only updates the NDLs of a limited number of solutions by extracting the knowledge from the current NDL structure. Notice that our NDL update method is performed twice at each iteration. One is after the reproduction, the other is after the environmental selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art NDS methods, our proposed method avoids a significant amount of unnecessary comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last but not least, we find that our proposed method is also useful for the generational evolution model.
Application of evolutionary computation in ECAD problems
NASA Astrophysics Data System (ADS)
Lee, Dae-Hyun; Hwang, Seung H.
1998-10-01
Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.
Scheduling Earth Observing Satellites with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna
2003-01-01
We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.
Linear antenna array optimization using flower pollination algorithm.
Saxena, Prerna; Kothari, Ashwin
2016-01-01
Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-01-01
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. PMID:28825648
Parallel Evolutionary Optimization for Neuromorphic Network Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Disney, Adam; Singh, Susheela
One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impactmore » the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.« less
García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César
2006-05-01
In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, Yu-Hsiang; Huang, Chung-Yuan; Sun, Chuen-Tsai
2016-11-01
Using network community structures to identify multiple influential spreaders is an appropriate method for analyzing the dissemination of information, ideas and infectious diseases. For example, data on spreaders selected from groups of customers who make similar purchases may be used to advertise products and to optimize limited resource allocation. Other examples include community detection approaches aimed at identifying structures and groups in social or complex networks. However, determining the number of communities in a network remains a challenge. In this paper we describe our proposal for a two-phase evolutionary framework (TPEF) for determining community numbers and maximizing community modularity. Lancichinetti-Fortunato-Radicchi benchmark networks were used to test our proposed method and to analyze execution time, community structure quality, convergence, and the network spreading effect. Results indicate that our proposed TPEF generates satisfactory levels of community quality and convergence. They also suggest a need for an index, mechanism or sampling technique to determine whether a community detection approach should be used for selecting multiple network spreaders.
Prediction of RNA secondary structures: from theory to models and real molecules
NASA Astrophysics Data System (ADS)
Schuster, Peter
2006-05-01
RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA molecules can be modelled readily at the secondary structure level and allows prediction of the most stable (mfe) conformations of complexes together with suboptimal states. Cofolding algorithms are important tools for efficient and highly specific primer design in the polymerase chain reaction (PCR) and help to explain the mechanisms of small interference RNA (si-RNA) molecules in gene regulation. The evolutionary optimization of RNA structures is illustrated by the search for a target structure and mimics aptamer selection in evolutionary biotechnology. It occurs typically in steps consisting of short adaptive phases interrupted by long epochs of little or no obvious progress in optimization. During these quasi-stationary epochs the populations are essentially confined to neutral networks where they search for sequences that allow a continuation of the adaptive process. Modelling RNA evolution as a simultaneous process in sequence and shape space provides answers to questions of the optimal population size and mutation rates. Kinetic folding is a stochastic process in conformation space. Exact solutions are derived by direct simulation in the form of trajectory sampling or by solving the master equation. The exact solutions can be approximated straightforwardly by Arrhenius kinetics on barrier trees, which represent simplified versions of conformational energy landscapes. The existence of at least one sequence forming any arbitrarily chosen pair of structures is granted by the intersection theorem. Folding kinetics is the key to understanding and designing multistable RNA molecules or RNA switches. These RNAs form two or more long lived conformations, and conformational changes occur either spontaneously or are induced through binding of small molecules or other biopolymers. RNA switches are found in nature where they act as elements in genetic and metabolic regulation. The reliability of RNA secondary structure prediction is limited by the accuracy with which the empirical parameters can be determined and by principal deficiencies, for example by the lack of energy contributions resulting from tertiary interactions. In addition, native structures may be determined by folding kinetics rather than by thermodynamics. We address the first problem by considering base pair probabilities or base pairing entropies, which are derived from the partition function of conformations. A high base pair probability corresponding to a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots are discussed as an example of a tertiary interaction that is highly important for RNA function. Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms. Some examples of experimental data on RNA secondary structures that are readily explained using the landscape concept are presented. They deal with (i) properties of RNA molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-coding RNAs as an example of evolution restricted to neutral networks.
A Note on Evolutionary Algorithms and Its Applications
ERIC Educational Resources Information Center
Bhargava, Shifali
2013-01-01
This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.
More efficient evolutionary strategies for model calibration with watershed model for demonstration
NASA Astrophysics Data System (ADS)
Baggett, J. S.; Skahill, B. E.
2008-12-01
Evolutionary strategies allow automatic calibration of more complex models than traditional gradient based approaches, but they are more computationally intensive. We present several efficiency enhancements for evolution strategies, many of which are not new, but when combined have been shown to dramatically decrease the number of model runs required for calibration of synthetic problems. To reduce the number of expensive model runs we employ a surrogate objective function for an adaptively determined fraction of the population at each generation (Kern et al., 2006). We demonstrate improvements to the adaptive ranking strategy that increase its efficiency while sacrificing little reliability and further reduce the number of model runs required in densely sampled parts of parameter space. Furthermore, we include a gradient individual in each generation that is usually not selected when the search is in a global phase or when the derivatives are poorly approximated, but when selected near a smooth local minimum can dramatically increase convergence speed (Tahk et al., 2007). Finally, the selection of the gradient individual is used to adapt the size of the population near local minima. We show, by incorporating these enhancements into the Covariance Matrix Adaption Evolution Strategy (CMAES; Hansen, 2006), that their synergetic effect is greater than their individual parts. This hybrid evolutionary strategy exploits smooth structure when it is present but degrades to an ordinary evolutionary strategy, at worst, if smoothness is not present. Calibration of 2D-3D synthetic models with the modified CMAES requires approximately 10%-25% of the model runs of ordinary CMAES. Preliminary demonstration of this hybrid strategy will be shown for watershed model calibration problems. Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larrañga, I. Inza and E. Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102, Springer Kern, S., N. Hansen and P. Koumoutsakos (2006). Local Meta-Models for Optimization Using Evolution Strategies. In Ninth International Conference on Parallel Problem Solving from Nature PPSN IX, Proceedings, pp.939-948, Berlin: Springer. Tahk, M., Woo, H., and Park. M, (2007). A hybrid optimization of evolutionary and gradient search. Engineering Optimization, (39), 87-104.
NASA Astrophysics Data System (ADS)
Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.
2017-02-01
Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.
Why don’t you use Evolutionary Algorithms in Big Data?
NASA Astrophysics Data System (ADS)
Stanovov, Vladimir; Brester, Christina; Kolehmainen, Mikko; Semenkina, Olga
2017-02-01
In this paper we raise the question of using evolutionary algorithms in the area of Big Data processing. We show that evolutionary algorithms provide evident advantages due to their high scalability and flexibility, their ability to solve global optimization problems and optimize several criteria at the same time for feature selection, instance selection and other data reduction problems. In particular, we consider the usage of evolutionary algorithms with all kinds of machine learning tools, such as neural networks and fuzzy systems. All our examples prove that Evolutionary Machine Learning is becoming more and more important in data analysis and we expect to see the further development of this field especially in respect to Big Data.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
Evolutionary design optimization of traffic signals applied to Quito city
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process. PMID:29236733
A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme
NASA Astrophysics Data System (ADS)
Ghoman, Satyajit S.
The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of fitness-driven retention. This strategy capitalizes on the advantages of evolutionary algorithm as well as POD-based reduced order modeling, while overcoming the shortcomings inherent with these techniques. When linked with M3 DOE, this strategy offers a computationally efficient methodology for problems with high level of complexity and a challenging design-space. This newly developed framework is demonstrated for its robustness on a nonconventional supersonic tailless air vehicle wing shape optimization problem.
System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft
NASA Technical Reports Server (NTRS)
Pullen, Samuel P.; Parkinson, Bradford W.
1994-01-01
This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.
Simulation of the evolution of root water foraging strategies in dry and shallow soils.
Renton, Michael; Poot, Pieter
2014-09-01
The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model. A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally--the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies.
How evolutionary crystal structure prediction works--and why.
Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario
2011-03-15
Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an overall shape and explore their intrinsic dimensionalities. Because of the inverse relationships between order and energy and between the dimensionality and diversity of an ensemble of crystal structures, the chances that a random search will find the ground state decrease exponentially with increasing system size. A well-designed evolutionary algorithm allows for much greater computational efficiency. We illustrate the power of evolutionary CSP through applications that examine matter at high pressure, where new, unexpected phenomena take place. Evolutionary CSP has allowed researchers to make unexpected discoveries such as a transparent phase of sodium, a partially ionic form of boron, complex superconducting forms of calcium, a novel superhard allotrope of carbon, polymeric modifications of nitrogen, and a new class of compounds, perhydrides. These methods have also led to the discovery of novel hydride superconductors including the "impossible" LiH(n) (n=2, 6, 8) compounds, and CaLi(2). We discuss extensions of the method to molecular crystals, systems of variable composition, and the targeted optimization of specific physical properties. © 2011 American Chemical Society
Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł
2016-12-01
One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae.
Pollo, Stephen M J; Zhaxybayeva, Olga; Nesbø, Camilla L
2015-09-01
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
Pozner, Raúl; Zanotti, Christian; Johnson, Leigh A
2012-01-01
Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
A global optimization perspective on molecular clusters.
Marques, J M C; Pereira, F B; Llanio-Trujillo, J L; Abreu, P E; Albertí, M; Aguilar, A; Pirani, F; Bartolomei, M
2017-04-28
Although there is a long history behind the idea of chemical structure, this is a key concept that continues to challenge chemists. Chemical structure is fundamental to understanding most of the properties of matter and its knowledge for complex systems requires the use of state-of-the-art techniques, either experimental or theoretical. From the theoretical view point, one needs to establish the interaction potential among the atoms or molecules of the system, which contains all the information regarding the energy landscape, and employ optimization algorithms to discover the relevant stationary points. In particular, global optimization methods are of major importance to search for the low-energy structures of molecular aggregates. We review the application of global optimization techniques to several molecular clusters; some new results are also reported. Emphasis is given to evolutionary algorithms and their application in the study of the microsolvation of alkali-metal and Ca 2+ ions with various types of solvents.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
A global optimization perspective on molecular clusters
Pereira, F. B.; Llanio-Trujillo, J. L.; Abreu, P. E.; Albertí, M.; Aguilar, A.; Pirani, F.; Bartolomei, M.
2017-01-01
Although there is a long history behind the idea of chemical structure, this is a key concept that continues to challenge chemists. Chemical structure is fundamental to understanding most of the properties of matter and its knowledge for complex systems requires the use of state-of-the-art techniques, either experimental or theoretical. From the theoretical view point, one needs to establish the interaction potential among the atoms or molecules of the system, which contains all the information regarding the energy landscape, and employ optimization algorithms to discover the relevant stationary points. In particular, global optimization methods are of major importance to search for the low-energy structures of molecular aggregates. We review the application of global optimization techniques to several molecular clusters; some new results are also reported. Emphasis is given to evolutionary algorithms and their application in the study of the microsolvation of alkali-metal and Ca2+ ions with various types of solvents. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320902
Product Mix Selection Using AN Evolutionary Technique
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Vasant, Pandian
2009-08-01
This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.
NASA Astrophysics Data System (ADS)
Senkerik, Roman; Zelinka, Ivan; Davendra, Donald; Oplatkova, Zuzana
2010-06-01
This research deals with the optimization of the control of chaos by means of evolutionary algorithms. This work is aimed on an explanation of how to use evolutionary algorithms (EAs) and how to properly define the advanced targeting cost function (CF) securing very fast and precise stabilization of desired state for any initial conditions. As a model of deterministic chaotic system, the one dimensional Logistic equation was used. The evolutionary algorithm Self-Organizing Migrating Algorithm (SOMA) was used in four versions. For each version, repeated simulations were conducted to outline the effectiveness and robustness of used method and targeting CF.
Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array
NASA Technical Reports Server (NTRS)
Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello
2004-01-01
This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.
Evolutionary optimization of radial basis function classifiers for data mining applications.
Buchtala, Oliver; Klimek, Manuel; Sick, Bernhard
2005-10-01
In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given (and often large) set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes an evolutionary algorithm (EA) that performs feature and model selection simultaneously for radial basis function (RBF) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the EA significantly: hybrid training of RBF networks, lazy evaluation, consideration of soft constraints by means of penalty terms, and temperature-based adaptive control of the EA. The feasibility and the benefits of the approach are demonstrated by means of four data mining problems: intrusion detection in computer networks, biometric signature verification, customer acquisition with direct marketing methods, and optimization of chemical production processes. It is shown that, compared to earlier EA-based RBF optimization techniques, the runtime is reduced by up to 99% while error rates are lowered by up to 86%, depending on the application. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.
Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization
ERIC Educational Resources Information Center
Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.
2013-01-01
Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…
NASA Astrophysics Data System (ADS)
Shirazi, Abolfazl
2016-10-01
This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.
MDTS: automatic complex materials design using Monte Carlo tree search.
M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-01-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
MDTS: automatic complex materials design using Monte Carlo tree search
NASA Astrophysics Data System (ADS)
Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji
2017-12-01
Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
Evolution of microbial markets.
Werner, Gijsbert D A; Strassmann, Joan E; Ivens, Aniek B F; Engelmoer, Daniel J P; Verbruggen, Erik; Queller, David C; Noë, Ronald; Johnson, Nancy Collins; Hammerstein, Peter; Kiers, E Toby
2014-01-28
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Evolution of microbial markets
Werner, Gijsbert D. A.; Strassmann, Joan E.; Ivens, Aniek B. F.; Engelmoer, Daniel J. P.; Verbruggen, Erik; Queller, David C.; Noë, Ronald; Johnson, Nancy Collins; Hammerstein, Peter; Kiers, E. Toby
2014-01-01
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions. PMID:24474743
Reliability-based optimization of an active vibration controller using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
NASA Astrophysics Data System (ADS)
Tang, Evelyn; Giusti, Chad; Baum, Graham; Gu, Shi; Pollock, Eli; Kahn, Ari; Roalf, David; Moore, Tyler; Ruparel, Kosha; Gur, Ruben; Gur, Raquel; Satterthwaite, Theodore; Bassett, Danielle
Motivated by a recent demonstration that the network architecture of white matter supports emerging control of diverse neural dynamics as children mature into adults, we seek to investigate structural mechanisms that support these changes. Beginning from a network representation of diffusion imaging data, we simulate network evolution with a set of simple growth rules built on principles of network control. Notably, the optimal evolutionary trajectory displays a striking correspondence to the progression of child to adult brain, suggesting that network control is a driver of development. More generally, and in comparison to the complete set of available models, we demonstrate that all brain networks from child to adult are structured in a manner highly optimized for the control of diverse neural dynamics. Within this near-optimality, we observe differences in the predicted control mechanisms of the child and adult brains, suggesting that the white matter architecture in children has a greater potential to increasingly support brain state transitions, potentially underlying cognitive switching.
NASA Astrophysics Data System (ADS)
Hu, Weifei; Park, Dohyun; Choi, DongHoon
2013-12-01
A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
Lucas, Peter W; Philip, Swapna M; Al-Qeoud, Dareen; Al-Draihim, Nuha; Saji, Sreeja; van Casteren, Adam
2016-01-01
Mammalian enamel, the contact dental tissue, is something of an enigma. It is almost entirely made of hydroxyapatite, yet exhibits very different mechanical behavior to a homogeneous block of the same mineral. Recent approaches suggest that its hierarchical composite form, similar to other biological hard tissues, leads to a mechanical performance that depends very much on the scale of measurement. The stiffness of the material is predicted to be highest at the nanoscale, being sacrificed to produce a high toughness at the largest scale, that is, at the level of the tooth crown itself. Yet because virtually all this research has been conducted only on human (or sometimes "bovine") enamel, there has been little regard for structural variation of the tissue considered as evolutionary adaptation to diet. What is mammalian enamel optimized for? We suggest that there are competing selective pressures. We suggest that the structural characteristics that optimize enamel to resist large-scale fractures, such as crown failures, are very different to those that resist wear (small-scale fracture). While enamel is always designed for damage tolerance, this may be suboptimal in the enamel of some species, including modern humans (which have been the target of most investigations), in order to counteract wear. The experimental part of this study introduces novel techniques that help to assess resistance at the nanoscale. © 2015 Wiley Periodicals, Inc.
Optimality and stability of symmetric evolutionary games with applications in genetic selection.
Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun
2015-06-01
Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.
Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting
NASA Astrophysics Data System (ADS)
Sharma, Deepak; Barakat, Nada
2018-02-01
An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
Deb, Kalyanmoy; Sinha, Ankur
2010-01-01
Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
Broadband All-angle Negative Refraction by Optimized Phononic Crystals.
Li, Yang Fan; Meng, Fei; Zhou, Shiwei; Lu, Ming-Hui; Huang, Xiaodong
2017-08-07
All-angle negative refraction (AANR) of phononic crystals and its frequency range are dependent on mechanical properties of constituent materials and their spatial distribution. So far, it is impossible to achieve the maximum operation frequency range of AANR theoretically. In this paper, we will present a numerical approach for designing a two-dimensional phononic crystal with broadband AANR without negative index. Through analyzing the mechanism of AANR, a topology optimization problem aiming at broadband AANR is established and solved by bi-directional evolutionary structural optimization method. The optimal steel/air phononic crystal exhibits a record AANR range over 20% and its refractive properties and focusing effects are further investigated. The results demonstrate the multifunctionality of a flat phononic slab including superlensing effect near upper AANR frequencies and self-collimation at lower AANR frequencies.
Social Media: Menagerie of Metrics
2010-01-27
intelligence, an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm . An EA...Cloning - 22 Animals were cloned to date; genetic algorithms can help prediction (e.g. “elitism” - attempts to ensure selection by including performers...28, 2010 Evolutionary Algorithm • Evolutionary algorithm From Wikipedia, the free encyclopedia Artificial intelligence portal In artificial
Evolutionary computation in zoology and ecology.
Boone, Randall B
2017-12-01
Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.
Evolutionary computation in zoology and ecology
2017-01-01
Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029
NASA Astrophysics Data System (ADS)
Luo, Ya-Zhong; Zhang, Jin; Li, Hai-yang; Tang, Guo-Jin
2010-08-01
In this paper, a new optimization approach combining primer vector theory and evolutionary algorithms for fuel-optimal non-linear impulsive rendezvous is proposed. The optimization approach is designed to seek the optimal number of impulses as well as the optimal impulse vectors. In this optimization approach, adding a midcourse impulse is determined by an interactive method, i.e. observing the primer-magnitude time history. An improved version of simulated annealing is employed to optimize the rendezvous trajectory with the fixed-number of impulses. This interactive approach is evaluated by three test cases: coplanar circle-to-circle rendezvous, same-circle rendezvous and non-coplanar rendezvous. The results show that the interactive approach is effective and efficient in fuel-optimal non-linear rendezvous design. It can guarantee solutions, which satisfy the Lawden's necessary optimality conditions.
Integrated design of the CSI evolutionary structure: A verification of the design methodology
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Joshi, S. M.; Elliott, Kenny B.; Walz, J. E.
1993-01-01
One of the main objectives of the Controls-Structures Interaction (CSI) program is to develop and evaluate integrated controls-structures design methodology for flexible space structures. Thus far, integrated design methodologies for a class of flexible spacecraft, which require fine attitude pointing and vibration suppression with no payload articulation, have been extensively investigated. Various integrated design optimization approaches, such as single-objective optimization, and multi-objective optimization, have been implemented with an array of different objectives and constraints involving performance and cost measures such as total mass, actuator mass, steady-state pointing performance, transient performance, control power, and many more. These studies have been performed using an integrated design software tool (CSI-DESIGN CODE) which is under development by the CSI-ADM team at the NASA Langley Research Center. To date, all of these studies, irrespective of the type of integrated optimization posed or objectives and constraints used, have indicated that integrated controls-structures design results in an overall spacecraft design which is considerably superior to designs obtained through a conventional sequential approach. Consequently, it is believed that validation of some of these results through fabrication and testing of a structure which is designed through an integrated design approach is warranted. The objective of this paper is to present and discuss the efforts that have been taken thus far for the validation of the integrated design methodology.
NASA Astrophysics Data System (ADS)
Gen, Mitsuo; Lin, Lin
Many combinatorial optimization problems from industrial engineering and operations research in real-world are very complex in nature and quite hard to solve them by conventional techniques. Since the 1960s, there has been an increasing interest in imitating living beings to solve such kinds of hard combinatorial optimization problems. Simulating the natural evolutionary process of human beings results in stochastic optimization techniques called evolutionary algorithms (EAs), which can often outperform conventional optimization methods when applied to difficult real-world problems. In this survey paper, we provide a comprehensive survey of the current state-of-the-art in the use of EA in manufacturing and logistics systems. In order to demonstrate the EAs which are powerful and broadly applicable stochastic search and optimization techniques, we deal with the following engineering design problems: transportation planning models, layout design models and two-stage logistics models in logistics systems; job-shop scheduling, resource constrained project scheduling in manufacturing system.
NASA Astrophysics Data System (ADS)
Ding, Zhongan; Gao, Chen; Yan, Shengteng; Yang, Canrong
2017-10-01
The power user electric energy data acquire system (PUEEDAS) is an important part of smart grid. This paper builds a multi-objective optimization model for the performance of the PUEEADS from the point of view of the combination of the comprehensive benefits and cost. Meanwhile, the Chebyshev decomposition approach is used to decompose the multi-objective optimization problem. We design a MOEA/D evolutionary algorithm to solve the problem. By analyzing the Pareto optimal solution set of multi-objective optimization problem and comparing it with the monitoring value to grasp the direction of optimizing the performance of the PUEEDAS. Finally, an example is designed for specific analysis.
Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem
NASA Astrophysics Data System (ADS)
Skakov, E. S.; Malysh, V. N.
2018-03-01
The aim of the work is to create an evolutionary method for optimizing the values of the control parameters of metaheuristics of solving the NP-hard facility location problem. A system analysis of the tuning process of optimization algorithms parameters is carried out. The problem of finding the parameters of a metaheuristic algorithm is formulated as a meta-optimization problem. Evolutionary metaheuristic has been chosen to perform the task of meta-optimization. Thus, the approach proposed in this work can be called “meta-metaheuristic”. Computational experiment proving the effectiveness of the procedure of tuning the control parameters of metaheuristics has been performed.
Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Tessler, Alexander
2007-01-01
Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.
An Analytical Framework for Runtime of a Class of Continuous Evolutionary Algorithms.
Zhang, Yushan; Hu, Guiwu
2015-01-01
Although there have been many studies on the runtime of evolutionary algorithms in discrete optimization, relatively few theoretical results have been proposed on continuous optimization, such as evolutionary programming (EP). This paper proposes an analysis of the runtime of two EP algorithms based on Gaussian and Cauchy mutations, using an absorbing Markov chain. Given a constant variation, we calculate the runtime upper bound of special Gaussian mutation EP and Cauchy mutation EP. Our analysis reveals that the upper bounds are impacted by individual number, problem dimension number n, searching range, and the Lebesgue measure of the optimal neighborhood. Furthermore, we provide conditions whereby the average runtime of the considered EP can be no more than a polynomial of n. The condition is that the Lebesgue measure of the optimal neighborhood is larger than a combinatorial calculation of an exponential and the given polynomial of n.
Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad
2016-12-01
Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.
Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou
2017-01-01
In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.
An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems
NASA Astrophysics Data System (ADS)
Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu
2018-04-01
There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.
NASA Astrophysics Data System (ADS)
Song, Chen; Zhong-Cheng, Wu; Hong, Lv
2018-03-01
Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.
Comparison of some evolutionary algorithms for optimization of the path synthesis problem
NASA Astrophysics Data System (ADS)
Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna
2018-01-01
The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.
Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria
NASA Astrophysics Data System (ADS)
Kowalczuk, Zdzisław; Białaszewski, Tomasz
2018-01-01
A novel idea to perform evolutionary computations (ECs) for solving highly dimensional multi-objective optimization (MOO) problems is proposed. Following the general idea of evolution, it is proposed that information about gender is used to distinguish between various groups of objectives and identify the (aggregate) nature of optimality of individuals (solutions). This identification is drawn out of the fitness of individuals and applied during parental crossover in the processes of evolutionary multi-objective optimization (EMOO). The article introduces the principles of the genetic-gender approach (GGA) and virtual gender approach (VGA), which are not just evolutionary techniques, but constitute a completely new rule (philosophy) for use in solving MOO tasks. The proposed approaches are validated against principal representatives of the EMOO algorithms of the state of the art in solving benchmark problems in the light of recognized EC performance criteria. The research shows the superiority of the gender approach in terms of effectiveness, reliability, transparency, intelligibility and MOO problem simplification, resulting in the great usefulness and practicability of GGA and VGA. Moreover, an important feature of GGA and VGA is that they alleviate the 'curse' of dimensionality typical of many engineering designs.
Accelerating atomic structure search with cluster regularization
NASA Astrophysics Data System (ADS)
Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.
2018-06-01
We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.
Simulation of the evolution of root water foraging strategies in dry and shallow soils
Renton, Michael; Poot, Pieter
2014-01-01
Background and Aims The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional–structural root growth model. Methods A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally – the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. Key Results The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Conclusions Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies. PMID:24651371
An optimal brain can be composed of conflicting agents
Livnat, Adi; Pippenger, Nicholas
2006-01-01
Many behaviors have been attributed to internal conflict within the animal and human mind. However, internal conflict has not been reconciled with evolutionary principles, in that it appears maladaptive relative to a seamless decision-making process. We study this problem through a mathematical analysis of decision-making structures. We find that, under natural physiological limitations, an optimal decision-making system can involve “selfish” agents that are in conflict with one another, even though the system is designed for a single purpose. It follows that conflict can emerge within a collective even when natural selection acts on the level of the collective only. PMID:16492775
Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies
2015-01-01
Background Most models of genome evolution concern either genetic sequences, gene content or gene order. They sometimes integrate two of the three levels, but rarely the three of them. Probabilistic models of gene order evolution usually have to assume constant gene content or adopt a presence/absence coding of gene neighborhoods which is blind to complex events modifying gene content. Results We propose a probabilistic evolutionary model for gene neighborhoods, allowing genes to be inserted, duplicated or lost. It uses reconciled phylogenies, which integrate sequence and gene content evolution. We are then able to optimize parameters such as phylogeny branch lengths, or probabilistic laws depicting the diversity of susceptibility of syntenic regions to rearrangements. We reconstruct a structure for ancestral genomes by optimizing a likelihood, keeping track of all evolutionary events at the level of gene content and gene synteny. Ancestral syntenies are associated with a probability of presence. We implemented the model with the restriction that at most one gene duplication separates two gene speciations in reconciled gene trees. We reconstruct ancestral syntenies on a set of 12 drosophila genomes, and compare the evolutionary rates along the branches and along the sites. We compare with a parsimony method and find a significant number of results not supported by the posterior probability. The model is implemented in the Bio++ library. It thus benefits from and enriches the classical models and methods for molecular evolution. PMID:26452018
Evolutionary plant physiology: Charles Darwin's forgotten synthesis
NASA Astrophysics Data System (ADS)
Kutschera, Ulrich; Niklas, Karl J.
2009-11-01
Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.
Controlling Tensegrity Robots through Evolution using Friction based Actuation
NASA Technical Reports Server (NTRS)
Kothapalli, Tejasvi; Agogino, Adrian K.
2017-01-01
Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.
Technology, energy and the environment
NASA Astrophysics Data System (ADS)
Mitchell, Glenn Terry
This dissertation consists of three distinct papers concerned with technology, energy and the environment. The first paper is an empirical analysis of production under uncertainty, using agricultural production data from the central United States. Unlike previous work, this analysis identifies the effect of actual realizations of weather as well as farmers' expectations about weather. The results indicate that both of these are significant factors explaining short run profits in agriculture. Expectations about weather, called climate, affect production choices, and actual weather affects realized output. These results provide better understanding of the effect of climate change in agriculture. The second paper examines how emissions taxes induce innovation that reduces pollution. A polluting firm chooses technical improvement to minimize cost over an infinite horizon, given an emission tax set by a planner. This leads to a solution path for technical change. Changes in the tax rate affect the path for innovation. Setting the tax at equal to the marginal damage (which is optimal in a static setting with no technical change) is not optimal in the presence of technical change. When abatement is also available as an alternative to technical change, changes in the tax can have mixed effects, due to substitution effects. The third paper extends the theoretical framework for exploring the diffusion of new technologies. Information about new technologies spreads through the economy by means of a network. The pattern of diffusion will depend on the structure of this network. Observed networks are the result of an evolutionary process. This paper identifies how these evolutionary outcomes compare with optimal solutions. The conditions guaranteeing convergence to an optimal outcome are quite stringent. It is useful to determine the set of initial population states that do converge to an optimal outcome. The distribution of costs and benefits among the agents within an information processing structure plays a critical role in defining this set. These distributional arrangements represent alternative institutional regimes. Institutional changes can improve outcomes, free the flow of information, and encourage the diffusion of profitable new technologies.
NASA Astrophysics Data System (ADS)
Karam, Gebran Nizar
1994-01-01
Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.
Design of Reflective, Photonic Shields for Atmospheric Reentry
NASA Technical Reports Server (NTRS)
Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Fabrichnaya, Olga; White, Susan; Lawson, John
2010-01-01
We present the design of one-dimensional photonic crystal structures, which can be used as omnidirectional reflecting shields against radiative heating of space vehicles entering the Earth's atmosphere. This radiation is approximated by two broad bands centered at visible and near-infrared energies. We applied two approaches to find structures with the best omnidirectional reflecting performance. The first approach is based on a band gap analysis and leads to structures composed of stacked Bragg mirrors. In the second approach, we optimize the structure using an evolutionary strategy. The suggested structures are compared with a simple design of two stacked Bragg mirrors. Choice of the constituent materials for the layers as well as the influence of interlayer diffusion at high temperatures are discussed.
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
NASA Astrophysics Data System (ADS)
Ginting, E.; Tambunanand, M. M.; Syahputri, K.
2018-02-01
Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.
NASA Astrophysics Data System (ADS)
Wang, Chun; Ji, Zhicheng; Wang, Yan
2017-07-01
In this paper, multi-objective flexible job shop scheduling problem (MOFJSP) was studied with the objects to minimize makespan, total workload and critical workload. A variable neighborhood evolutionary algorithm (VNEA) was proposed to obtain a set of Pareto optimal solutions. First, two novel crowded operators in terms of the decision space and object space were proposed, and they were respectively used in mating selection and environmental selection. Then, two well-designed neighborhood structures were used in local search, which consider the problem characteristics and can hold fast convergence. Finally, extensive comparison was carried out with the state-of-the-art methods specially presented for solving MOFJSP on well-known benchmark instances. The results show that the proposed VNEA is more effective than other algorithms in solving MOFJSP.
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization
NASA Astrophysics Data System (ADS)
Jacobsen, T. L.; Jørgensen, M. S.; Hammer, B.
2018-01-01
Machine learning (ML) is used to derive local stability information for density functional theory calculations of systems in relation to the recently discovered SnO2 (110 )-(4 ×1 ) reconstruction. The ML model is trained on (structure, total energy) relations collected during global minimum energy search runs with an evolutionary algorithm (EA). While being built, the ML model is used to guide the EA, thereby speeding up the overall rate by which the EA succeeds. Inspection of the local atomic potentials emerging from the model further shows chemically intuitive patterns.
Self-extinction through optimizing selection.
Parvinen, Kalle; Dieckmann, Ulf
2013-09-21
Evolutionary suicide is a process in which selection drives a viable population to extinction. So far, such selection-driven self-extinction has been demonstrated in models with frequency-dependent selection. This is not surprising, since frequency-dependent selection can disconnect individual-level and population-level interests through environmental feedback. Hence it can lead to situations akin to the tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing. Together, all published studies of evolutionary suicide have created the impression that evolutionary suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and analyzing an example in which optimizing selection causes self-extinction. We then take this line of argument one step further by showing, in a further example, that selection-driven self-extinction can occur even under frequency-independent selection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L
2016-07-15
Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Using modified fruit fly optimisation algorithm to perform the function test and case studies
NASA Astrophysics Data System (ADS)
Pan, Wen-Tsao
2013-06-01
Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.
Practical advantages of evolutionary computation
NASA Astrophysics Data System (ADS)
Fogel, David B.
1997-10-01
Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
Pasekov, V P
2013-03-01
The paper considers the problems in the adaptive evolution of life-history traits for individuals in the nonlinear Leslie model of age-structured population. The possibility to predict adaptation results as the values of organism's traits (properties) that provide for the maximum of a certain function of traits (optimization criterion) is studied. An ideal criterion of this type is Darwinian fitness as a characteristic of success of an individual's life history. Criticism of the optimization approach is associated with the fact that it does not take into account the changes in the environmental conditions (in a broad sense) caused by evolution, thereby leading to losses in the adequacy of the criterion. In addition, the justification for this criterion under stationary conditions is not usually rigorous. It has been suggested to overcome these objections in terms of the adaptive dynamics theory using the concept of invasive fitness. The reasons are given that favor the application of the average number of offspring for an individual, R(L), as an optimization criterion in the nonlinear Leslie model. According to the theory of quantitative genetics, the selection for fertility (that is, for a set of correlated quantitative traits determined by both multiple loci and the environment) leads to an increase in R(L). In terms of adaptive dynamics, the maximum R(L) corresponds to the evolutionary stability and, in certain cases, convergent stability of the values for traits. The search for evolutionarily stable values on the background of limited resources for reproduction is a problem of linear programming.
A comparative study of corrugated horn design by evolutionary techniques
NASA Technical Reports Server (NTRS)
Hoorfar, A.
2003-01-01
Here an evolutionary programming algorithm is used to optimize the pattern of a corrugated circular horn subject to various constraints on return loss, antenna beamwidth, pattern circularity, and low cross polarization.
2012-09-30
influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation...and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge
2011-09-30
influences on TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been...and extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies...assimilation, and applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
XTALOPT: An open-source evolutionary algorithm for crystal structure prediction
NASA Astrophysics Data System (ADS)
Lonie, David C.; Zurek, Eva
2011-02-01
The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely available to the scientific community for use and collaboration under the GNU Public License. Running time: User dependent. The program runs until stopped by the user.
Adaptive building skin structures
NASA Astrophysics Data System (ADS)
Del Grosso, A. E.; Basso, P.
2010-12-01
The concept of adaptive and morphing structures has gained considerable attention in the recent years in many fields of engineering. In civil engineering very few practical applications are reported to date however. Non-conventional structural concepts like deployable, inflatable and morphing structures may indeed provide innovative solutions to some of the problems that the construction industry is being called to face. To give some examples, searches for low-energy consumption or even energy-harvesting green buildings are amongst such problems. This paper first presents a review of the above problems and technologies, which shows how the solution to these problems requires a multidisciplinary approach, involving the integration of architectural and engineering disciplines. The discussion continues with the presentation of a possible application of two adaptive and dynamically morphing structures which are proposed for the realization of an acoustic envelope. The core of the two applications is the use of a novel optimization process which leads the search for optimal solutions by means of an evolutionary technique while the compatibility of the resulting configurations of the adaptive envelope is ensured by the virtual force density method.
Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali
2018-05-11
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine
2012-12-09
Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
Turbopump Performance Improved by Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2002-01-01
The development of design optimization technology for turbomachinery has been initiated using the multiobjective evolutionary algorithm under NASA's Intelligent Synthesis Environment and Revolutionary Aeropropulsion Concepts programs. As an alternative to the traditional gradient-based methods, evolutionary algorithms (EA's) are emergent design-optimization algorithms modeled after the mechanisms found in natural evolution. EA's search from multiple points, instead of moving from a single point. In addition, they require no derivatives or gradients of the objective function, leading to robustness and simplicity in coupling any evaluation codes. Parallel efficiency also becomes very high by using a simple master-slave concept for function evaluations, since such evaluations often consume the most CPU time, such as computational fluid dynamics. Application of EA's to multiobjective design problems is also straightforward because EA's maintain a population of design candidates in parallel. Because of these advantages, EA's are a unique and attractive approach to real-world design optimization problems.
Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio
2011-12-01
The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.
Efficient hybrid evolutionary algorithm for optimization of a strip coiling process
NASA Astrophysics Data System (ADS)
Pholdee, Nantiwat; Park, Won-Woong; Kim, Dong-Kyu; Im, Yong-Taek; Bureerat, Sujin; Kwon, Hyuck-Cheol; Chun, Myung-Sik
2015-04-01
This article proposes an efficient metaheuristic based on hybridization of teaching-learning-based optimization and differential evolution for optimization to improve the flatness of a strip during a strip coiling process. Differential evolution operators were integrated into the teaching-learning-based optimization with a Latin hypercube sampling technique for generation of an initial population. The objective function was introduced to reduce axial inhomogeneity of the stress distribution and the maximum compressive stress calculated by Love's elastic solution within the thin strip, which may cause an irregular surface profile of the strip during the strip coiling process. The hybrid optimizer and several well-established evolutionary algorithms (EAs) were used to solve the optimization problem. The comparative studies show that the proposed hybrid algorithm outperformed other EAs in terms of convergence rate and consistency. It was found that the proposed hybrid approach was powerful for process optimization, especially with a large-scale design problem.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P
2010-03-09
A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains.
Evolutionary engineering for industrial microbiology.
Vanee, Niti; Fisher, Adam B; Fong, Stephen S
2012-01-01
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Historical Contingency in Controlled Evolution
NASA Astrophysics Data System (ADS)
Schuster, Peter
2014-12-01
A basic question in evolution is dealing with the nature of an evolutionary memory. At thermodynamic equilibrium, at stable stationary states or other stable attractors the memory on the path leading to the long-time solution is erased, at least in part. Similar arguments hold for unique optima. Optimality in biology is discussed on the basis of microbial metabolism. Biology, on the other hand, is characterized by historical contingency, which has recently become accessible to experimental test in bacterial populations evolving under controlled conditions. Computer simulations give additional insight into the nature of the evolutionary memory, which is ultimately caused by the enormous space of possibilities that is so large that it escapes all attempts of visualization. In essence, this contribution is dealing with two questions of current evolutionary theory: (i) Are organisms operating at optimal performance? and (ii) How is the evolutionary memory built up in populations?
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Robustness properties of LQG optimized compensators for collocated rate sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
In this paper we study the robustness with respect to stability of the closed-loop system with collocated rate sensor using LQG (mean square rate) optimized compensators. Our main result is that the transmission zeros of the compensator are precisely the structure modes when the actuator/sensor locations are 'pinned' and/or 'clamped': i.e., motion in the direction sensed is not allowed. We have stability even under parameter mismatch, except in the unlikely situation where such a mode frequency of the assumed system coincides with an undamped mode frequency of the real system and the corresponding mode shape is an eigenvector of the compensator transfer function matrix at that frequency. For a truncated modal model - such as that of the NASA LaRC Phase Zero Evolutionary model - the transmission zeros of the corresponding compensator transfer function can be interpreted as the structure modes when motion in the directions sensed is prohibited.
Evolution of a designed retro-aldolase leads to complete active site remodeling
Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald
2013-01-01
Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672
Automated Antenna Design with Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.
2006-01-01
Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.
2013-09-30
TC structure evolve up to landfall or extratropical transition. In particular, winds derived from geostationary satellites have been shown to be an... extratropical transition, it is clear that a dedicated research effort is needed to optimize the satellite data processing strategies, assimilation, and...applications to better understand the behavior of the near- storm environmental flow fields during these evolutionary TC stages. To our knowledge, this
Cooperation in group-structured populations with two layers of interactions
Zhang, Yanling; Fu, Feng; Chen, Xiaojie; Xie, Guangming; Wang, Long
2015-01-01
Recently there has been a growing interest in studying multiplex networks where individuals are structured in multiple network layers. Previous agent-based simulations of games on multiplex networks reveal rich dynamics arising from interdependency of interactions along each network layer, yet there is little known about analytical conditions for cooperation to evolve thereof. Here we aim to tackle this issue by calculating the evolutionary dynamics of cooperation in group-structured populations with two layers of interactions. In our model, an individual is engaged in two layers of group interactions simultaneously and uses unrelated strategies across layers. Evolutionary competition of individuals is determined by the total payoffs accrued from two layers of interactions. We also consider migration which allows individuals to move to a new group within each layer. An approach combining the coalescence theory with the theory of random walks is established to overcome the analytical difficulty upon local migration. We obtain the exact results for all “isotropic” migration patterns, particularly for migration tuned with varying ranges. When the two layers use one game, the optimal migration ranges are proved identical across layers and become smaller as the migration probability grows. PMID:26632251
Economic repercussions of fisheries-induced evolution
Eikeset, Anne Maria; Richter, Andries; Dunlop, Erin S.; Dieckmann, Ulf; Stenseth, Nils Chr.
2013-01-01
Fish stocks experiencing high fishing mortality show a tendency to mature earlier and at a smaller size, which may have a genetic component and therefore long-lasting economic and biological effects. To date, the economic effects of such ecoevolutionary dynamics have not been empirically investigated. Using 70 y of data, we develop a bioeconomic model for Northeast Arctic cod to compare the economic yield in a model in which life-history traits can vary only through phenotypic plasticity with a model in which, in addition, genetic changes can occur. We find that evolutionary changes toward faster growth and earlier maturation occur consistently even if a stock is optimally managed. However, if a stock is managed optimally, the evolutionary changes actually increase economic yield because faster growth and earlier maturation raise the stock’s productivity. The optimal fishing mortality is almost identical for the evolutionary and nonevolutionary model and substantially lower than what it has been historically. Therefore, the costs of ignoring evolution under optimal management regimes are negligible. However, if fishing mortality is as high as it has been historically, evolutionary changes may result in economic losses, but only if the fishery is selecting for medium-sized individuals. Because evolution facilitates growth, the fish are younger and still immature when they are susceptible to getting caught, which outweighs the increase in productivity due to fish spawning at an earlier age. PMID:23836660
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
Improved Evolutionary Programming with Various Crossover Techniques for Optimal Power Flow Problem
NASA Astrophysics Data System (ADS)
Tangpatiphan, Kritsana; Yokoyama, Akihiko
This paper presents an Improved Evolutionary Programming (IEP) for solving the Optimal Power Flow (OPF) problem, which is considered as a non-linear, non-smooth, and multimodal optimization problem in power system operation. The total generator fuel cost is regarded as an objective function to be minimized. The proposed method is an Evolutionary Programming (EP)-based algorithm with making use of various crossover techniques, normally applied in Real Coded Genetic Algorithm (RCGA). The effectiveness of the proposed approach is investigated on the IEEE 30-bus system with three different types of fuel cost functions; namely the quadratic cost curve, the piecewise quadratic cost curve, and the quadratic cost curve superimposed by sine component. These three cost curves represent the generator fuel cost functions with a simplified model and more accurate models of a combined-cycle generating unit and a thermal unit with value-point loading effect respectively. The OPF solutions by the proposed method and Pure Evolutionary Programming (PEP) are observed and compared. The simulation results indicate that IEP requires less computing time than PEP with better solutions in some cases. Moreover, the influences of important IEP parameters on the OPF solution are described in details.
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Cooperation and age structure in spatial games
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Zhen; Zhu, Xiaodan; Arenzon, Jeferson J.
2012-01-01
We study the evolution of cooperation in evolutionary spatial games when the payoff correlates with the increasing age of players (the level of correlation is set through a single parameter, α). The demographic heterogeneous age distribution, directly affecting the outcome of the game, is thus shown to be responsible for enhancing the cooperative behavior in the population. In particular, moderate values of α allow cooperators not only to survive but to outcompete defectors, even when the temptation to defect is large and the ageless, standard α=0 model does not sustain cooperation. The interplay between age structure and noise is also considered, and we obtain the conditions for optimal levels of cooperation.
Local self-uniformity in photonic networks.
Sellers, Steven R; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-17
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Local self-uniformity in photonic networks
NASA Astrophysics Data System (ADS)
Sellers, Steven R.; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-01
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
A hybrid multi-objective evolutionary algorithm for wind-turbine blade optimization
NASA Astrophysics Data System (ADS)
Sessarego, M.; Dixon, K. R.; Rival, D. E.; Wood, D. H.
2015-08-01
A concurrent-hybrid non-dominated sorting genetic algorithm (hybrid NSGA-II) has been developed and applied to the simultaneous optimization of the annual energy production, flapwise root-bending moment and mass of the NREL 5 MW wind-turbine blade. By hybridizing a multi-objective evolutionary algorithm (MOEA) with gradient-based local search, it is believed that the optimal set of blade designs could be achieved in lower computational cost than for a conventional MOEA. To measure the convergence between the hybrid and non-hybrid NSGA-II on a wind-turbine blade optimization problem, a computationally intensive case was performed using the non-hybrid NSGA-II. From this particular case, a three-dimensional surface representing the optimal trade-off between the annual energy production, flapwise root-bending moment and blade mass was achieved. The inclusion of local gradients in the blade optimization, however, shows no improvement in the convergence for this three-objective problem.
GAtor: A First-Principles Genetic Algorithm for Molecular Crystal Structure Prediction.
Curtis, Farren; Li, Xiayue; Rose, Timothy; Vázquez-Mayagoitia, Álvaro; Bhattacharya, Saswata; Ghiringhelli, Luca M; Marom, Noa
2018-04-10
We present the implementation of GAtor, a massively parallel, first-principles genetic algorithm (GA) for molecular crystal structure prediction. GAtor is written in Python and currently interfaces with the FHI-aims code to perform local optimizations and energy evaluations using dispersion-inclusive density functional theory (DFT). GAtor offers a variety of fitness evaluation, selection, crossover, and mutation schemes. Breeding operators designed specifically for molecular crystals provide a balance between exploration and exploitation. Evolutionary niching is implemented in GAtor by using machine learning to cluster the dynamically updated population by structural similarity and then employing a cluster-based fitness function. Evolutionary niching promotes uniform sampling of the potential energy surface by evolving several subpopulations, which helps overcome initial pool biases and selection biases (genetic drift). The various settings offered by GAtor increase the likelihood of locating numerous low-energy minima, including those located in disconnected, hard to reach regions of the potential energy landscape. The best structures generated are re-relaxed and re-ranked using a hierarchy of increasingly accurate DFT functionals and dispersion methods. GAtor is applied to a chemically diverse set of four past blind test targets, characterized by different types of intermolecular interactions. The experimentally observed structures and other low-energy structures are found for all four targets. In particular, for Target II, 5-cyano-3-hydroxythiophene, the top ranked putative crystal structure is a Z' = 2 structure with P1̅ symmetry and a scaffold packing motif, which has not been reported previously.
Luo, Xiongbiao; Wan, Ying; He, Xiangjian
2015-04-01
Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) as a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor's) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. The experimental results demonstrate that the authors' proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors' framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.
A high-throughput exploration of magnetic materials by using structure predicting methods
NASA Astrophysics Data System (ADS)
Arapan, S.; Nieves, P.; Cuesta-López, S.
2018-02-01
We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece)
NASA Astrophysics Data System (ADS)
Drosou, Athina; Dimitriadis, Panayiotis; Lykou, Archontia; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas; Mamassis, Nikos
2015-04-01
We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.
Improving processes through evolutionary optimization.
Clancy, Thomas R
2011-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.
Framework for computationally efficient optimal irrigation scheduling using ant colony optimization
USDA-ARS?s Scientific Manuscript database
A general optimization framework is introduced with the overall goal of reducing search space size and increasing the computational efficiency of evolutionary algorithm application for optimal irrigation scheduling. The framework achieves this goal by representing the problem in the form of a decisi...
Zeng, Qingfeng; Oganov, Artem R; Lyakhov, Andriy O; Xie, Congwei; Zhang, Xiaodong; Zhang, Jin; Zhu, Qiang; Wei, Bingqing; Grigorenko, Ilya; Zhang, Litong; Cheng, Laifei
2014-02-01
High-k dielectric materials are important as gate oxides in microelectronics and as potential dielectrics for capacitors. In order to enable computational discovery of novel high-k dielectric materials, we propose a fitness model (energy storage density) that includes the dielectric constant, bandgap, and intrinsic breakdown field. This model, used as a fitness function in conjunction with first-principles calculations and the global optimization evolutionary algorithm USPEX, efficiently leads to practically important results. We found a number of high-fitness structures of SiO2 and HfO2, some of which correspond to known phases and some of which are new. The results allow us to propose characteristics (genes) common to high-fitness structures--these are the coordination polyhedra and their degree of distortion. Our variable-composition searches in the HfO2-SiO2 system uncovered several high-fitness states. This hybrid algorithm opens up a new avenue for discovering novel high-k dielectrics with both fixed and variable compositions, and will speed up the process of materials discovery.
Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm
Wang, Shuai; Liu, Jing
2017-01-01
The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314
The damper placement problem for large flexible space structures
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1992-01-01
The damper placement problem for large flexible space truss structures is formulated as a combinatorial optimization problem. The objective is to determine the p truss members of the structure to replace with active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns indexed on the truss members, we seek to find the set of p columns such that the smallest row sum, over the p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the Controls Structures Interaction (CSI) Phase 1 Evolutionary Model (10 modes and 1507 truss members). The resulting solutions are shown to be of high quality.
Optimal lunar soft landing trajectories using taboo evolutionary programming
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel consumption. The results are compared with the available results in literature shows that the solution of present algorithm is better than some of the existing algorithms. Keywords: soft landing, trajectory optimization, evolutionary programming, control parameters, Pontrygen principle.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
The Evolution of Generosity in the Ultimatum Game.
Hintze, Arend; Hertwig, Ralph
2016-09-28
When humans fail to make optimal decisions in strategic games and economic gambles, researchers typically try to explain why that behaviour is biased. To this end, they search for mechanisms that cause human behaviour to deviate from what seems to be the rational optimum. But perhaps human behaviour is not biased; perhaps research assumptions about the optimality of strategies are incomplete. In the one-shot anonymous symmetric ultimatum game (UG), humans fail to play optimally as defined by the Nash equilibrium. However, the distinction between kin and non-kin-with kin detection being a key evolutionary adaption-is often neglected when deriving the "optimal" strategy. We computationally evolved strategies in the UG that were equipped with an evolvable probability to discern kin from non-kin. When an opponent was not kin, agents evolved strategies that were similar to those used by humans. We therefore conclude that the strategy humans play is not irrational. The deviation between behaviour and the Nash equilibrium may rather be attributable to key evolutionary adaptations, such as kin detection. Our findings further suggest that social preference models are likely to capture mechanisms that permit people to play optimally in an evolutionary context. Once this context is taken into account, human behaviour no longer appears irrational.
NASA Astrophysics Data System (ADS)
Karakostas, Spiros
2015-05-01
The multi-objective nature of most spatial planning initiatives and the numerous constraints that are introduced in the planning process by decision makers, stakeholders, etc., synthesize a complex spatial planning context in which the concept of solid and meaningful optimization is a unique challenge. This article investigates new approaches to enhance the effectiveness of multi-objective evolutionary algorithms (MOEAs) via the adoption of a well-known metaheuristic: the non-dominated sorting genetic algorithm II (NSGA-II). In particular, the contribution of a sophisticated crossover operator coupled with an enhanced initialization heuristic is evaluated against a series of metrics measuring the effectiveness of MOEAs. Encouraging results emerge for both the convergence rate of the evolutionary optimization process and the occupation of valuable regions of the objective space by non-dominated solutions, facilitating the work of spatial planners and decision makers. Based on the promising behaviour of both heuristics, topics for further research are proposed to improve their effectiveness.
Protons, osmolytes, and fitness of internal milieu for protein function.
Somero, G N
1986-08-01
The composition of the intracellular milieu shows striking similarities among widely different species. Only certain values of intracellular pH, values that generally reflect alphastat regulation, and only narrow ranges of inorganic ion concentrations are found in the cytoplasm of the cells of most animals, plants, and microorganisms. In water-stressed organisms only a few types of low-molecular-weight organic molecules (osmolytes) are accumulated. These highly conserved characteristics of the intracellular fluids reflect the need to maintain critical features of macromolecules within narrow ranges optimal for life. For proteins these features include maintaining adequate rates of catalysis, a high level of regulatory responsiveness, and a precise balance between stability and lability of structure (tertiary conformation, subunit assembly, and multiprotein complexes). The optimal values for these functional and structural features of proteins often lie near the midrange of possible values for these properties, and only under specific conditions of intracellular pH, ionic strength, and osmolyte composition are these optimal midrange values conserved. In dormant cells the departure of solution conditions from values that are optimal for protein function and structure may be instrumental in reducing or shutting down metabolic functions. Seen from a broad evolutionary perspective, the evolution of the intracellular milieu is an important complement to macromolecular evolution. In certain instances appropriate modifications of the internal milieu may reduce the need for adaptive amino acid replacements in proteins.
Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei
2015-01-01
Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004
Life history determines genetic structure and evolutionary potential of host–parasite interactions
Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.
2009-01-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899
Life history determines genetic structure and evolutionary potential of host-parasite interactions.
Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C
2008-12-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
Coherent control of plasma dynamics by feedback-optimized wavefront manipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Z.-H.; Hou, B.; Gao, G.
2015-05-15
Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less
NASA Astrophysics Data System (ADS)
An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu
2016-07-01
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Ko, Gene M; Garg, Rajni; Bailey, Barbara A; Kumar, Sunil
2016-01-01
Quantitative structure-activity relationship (QSAR) models can be used as a predictive tool for virtual screening of chemical libraries to identify novel drug candidates. The aims of this paper were to report the results of a study performed for descriptor selection, QSAR model development, and virtual screening for identifying novel HIV-1 integrase inhibitor drug candidates. First, three evolutionary algorithms were compared for descriptor selection: differential evolution-binary particle swarm optimization (DE-BPSO), binary particle swarm optimization, and genetic algorithms. Next, three QSAR models were developed from an ensemble of multiple linear regression, partial least squares, and extremely randomized trees models. A comparison of the performances of three evolutionary algorithms showed that DE-BPSO has a significant improvement over the other two algorithms. QSAR models developed in this study were used in consensus as a predictive tool for virtual screening of the NCI Open Database containing 265,242 compounds to identify potential novel HIV-1 integrase inhibitors. Six compounds were predicted to be highly active (plC50 > 6) by each of the three models. The use of a hybrid evolutionary algorithm (DE-BPSO) for descriptor selection and QSAR model development in drug design is a novel approach. Consensus modeling may provide better predictivity by taking into account a broader range of chemical properties within the data set conducive for inhibition that may be missed by an individual model. The six compounds identified provide novel drug candidate leads in the design of next generation HIV- 1 integrase inhibitors targeting drug resistant mutant viruses.
Structural Efficiency of Percolated Landscapes in Flow Networks
Serrano, M. Ángeles; De Los Rios, Paolo
2008-01-01
The large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which organize in macroscopic connected components. However, the precise relation between such structures and functional or evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural efficiency of networks to determine how robust communication between the core and the peripheral components through interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like “hairy balls” so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three real networks with very different purposes and shaped by very different dynamics and time-scales–the Internet customer-provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency. In particular, biological networks seem to be close to the optimal layout. PMID:18985157
ECOD: An Evolutionary Classification of Protein Domains
Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.
2014-01-01
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468
ECOD: an evolutionary classification of protein domains.
Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V
2014-12-01
Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.
USDA-ARS?s Scientific Manuscript database
Ant Colony Optimization (ACO) refers to the family of algorithms inspired by the behavior of real ants and used to solve combinatorial problems such as the Traveling Salesman Problem (TSP).Optimal Foraging Theory (OFT) is an evolutionary principle wherein foraging organisms or insect parasites seek ...
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.
Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro
2016-10-01
The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.
NASA Astrophysics Data System (ADS)
Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel
2009-10-01
Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.
Meringer, Markus; Cleaves, H James
2017-12-13
The reverse tricarboxylic acid (rTCA) cycle has been explored from various standpoints as an idealized primordial metabolic cycle. Its simplicity and apparent ubiquity in diverse organisms across the tree of life have been used to argue for its antiquity and its optimality. In 2000 it was proposed that chemoinformatics approaches support some of these views. Specifically, defined queries of the Beilstein database showed that the molecules of the rTCA are heavily represented in such compound databases. We explore here the chemical structure "space," e.g. the set of organic compounds which possesses some minimal set of defining characteristics, of the rTCA cycle's intermediates using an exhaustive structure generation method. The rTCA's chemical space as defined by the original criteria and explored by our method is some six to seven times larger than originally considered. Acknowledging that each assumption in what is a defining criterion making the rTCA cycle special limits possible generative outcomes, there are many unrealized compounds which fulfill these criteria. That these compounds are unrealized could be due to evolutionary frozen accidents or optimization, though this optimization may also be for systems-level reasons, e.g., the way the pathway and its elements interface with other aspects of metabolism.
Topological design of all-ceramic dental bridges for enhancing fracture resistance.
Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing
2016-06-01
Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation
NASA Technical Reports Server (NTRS)
Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred
2008-01-01
Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.
Evolutionary tree reconstruction
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Kanefsky, Bob
1990-01-01
It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.
We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less
Automated design of spacecraft systems power subsystems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona
2006-01-01
This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.
USDA-ARS?s Scientific Manuscript database
Hyperspectral scattering is a promising technique for rapid and noninvasive measurement of multiple quality attributes of apple fruit. A hierarchical evolutionary algorithm (HEA) approach, in combination with subspace decomposition and partial least squares (PLS) regression, was proposed to select o...
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
NASA Astrophysics Data System (ADS)
Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.
2018-03-01
This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
Novoseltsev, V N; Arking, R; Novoseltseva, J A; Yashin, A I
2002-06-01
The general purpose of the paper is to test evolutionary optimality theories with experimental data on reproduction, energy consumption, and longevity in a particular Drosophila genotype. We describe the resource allocation in Drosophila females in terms of the oxygen consumption rates devoted to reproduction and to maintenance. The maximum ratio of the component spent on reproduction to the total rate of oxygen consumption, which can be realized by the female reproductive machinery, is called metabolic reproductive efficiency (MRE). We regard MRE as an evolutionary constraint. We demonstrate that MRE may be evaluated for a particular Drosophila phenotype given the fecundity pattern, the age-related pattern of oxygen consumption rate, and the longevity. We use a homeostatic model of aging to simulate a life history of a representative female fly, which describes the control strain in the long-term experiments with the Wayne State Drosophila genotype. We evaluate the theoretically optimal trade-offs in this genotype. Then we apply the Van Noordwijk-de Jong resource acquisition and allocation model, Kirkwood's disposable soma theory. and the Partridge-Barton optimality approach to test if the experimentally observed trade-offs may be regarded as close to the theoretically optimal ones. We demonstrate that the two approaches by Partridge-Barton and Kirkwood allow a positive answer to the question, whereas the Van Noordwijk-de Jong approach may be used to illustrate the optimality. We discuss the prospects of applying the proposed technique to various Drosophila experiments, in particular those including manipulations affecting fecundity.
Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G
2016-01-01
This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.
Evolutionary engineering of industrial microorganisms-strategies and applications.
Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng
2018-06-01
Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.
Marín, Mario Alejandro; López, Andrés; Uribe, Sandra Inés
2012-06-01
The nucleotide variation and structural patterns of mitochondrial RNA molecule have been proposed as useful tools in molecular systematics; however, their usefulness is always subject to a proper assessment of homology in the sequence alignment. The present study describes the secondary structure of mitochondrial tRNA for the amino acid serine (UCN) on 13 Euptychiina species and the evaluation of its potential use for evolutionary studies in this group of butterflies. The secondary structure of tRNAs showed variation among the included species except between Hermeuptychia sp1 and sp2. Variation was concentrated in the ribotimidina-pseudouridine-cystosine (TψC), dihydrouridine (DHU) and variable loops and in the DHU and TψC arms. These results suggest this region as a potential marker useful for taxonomic differentiation of species in this group and also confirm the importance of including information from the secondary structure of tRNA to optimize the alignments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiongbiao, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; Wan, Ying, E-mail: xluo@robarts.ca, E-mail: Ying.Wan@student.uts.edu.au; He, Xiangjian
Purpose: Electromagnetically guided endoscopic procedure, which aims at accurately and robustly localizing the endoscope, involves multimodal sensory information during interventions. However, it still remains challenging in how to integrate these information for precise and stable endoscopic guidance. To tackle such a challenge, this paper proposes a new framework on the basis of an enhanced particle swarm optimization method to effectively fuse these information for accurate and continuous endoscope localization. Methods: The authors use the particle swarm optimization method, which is one of stochastic evolutionary computation algorithms, to effectively fuse the multimodal information including preoperative information (i.e., computed tomography images) asmore » a frame of reference, endoscopic camera videos, and positional sensor measurements (i.e., electromagnetic sensor outputs). Since the evolutionary computation method usually limits its possible premature convergence and evolutionary factors, the authors introduce the current (endoscopic camera and electromagnetic sensor’s) observation to boost the particle swarm optimization and also adaptively update evolutionary parameters in accordance with spatial constraints and the current observation, resulting in advantageous performance in the enhanced algorithm. Results: The experimental results demonstrate that the authors’ proposed method provides a more accurate and robust endoscopic guidance framework than state-of-the-art methods. The average guidance accuracy of the authors’ framework was about 3.0 mm and 5.6° while the previous methods show at least 3.9 mm and 7.0°. The average position and orientation smoothness of their method was 1.0 mm and 1.6°, which is significantly better than the other methods at least with (2.0 mm and 2.6°). Additionally, the average visual quality of the endoscopic guidance was improved to 0.29. Conclusions: A robust electromagnetically guided endoscopy framework was proposed on the basis of an enhanced particle swarm optimization method with using the current observation information and adaptive evolutionary factors. The authors proposed framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6°), compared to state-of-the-art methods.« less
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
The evolutionary origins of Lévy walk foraging
Wosniack, Marina E.
2017-01-01
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. PMID:28972973
Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
Clark, Anthony J; Tan, Xiaobo; McKinley, Philip K
2015-11-25
Robotic fish accomplish swimming by deforming their bodies or other fin-like appendages. As an emerging class of embedded computing system, robotic fish are anticipated to play an important role in environmental monitoring, inspection of underwater structures, tracking of hazardous wastes and oil spills, and the study of live fish behaviors. While integration of flexible materials (into the fins and/or body) holds the promise of improved swimming performance (in terms of both speed and maneuverability) for these robots, such components also introduce significant design challenges due to the complex material mechanics and hydrodynamic interactions. The problem is further exacerbated by the need for the robots to meet multiple objectives (e.g., both speed and energy efficiency). In this paper, we propose an evolutionary multiobjective optimization approach to the design and control of a robotic fish with a flexible caudal fin. Specifically, we use the NSGA-II algorithm to investigate morphological and control parameter values that optimize swimming speed and power usage. Several evolved fin designs are validated experimentally with a small robotic fish, where fins of different stiffness values and sizes are printed with a multi-material 3D printer. Experimental results confirm the effectiveness of the proposed design approach in balancing the two competing objectives.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
Spatial targeting of agri-environmental policy using bilevel evolutionary optimization
USDA-ARS?s Scientific Manuscript database
In this study we describe the optimal designation of agri-environmental policy as a bilevel optimization problem and propose an integrated solution method using a hybrid genetic algorithm. The problem is characterized by a single leader, the agency, that establishes a policy with the goal of optimiz...
Evolutionary flight and enabling smart actuator devices
NASA Astrophysics Data System (ADS)
Manzo, Justin; Garcia, Ephrahim
2007-04-01
Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.
Advanced fitness landscape analysis and the performance of memetic algorithms.
Merz, Peter
2004-01-01
Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.
An Improved Evolutionary Programming with Voting and Elitist Dispersal Scheme
NASA Astrophysics Data System (ADS)
Maity, Sayan; Gunjan, Kumar; Das, Swagatam
Although initially conceived for evolving finite state machines, Evolutionary Programming (EP), in its present form, is largely used as a powerful real parameter optimizer. For function optimization, EP mainly relies on its mutation operators. Over past few years several mutation operators have been proposed to improve the performance of EP on a wide variety of numerical benchmarks. However, unlike real-coded GAs, there has been no fitness-induced bias in parent selection for mutation in EP. That means the i-th population member is selected deterministically for mutation and creation of the i-th offspring in each generation. In this article we present an improved EP variant called Evolutionary Programming with Voting and Elitist Dispersal (EPVE). The scheme encompasses a voting process which not only gives importance to best solutions but also consider those solutions which are converging fast. By introducing Elitist Dispersal Scheme we maintain the elitism by keeping the potential solutions intact and other solutions are perturbed accordingly, so that those come out of the local minima. By applying these two techniques we can be able to explore those regions which have not been explored so far that may contain optima. Comparison with the recent and best-known versions of EP over 25 benchmark functions from the CEC (Congress on Evolutionary Computation) 2005 test-suite for real parameter optimization reflects the superiority of the new scheme in terms of final accuracy, speed, and robustness.
NASA Astrophysics Data System (ADS)
Maravall, Darío; de Lope, Javier; Domínguez, Raúl
In Multi-agent systems, the study of language and communication is an active field of research. In this paper we present the application of evolutionary strategies to the self-emergence of a common lexicon in a population of agents. By modeling the vocabulary or lexicon of each agent as an association matrix or look-up table that maps the meanings (i.e. the objects encountered by the agents or the states of the environment itself) into symbols or signals we check whether it is possible for the population to converge in an autonomous, decentralized way to a common lexicon, so that the communication efficiency of the entire population is optimal. We have conducted several experiments, from the simplest case of a 2×2 association matrix (i.e. two meanings and two symbols) to a 3×3 lexicon case and in both cases we have attained convergence to the optimal communication system by means of evolutionary strategies. To analyze the convergence of the population of agents we have defined the population's consensus when all the agents (i.e. the 100% of the population) share the same association matrix or lexicon. As a general conclusion we have shown that evolutionary strategies are powerful enough optimizers to guarantee the convergence to lexicon consensus in a population of autonomous agents.
Behavioral responses in structured populations pave the way to group optimality.
Akçay, Erol; Van Cleve, Jeremy
2012-02-01
An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other's actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality.
Baskar, Gurunathan; Sathya, Shree Rajesh K
2011-01-01
Statistical and evolutionary optimization of media composition was employed for the production of medicinal exopolysaccharide (EPS) by Lingzhi or Reishi medicinal mushroom Ganoderma lucidium MTCC 1039 using soya bean meal flour as low-cost substrate. Soya bean meal flour, ammonium chloride, glucose, and pH were identified as the most important variables for EPS yield using the two-level Plackett-Burman design and further optimized using the central composite design (CCD) and the artificial neural network (ANN)-linked genetic algorithm (GA). The high value of coefficient of determination of ANN (R² = 0.982) indicates that the ANN model was more accurate than the second-order polynomial model of CCD (R² = 0.91) for representing the effect of media composition on EPS yield. The predicted optimum media composition using ANN-linked GA was soybean meal flour 2.98%, glucose 3.26%, ammonium chloride 0.25%, and initial pH 7.5 for the maximum predicted EPS yield of 1005.55 mg/L. The experimental EPS yield obtained using the predicted optimum media composition was 1012.36 mg/L, which validates the high degree of accuracy of evolutionary optimization for enhanced production of EPS by submerged fermentation of G. lucidium.
The Evolution of Generosity in the Ultimatum Game
Hintze, Arend; Hertwig, Ralph
2016-01-01
When humans fail to make optimal decisions in strategic games and economic gambles, researchers typically try to explain why that behaviour is biased. To this end, they search for mechanisms that cause human behaviour to deviate from what seems to be the rational optimum. But perhaps human behaviour is not biased; perhaps research assumptions about the optimality of strategies are incomplete. In the one-shot anonymous symmetric ultimatum game (UG), humans fail to play optimally as defined by the Nash equilibrium. However, the distinction between kin and non-kin—with kin detection being a key evolutionary adaption—is often neglected when deriving the “optimal” strategy. We computationally evolved strategies in the UG that were equipped with an evolvable probability to discern kin from non-kin. When an opponent was not kin, agents evolved strategies that were similar to those used by humans. We therefore conclude that the strategy humans play is not irrational. The deviation between behaviour and the Nash equilibrium may rather be attributable to key evolutionary adaptations, such as kin detection. Our findings further suggest that social preference models are likely to capture mechanisms that permit people to play optimally in an evolutionary context. Once this context is taken into account, human behaviour no longer appears irrational. PMID:27677330
NASA Astrophysics Data System (ADS)
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2012-12-01
Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors ‘choose’ an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor ‘chooses’ its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients.
NASA Astrophysics Data System (ADS)
Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias
2018-04-01
This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Structural symmetry in evolutionary games.
McAvoy, Alex; Hauert, Christoph
2015-10-06
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).
Structural symmetry in evolutionary games
McAvoy, Alex; Hauert, Christoph
2015-01-01
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436
An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Plank, James; Disney, Adam
2016-01-01
As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
Hashim, H A; Abido, M A
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard
2005-01-01
Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.
Hashim, H. A.; Abido, M. A.
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738
Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory
NASA Astrophysics Data System (ADS)
Matsumura, Koki; Kawamoto, Masaru
This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.
Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.
Morrison, Erin S; Badyaev, Alexander V
2018-05-01
Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Evolution of optimal Lévy-flight strategies in human mental searches
NASA Astrophysics Data System (ADS)
Radicchi, Filippo; Baronchelli, Andrea
2012-06-01
Recent analysis of empirical data [Radicchi, Baronchelli, and Amaral, PloS ONE1932-620310.1371/journal.pone.0029910 7, e029910 (2012)] showed that humans adopt Lévy-flight strategies when exploring the bid space in online auctions. A game theoretical model proved that the observed Lévy exponents are nearly optimal, being close to the exponent value that guarantees the maximal economical return to players. Here, we rationalize these findings by adopting an evolutionary perspective. We show that a simple evolutionary process is able to account for the empirical measurements with the only assumption that the reproductive fitness of the players is proportional to their search ability. Contrary to previous modeling, our approach describes the emergence of the observed exponent without resorting to any strong assumptions on the initial searching strategies. Our results generalize earlier research, and open novel questions in cognitive, behavioral, and evolutionary sciences.
Advancing X-ray scattering metrology using inverse genetic algorithms.
Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph
2016-01-01
We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.
Coherent organization in gene regulation: a study on six networks
NASA Astrophysics Data System (ADS)
Aral, Neşe; Kabakçıoğlu, Alkan
2016-04-01
Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.
Jacobs, D S; Bastian, A; Bam, L
2014-12-01
The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
3D RNA and functional interactions from evolutionary couplings
Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.
2016-01-01
Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444
Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu
2011-01-01
Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the evolutionary method is viewed in comparison to the traditional one. The multifaceted discrimination into all five degrees of fibrosis and the slightly less difficult common separation into solely three related stages are both investigated. The resulting performance proves the superiority over the standard support vector classification and the attained formula is helpful in providing an immediate calculation of the liver stage for new cases, while establishing the presence/absence and comprehending the weight of each medical factor with respect to a certain fibrosis level. The use of the evolutionary technique for fibrosis degree prediction triggers simplicity and offers a direct expression of the influence of dynamically selected indicators on the corresponding stage. Perhaps most importantly, it significantly surpasses the classical support vector machines, which are both widely used and technically sound. All these therefore confirm the promise of the new methodology towards a dependable support within the medical decision-making. Copyright © 2010 Elsevier B.V. All rights reserved.
Artificial evolution by viability rather than competition.
Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario
2014-01-01
Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
Toft, S; Albo, M J
2015-02-01
In species where females gain a nutritious nuptial gift during mating, the balance between benefits and costs of mating may depend on access to food. This means that there is not one optimal number of matings for the female but a range of optimal mating numbers. With increasing food availability, the optimal number of matings for a female should vary from the number necessary only for fertilization of her eggs to the number needed also for producing these eggs. In three experimental series, the average number of matings for females of the nuptial gift-giving spider Pisaura mirabilis before egg sac construction varied from 2 to 16 with food-limited females generally accepting more matings than well-fed females. Minimal level of optimal mating number for females at satiation feeding conditions was predicted to be 2-3; in an experimental test, the median number was 2 (range 0-4). Multiple mating gave benefits in terms of increased fecundity and increased egg hatching success up to the third mating, and it had costs in terms of reduced fecundity, reduced egg hatching success after the third mating, and lower offspring size. The level of polyandry seems to vary with the female optimum, regulated by a satiation-dependent resistance to mating, potentially leaving satiated females in lifelong virginity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Biosynthetic engineering of nonribosomal peptide synthetases.
Kries, Hajo
2016-09-01
From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
The formal Darwinism project: a mid-term report.
Grafen, A
2007-07-01
For 8 years I have been pursuing in print an ambitious and at times highly technical programme of work, the 'Formal Darwinism Project', whose essence is to underpin and formalize the fitness optimization ideas used by behavioural ecologists, using a new kind of argument linking the mathematics of motion and the mathematics of optimization. The value of the project is to give stronger support to current practices, and at the same time sharpening theoretical ideas and suggesting principled resolutions of some untidy areas, for example, how to define fitness. The aim is also to unify existing free-standing theoretical structures, such as inclusive fitness theory, Evolutionary Stable Strategy (ESS) theory and bet-hedging theory. The 40-year-old misunderstanding over the meaning of fitness optimization between mathematicians and biologists is explained. Most of the elements required for a general theory have now been implemented, but not together in the same framework, and 'general time' remains to be developed and integrated with the other elements to produce a final unified theory of neo-Darwinian natural selection.
Gather, Malte C; Yun, Seok Hyun
2014-12-08
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here, we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (-7 dB) and support strong optical amplification (gnet=22 cm(-1); 96 dB cm(-1)). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles.
Gather, Malte C.; Yun, Seok Hyun
2015-01-01
Bioluminescent organisms are likely to have an evolutionary drive towards high radiance. As such, bio-optimized materials derived from them hold great promise for photonic applications. Here we show that biologically produced fluorescent proteins retain their high brightness even at the maximum density in solid state through a special molecular structure that provides optimal balance between high protein concentration and low resonance energy transfer self-quenching. Dried films of green fluorescent protein show low fluorescence quenching (−7 dB) and support strong optical amplification (gnet = 22 cm−1; 96 dB cm−1). Using these properties, we demonstrate vertical cavity surface emitting micro-lasers with low threshold (<100 pJ, outperforming organic semiconductor lasers) and self-assembled all-protein ring lasers. Moreover, solid-state blends of different proteins support efficient Förster resonance energy transfer, with sensitivity to intermolecular distance thus allowing all-optical sensing. The design of fluorescent proteins may be exploited for bio-inspired solid-state luminescent molecules or nanoparticles. PMID:25483850
Crystal Structure Prediction and its Application in Earth and Materials Sciences
NASA Astrophysics Data System (ADS)
Zhu, Qiang
First of all, we describe how to predict crystal structure by evolutionary approach, and extend this method to study the packing of organic molecules, by our specially designed constrained evolutionary algorithm. The main feature of this new approach is that each unit or molecule is treated as a whole body, which drastically reduces the search space and improves the efficiency. The improved method is possibly to be applied in the fields of (1) high pressure phase of simple molecules (H2O, NH3, CH4, etc); (2) pharmaceutical molecules (glycine, aspirin, etc); (3) complex inorganic crystals containing cluster or molecular unit, (Mg(BH4)2, Ca(BH4)2, etc). One application of the constrained evolutionary algorithm is given by the study of (Mg(BH4)2, which is a promising materials for hydrogen storage. Our prediction does not only reproduce the previous work on Mg(BH4)2 at ambient condition, but also yields two new tetragonal structures at high pressure, with space groups P4 and I41/acd are predicted to be lower in enthalpy, by 15.4 kJ/mol and 21.2 kJ/mol, respectively, than the earlier proposed P42nm phase. We have simulated X-ray diffraction spectra, lattice dynamics, and equations of state of these phases. The density, volume contraction, bulk modulus, and the simulated XRD patterns of P4 and I41/acd structures are in excellent agreement with the experimental results. Two kinds of oxides (Xe-O and Mg-O) have been studied under megabar pressures. For XeO, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures of 83, 102 and 114 GPa, respectively). For Mg-O, our calculations find that two extraordinary compounds MgO2 and Mg3O 2 become thermodynamically stable at 116 GPa and 500 GPa, respectively. Our calculations indicate large charge transfer in these oxides for both systems, suggesting that large electronegativity difference and pressure are the key factors favouring their formations. We also discuss if these oxides might exist at earth and planetary conditions. If the target properties are set as the global fitness functions while structure relaxations are energy/enthalpy minimization, such hybrid optimization technique could effectively explore the landscape of properties for the given systems. Here we illustrate this function by the case of searching for superdense carbon allotropes. We find three structures (hP3, tI12, and tP12) that have significantly greater density. Furthermore, we find a collection of other superdense structures based on different ways of packing carbon tetrahedral. Superdense carbon allotropes are predicted to have remarkably high refractive indices and strong dispersion of light. Apart from evolutionary approach, there also exist some other methods for structural prediction. One can also combine the features from different methods. We develop a novel method for crystal structure prediction, based on metadynamics and evolutionary algorithms. This technique can be used to produce efficiently both the ground state and metastable states easily reachable from a reasonable initial structure. We use the cell shape as collective variable and evolutionary variation operators developed in the context of the USPEX method to equilibrate the system as a function of the collective variables. We illustrate how this approach helps one to find stable and metastable states for Al2SiO5, SiO2, MgSiO3. Apart from predicting crystal structures, the new method can also provide insight into mechanisms of phase transitions. This method is especially powerful in sampling the metastable structures from a given configuration. Experiments on cold compression indicated the existence of a new superhard carbon allotrope. Numerous metastable candidate structures featuring different topologies have been proposed for this allotrope. We use evolutionary metadynamics to systematically search for possible candidates which could be accessible from graphite. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
NASA Astrophysics Data System (ADS)
Persico, Giacomo
2017-03-01
This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.
The evolutionary rate dynamically tracks changes in HIV-1 epidemics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus
Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less
Robust enzyme design: bioinformatic tools for improved protein stability.
Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas
2015-03-01
The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele
2017-09-01
The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.
2013-01-01
Background Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured. Methods We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima. Results and conclusions Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions. PMID:24565020
Adly, Amr A.; Abd-El-Hafiz, Salwa K.
2014-01-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper. PMID:26257939
Adly, Amr A; Abd-El-Hafiz, Salwa K
2015-05-01
Transformers are regarded as crucial components in power systems. Due to market globalization, power transformer manufacturers are facing an increasingly competitive environment that mandates the adoption of design strategies yielding better performance at lower costs. In this paper, a power transformer design methodology using multi-objective evolutionary optimization is proposed. Using this methodology, which is tailored to be target performance design-oriented, quick rough estimation of transformer design specifics may be inferred. Testing of the suggested approach revealed significant qualitative and quantitative match with measured design and performance values. Details of the proposed methodology as well as sample design results are reported in the paper.
Majid, Abdul; Ali, Safdar
2015-01-01
We developed genetic programming (GP)-based evolutionary ensemble system for the early diagnosis, prognosis and prediction of human breast cancer. This system has effectively exploited the diversity in feature and decision spaces. First, individual learners are trained in different feature spaces using physicochemical properties of protein amino acids. Their predictions are then stacked to develop the best solution during GP evolution process. Finally, results for HBC-Evo system are obtained with optimal threshold, which is computed using particle swarm optimization. Our novel approach has demonstrated promising results compared to state of the art approaches.
Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities
Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert
2014-01-01
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327
Functional evolution of PLP-dependent enzymes based on active-site structural similarities.
Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert
2014-10-01
Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.
An evolutionary algorithm that constructs recurrent neural networks.
Angeline, P J; Saunders, G M; Pollack, J B
1994-01-01
Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-10-01
This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Closed-loop optimization of chromatography column sizing strategies in biopharmaceutical manufacture
Allmendinger, Richard; Simaria, Ana S; Turner, Richard; Farid, Suzanne S
2014-01-01
BACKGROUND This paper considers a real-world optimization problem involving the identification of cost-effective equipment sizing strategies for the sequence of chromatography steps employed to purify biopharmaceuticals. Tackling this problem requires solving a combinatorial optimization problem subject to multiple constraints, uncertain parameters, and time-consuming fitness evaluations. RESULTS An industrially-relevant case study is used to illustrate that evolutionary algorithms can identify chromatography sizing strategies with significant improvements in performance criteria related to process cost, time and product waste over the base case. The results demonstrate also that evolutionary algorithms perform best when infeasible solutions are repaired intelligently, the population size is set appropriately, and elitism is combined with a low number of Monte Carlo trials (needed to account for uncertainty). Adopting this setup turns out to be more important for scenarios where less time is available for the purification process. Finally, a data-visualization tool is employed to illustrate how user preferences can be accounted for when it comes to selecting a sizing strategy to be implemented in a real industrial setting. CONCLUSION This work demonstrates that closed-loop evolutionary optimization, when tuned properly and combined with a detailed manufacturing cost model, acts as a powerful decisional tool for the identification of cost-effective purification strategies. © 2013 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25506115
Long range personalized cancer treatment strategies incorporating evolutionary dynamics.
Yeang, Chen-Hsiang; Beckman, Robert A
2016-10-22
Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual's cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps ("single-step optimization"). Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead ("multi-step optimization") or 40 steps ahead ("adaptive long term optimization (ALTO)") when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible ("Adaptive long term optimization: serial monotherapy only (ALTO-SMO)"). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that "think ahead" can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel.
NASA Astrophysics Data System (ADS)
Lin, XuXun; Yuan, PengCheng
2018-01-01
In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
NASA Astrophysics Data System (ADS)
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Invisible hand effect in an evolutionary minority game model
NASA Astrophysics Data System (ADS)
Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo
2005-03-01
In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.
NASA Astrophysics Data System (ADS)
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.
Formal Darwinism, the individual-as-maximizing-agent analogy and bet-hedging
Grafen, A.
1999-01-01
The central argument of The origin of species was that mechanical processes (inheritance of features and the differential reproduction they cause) can give rise to the appearance of design. The 'mechanical processes' are now mathematically represented by the dynamic systems of population genetics, and the appearance of design by optimization and game theory in which the individual plays the part of the maximizing agent. Establishing a precise individual-as-maximizing-agent (IMA) analogy for a population-genetics system justifies optimization approaches, and so provides a modern formal representation of the core of Darwinism. It is a hitherto unnoticed implication of recent population-genetics models that, contrary to a decades-long consensus, an IMA analogy can be found in models with stochastic environments (subject to a convexity assumption), in which individuals maximize expected reproductive value. The key is that the total reproductive value of a species must be considered as constant, so therefore reproductive value should always be calculated in relative terms. This result removes a major obstacle from the theoretical challenge to find a unifying framework which establishes the IMA analogy for all of Darwinian biology, including as special cases inclusive fitness, evolutionarily stable strategies, evolutionary life-history theory, age-structured models and sex ratio theory. This would provide a formal, mathematical justification of fruitful and widespread but 'intentional' terms in evolutionary biology, such as 'selfish', 'altruism' and 'conflict'.
Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.
Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke
2016-01-01
Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
Biswas, Subhodip; Kundu, Souvik; Das, Swagatam
2014-10-01
In real life, we often need to find multiple optimally sustainable solutions of an optimization problem. Evolutionary multimodal optimization algorithms can be very helpful in such cases. They detect and maintain multiple optimal solutions during the run by incorporating specialized niching operations in their actual framework. Differential evolution (DE) is a powerful evolutionary algorithm (EA) well-known for its ability and efficiency as a single peak global optimizer for continuous spaces. This article suggests a niching scheme integrated with DE for achieving a stable and efficient niching behavior by combining the newly proposed parent-centric mutation operator with synchronous crowding replacement rule. The proposed approach is designed by considering the difficulties associated with the problem dependent niching parameters (like niche radius) and does not make use of such control parameter. The mutation operator helps to maintain the population diversity at an optimum level by using well-defined local neighborhoods. Based on a comparative study involving 13 well-known state-of-the-art niching EAs tested on an extensive collection of benchmarks, we observe a consistent statistical superiority enjoyed by our proposed niching algorithm.
Evolutionary optimization of biopolymers and sequence structure maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidys, C.M.; Kopp, S.; Schuster, P.
1996-06-01
Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is densemore » and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.« less
NASA Astrophysics Data System (ADS)
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
Flat-walled multilayered anechoic linings: Optimization and application
NASA Astrophysics Data System (ADS)
Xu, Jingfeng; Buchholz, Jörg M.; Fricke, Fergus R.
2005-11-01
The concept of flat-walled multilayered absorbent linings for anechoic rooms was proposed three decades ago. Flat-walled linings have the advantage of being less complicated and, hence, less costly to manufacture and install than the individual units such as wedges. However, there are difficulties in optimizing the design of such absorbent linings. In the present work, the design of a flat-walled multilayered anechoic lining that targeted a 250 Hz cut-off frequency and a 300 mm maximum lining thickness was first optimized using an evolutionary algorithm. Sixteen of the most commonly used commercial fibrous building insulation materials available in Australia were investigated and fourteen design options (i.e., material combinations) were found by the evolutionary algorithm. These options were then evaluated in accordance with their costs and measured acoustic absorption performances. Finally, the completed anechoic room, where the optimized design was applied, was qualified and the results showed that a large percentage (75%-85%) of the distance between the sound source and the room boundaries, on the traverses made, were anechoic.
Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S
2016-09-15
Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Identifying functionally informative evolutionary sequence profiles.
Gil, Nelson; Fiser, Andras
2018-04-15
Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. andras.fiser@einstein.yu.edu. Supplementary data are available at Bioinformatics online.
Kümmerli, Rolf; Keller, Laurent
2009-01-01
Split sex ratio—a pattern where colonies within a population specialize in either male or queen production—is a widespread phenomenon in ants and other social Hymenoptera. It has often been attributed to variation in colony kin structure, which affects the degree of queen–worker conflict over optimal sex allocation. However, recent findings suggest that split sex ratio is a more diverse phenomenon, which can evolve for multiple reasons. Here, we provide an overview of the main conditions favouring split sex ratio. We show that each split sex-ratio type arises due to a different combination of factors determining colony kin structure, queen or worker control over sex ratio and the type of conflict between colony members. PMID:19457886
Using concepts from biology to improve problem-solving methods
NASA Astrophysics Data System (ADS)
Goodman, Erik D.; Rothwell, Edward J.; Averill, Ronald C.
2011-06-01
Observing nature has been a cornerstone of engineering design. Today, engineers look not only at finished products, but imitate the evolutionary process by which highly optimized artifacts have appeared in nature. Evolutionary computation began by capturing only the simplest ideas of evolution, but today, researchers study natural evolution and incorporate an increasing number of concepts in order to evolve solutions to complex engineering problems. At the new BEACON Center for the Study of Evolution in Action, studies in the lab and field and in silico are laying the groundwork for new tools for evolutionary engineering design. This paper, which accompanies a keynote address, describes various steps in development and application of evolutionary computation, particularly as regards sensor design, and sets the stage for future advances.
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.
Combining Physicochemical and Evolutionary Information for Protein Contact Prediction
Schneider, Michael; Brock, Oliver
2014-01-01
We introduce a novel contact prediction method that achieves high prediction accuracy by combining evolutionary and physicochemical information about native contacts. We obtain evolutionary information from multiple-sequence alignments and physicochemical information from predicted ab initio protein structures. These structures represent low-energy states in an energy landscape and thus capture the physicochemical information encoded in the energy function. Such low-energy structures are likely to contain native contacts, even if their overall fold is not native. To differentiate native from non-native contacts in those structures, we develop a graph-based representation of the structural context of contacts. We then use this representation to train an support vector machine classifier to identify most likely native contacts in otherwise non-native structures. The resulting contact predictions are highly accurate. As a result of combining two sources of information—evolutionary and physicochemical—we maintain prediction accuracy even when only few sequence homologs are present. We show that the predicted contacts help to improve ab initio structure prediction. A web service is available at http://compbio.robotics.tu-berlin.de/epc-map/. PMID:25338092
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
A Stochastic Evolutionary Model for Protein Structure Alignment and Phylogeny
Challis, Christopher J.; Schmidler, Scott C.
2012-01-01
We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels arise from a classic Links model, and mutations follow a standard substitution matrix, whereas backbone atoms diffuse in three-dimensional space according to an Ornstein–Uhlenbeck process. The model allows for simultaneous estimation of evolutionary distances, indel rates, structural drift rates, and alignments, while fully accounting for uncertainty. The inclusion of structural information enables phylogenetic inference on time scales not previously attainable with sequence evolution models. The model also provides a tool for testing evolutionary hypotheses and improving our understanding of protein structural evolution. PMID:22723302
XtalOpt version r9: An open-source evolutionary algorithm for crystal structure prediction
Falls, Zackary; Lonie, David C.; Avery, Patrick; ...
2015-10-23
This is a new version of XtalOpt, an evolutionary algorithm for crystal structure prediction available for download from the CPC library or the XtalOpt website, http://xtalopt.github.io. XtalOpt is published under the Gnu Public License (GPL), which is an open source license that is recognized by the Open Source Initiative. We have detailed the new version incorporates many bug-fixes and new features here and predict the crystal structure of a system from its stoichiometry alone, using evolutionary algorithms.
An efficient non-dominated sorting method for evolutionary algorithms.
Fang, Hongbing; Wang, Qian; Tu, Yi-Cheng; Horstemeyer, Mark F
2008-01-01
We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.
Group adaptation, formal darwinism and contextual analysis.
Okasha, S; Paternotte, C
2012-06-01
We consider the question: under what circumstances can the concept of adaptation be applied to groups, rather than individuals? Gardner and Grafen (2009, J. Evol. Biol.22: 659-671) develop a novel approach to this question, building on Grafen's 'formal Darwinism' project, which defines adaptation in terms of links between evolutionary dynamics and optimization. They conclude that only clonal groups, and to a lesser extent groups in which reproductive competition is repressed, can be considered as adaptive units. We re-examine the conditions under which the selection-optimization links hold at the group level. We focus on an important distinction between two ways of understanding the links, which have different implications regarding group adaptationism. We show how the formal Darwinism approach can be reconciled with G.C. Williams' famous analysis of group adaptation, and we consider the relationships between group adaptation, the Price equation approach to multi-level selection, and the alternative approach based on contextual analysis. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Competition among cooperators: Altruism and reciprocity
Danielson, Peter
2002-01-01
Levine argues that neither self-interest nor altruism explains experimental results in bargaining and public goods games. Subjects' preferences appear also to be sensitive to their opponents' perceived altruism. Sethi and Somanathan provide a general account of reciprocal preferences that survive under evolutionary pressure. Although a wide variety of reciprocal strategies pass this evolutionary test, Sethi and Somanthan conjecture that fewer are likely to survive when reciprocal strategies compete with each other. This paper develops evolutionary agent-based models to test their conjecture in cases where reciprocal preferences can differ in a variety of games. We confirm that reciprocity is necessary but not sufficient for optimal cooperation. We explore the theme of competition among reciprocal cooperators and display three interesting emergent organizations: racing to the “moral high ground,” unstable cycles of preference change, and, when we implement reciprocal mechanisms, hierarchies resulting from exploiting fellow cooperators. If reciprocity is a basic mechanism facilitating cooperation, we can expect interaction that evolves around it to be complex, non-optimal, and resistant to change. PMID:12011403
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
NASA Astrophysics Data System (ADS)
Chaves-González, José M.; Vega-Rodríguez, Miguel A.; Gómez-Pulido, Juan A.; Sánchez-Pérez, Juan M.
2011-08-01
This article analyses the use of a novel parallel evolutionary strategy to solve complex optimization problems. The work developed here has been focused on a relevant real-world problem from the telecommunication domain to verify the effectiveness of the approach. The problem, known as frequency assignment problem (FAP), basically consists of assigning a very small number of frequencies to a very large set of transceivers used in a cellular phone network. Real data FAP instances are very difficult to solve due to the NP-hard nature of the problem, therefore using an efficient parallel approach which makes the most of different evolutionary strategies can be considered as a good way to obtain high-quality solutions in short periods of time. Specifically, a parallel hyper-heuristic based on several meta-heuristics has been developed. After a complete experimental evaluation, results prove that the proposed approach obtains very high-quality solutions for the FAP and beats any other result published.
Bai, Shu-Nong
2017-01-01
This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., “morphological traits”) mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a “structure-based perspective,” evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called “Plant Morphogenesis 123.” This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants. PMID:28360919
Ashkenazy, Haim; Abadi, Shiran; Martz, Eric; Chay, Ofer; Mayrose, Itay; Pupko, Tal; Ben-Tal, Nir
2016-01-01
The degree of evolutionary conservation of an amino acid in a protein or a nucleic acid in DNA/RNA reflects a balance between its natural tendency to mutate and the overall need to retain the structural integrity and function of the macromolecule. The ConSurf web server (http://consurf.tau.ac.il), established over 15 years ago, analyses the evolutionary pattern of the amino/nucleic acids of the macromolecule to reveal regions that are important for structure and/or function. Starting from a query sequence or structure, the server automatically collects homologues, infers their multiple sequence alignment and reconstructs a phylogenetic tree that reflects their evolutionary relations. These data are then used, within a probabilistic framework, to estimate the evolutionary rates of each sequence position. Here we introduce several new features into ConSurf, including automatic selection of the best evolutionary model used to infer the rates, the ability to homology-model query proteins, prediction of the secondary structure of query RNA molecules from sequence, the ability to view the biological assembly of a query (in addition to the single chain), mapping of the conservation grades onto 2D RNA models and an advanced view of the phylogenetic tree that enables interactively rerunning ConSurf with the taxa of a sub-tree. PMID:27166375
Optimal GENCO bidding strategy
NASA Astrophysics Data System (ADS)
Gao, Feng
Electricity industries worldwide are undergoing a period of profound upheaval. The conventional vertically integrated mechanism is being replaced by a competitive market environment. Generation companies have incentives to apply novel technologies to lower production costs, for example: Combined Cycle units. Economic dispatch with Combined Cycle units becomes a non-convex optimization problem, which is difficult if not impossible to solve by conventional methods. Several techniques are proposed here: Mixed Integer Linear Programming, a hybrid method, as well as Evolutionary Algorithms. Evolutionary Algorithms share a common mechanism, stochastic searching per generation. The stochastic property makes evolutionary algorithms robust and adaptive enough to solve a non-convex optimization problem. This research implements GA, EP, and PS algorithms for economic dispatch with Combined Cycle units, and makes a comparison with classical Mixed Integer Linear Programming. The electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models. This research identifies a proper SFE model, which can be applied to a multiple period situation. The equilibrium condition using discrete time optimal control is then developed for fuel resource constraints. Finally, the research discusses the issues of multiple equilibria and mixed strategies, which are caused by the transmission network. Additionally, an advantage of the proposed model for merchant transmission planning is discussed. A market simulator is a valuable training and evaluation tool to assist sellers, buyers, and regulators to understand market performance and make better decisions. A traditional optimization model may not be enough to consider the distributed, large-scale, and complex energy market. This research compares the performance and searching paths of different artificial life techniques such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm (PS), and look for a proper method to emulate Generation Companies' (GENCOs) bidding strategies. After deregulation, GENCOs face risk and uncertainty associated with the fast-changing market environment. A profit-based bidding decision support system is critical for GENCOs to keep a competitive position in the new environment. Most past research do not pay special attention to the piecewise staircase characteristic of generator offer curves. This research proposes an optimal bidding strategy based on Parametric Linear Programming. The proposed algorithm is able to handle actual piecewise staircase energy offer curves. The proposed method is then extended to incorporate incomplete information based on Decision Analysis. Finally, the author develops an optimal bidding tool (GenBidding) and applies it to the RTS96 test system.
Tanyimboh, Tiku T; Seyoum, Alemtsehay G
2016-12-01
This article investigates the computational efficiency of constraint handling in multi-objective evolutionary optimization algorithms for water distribution systems. The methodology investigated here encourages the co-existence and simultaneous development including crossbreeding of subpopulations of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary search approach that also promotes diversity in the gene pool throughout the progress of the optimization by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of small and moderate population sizes with respect to the number of decision variables is investigated also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and near-optimal solutions reliably and efficiently. The real-world system based optimization problem involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and multiple demand categories including water loss. The least cost solutions found satisfied the flow and pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2% based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The population of 1000 achieved slightly better results overall. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Algorithmic Mechanism Design of Evolutionary Computation.
Pei, Yan
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.
Algorithmic Mechanism Design of Evolutionary Computation
2015-01-01
We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777
Optimization of stable quadruped locomotion using mutual information
NASA Astrophysics Data System (ADS)
Silva, Pedro; Santos, Cristina P.; Polani, Daniel
2013-10-01
Central Pattern Generators (CPG)s have been widely used in the field of robotics to address the task of legged locomotion generation. The adequate configuration of these structures for a given platform can be accessed through evolutionary strategies, according to task dependent selection pressures. Information driven evolution, accounts for information theoretical measures as selection pressures, as an alternative to a fully task dependent selection pressure. In this work we exploit this concept and evaluate the use of mean Mutual Information, as a selection pressure towards a CPG configuration capable of faster, yet more coordinated and stabler locomotion than when only a task dependent selection pressure is used.
Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad
2018-05-01
The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
Exploring the effect of power law social popularity on language evolution.
Gong, Tao; Shuai, Lan
2014-01-01
We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.
Capturing planar shapes by approximating their outlines
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Riyazuddin, M.; Baig, M. H.
2006-05-01
A non-deterministic evolutionary approach for approximating the outlines of planar shapes has been developed. Non-uniform Rational B-splines (NURBS) have been utilized as an underlying approximation curve scheme. Simulated Annealing heuristic is used as an evolutionary methodology. In addition to independent studies of the optimization of weight and knot parameters of the NURBS, a separate scheme has also been developed for the optimization of weights and knots simultaneously. The optimized NURBS models have been fitted over the contour data of the planar shapes for the ultimate and automatic output. The output results are visually pleasing with respect to the threshold provided by the user. A web-based system has also been developed for the effective and worldwide utilization. The objective of this system is to provide the facility to visualize the output to the whole world through internet by providing the freedom to the user for various desired input parameters setting in the algorithm designed.
Santos, José; Monteagudo, Ángel
2017-03-27
The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.
Beyond topology: coevolution of structure and flux in metabolic networks.
Morrison, E S; Badyaev, A V
2017-10-01
Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Tsutsui, Shigeyosi
This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.
Modeling forest stand dynamics from optimal balances of carbon and nitrogen
Harry T. Valentine; Annikki Makela
2012-01-01
We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...
Environmental osmolality influences sperm motility activation in an anuran amphibian.
Byrne, P G; Dunne, C; Munn, A J; Silla, A J
2015-03-01
Evolutionary theory predicts that selection will favour sperm traits that maximize fertilization success in local fertilization environments. In externally fertilizing species, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but there remains limited evidence for adaptive responses to local osmotic environments. In this study, we used a split-sample experimental design and computer-assisted sperm analysis to (i) determine the optimal medium osmolality for sperm activation (% sperm motility and sperm velocity) in male common eastern froglets (Crinia signifera), (ii) test for among-population variation in percentage sperm motility and sperm velocity at various activation-medium osmolalities and (iii) test for among-population covariation between sperm performance and environmental osmolality. Frogs were obtained from nine populations that differed in environmental osmolality, and sperm samples of males from different populations were subjected to a range of activation-medium osmolalities. Percentage sperm motility was optimal between 10 and 50 mOsm kg(-1) , and sperm velocity was optimal between 10 and 100 mOsm kg(-1) , indicating that C. signifera has evolved sperm that can function across a broad range of osmolalities. As predicted, there was significant among-population variation in sperm performance. Furthermore, there was a significant interaction between activation-medium osmolality and environmental osmolality, indicating that frogs from populations with higher environmental osmolality produced sperm that performed better at higher osmolalities in vitro. This finding may reflect phenotypic plasticity in sperm functioning, or genetic divergence resulting from spatial variation in the strength of directional selection. Both of these explanations are consistent with evolutionary theory, providing some of the first empirical evidence that local osmotic environments can favour adaptive sperm motility responses in species that use an external mode of fertilization. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
An evolutionary scenario for the origin of flowers.
Frohlich, Michael W
2003-07-01
The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.
Deng, Qianwang; Gong, Guiliang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N , in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed.
Deng, Qianwang; Gong, Xuran; Zhang, Like; Liu, Wei; Ren, Qinghua
2017-01-01
Flexible job-shop scheduling problem (FJSP) is an NP-hard puzzle which inherits the job-shop scheduling problem (JSP) characteristics. This paper presents a bee evolutionary guiding nondominated sorting genetic algorithm II (BEG-NSGA-II) for multiobjective FJSP (MO-FJSP) with the objectives to minimize the maximal completion time, the workload of the most loaded machine, and the total workload of all machines. It adopts a two-stage optimization mechanism during the optimizing process. In the first stage, the NSGA-II algorithm with T iteration times is first used to obtain the initial population N, in which a bee evolutionary guiding scheme is presented to exploit the solution space extensively. In the second stage, the NSGA-II algorithm with GEN iteration times is used again to obtain the Pareto-optimal solutions. In order to enhance the searching ability and avoid the premature convergence, an updating mechanism is employed in this stage. More specifically, its population consists of three parts, and each of them changes with the iteration times. What is more, numerical simulations are carried out which are based on some published benchmark instances. Finally, the effectiveness of the proposed BEG-NSGA-II algorithm is shown by comparing the experimental results and the results of some well-known algorithms already existed. PMID:28458687
Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes
Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.
2016-01-01
Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088
Evolutionary characterization of the West Nile Virus complete genome.
Gray, R R; Veras, N M C; Santos, L A; Salemi, M
2010-07-01
The spatial dynamics of the West Nile Virus epidemic in North America are largely unknown. Previous studies that investigated the evolutionary history of the virus used sequence data from the structural genes (prM and E); however, these regions may lack phylogenetic information and obscure true evolutionary relationships. This study systematically evaluated the evolutionary patterns in the eleven genes of the WNV genome in order to determine which region(s) were most phylogenetically informative. We found that while the E region lacks resolution and can potentially result in misleading conclusions, the full NS3 or NS5 regions have strong phylogenetic signal. Furthermore, we show that geographic structure of WNV infection within the US is more pronounced than previously reported in studies that used the structural genes. We conclude that future evolutionary studies should focus on NS3 and NS5 in order to maximize the available sequences while retaining maximal interpretative power to infer temporal and geographic trends among WNV strains. Copyright 2010 Elsevier Inc. All rights reserved.
Genome-scale rates of evolutionary change in bacteria
Duchêne, Sebastian; Holt, Kathryn E.; Weill, François-Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Fourment, Mathieu
2016-01-01
Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria. PMID:28348834
Ma, Pikyee; Patching, Simon G.; Ivanova, Ekaterina; Baldwin, Jocelyn M.; Sharples, David; Baldwin, Stephen A.
2016-01-01
This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis–Menten kinetics with an apparent affinity (K mapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI. PMID:26967546
Tufto, Jarle
2015-08-01
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng
The Leksell Gamma KnifeRTM (LGK) is a tool for providing accurate stereotactic radiosurgical treatment of brain lesions, especially tumors. Currently, the treatment planning team "forward" plans radiation treatment parameters while viewing a series of 2D MR scans. This primarily manual process is cumbersome and time consuming because the difficulty in visualizing the large search space for the radiation parameters (i.e., shot overlap, number, location, size, and weight). I hypothesize that a computer-aided "inverse" planning procedure that utilizes tumor geometry and treatment goals could significantly improve the planning process and therapeutic outcome of LGK radiosurgery. My basic observation is that the treatment team is best at identification of the location of the lesion and prescribing a lethal, yet safe, radiation dose. The treatment planning computer is best at determining both the 3D tumor geometry and optimal LGK shot parameters necessary to deliver a desirable dose pattern to the tumor while sparing adjacent normal tissue. My treatment planning procedure asks the neurosurgeon to identify the tumor and critical structures in MR images and the oncologist to prescribe a tumoricidal radiation dose. Computer-assistance begins with geometric modeling of the 3D tumor's medial axis properties. This begins with a new algorithm, a Gradient-Phase Plot (G-P Plot) decomposition of the tumor object's medial axis. I have found that medial axis seeding, while insufficient in most cases to produce an acceptable treatment plan, greatly reduces the solution space for Guided Evolutionary Simulated Annealing (GESA) treatment plan optimization by specifying an initial estimate for shot number, size, and location, but not weight. They are used to generate multiple initial plans which become initial seed plans for GESA. The shot location and weight parameters evolve and compete in the GESA procedure. The GESA objective function optimizes tumor irradiation (i.e., as close to the prescribed dose as possible) and minimizes normal tissue and critical structure damage. In tests of five patient data sets (4 acoustic neuromas and 1 meningioma), the G-P Plot/GESA-generated treatment plans improved conformality of the lethal dose to the tumor, required no human interaction, improved dose homogeneity, suggested use of fewer shots, and reduced treatment administration time.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Hanski, Ilkka A
2011-08-30
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
NASA Astrophysics Data System (ADS)
Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam
2018-04-01
Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.
Misra, Namrata; Panda, Prasanna Kumar
2013-04-01
The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.
The western Qaidam Basin as a potential Martian environmental analogue: An overview
NASA Astrophysics Data System (ADS)
Anglés, Angélica; Li, Yiliang
2017-05-01
The early Martian environment is interpreted as warmer and wetter, before a significant change in its global climatic conditions irreversibly led to the current hyperarid environments. This transition is one of the most intriguing processes of Martian history. The extreme climatic change is preserved in the salt deposits, desiccated landscapes, and geomorphological structures that were shaped by the evaporation of water. However, until a manned journey to Mars is feasible, many Martian materials, morphological structures, and much of its evolutionary history will continue to be poorly understood. In this regard, searching and investigating Martian analogues are still meaningful. To find an Earth environment with a whole set of Martian structures distributed at a scale comparable to Mars is even more important to test landing crafts and provide optimized working parameters for rovers. The western Qaidam Basin in North Tibetan Plateau is such a Martian analogue. The area harbors one of the most extreme hyperarid environments on Earth and contains a series of ancient lakes that evaporated at different evolutionary stages during the rise of the Tibetan Plateau. Large quantities of salts and geomorphological features formed during the transition of warmer-and-wet to colder-and-dry conditions provide unique references to study the modern Martian surface and interpret the orbital data. We present numerous similarities and results of investigations that suggest the Qaidam Basin as a potential analogue to study modern geomorphic processes on Mars, and suggest that this is an essential site to test future Mars sample return missions.
The extended evolutionary synthesis: its structure, assumptions and predictions
Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John
2015-01-01
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559
Evolutionary method for finding communities in bipartite networks.
Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2011-06-01
An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.
A Generative Angular Model of Protein Structure Evolution
Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun
2017-01-01
Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724
MOCASSIN-prot: a multi-objective clustering approach for protein similarity networks.
Keel, Brittney N; Deng, Bo; Moriyama, Etsuko N
2018-04-15
Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. emoriyama2@unl.edu. Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giammichele, N.; Fontaine, G.; Brassard, P.
We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akimamore » splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.« less
NASA Astrophysics Data System (ADS)
Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.
2017-01-01
We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.
An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution
NASA Astrophysics Data System (ADS)
Hossain, Md. Tofazzal
This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.
A conceptual evolutionary aseismic decision support framework for hospitals
NASA Astrophysics Data System (ADS)
Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun
2012-12-01
In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.
NASA Astrophysics Data System (ADS)
Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.
2017-12-01
Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
Optimality models in the age of experimental evolution and genomics.
Bull, J J; Wang, I-N
2010-09-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Cooperation in the noisy case: Prisoner's dilemma game on two types of regular random graphs
NASA Astrophysics Data System (ADS)
Vukov, Jeromos; Szabó, György; Szolnoki, Attila
2006-06-01
We have studied an evolutionary prisoner’s dilemma game with players located on two types of random regular graphs with a degree of 4. The analysis is focused on the effects of payoffs and noise (temperature) on the maintenance of cooperation. When varying the noise level and/or the highest payoff, the system exhibits a second-order phase transition from a mixed state of cooperators and defectors to an absorbing state where only defectors remain alive. For the random regular graph (and Bethe lattice) the behavior of the system is similar to those found previously on the square lattice with nearest neighbor interactions, although the measure of cooperation is enhanced by the absence of loops in the connectivity structure. For low noise the optimal connectivity structure is built up from randomly connected triangles.
Chen, Bor-Sen; Yeh, Chin-Hsun
2017-12-01
We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.
Accounting for epistatic interactions improves the functional analysis of protein structures.
Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier
2013-11-01
The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.
Accounting for epistatic interactions improves the functional analysis of protein structures
Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier
2013-01-01
Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383
An adaptive evolutionary multi-objective approach based on simulated annealing.
Li, H; Landa-Silva, D
2011-01-01
A multi-objective optimization problem can be solved by decomposing it into one or more single objective subproblems in some multi-objective metaheuristic algorithms. Each subproblem corresponds to one weighted aggregation function. For example, MOEA/D is an evolutionary multi-objective optimization (EMO) algorithm that attempts to optimize multiple subproblems simultaneously by evolving a population of solutions. However, the performance of MOEA/D highly depends on the initial setting and diversity of the weight vectors. In this paper, we present an improved version of MOEA/D, called EMOSA, which incorporates an advanced local search technique (simulated annealing) and adapts the search directions (weight vectors) corresponding to various subproblems. In EMOSA, the weight vector of each subproblem is adaptively modified at the lowest temperature in order to diversify the search toward the unexplored parts of the Pareto-optimal front. Our computational results show that EMOSA outperforms six other well established multi-objective metaheuristic algorithms on both the (constrained) multi-objective knapsack problem and the (unconstrained) multi-objective traveling salesman problem. Moreover, the effects of the main algorithmic components and parameter sensitivities on the search performance of EMOSA are experimentally investigated.
Derived heuristics-based consistent optimization of material flow in a gold processing plant
NASA Astrophysics Data System (ADS)
Myburgh, Christie; Deb, Kalyanmoy
2018-01-01
Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.
NASA Astrophysics Data System (ADS)
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna
2018-01-01
An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525
Orsolini, Laura; St John-Smith, Paul; McQueen, Daniel; Papanti, Duccio; Corkery, John; Schifano, Fabrizio
2017-01-01
Evolutionary research on drug abuse has hitherto been restricted to proximate studies, considering aetiology, mechanism, and ontogeny. However, in order to explain the recent emergency of a new behavioral pattern (e.g. 'the e-psychonaut style') of novel psychoactive substances' (NPS) intake, a complementary evolutionary model may be needed. A range of evolutionary interpretations on the 'psychonaut style' and the recent emergency of NPS were here considered. The PubMed database was searched in order to elicit evolutionary theory-based documents commenting on NPS/NPS users/e-psychonauts. The traditional 'shamanic style' use of entheogens/plant-derived compounds may present with a range of similarities with the 'e-psychonauts' use of mostly of hallucinogen/psychedelic NPS. These users consider themselves as 'new/technological' shamans. Indeed, a range of evolutionary mechanisms, such as: optimal foraging, costly signaling, and reproduction at the expense of health may all cooperate to explain the recent spread and diffusion of the NPS market, and this may represent a reason of concern. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory
Jiang, Xiaowei; Ji, Yanjie; Deng, Wei
2014-01-01
This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455
Orsolini, Laura; St John-Smith, Paul; McQueen, Daniel; Papanti, Duccio; Corkery, John; Schifano, Fabrizio
2017-01-01
Background: Evolutionary research on drug abuse has hitherto been restricted to proximate studies, considering aetiology, mechanism, and ontogeny. However, in order to explain the recent emergency of a new behavioral pattern (e.g. ‘the e-psychonaut style’) of novel psychoactive substances’ (NPS) intake, a complementary evolutionary model may be needed. Objective A range of evolutionary interpretations on the ‘psychonaut style’ and the recent emergency of NPS were here considered. Method The PubMed database was searched in order to elicit evolutionary theory-based documents commenting on NPS/NPS users/e-psychonauts. Results The traditional ‘shamanic style’ use of entheogens/plant-derived compounds may present with a range of similarities with the ‘e-psychonauts’ use of mostly of hallucinogen/psychedelic NPS. These users consider themselves as ‘new/technological’ shamans. Conclusion Indeed, a range of evolutionary mechanisms, such as: optimal foraging, costly signaling, and reproduction at the expense of health may all cooperate to explain the recent spread and diffusion of the NPS market, and this may represent a reason of concern. PMID:27834144
Evolutionary responses to climate change in parasitic systems.
Chaianunporn, Thotsapol; Hovestadt, Thomas
2015-08-01
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.
A study of driver's route choice behavior based on evolutionary game theory.
Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei
2014-01-01
This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.
How mutation affects evolutionary games on graphs
Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.
2011-01-01
Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871
CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
Terashi, Genki; Takeda-Shitaka, Mayuko
2015-01-01
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.
Wong, Sienna; Jin, J-P
2017-01-01
Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Messinger, Susanna M; Ostling, Annette
2013-11-01
Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly
Hanski, Ilkka A.
2011-01-01
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506
Wickham, Shelley; Large, Maryanne C.J; Poladian, Leon; Jermiin, Lars S
2005-01-01
Many butterfly species possess ‘structural’ colour, where colour is due to optical microstructures found in the wing scales. A number of such structures have been identified in butterfly scales, including three variations on a simple multi-layer structure. In this study, we optically characterize examples of all three types of multi-layer structure, as found in 10 species. The optical mechanism of the suppression and exaggeration of the angle-dependent optical properties (iridescence) of these structures is described. In addition, we consider the phylogeny of the butterflies, and are thus able to relate the optical properties of the structures to their evolutionary development. By applying two different types of analysis, the mechanism of adaptation is addressed. A simple parsimony analysis, in which all evolutionary changes are given an equal weighting, suggests convergent evolution of one structure. A Dollo parsimony analysis, in which the evolutionary ‘cost’ of losing a structure is less than that of gaining it, implies that ‘latent’ structures can be reused. PMID:16849221
Evolutionary pattern search algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-09-19
This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less
NASA Astrophysics Data System (ADS)
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
Multifidelity, multidisciplinary optimization of turbomachines with shock interaction
NASA Astrophysics Data System (ADS)
Joly, Michael Marie
Research on high-speed air-breathing propulsion aims at developing aircraft with antipodal range and space access. Before reaching high speed at high altitude, the flight vehicle needs to accelerate from takeoff to scramjet takeover. Air turbo rocket engines combine turbojet and rocket engine cycles to provide the necessary thrust in the so-called low-speed regime. Challenges related to turbomachinery components are multidisciplinary, since both the high compression ratio compressor and the powering high-pressure turbine operate in the transonic regime in compact environments with strong shock interactions. Besides, lightweight is vital to avoid hindering the scramjet operation. Recent progress in evolutionary computing provides aerospace engineers with robust and efficient optimization algorithms to address concurrent objectives. The present work investigates Multidisciplinary Design Optimization (MDO) of innovative transonic turbomachinery components. Inter-stage aerodynamic shock interaction in turbomachines are known to generate high-cycle fatigue on the rotor blades compromising their structural integrity. A soft-computing strategy is proposed to mitigate the vane downstream distortion, and shown to successfully attenuate the unsteady forcing on the rotor of a high-pressure turbine. Counter-rotation offers promising prospects to reduce the weight of the machine, with fewer stages and increased load per row. An integrated approach based on increasing level of fidelity and aero-structural coupling is then presented and allows achieving a highly loaded compact counter-rotating compressor.
Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F
2016-06-01
Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.
Field-based optimal-design of an electric motor: a new sensitivity formulation
NASA Astrophysics Data System (ADS)
Barba, Paolo Di; Mognaschi, Maria Evelina; Lowther, David Alister; Wiak, Sławomir
2017-12-01
In this paper, a new approach to robust optimal design is proposed. The idea is to consider the sensitivity by means of two auxiliary criteria A and D, related to the magnitude and isotropy of the sensitivity, respectively. The optimal design of a switched-reluctance motor is considered as a case study: since the case study exhibits two design criteria, the relevant Pareto front is approximated by means of evolutionary computing.
Particle Swarm Optimization Toolbox
NASA Technical Reports Server (NTRS)
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.
Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals
NASA Astrophysics Data System (ADS)
Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano
2015-03-01
Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.
Evolutionary trade-offs and the structure of polymorphisms.
Sheftel, Hila; Szekely, Pablo; Mayo, Avi; Sella, Guy; Alon, Uri
2018-05-26
Populations of organisms show genetic differences called polymorphisms. Understanding the effects of polymorphisms is important for biology and medicine. Here, we ask which polymorphisms occur at high frequency when organisms evolve under trade-offs between multiple tasks. Multiple tasks present a problem, because it is not possible to be optimal at all tasks simultaneously and hence compromises are necessary. Recent work indicates that trade-offs lead to a simple geometry of phenotypes in the space of traits: phenotypes fall on the Pareto front, which is shaped as a polytope: a line, triangle, tetrahedron etc. The vertices of these polytopes are the optimal phenotypes for a single task. Up to now, work on this Pareto approach has not considered its genetic underpinnings. Here, we address this by asking how the polymorphism structure of a population is affected by evolution under trade-offs. We simulate a multi-task selection scenario, in which the population evolves to the Pareto front: the line segment between two archetypes or the triangle between three archetypes. We find that polymorphisms that become prevalent in the population have pleiotropic phenotypic effects that align with the Pareto front. Similarly, epistatic effects between prevalent polymorphisms are parallel to the front. Alignment with the front occurs also for asexual mating. Alignment is reduced when drift or linkage is strong, and is replaced by a more complex structure in which many perpendicular allele effects cancel out. Aligned polymorphism structure allows mating to produce offspring that stand a good chance of being optimal multi-taskers in at least one of the locales available to the species.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
Prediction and Estimation of Scaffold Strength with different pore size
NASA Astrophysics Data System (ADS)
Muthu, P.; Mishra, Shubhanvit; Sri Sai Shilpa, R.; Veerendranath, B.; Latha, S.
2018-04-01
This paper emphasizes the significance of prediction and estimation of the mechanical strength of 3D functional scaffolds before the manufacturing process. Prior evaluation of the mechanical strength and structural properties of the scaffold will reduce the cost fabrication and in fact ease up the designing process. Detailed analysis and investigation of various mechanical properties including shear stress equivalence have helped to estimate the effect of porosity and pore size on the functionality of the scaffold. The influence of variation in porosity was examined by computational approach via finite element analysis (FEA) and ANSYS application software. The results designate the adequate perspective of the evolutionary method for the regulation and optimization of the intricate engineering design process.
Constraints in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
1996-01-01
Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.
NASA Astrophysics Data System (ADS)
Żukowicz, Marek; Markiewicz, Michał
2016-09-01
The aim of the article is to present a mathematical definition of the object model, that is known in computer science as TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathematical model of the object TreeList and the parameters, used in determining the utility of structures created through this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a brief summary and plans for future research related to the algorithm presented in the article.
Protein sectors: evolutionary units of three-dimensional structure
Halabi, Najeeb; Rivoire, Olivier; Leibler, Stanislas; Ranganathan, Rama
2011-01-01
Proteins display a hierarchy of structural features at primary, secondary, tertiary, and higher-order levels, an organization that guides our current understanding of their biological properties and evolutionary origins. Here, we reveal a structural organization distinct from this traditional hierarchy by statistical analysis of correlated evolution between amino acids. Applied to the S1A serine proteases, the analysis indicates a decomposition of the protein into three quasi-independent groups of correlated amino acids that we term “protein sectors”. Each sector is physically connected in the tertiary structure, has a distinct functional role, and constitutes an independent mode of sequence divergence in the protein family. Functionally relevant sectors are evident in other protein families as well, suggesting that they may be general features of proteins. We propose that sectors represent a structural organization of proteins that reflects their evolutionary histories. PMID:19703402
Bipartite graphs as models of population structures in evolutionary multiplayer games.
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.
Discover for Yourself: An Optimal Control Model in Insect Colonies
ERIC Educational Resources Information Center
Winkel, Brian
2013-01-01
We describe the enlightening path of self-discovery afforded to the teacher of undergraduate mathematics. This is demonstrated as we find and develop background material on an application of optimal control theory to model the evolutionary strategy of an insect colony to produce the maximum number of queen or reproducer insects in the colony at…
Improving Environmental Model Calibration and Prediction
2011-01-18
REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13
Earth Observing Satellite Orbit Design Via Particle Swarm Optimization
2014-08-01
28.6 77.2 3 Indonesia Jakarta -6.174444 106.829444 3 Japan Tokyo 35.685 139.751389 2 Mexico Ciudad de Mexico 19.434167 -99.138611 3 Morocco Rabat...99. Proceedings of the 1999 Congress on, Vol. 3, 1999. 15Ozcan, E. and Mohan, C., “Particle swarm optimization: surfing the waves,” Evolutionary
Prisilla, A; Prathiviraj, R; Chellapandi, P
2017-04-01
Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 toxin along with botulinum neurotoxins. C2 toxin is belonged to binary toxin A family in bacterial ADP-ribosylation superfamily. A structural and functional diversity of binary toxin A family was inferred from different evolutionary constraints to determine the avirulence state of C2 toxin. Evolutionary genetic analyses revealed evidence of C2 toxin cluster evolution through horizontal gene transfer from the phage or plasmid origins, site-specific insertion by gene divergence, and homologous recombination event. It has also described that residue in conserved NAD-binding core, family-specific domain structure, and functional motifs found to predetermine its virulence state. Any mutational changes in these residues destabilized its structure-function relationship. Avirulent mutants of C2 toxin were screened and selected from a crucial site required for catalytic function of C2I and pore-forming function of C2II. We found coevolved amino acid pairs contributing an essential role in stabilization of its local structural environment. Avirulent toxins selected in this study were evaluated by detecting evolutionary constraints in stability of protein backbone structure, folding and conformational dynamic space, and antigenic peptides. We found 4 avirulent mutants of C2I and 5 mutants of C2II showing more stability in their local structural environment and backbone structure with rapid fold rate, and low conformational flexibility at mutated sites. Since, evolutionary constraints-free mutants with lack of catalytic and pore-forming function suggested as potential immunogenic candidates for treating C. botulinum infected poultry and veterinary animals. Single amino acid substitution in C2 toxin thus provides a major importance to understand its structure-function link, not only of a molecule but also of the pathogenesis.
δ-Similar Elimination to Enhance Search Performance of Multiobjective Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Aguirre, Hernán; Sato, Masahiko; Tanaka, Kiyoshi
In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism.
Systems metabolic engineering strategies for the production of amino acids.
Ma, Qian; Zhang, Quanwei; Xu, Qingyang; Zhang, Chenglin; Li, Yanjun; Fan, Xiaoguang; Xie, Xixian; Chen, Ning
2017-06-01
Systems metabolic engineering is a multidisciplinary area that integrates systems biology, synthetic biology and evolutionary engineering. It is an efficient approach for strain improvement and process optimization, and has been successfully applied in the microbial production of various chemicals including amino acids. In this review, systems metabolic engineering strategies including pathway-focused approaches, systems biology-based approaches, evolutionary approaches and their applications in two major amino acid producing microorganisms: Corynebacterium glutamicum and Escherichia coli, are summarized.
Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo
2017-06-01
We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.
NASA Astrophysics Data System (ADS)
Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama
2017-11-01
Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.
NASA Astrophysics Data System (ADS)
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems.
Diogo, António Freire; Barros, Luís Tiago; Santos, Joana; Temido, Jorge Santos
2018-01-15
In the field of rehabilitation of separate sanitary sewer systems, a large number of technical, environmental, and economic aspects are often relevant in the decision-making process, which may be modelled as a multi-objective optimization problem. Examples are those related with the operation and assessment of networks, optimization of structural, hydraulic, sanitary, and environmental performance, rehabilitation programmes, and execution works. In particular, the cost of investment, operation and maintenance needed to reduce or eliminate Infiltration from the underground water table and Inflows of storm water surface runoff (I/I) using rehabilitation techniques or related methods can be significantly lower than the cost of transporting and treating these flows throughout the lifespan of the systems or period studied. This paper presents a comprehensive I/I cost-benefit approach for rehabilitation that explicitly considers all elements of the systems and shows how the approximation is incorporated as an objective function in a general evolutionary multi-objective optimization model. It takes into account network performance and wastewater treatment costs, average values of several input variables, and rates that can reflect the adoption of different predictable or limiting scenarios. The approach can be used as a practical and fast tool to support decision-making in sewer network rehabilitation in any phase of a project. The fundamental aspects, modelling, implementation details and preliminary results of a two-objective optimization rehabilitation model using a genetic algorithm, with a second objective function related to the structural condition of the network and the service failure risk, are presented. The basic approach is applied to three real world cases studies of sanitary sewerage systems in Coimbra and the results show the simplicity, suitability, effectiveness, and usefulness of the approximation implemented and of the objective function proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
NASA Astrophysics Data System (ADS)
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Hybrid Motion Planning with Multiple Destinations
NASA Technical Reports Server (NTRS)
Clouse, Jeffery
1998-01-01
In our initial proposal, we laid plans for developing a hybrid motion planning system that combines the concepts of visibility-based motion planning, artificial potential field based motion planning, evolutionary constrained optimization, and reinforcement learning. Our goal was, and still is, to produce a hybrid motion planning system that outperforms the best traditional motion planning systems on problems with dynamic environments. The proposed hybrid system will be in two parts the first is a global motion planning system and the second is a local motion planning system. The global system will take global information about the environment, such as the placement of the obstacles and goals, and produce feasible paths through those obstacles. We envision a system that combines the evolutionary-based optimization and visibility-based motion planning to achieve this end.
NASA Technical Reports Server (NTRS)
Balas, Gary J.
1992-01-01
The use is studied of active control to attenuate structural vibrations of the NASA Langley Phase Zero Evolutionary Structure due to external disturbance excitations. H sub infinity and structured singular value (mu) based control techniques are used to analyze and synthesize control laws for the NASA Langley Controls Structures Interaction (CSI) Evolutionary Model (CEM). The CEM structure experiment provides an excellent test bed to address control design issues for large space structures. Specifically, control design for structures with numerous lightly damped, coupled flexible modes, collocated and noncollocated sensors and actuators and stringent performance specifications. The performance objectives are to attenuate the vibration of the structure due to external disturbances, and minimize the actuator control force. The control design problem formulation for the CEM Structure uses a mathematical model developed with finite element techniques. A reduced order state space model for the control design is formulated from the finite element model. It is noted that there are significant variations between the design model and the experimentally derived transfer function data.
Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G
2007-01-01
Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.
Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses
NASA Astrophysics Data System (ADS)
Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.
We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.
Classifier-Guided Sampling for Complex Energy System Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backlund, Peter B.; Eddy, John P.
2015-09-01
This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of omore » bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.« less
Singh, Digar; Kaur, Gurvinder
2014-08-01
The optimization of bioreactor operations towards swainsonine production was performed using an artificial neural network coupled evolutionary program (EP)-based optimization algorithm fitted with experimental one-factor-at-a-time (OFAT) results. The effects of varying agitation (300-500 rpm) and aeration (0.5-2.0 vvm) rates for different incubation hours (72-108 h) were evaluated in bench top bioreactor. Prominent scale-up parameters, gassed power per unit volume (P g/V L, W/m(3)) and volumetric oxygen mass transfer coefficient (K L a, s(-1)) were correlated with optimized conditions. A maximum of 6.59 ± 0.10 μg/mL of swainsonine production was observed at 400 rpm-1.5 vvm at 84 h in OFAT experiments with corresponding P g/VL and K L a values of 91.66 W/m(3) and 341.48 × 10(-4) s(-1), respectively. The EP optimization algorithm predicted a maximum of 10.08 μg/mL of swainsonine at 325.47 rpm, 1.99 vvm and 80.75 h against the experimental production of 7.93 ± 0.52 μg/mL at constant K L a (349.25 × 10(-4) s(-1)) and significantly reduced P g/V L (33.33 W/m(3)) drawn by the impellers.
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex
Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100
Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.
Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2016-01-01
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu
2017-06-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
NASA Technical Reports Server (NTRS)
Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.
2012-01-01
During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.
Komarevskiy, Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John
2012-06-18
During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.
NASA Astrophysics Data System (ADS)
Watson, G. S.; Watson, J. A.
2004-07-01
Naturally occurring nano-structures is a much-neglected, but potentially rich, source of products that meet specifications imposed by natural selection. While the pharmaceutical industry has long recognized the value of natural compounds, the emerging industries based on nanotechnology have so far made little use of 'free' technology that has been 'invented' over evolutionary time-scales and driven by the imperatives of species survival. Ordered hexagonal packed array structures on cicada (e.g., Pflatoda claripennis) and termite (e.g., family Rhinotermitidae) wings have been investigated in this study. The spacings range from 200 to 1000 nm. The structures tend to have a rounded shape at the apex and protrude some 150-350 nm out from the surface plane. Wing structures with spacings at the lower end of the range are most likely optimized to serve as an anti-reflective coating (natural 'stealth technology') but may also act as a self-cleaning coating (the Lotus effect). Structures with spacings at the upper end of the range may provide mechanical strength to prevent load failure under flight and/or aid in the aerodynamic efficiency of the insect. This study demonstrates the multi-purpose design of natural structures.
Semenov, Mikhail A; Terkel, Dmitri A
2003-01-01
This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
A comparative study between control strategies for a solar sailcraft in an Earth-Mars transfer
NASA Astrophysics Data System (ADS)
Mainenti-Lopes, I.; Souza, L. C. Gadelha; De Sousa, Fabiano. L.
2016-10-01
The goal of this work was a comparative study of solar sail trajectory optimization using different control strategies. Solar sailcraft is propulsion system with great interest in space engineering, since it uses solar radiation to propulsion. So there is no need for propellant to be used, thus it can remains active throughout the entire transfer maneuver. This type of propulsion system opens the possibility to reduce the cost of exploration missions in the solar system. In its simplest configuration, a Flat Solar Sail (FSS) consists of a large and thin structure generally composed by a film fixed to flexible rods. The performance of these vehicles depends largely on the sails attitude relative to the Sun. Using a FSS as propulsion, an Earth-Mars transfer optimization problem was tackled by the algorithms GEOreal1 and GEOreal2 (Generalized Extremal Optimization with real codification). Those algorithms are Evolutionary Algorithms (AE) based on the theory of Self-Organized Criticality. They were used to optimize the FSS attitude angle so it could reach Mars orbit in minimum time. It was considered that the FSS could perform up to ten attitude maneuvers during orbital transfer. Moreover, the time between maneuvers can be different. So, the algorithms had to optimize an objective function with 20 design variables. The results obtained in this work were compared with previously results that considered constant values of time between maneuvers.
Multiobjective optimization of combinatorial libraries.
Agrafiotis, D K
2002-01-01
Combinatorial chemistry and high-throughput screening have caused a fundamental shift in the way chemists contemplate experiments. Designing a combinatorial library is a controversial art that involves a heterogeneous mix of chemistry, mathematics, economics, experience, and intuition. Although there seems to be little agreement as to what constitutes an ideal library, one thing is certain: only one property or measure seldom defines the quality of the design. In most real-world applications, a good experiment requires the simultaneous optimization of several, often conflicting, design objectives, some of which may be vague and uncertain. In this paper, we discuss a class of algorithms for subset selection rooted in the principles of multiobjective optimization. Our approach is to employ an objective function that encodes all of the desired selection criteria, and then use a simulated annealing or evolutionary approach to identify the optimal (or a nearly optimal) subset from among the vast number of possibilities. Many design criteria can be accommodated, including diversity, similarity to known actives, predicted activity and/or selectivity determined by quantitative structure-activity relationship (QSAR) models or receptor binding models, enforcement of certain property distributions, reagent cost and availability, and many others. The method is robust, convergent, and extensible, offers the user full control over the relative significance of the various objectives in the final design, and permits the simultaneous selection of compounds from multiple libraries in full- or sparse-array format.
Multiscale structure in eco-evolutionary dynamics
NASA Astrophysics Data System (ADS)
Stacey, Blake C.
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.
Evolutionary dynamics on any population structure
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Lippner, Gabor; Chen, Yu-Ting; Fotouhi, Babak; Momeni, Naghmeh; Yau, Shing-Tung; Nowak, Martin A.
2017-03-01
Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure—graph surgery—affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.
Mokkonen, Mikael; Koskela, Esa; Mappes, Tapio; Mills, Suzanne C
2016-08-01
Conflict between mates, as well as conflict between parents and offspring are due to divergent evolutionary interests of the interacting individuals. Hormone systems provide genetically based proximate mechanisms for mediating phenotypic adaptation and maladaptation characteristic of evolutionary conflict between individuals. Testosterone (T) is among the most commonly studied hormones in evolutionary biology, and as such, its role in shaping sexually dimorphic behaviors and physiology is relatively well understood, but its role in evolutionary conflict is not as clear. In this review, we outline the genomic conflicts arising within the family unit, and incorporate multiple lines of evidence from the bank vole (Myodes glareolus) system to outline how T impacts traits associated with reproduction and survival, resulting in a sexually antagonistic genetic trade-off in fitness. A major prediction arising from this work is that lower T is favored in females, whereas the optimal T level in males fluctuates in relation to social and ecological factors. We additionally discuss future directions to further integrate endocrinology into the study of sexual and parent-offspring conflicts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Computationally mapping sequence space to understand evolutionary protein engineering.
Armstrong, Kathryn A; Tidor, Bruce
2008-01-01
Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.
Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs
Wessely, Frank; Bartl, Martin; Guthke, Reinhard; Li, Pu; Schuster, Stefan; Kaleta, Christoph
2011-01-01
While previous studies have shed light on the link between the structure of metabolism and its transcriptional regulation, the extent to which transcriptional regulation controls metabolism has not yet been fully explored. In this work, we address this problem by integrating a large number of experimental data sets with a model of the metabolism of Escherichia coli. Using a combination of computational tools including the concept of elementary flux patterns, methods from network inference and dynamic optimization, we find that transcriptional regulation of pathways reflects the protein investment into these pathways. While pathways that are associated to a high protein cost are controlled by fine-tuned transcriptional programs, pathways that only require a small protein cost are transcriptionally controlled in a few key reactions. As a reason for the occurrence of these different regulatory strategies, we identify an evolutionary trade-off between the conflicting requirements to reduce protein investment and the requirement to be able to respond rapidly to changes in environmental conditions. PMID:21772263
Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
Nalluri, MadhuSudana Rao; K., Kannan; M., Manisha
2017-01-01
With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM) and multilayer perceptron (MLP) technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs). Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results. PMID:29065626
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Song, Zhiming; Wang, Maocai; Dai, Guangming; Vasile, Massimiliano
2015-01-01
As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m − 1)-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA) is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m − 1)-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper. PMID:25874246
Halper, Sean M; Cetnar, Daniel P; Salis, Howard M
2018-01-01
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
Multi Objective Optimization of Yarn Quality and Fibre Quality Using Evolutionary Algorithm
NASA Astrophysics Data System (ADS)
Ghosh, Anindya; Das, Subhasis; Banerjee, Debamalya
2013-03-01
The quality and cost of resulting yarn play a significant role to determine its end application. The challenging task of any spinner lies in producing a good quality yarn with added cost benefit. The present work does a multi-objective optimization on two objectives, viz. maximization of cotton yarn strength and minimization of raw material quality. The first objective function has been formulated based on the artificial neural network input-output relation between cotton fibre properties and yarn strength. The second objective function is formulated with the well known regression equation of spinning consistency index. It is obvious that these two objectives are conflicting in nature i.e. not a single combination of cotton fibre parameters does exist which produce maximum yarn strength and minimum cotton fibre quality simultaneously. Therefore, it has several optimal solutions from which a trade-off is needed depending upon the requirement of user. In this work, the optimal solutions are obtained with an elitist multi-objective evolutionary algorithm based on Non-dominated Sorting Genetic Algorithm II (NSGA-II). These optimum solutions may lead to the efficient exploitation of raw materials to produce better quality yarns at low costs.
Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W
2012-03-01
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.
Vellnow, N; Marie-Orleach, L; Zadesenets, K S; Schärer, L
2018-02-01
Hermaphroditic animals face the fundamental evolutionary optimization problem of allocating their resources to their male vs. female reproductive function (e.g. testes and sperm vs. ovaries and eggs), and this optimal sex allocation can be affected by both pre- and post-copulatory sexual selection. For example, local sperm competition (LSC) - the competition between related sperm for the fertilization of a partner's ova - occurs in small mating groups and can favour a female-biased sex allocation, because, under LSC, investment into sperm production is predicted to show diminishing fitness returns. Here, we test whether higher testis investment increases an individual's paternity success under sperm competition, and whether the strength of this effect diminishes when LSC is stronger, as predicted by sex allocation theory. We created two subsets of individuals of the simultaneously hermaphroditic flatworm Macrostomum lignano - by sampling worms from either the highest or lowest quartile of the testis investment distribution - and estimated their paternity success in group sizes of either three (strong LSC) or eight individuals (weak LSC). Specifically, using transgenic focal individuals expressing a dominant green-fluorescent protein marker, we showed that worms with high testis investment sired 22% more offspring relative to those with low investment, corroborating previous findings in M. lignano and other species. However, the strength of this effect was not significantly modulated by the experienced group size, contrasting theoretical expectations of more strongly diminishing fitness returns under strong LSC. We discuss the possible implications for the evolutionary maintenance of hermaphroditism in M. lignano. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Fuzzy multi objective transportation problem – evolutionary algorithm approach
NASA Astrophysics Data System (ADS)
Karthy, T.; Ganesan, K.
2018-04-01
This paper deals with fuzzy multi objective transportation problem. An fuzzy optimal compromise solution is obtained by using Fuzzy Genetic Algorithm. A numerical example is provided to illustrate the methodology.
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx
Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.
2004-01-01
The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131
The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures.
Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir
2009-01-01
ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/
The ConSurf-DB: pre-calculated evolutionary conservation profiles of protein structures
Goldenberg, Ofir; Erez, Elana; Nimrod, Guy; Ben-Tal, Nir
2009-01-01
ConSurf-DB is a repository for evolutionary conservation analysis of the proteins of known structures in the Protein Data Bank (PDB). Sequence homologues of each of the PDB entries were collected and aligned using standard methods. The evolutionary conservation of each amino acid position in the alignment was calculated using the Rate4Site algorithm, implemented in the ConSurf web server. The algorithm takes into account the phylogenetic relations between the aligned proteins and the stochastic nature of the evolutionary process explicitly. Rate4Site assigns a conservation level for each position in the multiple sequence alignment using an empirical Bayesian inference. Visual inspection of the conservation patterns on the 3D structure often enables the identification of key residues that comprise the functionally important regions of the protein. The repository is updated with the latest PDB entries on a monthly basis and will be rebuilt annually. ConSurf-DB is available online at http://consurfdb.tau.ac.il/ PMID:18971256
Strategic tradeoffs in competitor dynamics on adaptive networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric
2017-08-08
Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.
Kevin M. Potter
2009-01-01
Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...
Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
Johansson, M P; Ermold, F; Kristjánsson, B K; Laurila, A
2016-10-01
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Pareto-optimal phylogenetic tree reconciliation
Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S.; Kellis, Manolis
2014-01-01
Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Availability and implementation: Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. Contact: mukul@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24932009
Tseng, Z. Jack; Flynn, John J.
2015-01-01
Morphology serves as a ubiquitous proxy in macroevolutionary studies to identify potential adaptive processes and patterns. Inferences of functional significance of phenotypes or their evolution are overwhelmingly based on data from living taxa. Yet, correspondence between form and function has been tested in only a few model species, and those linkages are highly complex. The lack of explicit methodologies to integrate form and function analyses within a deep-time and phylogenetic context weakens inferences of adaptive morphological evolution, by invoking but not testing form–function linkages. Here, we provide a novel approach to test mechanical properties at reconstructed ancestral nodes/taxa and the strength and direction of evolutionary pathways in feeding biomechanics, in a case study of carnivorous mammals. Using biomechanical profile comparisons that provide functional signals for the separation of feeding morphologies, we demonstrate, using experimental optimization criteria on estimation of strength and direction of functional changes on a phylogeny, that convergence in mechanical properties and degree of evolutionary optimization can be decoupled. This integrative approach is broadly applicable to other clades, by using quantitative data and model-based tests to evaluate interpretations of function from morphology and functional explanations for observed macroevolutionary pathways. PMID:25994295
Enhancing Data Assimilation by Evolutionary Particle Filter and Markov Chain Monte Carlo
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Abbaszadeh, P.; Yan, H.
2016-12-01
Particle Filters (PFs) have received increasing attention by the researchers from different disciplines in hydro-geosciences as an effective method to improve model predictions in nonlinear and non-Gaussian dynamical systems. The implication of dual state and parameter estimation by means of data assimilation in hydrology and geoscience has evolved since 2005 from SIR-PF to PF-MCMC and now to the most effective and robust framework through evolutionary PF approach based on Genetic Algorithm (GA) and Markov Chain Monte Carlo (MCMC), the so-called EPF-MCMC. In this framework, the posterior distribution undergoes an evolutionary process to update an ensemble of prior states that more closely resemble realistic posterior probability distribution. The premise of this approach is that the particles move to optimal position using the GA optimization coupled with MCMC increasing the number of effective particles, hence the particle degeneracy is avoided while the particle diversity is improved. The proposed algorithm is applied on a conceptual and highly nonlinear hydrologic model and the effectiveness, robustness and reliability of the method in jointly estimating the states and parameters and also reducing the uncertainty is demonstrated for few river basins across the United States.
2015-01-01
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878
A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences
Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping
2012-01-01
Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967
Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism
Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.
2012-01-01
Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and ‘calibrate’ those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.
Optimisation of strain selection in evolutionary continuous culture
NASA Astrophysics Data System (ADS)
Bayen, T.; Mairet, F.
2017-12-01
In this work, we study a minimal time control problem for a perfectly mixed continuous culture with n ≥ 2 species and one limiting resource. The model that we consider includes a mutation factor for the microorganisms. Our aim is to provide optimal feedback control laws to optimise the selection of the species of interest. Thanks to Pontryagin's Principle, we derive optimality conditions on optimal controls and introduce a sub-optimal control law based on a most rapid approach to a singular arc that depends on the initial condition. Using adaptive dynamics theory, we also study a simplified version of this model which allows to introduce a near optimal strategy.
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
Laarits, T; Bordalo, P; Lemos, B
2016-08-01
Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Using traveling salesman problem algorithms for evolutionary tree construction.
Korostensky, C; Gonnet, G H
2000-07-01
The construction of evolutionary trees is one of the major problems in computational biology, mainly due to its complexity. We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.
Evolutionary optimization of material properties of a tropical seed
Lucas, Peter W.; Gaskins, John T.; Lowrey, Timothy K.; Harrison, Mark E.; Morrogh-Bernard, Helen C.; Cheyne, Susan M.; Begley, Matthew R.
2012-01-01
Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales. This resistance is shown to be around the upper limit that allows cracking the shell via internal turgor pressure (i.e. germination). Thus, the seed appears to strike an exquisitely delicate adaptive balance between multiple selection pressures. PMID:21613287
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
NASA Technical Reports Server (NTRS)
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
Designing lymphocyte functional structure for optimal signal detection: voilà, T cells.
Noest, A J
2000-11-21
One basic task of immune systems is to detect signals from unknown "intruders" amidst a noisy background of harmless signals. To clarify the functional importance of many observed lymphocyte properties, I ask: What properties would a cell have if one designed it according to the theory of optimal detection, with minimal regard for biological constraints? Sparse and reasonable assumptions about the statistics of available signals prove sufficient for deriving many features of the optimal functional structure, in an incremental and modular design. The use of one common formalism guarantees that all parts of the design collaborate to solve the detection task. Detection performance is computed at several stages of the design. Comparison between design variants reveals e.g. the importance of controlling the signal integration time. This predicts that an appropriate control mechanism should exist. Comparing the design to reality, I find a striking similarity with many features of T cells. For example, the formalism dictates clonal specificity, serial receptor triggering, (grades of) anergy, negative and positive selection, co-stimulation, high-zone tolerance, and clonal production of cytokines. Serious mismatches should be found if T cells were hindered by mechanistic constraints or vestiges of their (co-)evolutionary history, but I have not found clear examples. By contrast, fundamental mismatches abound when comparing the design to immune systems of e.g. invertebrates. The wide-ranging differences seem to hinge on the (in)ability to generate a large diversity of receptors. Copyright 2000 Academic Press.
Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J
2016-12-01
Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
NASA Technical Reports Server (NTRS)
Gaucher, Eric A.; Miyamoto, Michael M.; Benner, Steven A.
2003-01-01
The Leptin protein is central to the regulation of energy metabolism in mammals. By integrating evolutionary, structural, and biochemical information, a surface segment, outside of its known receptor contacts, is predicted as a second interaction site that may help to further define its roles in energy balance and its functional differences between humans and other mammals.
Local Nash equilibrium in social networks.
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong
2014-08-29
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Local Nash Equilibrium in Social Networks
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-01-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150
Local Nash Equilibrium in Social Networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-08-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Evolution, learning, and cognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.C.
1988-01-01
The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.
O'Malley, Maureen A
2018-06-01
Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.
SETI in vivo: testing the we-are-them hypothesis
NASA Astrophysics Data System (ADS)
Makukov, Maxim A.; Shcherbak, Vladimir I.
2018-04-01
After it was proposed that life on Earth might descend from seeding by an earlier extraterrestrial civilization motivated to secure and spread life, some authors noted that this alternative offers a testable implication: microbial seeds could be intentionally supplied with a durable signature that might be found in extant organisms. In particular, it was suggested that the optimal location for such an artefact is the genetic code, as the least evolving part of cells. However, as the mainstream view goes, this scenario is too speculative and cannot be meaningfully tested because encoding/decoding a signature within the genetic code is something ill-defined, so any retrieval attempt is doomed to guesswork. Here we refresh the seeded-Earth hypothesis in light of recent observations, and discuss the motivation for inserting a signature. We then show that `biological SETI' involves even weaker assumptions than traditional SETI and admits a well-defined methodological framework. After assessing the possibility in terms of molecular and evolutionary biology, we formalize the approach and, adopting the standard guideline of SETI that encoding/decoding should follow from first principles and be convention-free, develop a universal retrieval strategy. Applied to the canonical genetic code, it reveals a non-trivial precision structure of interlocked logical and numerical attributes of systematic character (previously we found these heuristically). To assess this result in view of the initial assumption, we perform statistical, comparison, interdependence and semiotic analyses. Statistical analysis reveals no causal connection of the result to evolutionary models of the genetic code, interdependence analysis precludes overinterpretation, and comparison analysis shows that known variations of the code lack any precision-logic structures, in agreement with these variations being post-LUCA (i.e. post-seeding) evolutionary deviations from the canonical code. Finally, semiotic analysis shows that not only the found attributes are consistent with the initial assumption, but that they make perfect sense from SETI perspective, as they ultimately maintain some of the most universal codes of culture.
Smith, Carolyn L.; Abdallah, Salsabil; Le, Phuong; Harracksingh, Alicia N.; Artinian, Liana; Tamvacakis, Arianna N.; Rehder, Vincent; Reese, Thomas S.
2017-01-01
Four-domain voltage-gated Ca2+ (Cav) channels play fundamental roles in the nervous system, but little is known about when or how their unique properties and cellular roles evolved. Of the three types of metazoan Cav channels, Cav1 (L-type), Cav2 (P/Q-, N- and R-type) and Cav3 (T-type), Cav3 channels are optimized for regulating cellular excitability because of their fast kinetics and low activation voltages. These same properties permit Cav3 channels to drive low-threshold exocytosis in select neurons and neurosecretory cells. Here, we characterize the single T-type calcium channel from Trichoplax adhaerens (TCav3), an early diverging animal that lacks muscle, neurons, and synapses. Co-immunolocalization using antibodies against TCav3 and neurosecretory cell marker complexin labeled gland cells, which are hypothesized to play roles in paracrine signaling. Cloning and in vitro expression of TCav3 reveals that, despite roughly 600 million years of divergence from other T-type channels, it bears the defining structural and biophysical features of the Cav3 family. We also characterize the channel’s cation permeation properties and find that its pore is less selective for Ca2+ over Na+ compared with the human homologue Cav3.1, yet it exhibits a similar potent block of inward Na+ current by low external Ca2+ concentrations (i.e., the Ca2+ block effect). A comparison of the permeability features of TCav3 with other cloned channels suggests that Ca2+ block is a locus of evolutionary change in T-type channel cation permeation properties and that mammalian channels distinguish themselves from invertebrate ones by bearing both stronger Ca2+ block and higher Ca2+ selectivity. TCav3 is the most divergent metazoan T-type calcium channel and thus provides an evolutionary perspective on Cav3 channel structure–function properties, ion selectivity, and cellular physiology. PMID:28330839
The evolutionary and ecological consequences of animal social networks: emerging issues.
Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max
2014-06-01
The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cankorur-Cetinkaya, Ayca; Dias, Joao M. L.; Kludas, Jana; Slater, Nigel K. H.; Rousu, Juho; Dikicioglu, Duygu
2017-01-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257). PMID:28635591
Parallel evolutionary computation in bioinformatics applications.
Pinho, Jorge; Sobral, João Luis; Rocha, Miguel
2013-05-01
A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.
Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J
2013-06-01
Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.
Pal, Shilpee; Sarkar, Indrani; Roy, Ayan; Mohapatra, Pradeep K Das; Mondal, Keshab C; Sen, Arnab
2018-02-01
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.
Investigating multi-objective fluence and beam orientation IMRT optimization
NASA Astrophysics Data System (ADS)
Potrebko, Peter S.; Fiege, Jason; Biagioli, Matthew; Poleszczuk, Jan
2017-07-01
Radiation Oncology treatment planning requires compromises to be made between clinical objectives that are invariably in conflict. It would be beneficial to have a ‘bird’s-eye-view’ perspective of the full spectrum of treatment plans that represent the possible trade-offs between delivering the intended dose to the planning target volume (PTV) while optimally sparing the organs-at-risk (OARs). In this work, the authors demonstrate Pareto-aware radiotherapy evolutionary treatment optimization (PARETO), a multi-objective tool featuring such bird’s-eye-view functionality, which optimizes fluence patterns and beam angles for intensity-modulated radiation therapy (IMRT) treatment planning. The problem of IMRT treatment plan optimization is managed as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. To achieve this, PARETO is built around a powerful multi-objective evolutionary algorithm, called Ferret, which simultaneously optimizes multiple fitness functions that encode the attributes of the desired dose distribution for the PTV and OARs. The graphical interfaces within PARETO provide useful information such as: the convergence behavior during optimization, trade-off plots between the competing objectives, and a graphical representation of the optimal solution database allowing for the rapid exploration of treatment plan quality through the evaluation of dose-volume histograms and isodose distributions. PARETO was evaluated for two relatively complex clinical cases, a paranasal sinus and a pancreas case. The end result of each PARETO run was a database of optimal (non-dominated) treatment plans that demonstrated trade-offs between the OAR and PTV fitness functions, which were all equally good in the Pareto-optimal sense (where no one objective can be improved without worsening at least one other). Ferret was able to produce high quality solutions even though a large number of parameters, such as beam fluence and beam angles, were included in the optimization.
Evolution of spatially structured host-parasite interactions.
Lion, S; Gandon, S
2015-01-01
Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host-parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life-history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host-parasite life cycle and on which life-history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host-parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Exploring the Universe of Protein Structures beyond the Protein Data Bank
Cossio, Pilar; Trovato, Antonio; Pietrucci, Fabio; Seno, Flavio; Maritan, Amos; Laio, Alessandro
2010-01-01
It is currently believed that the atlas of existing protein structures is faithfully represented in the Protein Data Bank. However, whether this atlas covers the full universe of all possible protein structures is still a highly debated issue. By using a sophisticated numerical approach, we performed an exhaustive exploration of the conformational space of a 60 amino acid polypeptide chain described with an accurate all-atom interaction potential. We generated a database of around 30,000 compact folds with at least of secondary structure corresponding to local minima of the potential energy. This ensemble plausibly represents the universe of protein folds of similar length; indeed, all the known folds are represented in the set with good accuracy. However, we discover that the known folds form a rather small subset, which cannot be reproduced by choosing random structures in the database. Rather, natural and possible folds differ by the contact order, on average significantly smaller in the former. This suggests the presence of an evolutionary bias, possibly related to kinetic accessibility, towards structures with shorter loops between contacting residues. Beside their conceptual relevance, the new structures open a range of practical applications such as the development of accurate structure prediction strategies, the optimization of force fields, and the identification and design of novel folds. PMID:21079678
Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan
2014-01-01
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolutionary Models for Simple Biosystems
NASA Astrophysics Data System (ADS)
Bagnoli, Franco
The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.
Sequence co-evolution gives 3D contacts and structures of protein complexes
Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S
2014-01-01
Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213
Emergence of evolutionary cycles in size-structured food webs.
Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd
2016-11-07
The interplay of population dynamics and evolution within ecological communities has been of long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely studied in small communities with asymmetric competition; the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling arises naturally in larger communities if trophic interactions are present, since these are intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we use an allometric food web model. We find that evolutionary cycles emerge naturally for a large parameter ranges. The origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize. We reveal different kinds of cycles: single morph cycles, and coevolutionary and mixed cycling of complete food webs. The latter refers to the case where each trophic level can have different evolutionary dynamics. We discuss the generality of our findings and conclude that ongoing evolution in food webs may be more frequent than commonly believed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Langley's CSI evolutionary model: Phase O
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.
1991-01-01
A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.
An evolutionary solution to anesthesia automated record keeping.
Bicker, A A; Gage, J S; Poppers, P J
1998-08-01
In the course of five years the development of an automated anesthesia record keeper has evolved through nearly a dozen stages, each marked by new features and sophistication. Commodity PC hardware and software minimized development costs. Object oriented analysis, programming and design supported the process of change. In addition, we developed an evolutionary strategy that optimized motivation, risk management, and maximized return on investment. Besides providing record keeping services, the system supports educational and research activities and through a flexible plotting paradigm, supports each anesthesiologist's focus on physiological data during and after anesthesia.
Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.
Yamada, N; Nishikawa, T
2010-06-21
In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.
NASA Astrophysics Data System (ADS)
Avery, Patrick; Zurek, Eva
2017-04-01
A new algorithm, RANDSPG, that can be used to generate trial crystal structures with specific space groups and compositions is described. The program has been designed for systems where the atoms are independent of one another, and it is therefore primarily suited towards inorganic systems. The structures that are generated adhere to user-defined constraints such as: the lattice shape and size, stoichiometry, set of space groups to be generated, and factors that influence the minimum interatomic separations. In addition, the user can optionally specify if the most general Wyckoff position is to be occupied or constrain select atoms to specific Wyckoff positions. Extensive testing indicates that the algorithm is efficient and reliable. The library is lightweight, portable, dependency-free and is published under a license recognized by the Open Source Initiative. A web interface for the algorithm is publicly accessible at http://xtalopt.openmolecules.net/randSpg/randSpg.html. RANDSPG has also been interfaced with the XTALOPT evolutionary algorithm for crystal structure prediction, and it is illustrated that the use of symmetric lattices in the first generation of randomly created individuals decreases the number of structures that need to be optimized to find the global energy minimum.
Rational evolutionary design: the theory of in vitro protein evolution.
Voigt, C A; Kauffman, S; Wang, Z G
2000-01-01
Directed evolution uses a combination of powerful search techniques to generate proteins with improved properties. Part of the success is due to the stochastic element of random mutagenesis; improvements can be made without a detailed description of the complex interactions that constitute function or stability. However, optimization is not a conglomeration of random processes. Rather, it requires both knowledge of the system that is being optimized and a logical series of techniques that best explores the pathways of evolution (Eigen et al., 1988). The weighing of parameters associated with mutation, recombination, and screening to achieve the maximum fitness improvement is the beginning of rational evolutionary design. The optimal mutation rate is strongly influenced by the finite number of mutants that can be screened. A smooth fitness landscape implies that many mutations can be accumulated without disrupting the fitness. This has the effect of lowering the required library size to sample a higher mutation rate. As the sequence ascends the fitness landscape, the optimal mutation rate decreases as the probability of discovering improved mutations also decreases. Highly coupled regions require that many mutations be simultaneously made to generate a positive mutant. Therefore, positive mutations are discovered at uncoupled positions as the fitness of the parent increases. The benefit of recombination is twofold: it combines good mutations and searches more sequence space in a meaningful way. Recombination is most beneficial when the number of mutants that can be screened is limited and the landscape is of an intermediate ruggedness. The structure of schema in proteins leads to the conclusion that many cut points are required. The number of parents and their sequence identity are determined by the balance between exploration and exploitation. Many disparate parents can explore more space, but at the risk of losing information. The required screening effort is related to the number of uphill paths, which decreases more rapidly for rugged landscapes. Noise in the fitness measurements causes a dramatic increase in the required mutant library size, thus implying a smaller optimal mutation rate. Because of strict limitations on the number of mutants that can be screened, there is motivation to optimize the content of the mutant library. By restricting mutations to regions of the gene that are expected to show improvement, a greater return can be made with the same number of mutants. Initial studies with subtilisin E have shown that structurally tolerant positions tend to be where positive activity mutants are made during directed evolution. Mutant fitness information is produced by the screening step that has the potential to provide insight into the structure of the fitness landscape, thus aiding the setting of experimental parameters. By analyzing the mutant fitness distribution and targeting specific regions of the sequence, in vitro evolution can be accelerated. However, when expediting the search, there is a trade-off between rapid improvement and the quality of the long-term solution. The benefit of neutrality has yet to be captured with in vitro protein evolution. Neutral theory predicts the punctuated emergence of novel structure and function, however, with current methods, the required time scale is not feasible. Utilizing neutral evolution to accelerate the discovery of new functional and structural solutions requires a theory that predicts the behavior of mutational pathways between networks. Because the transition from neutral to adaptive evolution requires a multi-mutational switch, increasing the mutation rate decreases the time required for a punctuated change to occur. By limiting the search to the less coupled region of the sequence (smooth portion of the fitness landscape), the required larger mutation rate can be tolerated. Advances in directed evolution will be achieved when the driving forces behind such proce
NASA Astrophysics Data System (ADS)
Shu, Feng; Liu, Xingwen; Li, Min
2018-05-01
Memory is an important factor on the evolution of cooperation in spatial structure. For evolutionary biologists, the problem is often how cooperation acts can emerge in an evolving system. In the case of snowdrift game, it is found that memory can boost cooperation level for large cost-to-benefit ratio r, while inhibit cooperation for small r. Thus, how to enlarge the range of r for the purpose of enhancing cooperation becomes a hot issue recently. This paper addresses a new memory-based approach and its core lies in: Each agent applies the given rule to compare its own historical payoffs in a certain memory size, and take the obtained maximal one as virtual payoff. In order to get the optimal strategy, each agent randomly selects one of its neighbours to compare their virtual payoffs, which can lead to the optimal strategy. Both constant-size memory and size-varying memory are investigated by means of a scenario of asynchronous updating algorithm on regular lattices with different sizes. Simulation results show that this approach effectively enhances cooperation level in spatial structure and makes the high cooperation level simultaneously emerge for both small and large r. Moreover, it is discovered that population sizes have a significant influence on the effects of cooperation.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-02-25
We present a new algorithm, based on the multidimensional QR factorization, to remove redundancy from a multiple structural alignment by choosing representative protein structures that best preserve the phylogenetic tree topology of the homologous group. The classical QR factorization with pivoting, developed as a fast numerical solution to eigenvalue and linear least-squares problems of the form Ax=b, was designed to re-order the columns of A by increasing linear dependence. Removing the most linear dependent columns from A leads to the formation of a minimal basis set which well spans the phase space of the problem at hand. By recasting the problem of redundancy in multiple structural alignments into this framework, in which the matrix A now describes the multiple alignment, we adapted the QR factorization to produce a minimal basis set of protein structures which best spans the evolutionary (phase) space. The non-redundant and representative profiles obtained from this procedure, termed evolutionary profiles, are shown in initial results to outperform well-tested profiles in homology detection searches over a large sequence database. A measure of structural similarity between homologous proteins, Q(H), is presented. By properly accounting for the effect and presence of gaps, a phylogenetic tree computed using this metric is shown to be congruent with the maximum-likelihood sequence-based phylogeny. The results indicate that evolutionary information is indeed recoverable from the comparative analysis of protein structure alone. Applications of the QR ordering and this structural similarity metric to analyze the evolution of structure among key, universally distributed proteins involved in translation, and to the selection of representatives from an ensemble of NMR structures are also discussed.
Evolutionary Design and Simulation of a Tube Crawling Inspection Robot
NASA Technical Reports Server (NTRS)
Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.
Biodiversity: Habitat Suitability
Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...
Looking for the optimal rate of recombination for evolutionary dynamics
NASA Astrophysics Data System (ADS)
Saakian, David B.
2018-01-01
We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.
Spatial evolutionary epidemiology of spreading epidemics
2016-01-01
Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295
Spatial evolutionary epidemiology of spreading epidemics.
Lion, S; Gandon, S
2016-10-26
Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).