The genotype-phenotype map of an evolving digital organism.
Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas
2017-02-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.
The genotype-phenotype map of an evolving digital organism
Zaman, Luis; Wagner, Andreas
2017-01-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039
Greek, Ray; Hansen, Lawrence A
2013-11-01
We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
Active printed materials for complex self-evolving deformations.
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-12-18
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.
Active Printed Materials for Complex Self-Evolving Deformations
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-01-01
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
Thermal Control Technologies for Complex Spacecraft
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
2004-01-01
Thermal control is a generic need for all spacecraft. In response to ever more demanding science and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal control systems must evolve. This paper briefly discusses the process of technology development, the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the emerging thermal control technologies to meet these evolving needs. Some "lessons learned" based on experience with on-orbit systems are also presented.
Lee, William H K.
2016-01-01
A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.
Tendency towards maximum complexity in a nonequilibrium isolated system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calbet, Xavier; Lopez-Ruiz, Ricardo
2001-06-01
The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less
Intelligent systems engineering methodology
NASA Technical Reports Server (NTRS)
Fouse, Scott
1990-01-01
An added challenge for the designers of large scale systems such as Space Station Freedom is the appropriate incorporation of intelligent system technology (artificial intelligence, expert systems, knowledge-based systems, etc.) into their requirements and design. This presentation will describe a view of systems engineering which successfully addresses several aspects of this complex problem: design of large scale systems, design with requirements that are so complex they only completely unfold during the development of a baseline system and even then continue to evolve throughout the system's life cycle, design that involves the incorporation of new technologies, and design and development that takes place with many players in a distributed manner yet can be easily integrated to meet a single view of the requirements. The first generation of this methodology was developed and evolved jointly by ISX and the Lockheed Aeronautical Systems Company over the past five years on the Defense Advanced Research Projects Agency/Air Force Pilot's Associate Program, one of the largest, most complex, and most successful intelligent systems constructed to date. As the methodology has evolved it has also been applied successfully to a number of other projects. Some of the lessons learned from this experience may be applicable to Freedom.
Kitano, Hiroaki
2004-11-01
Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
NASA Astrophysics Data System (ADS)
Greene, Casey S.; Hill, Douglas P.; Moore, Jason H.
The relationship between interindividual variation in our genomes and variation in our susceptibility to common diseases is expected to be complex with multiple interacting genetic factors. A central goal of human genetics is to identify which DNA sequence variations predict disease risk in human populations. Our success in this endeavour will depend critically on the development and implementation of computational intelligence methods that are able to embrace, rather than ignore, the complexity of the genotype to phenotype relationship. To this end, we have developed a computational evolution system (CES) to discover genetic models of disease susceptibility involving complex relationships between DNA sequence variations. The CES approach is hierarchically organized and is capable of evolving operators of any arbitrary complexity. The ability to evolve operators distinguishes this approach from artificial evolution approaches using fixed operators such as mutation and recombination. Our previous studies have shown that a CES that can utilize expert knowledge about the problem in evolved operators significantly outperforms a CES unable to use this knowledge. This environmental sensing of external sources of biological or statistical knowledge is important when the search space is both rugged and large as in the genetic analysis of complex diseases. We show here that the CES is also capable of evolving operators which exploit one of several sources of expert knowledge to solve the problem. This is important for both the discovery of highly fit genetic models and because the particular source of expert knowledge used by evolved operators may provide additional information about the problem itself. This study brings us a step closer to a CES that can solve complex problems in human genetics in addition to discovering genetic models of disease.
Evolution of complex adaptations in molecular systems
Pál, Csaba; Papp, Balázs
2017-01-01
A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044
Management of complex dynamical systems
NASA Astrophysics Data System (ADS)
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Fay, Nicolas; Ellison, T. Mark
2013-01-01
This study examines the intergenerational transfer of human communication systems. It tests if human communication systems evolve to be easy to learn or easy to use (or both), and how population size affects learnability and usability. Using an experimental-semiotic task, we find that human communication systems evolve to be easier to use (production efficiency and reproduction fidelity), but harder to learn (identification accuracy) for a second generation of naïve participants. Thus, usability trumps learnability. In addition, the communication systems that evolve in larger populations exhibit distinct advantages over those that evolve in smaller populations: the learnability loss (from the Initial signs) is more muted and the usability benefits are more pronounced. The usability benefits for human communication systems that evolve in a small and large population is explained through guided variation reducing sign complexity. The enhanced performance of the communication systems that evolve in larger populations is explained by the operation of a content bias acting on the larger pool of competing signs. The content bias selects for information-efficient iconic signs that aid learnability and enhance usability. PMID:23967243
Fay, Nicolas; Ellison, T Mark
2013-01-01
This study examines the intergenerational transfer of human communication systems. It tests if human communication systems evolve to be easy to learn or easy to use (or both), and how population size affects learnability and usability. Using an experimental-semiotic task, we find that human communication systems evolve to be easier to use (production efficiency and reproduction fidelity), but harder to learn (identification accuracy) for a second generation of naïve participants. Thus, usability trumps learnability. In addition, the communication systems that evolve in larger populations exhibit distinct advantages over those that evolve in smaller populations: the learnability loss (from the Initial signs) is more muted and the usability benefits are more pronounced. The usability benefits for human communication systems that evolve in a small and large population is explained through guided variation reducing sign complexity. The enhanced performance of the communication systems that evolve in larger populations is explained by the operation of a content bias acting on the larger pool of competing signs. The content bias selects for information-efficient iconic signs that aid learnability and enhance usability.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.
2012-03-01
We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.
An evolutionary link between capsular biogenesis and surface motility in bacteria.
Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm
2015-05-01
Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.
Complexity, flow, and antifragile healthcare systems: implications for nurse executives.
Clancy, Thomas R
2015-04-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this article, I further discuss the concept of fragility, its impact on system behavior, and ways to reduce it.
Eye evolution at high resolution: the neuron as a unit of homology.
Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D
2009-08-01
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.
Improving Systems Engineering Effectiveness in Rapid Response Development Environments
2012-06-02
environments where large, complex, brownfield systems of systems are evolved through parallel development of new capabilities in response to external, time...license 14. ABSTRACT Systems engineering is often ineffective in development environments where large, complex, brownfield systems of systems are...IEEE Press, Hoboken, NJ, 2008 [18] Boehm, B.: Applying the Incremental Commitment Model to Brownfield Systems Development, Proceedings, CSER 2009
ERIC Educational Resources Information Center
Truxal, John G.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
Coexistence and chaos in complex ecologies [rapid communication
NASA Astrophysics Data System (ADS)
Sprott, J. C.; Vano, J. A.; Wildenberg, J. C.; Anderson, M. B.; Noel, J. K.
2005-02-01
Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robustly but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.
Improving processes through evolutionary optimization.
Clancy, Thomas R
2011-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.
Symmetry of interactions rules in incompletely connected random replicator ecosystems.
Kärenlampi, Petri P
2014-06-01
The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.
ERIC Educational Resources Information Center
Visich, Marian, Jr.
Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…
The capuchin monkey as a flight candidate
NASA Technical Reports Server (NTRS)
Winget, C. M.
1977-01-01
The highly evolved nervous system and associated complex behavioral capabilities of the nonhuman primates make them good candidates for certain studies in the space environment since deleterious changes in these more complex aspects of a biological status can only be demonstrated by species which share such highly evolved features with man. Important assets which urge the selection of the capuchin monkey for space experiments include his small size, high intelligence, relative disease resistance, nutritional requirements, and lower volume life support systems. The species is particularly suited for experiments on the nervous system or on process under neural control because of the similarity of capuchin and human blood chemistry profiles and endocrine systems involved in the maintenance of homeostasis and vasomotor tone.
Primordial Evolution in the Finitary Process Soup
NASA Astrophysics Data System (ADS)
Görnerup, Olof; Crutchfield, James P.
A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.
Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio
2015-11-16
The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Positive deviance: an elegant solution to a complex problem.
Lindberg, Curt; Clancy, Thomas R
2010-04-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 13th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. This article provides one example of how concepts taken from complex systems theory can be applied to real-world problems facing nurses today.
Lehmann, Kenna D S; Goldman, Brian W; Dworkin, Ian; Bryson, David M; Wagner, Aaron P
2014-01-01
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.
Lehmann, Kenna D. S.; Goldman, Brian W.; Dworkin, Ian; Bryson, David M.; Wagner, Aaron P.
2014-01-01
Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment. PMID:24614755
An evolving systems-based methodology for healthcare planning.
Warwick, Jon; Bell, Gary
2007-01-01
Healthcare planning seems beset with problems at all hierarchical levels. These are caused by the 'soft' nature of many of the issues present in healthcare planning and the high levels of complexity inherent in healthcare services. There has, in recent years, been a move to utilize systems thinking ideas in an effort to gain a better understanding of the forces at work within the healthcare environment and these have had some success. This paper argues that systems-based methodologies can be further enhanced by metrication and modeling which assist in exploring the changed emergent behavior of a system resulting from management intervention. The paper describes the Holon Framework as an evolving systems-based approach that has been used to help clients understand complex systems (in the education domain) that would have application in the analysis of healthcare problems.
Big cats as a model system for the study of the evolution of intelligence.
Borrego, Natalia
2017-08-01
Currently, carnivores, and felids in particular, are vastly underrepresented in cognitive literature, despite being an ideal model system for tests of social and ecological intelligence hypotheses. Within Felidae, big cats (Panthera) are uniquely suited to studies investigating the evolutionary links between social, ecological, and cognitive complexity. Intelligence likely did not evolve in a unitary way but instead evolved as the result of mutually reinforcing feedback loops within the physical and social environments. The domain-specific social intelligence hypothesis proposes that social complexity drives only the evolution of cognitive abilities adapted only to social domains. The domain-general hypothesis proposes that the unique demands of social life serve as a bootstrap for the evolution of superior general cognition. Big cats are one of the few systems in which we can directly address conflicting predictions of the domain-general and domain-specific hypothesis by comparing cognition among closely related species that face roughly equivalent ecological complexity but vary considerably in social complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Social networks as embedded complex adaptive systems.
Benham-Hutchins, Marge; Clancy, Thomas R
2010-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.
Suzuki, Hideaki; Ono, Naoaki; Yuta, Kikuo
2003-01-01
In order for an artificial life (Alife) system to evolve complex creatures, an artificial environment prepared by a designer has to satisfy several conditions. To clarify this requirement, we first assume that an artificial environment implemented in the computational medium is composed of an information space in which elementary symbols move around and react with each other according to human-prepared elementary rules. As fundamental properties of these factors (space, symbols, transportation, and reaction), we present ten criteria from a comparison with the biochemical reaction space in the real world. Then, in the latter half of the article, we take several computational Alife systems one by one, and assess them in terms of the proposed criteria. The assessment can be used not only for improving previous Alife systems but also for devising new Alife models in which complex forms of artificial creatures can be expected to evolve.
Tetrametallic molecular catalysts for photochemical water oxidation.
Sartorel, Andrea; Bonchio, Marcella; Campagna, Sebastiano; Scandola, Franco
2013-03-21
Among molecular water oxidation catalysts (WOCs), those featuring a reactive set of four multi-redox transition metals can leverage an extraordinary interplay of electronic and structural properties. These are of particular interest, owing to their close structural, and possibly functional, relationship to the oxygen evolving complex of natural photosynthesis. In this review, special attention is given to two classes of tetrametallic molecular WOCs: (i) M(4)O(4) cubane-type structures stabilized by simple organic ligands, and (ii) systems in which a tetranuclear metal core is stabilized by coordination of two polyoxometalate (POM) ligands. Recent work in this rapidly evolving field is reviewed, with particular emphasis on photocatalytic aspects. Special attention is given to studies addressing the mechanistic complexity of these systems, sometimes overlooked in the rush for oxygen evolving performance. The complementary role of molecular WOCs and their relationship with bulk oxides and heterogeneous catalysis are discussed.
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly; Ganesan, Dharma; Stratton, William C.; Sibol, Deane E.
2008-01-01
Analyze, Visualize, and Evaluate structure and behavior using static and dynamic information, individual systems as well as systems of systems. Next steps: Refine software tool support; Apply to other systems; and Apply earlier in system life cycle.
Achieving control and interoperability through unified model-based systems and software engineering
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Ingham, Michel; Dvorak, Daniel
2005-01-01
Control and interoperation of complex systems is one of the most difficult challenges facing NASA's Exploration Systems Mission Directorate. An integrated but diverse array of vehicles, habitats, and supporting facilities, evolving over the long course of the enterprise, must perform ever more complex tasks while moving steadily away from the sphere of ground support and intervention.
Complexity science and leadership in healthcare.
Burns, J P
2001-10-01
The emerging field of complexity science offers an alternative leadership strategy for the chaotic, complex healthcare environment. A survey revealed that healthcare leaders intuitively support principles of complexity science. Leadership that uses complexity principles offers opportunities in the chaotic healthcare environment to focus less on prediction and control and more on fostering relationships and creating conditions in which complex adaptive systems can evolve to produce creative outcomes.
Self-organization versus self-management: two sides of the same coin?
Clancy, Thomas R
2009-03-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the eighth in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the author explores self-organization as it relates to self-management in complex social organizations.
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Complex Adaptive Schools: Educational Leadership and School Change
ERIC Educational Resources Information Center
Kershner, Brad; McQuillan, Patrick
2016-01-01
This paper utilizes the theoretical framework of complexity theory to compare and contrast leadership and educational change in two urban schools. Drawing on the notion of a complex adaptive system--an interdependent network of interacting elements that learns and evolves in adapting to an ever-shifting context--our case studies seek to reveal the…
Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)
2002-01-01
Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
Ranking in evolving complex networks
NASA Astrophysics Data System (ADS)
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
Dynamic Systems Modeling in Educational System Design & Policy
ERIC Educational Resources Information Center
Groff, Jennifer Sterling
2013-01-01
Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…
Solé, Ricard V.; Valverde, Sergi
2013-01-01
The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussed. PMID:23596506
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Evolving Communicative Complexity: Insight from Rodents and Beyond
2012-01-01
Group size in animal societies: the potential role of social and ecological limitations in the group-living fish , Paragobiodon xanthosomus. Ethology... Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 2Human Research and Engineering Directorate, Perceptual Sciences...evolve is an active question in behavioural ecology . Sciurid rodents (ground squirrels, prairie dogs and marmots) provide an excellent model system for
NASA Astrophysics Data System (ADS)
Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.
2012-04-01
The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.
Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit. PMID:28167999
Carney, Timothy Jay; Shea, Christopher Michael
2017-01-01
Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system "smartness." Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit.
Big Data, Big Challenges: Implications for Chief Nurse Executives.
Clancy, Thomas R; Reed, Laura
2016-03-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this edition, I begin a series of articles on the growing challenge faced by nurse administrators of finding value in the vast amounts of information collected by health systems today.
NASA Astrophysics Data System (ADS)
Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.
2011-10-01
An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.
A systems approach to animal communication
Barron, Andrew B.; Balakrishnan, Christopher N.; Hauber, Mark E.; Hoke, Kim L.
2016-01-01
Why animal communication displays are so complex and how they have evolved are active foci of research with a long and rich history. Progress towards an evolutionary analysis of signal complexity, however, has been constrained by a lack of hypotheses to explain similarities and/or differences in signalling systems across taxa. To address this, we advocate incorporating a systems approach into studies of animal communication—an approach that includes comprehensive experimental designs and data collection in combination with the implementation of systems concepts and tools. A systems approach evaluates overall display architecture, including how components interact to alter function, and how function varies in different states of the system. We provide a brief overview of the current state of the field, including a focus on select studies that highlight the dynamic nature of animal signalling. We then introduce core concepts from systems biology (redundancy, degeneracy, pluripotentiality, and modularity) and discuss their relationships with system properties (e.g. robustness, flexibility, evolvability). We translate systems concepts into an animal communication framework and accentuate their utility through a case study. Finally, we demonstrate how consideration of the system-level organization of animal communication poses new practical research questions that will aid our understanding of how and why animal displays are so complex. PMID:26936240
A systems approach to animal communication.
Hebets, Eileen A; Barron, Andrew B; Balakrishnan, Christopher N; Hauber, Mark E; Mason, Paul H; Hoke, Kim L
2016-03-16
Why animal communication displays are so complex and how they have evolved are active foci of research with a long and rich history. Progress towards an evolutionary analysis of signal complexity, however, has been constrained by a lack of hypotheses to explain similarities and/or differences in signalling systems across taxa. To address this, we advocate incorporating a systems approach into studies of animal communication--an approach that includes comprehensive experimental designs and data collection in combination with the implementation of systems concepts and tools. A systems approach evaluates overall display architecture, including how components interact to alter function, and how function varies in different states of the system. We provide a brief overview of the current state of the field, including a focus on select studies that highlight the dynamic nature of animal signalling. We then introduce core concepts from systems biology (redundancy, degeneracy, pluripotentiality, and modularity) and discuss their relationships with system properties (e.g. robustness, flexibility, evolvability). We translate systems concepts into an animal communication framework and accentuate their utility through a case study. Finally, we demonstrate how consideration of the system-level organization of animal communication poses new practical research questions that will aid our understanding of how and why animal displays are so complex. © 2016 The Author(s).
Putting it altogether: improving performance in heart failure outcomes, part 2.
Clancy, Thomas R
2009-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 10th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. As follow-up to the case study in this column's June 2009 article, this article highlights the interventions and outcomes of the study.
Specification and Design of Electrical Flight System Architectures with SysML
NASA Technical Reports Server (NTRS)
McKelvin, Mark L., Jr.; Jimenez, Alejandro
2012-01-01
Modern space flight systems are required to perform more complex functions than previous generations to support space missions. This demand is driving the trend to deploy more electronics to realize system functionality. The traditional approach for the specification, design, and deployment of electrical system architectures in space flight systems includes the use of informal definitions and descriptions that are often embedded within loosely coupled but highly interdependent design documents. Traditional methods become inefficient to cope with increasing system complexity, evolving requirements, and the ability to meet project budget and time constraints. Thus, there is a need for more rigorous methods to capture the relevant information about the electrical system architecture as the design evolves. In this work, we propose a model-centric approach to support the specification and design of electrical flight system architectures using the System Modeling Language (SysML). In our approach, we develop a domain specific language for specifying electrical system architectures, and we propose a design flow for the specification and design of electrical interfaces. Our approach is applied to a practical flight system.
Method of preparing pure fluorine gas
Asprey, Larned B.
1976-01-01
A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.
Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten
2013-01-01
The ~3240 Ma Panorama volcanic-hosted massive sulfide (VHMS) district is unusual for its high degree of exposure and low degree of postdepositional modification. In addition to typical seafloor VHMS deposits, this district contains greisen- and vein-hosted Mo-Cu-Zn-Sn mineral occurrences that are contemporaneous with VHMS orebodies and are hosted by the Strelley granite complex, which also drove VHMS circulation. Hence the Panorama district is a natural laboratory to investigate the role of magmatic-hydrothermal fluids in VHMS hydrothermal systems. Regional and proximal high-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by chlorite-quartz ± albite assemblages, with lesser low-temperature sericite-quartz ± K-feldspar assemblages. These assemblages are typical of VHMS hydrothermal systems. In contrast, the alteration assemblages associated with granite-hosted greisens and veins include quartz-topaz-muscovite-fluorite and quartz-muscovite (sericite)-chlorite-ankerite. These vein systems generally do not extend into the overlying volcanic pile. Fluid inclusion and stable isotope studies suggest that the greisens were produced by high-temperature (~590°C), high-salinity (38–56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high δ18O (9.3 ± 0.6‰). These fluids are compatible with the measured characteristics of magmatic fluids evolved from the Strelley granite complex. In contrast, fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90°–270°C), lower salinity (5.0–11.2 wt % NaCl equiv), with lower densities (0.88–1.01 g/cm3) and lower δ18O (−0.8 ± 2.6‰). These fluids are compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the granite complex near the contact with the volcanic pile, were intermediate in temperature and isotopic composition between the greisen and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.
Building Better Decision-Support by Using Knowledge Discovery.
ERIC Educational Resources Information Center
Jurisica, Igor
2000-01-01
Discusses knowledge-based decision-support systems that use artificial intelligence approaches. Addresses the issue of how to create an effective case-based reasoning system for complex and evolving domains, focusing on automated methods for system optimization and domain knowledge evolution that can supplement knowledge acquired from domain…
Evolution of speech and evolution of language.
de Boer, Bart
2017-02-01
Speech is the physical signal used to convey spoken language. Because of its physical nature, speech is both easier to compare with other species' behaviors and easier to study in the fossil record than other aspects of language. Here I argue that convergent fossil evidence indicates adaptations for complex vocalizations at least as early as the common ancestor of Neanderthals and modern humans. Furthermore, I argue that it is unlikely that language evolved separately from speech, but rather that gesture, speech, and song coevolved to provide both a multimodal communication system and a musical system. Moreover, coevolution must also have played a role by allowing both cognitive and anatomical adaptations to language and speech to evolve in parallel. Although such a coevolutionary scenario is complex, it is entirely plausible from a biological point of view.
Holonic Rationale and Bio-inspiration on Design of Complex Emergent and Evolvable Systems
NASA Astrophysics Data System (ADS)
Leitao, Paulo
Traditional centralized and rigid control structures are becoming inflexible to face the requirements of reconfigurability, responsiveness and robustness, imposed by customer demands in the current global economy. The Holonic Manufacturing Systems (HMS) paradigm, which was pointed out as a suitable solution to face these requirements, translates the concepts inherited from social organizations and biology to the manufacturing world. It offers an alternative way of designing adaptive systems where the traditional centralized control is replaced by decentralization over distributed and autonomous entities organized in hierarchical structures formed by intermediate stable forms. In spite of its enormous potential, methods regarding the self-adaptation and self-organization of complex systems are still missing. This paper discusses how the insights from biology in connection with new fields of computer science can be useful to enhance the holonic design aiming to achieve more self-adaptive and evolvable systems. Special attention is devoted to the discussion of emergent behavior and self-organization concepts, and the way they can be combined with the holonic rationale.
Miles, Meredith C.; Cheng, Samantha; Fuxjager, Matthew J.
2017-01-01
Gestural displays are incorporated into the signaling repertoire of numerous animal species. These displays range from complex signals that involve impressive and challenging maneuvers, to simpler displays or no gesture at all. The factors that drive this evolution remain largely unclear, and we therefore investigate this issue in New World blackbirds by testing how factors related to a species’ geographical distribution and social mating system predict macro‐evolutionary patterns of display elaboration. We report that species inhabiting temperate regions produce more complex displays than species living in tropical regions, and we attribute this to (i) ecological factors that increase the competitiveness of the social environment in temperate regions, and (ii) different evolutionary and geological contexts under which species in temperate and tropical regions evolved. Meanwhile, we find no evidence that social mating system predicts species differences in display complexity, which is consistent with the idea that gestural displays evolve independently of social mating system. Together, these results offer some of the first insight into the role played by geographic factors and evolutionary context in the evolution of the remarkable physical displays of birds and other vertebrates. PMID:28240772
Statistical Features of Complex Systems ---Toward Establishing Sociological Physics---
NASA Astrophysics Data System (ADS)
Kobayashi, Naoki; Kuninaka, Hiroto; Wakita, Jun-ichi; Matsushita, Mitsugu
2011-07-01
Complex systems have recently attracted much attention, both in natural sciences and in sociological sciences. Members constituting a complex system evolve through nonlinear interactions among each other. This means that in a complex system the multiplicative experience or, so to speak, the history of each member produces its present characteristics. If attention is paid to any statistical property in any complex system, the lognormal distribution is the most natural and appropriate among the standard or ``normal'' statistics to overview the whole system. In fact, the lognormality emerges rather conspicuously when we examine, as familiar and typical examples of statistical aspects in complex systems, the nursing-care period for the aged, populations of prefectures and municipalities, and our body height and weight. Many other examples are found in nature and society. On the basis of these observations, we discuss the possibility of sociological physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
CDS (Change Detection Systems) is a mechanism for rapid visual analysis using complex image alignment algorithms. CDS is controlled with a simple interface that has been designed for use for anyone that can operate a digital camera. A challenge of complex industrial systems like nuclear power plants is to accurately identify changes in systems, structures and components that may critically impact the operation of the facility. CDS can provide a means of early intervention before the issues evolve into safety and production challenges.
Charlesworth, Deborah
2016-01-01
I review theoretical models for the evolution of supergenes in the cases of Batesian mimicry in butterflies, distylous plants and sex chromosomes. For each of these systems, I outline the genetic evidence that led to the proposal that they involve multiple genes that interact during 'complex adaptations', and at which the mutations involved are not unconditionally advantageous, but show advantages that trade-off against some disadvantages. I describe recent molecular genetic studies of these systems and questions they raise about the evolution of suppressed recombination. Nonrecombining regions of sex chromosomes have long been known, but it is not yet fully understood why recombination suppression repeatedly evolved in systems in distantly related taxa, but does not always evolve. Recent studies of distylous plants are tending to support the existence of recombination-suppressed genome regions, which may include modest numbers of genes and resemble recently evolved sex-linked regions. For Batesian mimicry, however, molecular genetic work in two butterfly species suggests a new supergene scenario, with a single gene mutating to produce initial adaptive phenotypes, perhaps followed by modifiers specifically refining and perfecting the new phenotype.
Using Generative Representations to Evolve Robots. Chapter 1
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.
Biomimetic molecular design tools that learn, evolve, and adapt.
Winkler, David A
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.
Biomimetic molecular design tools that learn, evolve, and adapt
2017-01-01
A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872
Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs
NASA Astrophysics Data System (ADS)
Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han
2018-01-01
A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.
Giraldo, Martha C.; Dagdas, Yasin F.; Gupta, Yogesh K.; Mentlak, Thomas A.; Yi, Mihwa; Martinez-Rocha, Ana Lilia; Saitoh, Hiromasa; Terauchi, Ryohei; Talbot, Nicholas J.; Valent, Barbara
2013-01-01
To cause plant diseases, pathogenic micro-organisms secrete effector proteins into host tissue to suppress immunity and support pathogen growth. Bacterial pathogens have evolved several distinct secretion systems to target effector proteins, but whether fungi, which cause the major diseases of most crop species, also require different secretory mechanisms is not known. Here we report that the rice blast fungus Magnaporthe oryzae possesses two distinct secretion systems to target effectors during plant infection. Cytoplasmic effectors, which are delivered into host cells, preferentially accumulate in the biotrophic interfacial complex, a novel plant membrane-rich structure associated with invasive hyphae. We show that the biotrophic interfacial complex is associated with a novel form of secretion involving exocyst components and the Sso1 t-SNARE. By contrast, effectors that are secreted from invasive hyphae into the extracellular compartment follow the conventional secretory pathway. We conclude that the blast fungus has evolved distinct secretion systems to facilitate tissue invasion. PMID:23774898
Palopoli, M. F.; Wu, C. I.
1996-01-01
Segregation Distorter (SD) is a system of meiotic drive found in natural populations of Drosophila melanogaster. Males heterozygous for an SD second chromosome and a normal homologue (SD(+)) produce predominantly SD-bearing sperm. The coadapted gene complex responsible for this transmission advantage spans the second chromosome centromere, consisting of three major and several minor interacting loci. To investigate the evolutionary history of this system, we surveyed levels of polymorphism and divergence at six genes that together encompass this pericentromeric region and span seven map units. Interestingly, there was no discernible divergence between SD and SD(+) chromosomes for any of these molecular markers. Furthermore, SD chromosomes harbored much less polymorphism than did SD(+) chromosomes. The results suggest that the SD system evolved recently, swept to appreciable frequencies worldwide, and carried with it the entire second chromosome centromeric region (roughly 10% of the genome). Despite its well-documented genetic complexity, this coadapted system appears to have evolved on a time scale that is much shorter than can be gauged using nucleotide substitution data. Finally, the large genomic region hitchhiking with SD indicates that a multilocus, epistatically selected system could affect the levels of DNA polymorphism observed in regions of reduced recombination. PMID:8844155
Diversity Driven Coexistence: Collective Stability in the Cyclic Competition of Three Species
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Frey, Erwin; Zia, R. K. P.
2015-03-01
The basic physics of collective behavior are often difficult to quantify and understand, particularly when the system is driven out of equilibrium. Many complex systems are usefully described as complex networks, consisting of nodes and links. The nodes specify individual components of the system and the links describe their interactions. When both nodes and links change dynamically, or `co-evolve', as happens in many realistic systems, complex mathematical structures are encountered, posing challenges to our understanding. In this context, we introduce a minimal system of node and link degrees of freedom, co-evolving with stochastic rules. Specifically, we show that diversity of social temperament (intro- or extroversion) can produce collective stable coexistence when three species compete cyclically. It is well-known that when only extroverts exist in a stochastic rock-paper-scissors game, or in a conserved predator-prey, Lotka-Volterra system, extinction occurs at times of O(N), where N is the number of nodes. We find that when both introverts and extroverts exist, where introverts sever social interactions and extroverts create them, collective coexistence prevails in long-living, quasi-stationary states. Work supported by the NSF through Grants DMR-1206839 (KEB) and DMR-1244666 (RKPZ), and by the AFOSR and DARPA through Grant FA9550-12-1-0405 (KEB).
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
USMC Ground Surveillance Robot (GSR): Lessons Learned
NASA Astrophysics Data System (ADS)
Harmon, S. Y.
1987-02-01
This paper describes the design of an autonomous vehicle and the lessons learned during the implementation of that complex robot. The major problems encountered to which solutions were found include sensor processing bandwidth limitations, coordination of the interactions between major subsystems, sensor data fusion and system knowledge representation. Those problems remaining unresolved include system complexity management, the lack of powerful system monitoring and debugging tools, exploratory implementation of a complex system and safety and testing issues. Many of these problems arose from working with underdeveloped and continuously evolving technology and will probably be resolved as the technological resources mature and stabilize. Unfortunately, other problems will continue to plague developers throughout the evolution of autonomous system technology.
It's Time for Serious Reform of the Student-Aid System
ERIC Educational Resources Information Center
Baum, Sandy
2007-01-01
This article discusses the current student-aid system in American higher education and the policy issues surrounding it. The author asserts that it is time to consider serious reform of the complex system of federal, state, and institutional subsidies that has evolved to support postsecondary students. A rational long-term planning process never…
Cooperation, conflict, and the evolution of queen pheromones.
Kocher, Sarah D; Grozinger, Christina M
2011-11-01
While chemical communication regulates individual behavior in a wide variety of species, these communication systems are most elaborated in insect societies. In these complex systems, pheromones produced by the reproductive individuals (queens) are critical in establishing and maintaining dominant reproductive status over hundreds to thousands of workers. The proximate and ultimate mechanisms by which these intricate pheromone communication systems evolved are largely unknown, though there has been much debate over whether queen pheromones function as a control mechanism or as an honest signal facilitating cooperation. Here, we summarize results from recent studies in honey bees, bumble bees, wasps, ants and termites. We further discuss evolutionary mechanisms by which queen pheromone communication systems may have evolved. Overall, these studies suggest that queen-worker pheromone communication is a multi-component, labile dialog between the castes, rather than a simple, fixed signal-response system. We also discuss future approaches that can shed light on the proximate and ultimate mechanisms that underlie these complex systems by focusing on the development of increasingly sophisticated genomic tools and their potential applications to examine the molecular mechanisms that regulate pheromone production and perception.
An Evolvable Multi-Agent Approach to Space Operations Engineering
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Stoica, Adrian
1999-01-01
A complex system of spacecraft and ground tracking stations, as well as a constellation of satellites or spacecraft, has to be able to reliably withstand sudden environment changes, resource fluctuations, dynamic resource configuration, limited communication bandwidth, etc., while maintaining the consistency of the system as a whole. It is not known in advance when a change in the environment might occur or when a particular exchange will happen. A higher degree of sophistication for the communication mechanisms between different parts of the system is required. The actual behavior has to be determined while the system is performing and the course of action can be decided at the individual level. Under such circumstances, the solution will highly benefit from increased on-board and on the ground adaptability and autonomy. An evolvable architecture based on intelligent agents that communicate and cooperate with each other can offer advantages in this direction. This paper presents an architecture of an evolvable agent-based system (software and software/hardware hybrids) as well as some plans for further implementation.
Environmental Influence on the Evolution of Morphological Complexity in Machines
Auerbach, Joshua E.; Bongard, Josh C.
2014-01-01
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483
Ultrafast Primary Reactions in the Photosystems of Oxygen-Evolving Organisms
NASA Astrophysics Data System (ADS)
Holzwarth, A. R.
In oxygen-evolving photosynthetic organisms (plants, green algae, cyanobacteria), the primary steps of photosynthesis occur in two membrane-bound protein supercomplexes, Photosystem I (PS I) and Photosystem II (PS II), located in the thylakoid membrane (c.f. Fig. 7.1) along with two other important protein complexes, the cytochrome b6/f complex and the ATP-synthase [1]. Each of the photosystems consists of a reaction center (RC) where the photoinduced early electron transfer processes occur, of a so-called core antenna consisting of chlorophyll (Chl) protein complexes responsible for light absorption and ultrafast energy transfer to the RC pigments, and additional peripheral antenna complexes of various kinds that increase the absorption cross-section. The peripheral complexes are Chl a/b-protein complexes in higher plants and green algae (LHC I or LHC II for PS I or PS II, respectively) and so-called phycobilisomes in cyanobacteria and red algae [2-4]. The structures and light-harvesting functions of these antenna systems have been extensively reviewed [2, 5-9]. Recently, X-ray structures of both PS I and PS II antenna/RC complexes have been determined, some to atomic resolution. Although many details of the pigment content and organization of the RCs and antenna systems of PS I and PS II have been known before, the high resolution structures of the integral complexes allow us for the first time to try to understand structure/function relationships in detail. This article covers our present understanding of the ultrafast energy transfer and early electron transfer processes occurring in the photosystems of oxygen-evolving organisms. The main emphasis will be on the electron transfer processes. However, in both photosystems the kinetics of the energy transfer processes in the core antennae is intimately interwoven with the kinetics of the electron transfer steps. Since both types of processes occur on a similar time scale, their kinetics cannot be considered separately in any experiment and consequently they have to be discussed together.
Developing Leadership for Increasing Complexity: A Review of Online Graduate Leadership Programs
ERIC Educational Resources Information Center
Winton, Steven L.; Palmer, Sarah; Hughes, Patrick J.
2018-01-01
Leadership education must evolve to keep pace with the growing recognition that effective leadership happens in a complex environment and is as much a systemic variable as a personal one. As part of a program review process, a graduate leadership program at a private Midwestern university conducted a qualitative review of 18 online graduate…
Programming adaptive control to evolve increased metabolite production.
Chou, Howard H; Keasling, Jay D
2013-01-01
The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.
Hypernetwork generation for multi-modal transportation system modeling.
DOT National Transportation Integrated Search
2013-04-01
The transportation debate has evolved in recent decades to include ideas such as sustainability and livability alongside mobility and safety. Definitional complexities aside, there is no doubt that this evolution has created a national transportation...
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.
2014-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L
2015-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Miles, Meredith C; Cheng, Samantha; Fuxjager, Matthew J
2017-05-01
Gestural displays are incorporated into the signaling repertoire of numerous animal species. These displays range from complex signals that involve impressive and challenging maneuvers, to simpler displays or no gesture at all. The factors that drive this evolution remain largely unclear, and we therefore investigate this issue in New World blackbirds by testing how factors related to a species' geographical distribution and social mating system predict macro-evolutionary patterns of display elaboration. We report that species inhabiting temperate regions produce more complex displays than species living in tropical regions, and we attribute this to (i) ecological factors that increase the competitiveness of the social environment in temperate regions, and (ii) different evolutionary and geological contexts under which species in temperate and tropical regions evolved. Meanwhile, we find no evidence that social mating system predicts species differences in display complexity, which is consistent with the idea that gestural displays evolve independently of social mating system. Together, these results offer some of the first insight into the role played by geographic factors and evolutionary context in the evolution of the remarkable physical displays of birds and other vertebrates. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Simon, Gregory L.; Wee, Bryan Shao-Chang; Chin, Anne; Tindle, Amy Depierre; Guth, Dan; Mason, Hillary
2013-01-01
As our understanding of complex environmental issues increases, institutions of higher education are evolving to develop new learning models that emphasize synthesis across disciplines, concepts, data, and methodologies. To this end, we argue for the implementation of environmental science education at the intersection of systems theory and…
Lectures in Complex Systems, (1992). Volume 5
1993-05-01
Lattice Gas Methods for Partial Differential Equations, 1989 V P. W. Anderson, K. Arrow, The Economy as an Evolving Complex System, D. Pines 1988 VI C...to Improve EEG Classification and to Explore GA Parametrization Cathleen Barczys, Laura Bloom, and Leslie Kay 569 Symbiosis in Society and Monopoly in...Appeal of Evolution 1.2 Elements of Genetic Algorithms 1.3 A Simple GA 1.4 Overview of Some Applications of Genetic Algorithms 1.5 A Brief Example
Delivery of complex organic compounds from evolved stars to the solar system.
Kwok, Sun
2011-12-01
Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.
Evolvable Neural Software System
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2009-01-01
The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.
Traditional Knowledge of Western Herbal Medicine and Complex Systems Science
Niemeyer, Kathryn; Bell, Iris R.; Koithan, Mary
2013-01-01
Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM. PMID:24058898
Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.
Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary
2013-09-01
Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.
TechWriter: An Evolving System for Writing Assistance for Advanced Learners of English
ERIC Educational Resources Information Center
Napolitano, Diane M.; Stent, Amanda
2009-01-01
Writing assistance systems, from simple spelling checkers to more complex grammar and readability analyzers, can be helpful aids to nonnative writers of English. However, many writing assistance systems have two disadvantages. First, they are not designed to encourage skills learning and independence in their users; instead, users may begin to use…
1994-07-01
incorporate the Bell-La Padula rules for implementing the DoD security policy. The policy from which we begin here is the organization’s operational...security policy, which assumes the Bell-La Padula model and assigns the required security variables to elements of the system. A way to ensure a
Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.
Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan
2015-03-14
A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.
Maximizing the Adjacent Possible in Automata Chemistries.
Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter
2016-01-01
Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.
An integrative model of evolutionary covariance: a symposium on body shape in fishes.
Walker, Jeffrey A
2010-12-01
A major direction of current and future biological research is to understand how multiple, interacting functional systems coordinate in producing a body that works. This understanding is complicated by the fact that organisms need to work well in multiple environments, with both predictable and unpredictable environmental perturbations. Furthermore, organismal design reflects a history of past environments and not a plan for future environments. How complex, interacting functional systems evolve, then, is a truly grand challenge. In accepting the challenge, an integrative model of evolutionary covariance is developed. The model combines quantitative genetics, functional morphology/physiology, and functional ecology. The model is used to convene scientists ranging from geneticists, to physiologists, to ecologists, to engineers to facilitate the emergence of body shape in fishes as a model system for understanding how complex, interacting functional systems develop and evolve. Body shape of fish is a complex morphology that (1) results from many developmental paths and (2) functions in many different behaviors. Understanding the coordination and evolution of the many paths from genes to body shape, body shape to function, and function to a working fish body in a dynamic environment is now possible given new technologies from genetics to engineering and new theoretical models that integrate the different levels of biological organization (from genes to ecology).
Instruction in Renal Physiology on a Minicomputer-Based Educational System.
ERIC Educational Resources Information Center
Wells, C. H.; And Others
A prototypical minicomputer-based educational system was designed at the University of Texas Medical Branch to determine if it is possible to evolve complex educational programs which are effective and also flexible and of low cost. Freshman medical students using the minicomputer program substantially improved their problem-solving abilities in…
Complex Education Systems: From Steering Change to Governance
ERIC Educational Resources Information Center
Michel, Alain
2016-01-01
The theories and approaches of steering/monitoring a process of change within education systems have evolved over the last 20 years or so as a result of many factors such as globalisation and decentralisation, a faster pace of change, increasing expectations and demands from various stakeholders (parents, employers, teacher unions, etc.) and the…
Evolution and the complexity of bacteriophages.
Serwer, Philip
2007-03-13
The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Complex systems: physics beyond physics
NASA Astrophysics Data System (ADS)
Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan
2017-03-01
Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.
Uncertainties in building a strategic defense.
Zraket, C A
1987-03-27
Building a strategic defense against nuclear ballistic missiles involves complex and uncertain functional, spatial, and temporal relations. Such a defensive system would evolve and grow over decades. It is too complex, dynamic, and interactive to be fully understood initially by design, analysis, and experiments. Uncertainties exist in the formulation of requirements and in the research and design of a defense architecture that can be implemented incrementally and be fully tested to operate reliably. The analysis and measurement of system survivability, performance, and cost-effectiveness are critical to this process. Similar complexities exist for an adversary's system that would suppress or use countermeasures against a missile defense. Problems and opportunities posed by these relations are described, with emphasis on the unique characteristics and vulnerabilities of space-based systems.
Complex adaptive systems and their relevance for nursing: An evolutionary concept analysis.
Notarnicola, Ippolito; Petrucci, Cristina; De Jesus Barbosa, Maria Rosimar; Giorgi, Fabio; Stievano, Alessandro; Rocco, Gennaro; Lancia, Loreto
2017-06-01
This study aimed to analyse the concept of "complex adaptive systems." The construct is still nebulous in the literature, and a further explanation of the idea is needed to have a shared knowledge of it. A concept analysis was conducted utilizing Rodgers evolutionary method. The inclusive years of bibliographic search started from 2005 to 2015. The search was conducted at PubMed©, CINAHL© (EBSCO host©), Scopus©, Web of Science©, and Academic Search Premier©. Retrieved papers were critically analysed to explore the attributes, antecedents, and consequences of the concept. Moreover, surrogates, related terms, and a pattern recognition scheme were identified. The concept analysis showed that complex systems are adaptive and have the ability to process information. They can adapt to the environment and consequently evolve. Nursing is a complex adaptive system, and the nursing profession in practice exhibits complex adaptive system characteristics. Complexity science through complex adaptive systems provides new ways of seeing and understanding the mechanisms that underpin the nursing profession. © 2017 John Wiley & Sons Australia, Ltd.
Dungan, M.A.; Wulff, A.; Thompson, R.
2001-01-01
The Quaternary Tatara-San Pedro volcanic complex (36°S, Chilean Andes) comprises eight or more unconformity-bound volcanic sequences, representing variably preserved erosional remnants of volcanic centers generated during 930 ky of activity. The internal eruptive histories of several dominantly mafic to intermediate sequences have been reconstructed, on the basis of correlations of whole-rock major and trace element chemistry of flows between multiple sampled sections, but with critical contributions from photogrammetric, geochronologic, and paleomagnetic data. Many groups of flows representing discrete eruptive events define internal variation trends that reflect extrusion of heterogeneous or rapidly evolving magna batches from conduit-reservoir systems in which open-system processes typically played a large role. Long-term progressive evolution trends are extremely rare and the magma compositions of successive eruptive events rarely lie on precisely the same differentiation trend, even where they have evolved from similar parent magmas by similar processes. These observations are not consistent with magma differentiation in large long-lived reservoirs, but they may be accommodated by diverse interactions between newly arrived magma inputs and multiple resident pockets of evolved magma and / or crystal mush residing in conduit-dominated subvolcanic reservoirs. Without constraints provided by the reconstructed stratigraphic relations, the framework for petrologic modeling would be far different. A well-established eruptive stratigraphy may provide independent constraints on the petrologic processes involved in magma evolution-simply on the basis of the specific order in which diverse, broadly cogenetic magmas have been erupted. The Tatara-San Pedro complex includes lavas ranging from primitive basalt to high-SiO2 rhyolite, and although the dominant erupted magma type was basaltic andesite ( 52-55 wt % SiO2) each sequence is characterized by unique proportions of mafic, intermediate, and silicic eruptive products. Intermediate lava compositions also record different evolution paths, both within and between sequences. No systematic long-term pattern is evident from comparisons at the level of sequences. The considerable diversity of mafic and evolved magmas of the Tatara-San Pedro complex bears on interpretations of regional geochemical trends. The variable role of open-system processes in shaping the compositions of evolved Tatara-San Pedro complex magmas, and even some basaltic magmas, leads to the conclusion that addressing problems such as are magma genesis and elemental fluxes through subduction zones on the basis of averaged or regressed reconnaissance geochemical datasets is a tenuous exercise. Such compositional indices are highly instructive for identifying broad regional trends and first-order problems, but they should be used with extreme caution in attempts to quantify processes and magma sources, including crustal components, implicated in these trends.
Zedler, Linda; Guthmuller, Julien; Rabelo de Moraes, Inês; Kupfer, Stephan; Krieck, Sven; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin
2014-05-25
The sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(ii) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Evolution of Functional Diversification within Quasispecies
Colizzi, Enrico Sandro; Hogeweg, Paulien
2014-01-01
According to quasispecies theory, high mutation rates limit the amount of information genomes can store (Eigen’s Paradox), whereas genomes with higher degrees of neutrality may be selected even at the expenses of higher replication rates (the “survival of the flattest” effect). Introducing a complex genotype to phenotype map, such as RNA folding, epitomizes such effect because of the existence of neutral networks and their exploitation by evolution, affecting both population structure and genome composition. We reexamine these classical results in the light of an RNA-based system that can evolve its own ecology. Contrary to expectations, we find that quasispecies evolving at high mutation rates are steep and characterized by one master sequence. Importantly, the analysis of the system and the characterization of the evolved quasispecies reveal the emergence of functionalities as phenotypes of nonreplicating genotypes, whose presence is crucial for the overall viability and stability of the system. In other words, the master sequence codes for the information of the entire ecosystem, whereas the decoding happens, stochastically, through mutations. We show that this solution quickly outcompetes strategies based on genomes with a high degree of neutrality. In conclusion, individually coded but ecosystem-based diversity evolves and persists indefinitely close to the Information Threshold. PMID:25056399
Flash crashes, bursts, and black swans: parallels between financial markets and healthcare systems.
West, Bruce J; Clancy, Thomas R
2010-11-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 16th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, Dr Clancy, the editor of this column, and co-author, Dr West, discuss how the collapse of global financial markets in 2008 may provide valuable insight into mechanisms of complex system behavior in healthcare. Dr West, a physicist and expert in the field of complex systems and network science, is author of a chapter in the book, On the Edge: Nursing in the Age of Complexity (Lindberg C, Nash S, Linberg C. Bordertown, NJ: Plexus Press; 2008) and his most recent book, Disrupted Networks: From Physics to Climate Change (West BJ, Scafetta N. Singapore: Disrupted Networks, World Scientific Publishing; 2010).
Merging Developmental and Feminist Evaluation to Monitor and Evaluate Transformative Social Change
ERIC Educational Resources Information Center
Haylock, Laura; Miller, Carol
2016-01-01
Programs seeking to challenge and change gender and power relationships require a nimble, evolving monitoring, evaluation, and learning (MEL) system that helps make sense of how nonlinear complex social change happens. This article describes efforts by Oxfam Canada to develop such a system for a women's rights and gender equality program. The…
ERIC Educational Resources Information Center
Bobbera, Robert L.
2013-01-01
The school principal's role is demanding. Responsible for complex systems impacting student learning, the principal must possess knowledge in varied areas of the educational system. Rising from the roots of the teaching principal, the leadership paradigm of modern school principals has evolved over time. With the integration of digital…
Understanding global health governance as a complex adaptive system.
Hill, Peter S
2011-01-01
The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.
Socioscape: Real-Time Analysis of Dynamic Heterogeneous Networks In Complex Socio-Cultural Systems
2015-10-22
Cluster Mixed-Membership Blockmodel for Time-Evolving Networks, Proceedings of the 14th International Conference on Artifical Intelligence and...Learning With Simultaneous Orthogonal Matching Pursuit, Proceedings of the 13th International Conference on Artifical Intelligence and Statistics
A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms
Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles
2013-01-01
Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113
Case for real-time systems development - Quo vadis?
NASA Technical Reports Server (NTRS)
Erb, Dona M.
1991-01-01
The paper focuses on the distinctive issues of computer-aided software engineering (CASE) products for the development of real-time systems. CASE technologies and associated standardization efforts are evolving from sets of conflicting interests. The majority of case products are intended for use in the development of management information systems. CASE products to support the development of large, complex real-time systems must provide additional capabilities. Generic concerns include the quality of the implementation of the required method for the phase of the system's development and whether the vendor is stable and committed to evolving the products in parallel with nonproprietary standards. The CASE market is undergoing considerable consolidation. The paper describes the major forces, cooperating entities, and remaining uncertainties that need to be weighed in near-term CASE procurements to limit risk of loss of investment in project time, trianing, and money.
Orme-Zavaleta, Jennifer; Munns, Wayne R
2008-01-01
Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization and centralization of commerce, evolving patterns of land use (e.g., urbanization, deforestation), and technological advances in such areas as manufacturing and development of genetically modified foods have created new and complex classes of stressors and risks (e.g., climate change, emergent and opportunist disease, sprawl, genomic change). In recognition of these changes, environmental risk assessment and its use are changing from stressor-endpoint specific assessments used in command and control types of decisions to an integrated approach for application in community-based decisions. As a result, the process of risk assessment and supporting risk analyses are evolving to characterize the human-environment relationship. Integrating risk paradigms combine the process of risk estimation for humans, biota, and natural resources into one assessment to improve the information used in environmental decisions (Suter et al. 2003b). A benefit to this approach includes a broader, system-wide evaluation that considers the interacting effects of stressors on humans and the environment, as well the interactions between these entities. To improve our understanding of the linkages within complex systems, risk assessors will need to rely on a suite of techniques for conducting rigorous analyses characterizing the exposure and effects relationships between stressors and biological receptors. Many of the analytical techniques routinely employed are narrowly focused and unable to address the complexities of an integrated assessment. In this paper, we describe an approach to integrated risk assessment, and discuss qualitative community modeling and Probabilistic Relational Modeling techniques that address these limitations and evaluate their potential for use in an integrated risk assessment of cyanobacteria.
Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.
Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller
2018-02-01
The drinking environment is a complex system consisting of a number of heterogeneous, evolving and interacting components, which exhibit circular causality and emergent properties. These characteristics reduce the efficacy of commonly used research approaches, which typically do not account for the underlying dynamic complexity of alcohol consumption and the interdependent nature of diverse factors influencing misuse over time. We use alcohol misuse among college students in the United States as an example for framing our argument for a complex systems paradigm. A complex systems paradigm, grounded in socio-ecological and complex systems theories and computational modeling and simulation, is introduced. Theoretical, conceptual, methodological and analytical underpinnings of this paradigm are described in the context of college drinking prevention research. The proposed complex systems paradigm can transcend limitations of traditional approaches, thereby fostering new directions in alcohol prevention research. By conceptualizing student alcohol misuse as a complex adaptive system, computational modeling and simulation methodologies and analytical techniques can be used. Moreover, use of participatory model-building approaches to generate simulation models can further increase stakeholder buy-in, understanding and policymaking. A complex systems paradigm for research into alcohol misuse can provide a holistic understanding of the underlying drinking environment and its long-term trajectory, which can elucidate high-leverage preventive interventions. © 2017 Society for the Study of Addiction.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Cross-terminology mapping challenges: a demonstration using medication terminological systems.
Saitwal, Himali; Qing, David; Jones, Stephen; Bernstam, Elmer V; Chute, Christopher G; Johnson, Todd R
2012-08-01
Standardized terminological systems for biomedical information have provided considerable benefits to biomedical applications and research. However, practical use of this information often requires mapping across terminological systems-a complex and time-consuming process. This paper demonstrates the complexity and challenges of mapping across terminological systems in the context of medication information. It provides a review of medication terminological systems and their linkages, then describes a case study in which we mapped proprietary medication codes from an electronic health record to SNOMED CT and the UMLS Metathesaurus. The goal was to create a polyhierarchical classification system for querying an i2b2 clinical data warehouse. We found that three methods were required to accurately map the majority of actively prescribed medications. Only 62.5% of source medication codes could be mapped automatically. The remaining codes were mapped using a combination of semi-automated string comparison with expert selection, and a completely manual approach. Compound drugs were especially difficult to map: only 7.5% could be mapped using the automatic method. General challenges to mapping across terminological systems include (1) the availability of up-to-date information to assess the suitability of a given terminological system for a particular use case, and to assess the quality and completeness of cross-terminology links; (2) the difficulty of correctly using complex, rapidly evolving, modern terminologies; (3) the time and effort required to complete and evaluate the mapping; (4) the need to address differences in granularity between the source and target terminologies; and (5) the need to continuously update the mapping as terminological systems evolve. Copyright © 2012 Elsevier Inc. All rights reserved.
Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
Systems engineering for very large systems
NASA Technical Reports Server (NTRS)
Lewkowicz, Paul E.
1993-01-01
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
Systems engineering for very large systems
NASA Astrophysics Data System (ADS)
Lewkowicz, Paul E.
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
Health Information Exchange as a Complex and Adaptive Construct: Scoping Review.
Akhlaq, Ather; Sheikh, Aziz; Pagliari, Claudia
2017-01-25
To understand how the concept of Health Information Exchange (HIE) has evolved over time. Supplementary analysis of data from a systematic scoping review of definitions of HIE from 1900 to 2014, involving temporal analysis of underpinning themes. The search identified 268 unique definitions of HIE dating from 1957 onwards; 103 in scientific databases and 165 in Google. These contained consistent themes, representing the core concept of exchanging health information electronically, as well as fluid themes, reflecting the evolving policy, business, organisational and technological context of HIE (including the emergence of HIE as an organisational 'entity'). These are summarised graphically to show how the concept has evolved around the world with the passage of time. The term HIE emerged in 1957 with the establishment of Occupational HIE, evolving through the 1990s with concepts such as electronic data interchange and mobile computing technology; then from 2006-10 largely aligning with the US Government's health information technology strategy and the creation of HIEs as organisational entities, alongside the broader interoperability imperative, and continuing to evolve today as part of a broader international agenda for sustainable, information-driven health systems. The concept of HIE is an evolving and adaptive one, reflecting the ongoing quest for integrated and interoperable information to improve the efficiency and effectiveness of health systems, in a changing technological and policy environment.
Cross-terminology mapping challenges: A demonstration using medication terminological systems
Saitwal, Himali; Qing, David; Jones, Stephen; Bernstam, Elmer; Chute, Christopher G.; Johnson, Todd R.
2015-01-01
Standardized terminological systems for biomedical information have provided considerable benefits to biomedical applications and research. However, practical use of this information often requires mapping across terminological systems—a complex and time-consuming process. This paper demonstrates the complexity and challenges of mapping across terminological systems in the context of medication information. It provides a review of medication terminological systems and their linkages, then describes a case study in which we mapped proprietary medication codes from an electronic health record to SNOMED-CT and the UMLS Metathesaurus. The goal was to create a polyhierarchical classification system for querying an i2b2 clinical data warehouse. We found that three methods were required to accurately map the majority of actively prescribed medications. Only 62.5% of source medication codes could be mapped automatically. The remaining codes were mapped using a combination of semi-automated string comparison with expert selection, and a completely manual approach. Compound drugs were especially difficult to map: only 7.5% could be mapped using the automatic method. General challenges to mapping across terminological systems include (1) the availability of up-to-date information to assess the suitability of a given terminological system for a particular use case, and to assess the quality and completeness of cross-terminology links; (2) the difficulty of correctly using complex, rapidly evolving, modern terminologies; (3) the time and effort required to complete and evaluate the mapping; (4) the need to address differences in granularity between the source and target terminologies; and (5) the need to continuously update the mapping as terminological systems evolve. PMID:22750536
Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...
2014-12-04
Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.
Space Weather Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
The Security of Machine Learning
2008-04-24
Machine learning has become a fundamental tool for computer security, since it can rapidly evolve to changing and complex situations. That...adaptability is also a vulnerability: attackers can exploit machine learning systems. We present a taxonomy identifying and analyzing attacks against machine ...We use our framework to survey and analyze the literature of attacks against machine learning systems. We also illustrate our taxonomy by showing
Communication and complexity in a GRN-based multicellular system for graph colouring.
Buck, Moritz; Nehaniv, Chrystopher L
2008-01-01
Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.
Reflecting on complexity of biological systems: Kant and beyond?
Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy
2003-01-01
Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.
Dentistry and dental education in the context of the evolving health care system.
Anderson, Maxwell H
2007-08-01
This article is intended to stimulate dialogue within the intertwined dental practice and dental education communities about our evolving health care system and dentistry's role within this system as it reconfigures in response to a complex interplay of influences. The changing dental disease burden in the United States is analyzed with consideration of how evolution in disease prevalence influences societal need for dental services and the resulting potential impact on the types of services provided and the education of future dental practitioners. The article concludes with discussion of a potential future scenario for practice and education in which one or both of the two health abnormalities (dental caries and periodontal diseases) most closely associated with dentistry as an area of medical specialization go away as a consequence of transformational technologies.
Real-World Evolution of Robot Morphologies: A Proof of Concept.
Jelisavcic, Milan; de Carlo, Matteo; Hupkes, Elte; Eustratiadis, Panagiotis; Orlowski, Jakub; Haasdijk, Evert; Auerbach, Joshua E; Eiben, A E
2017-01-01
Evolutionary robotics using real hardware has been almost exclusively restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. We discuss a proof-of-concept study to demonstrate real robots that can reproduce. Following a general system plan, we implement a robotic habitat that contains all system components in the simplest possible form. We create an initial population of two robots and run a complete life cycle, resulting in a new robot, parented by the first two. Even though the individual steps are simplified to the maximum, the whole system validates the underlying concepts and provides a generic workflow for the creation of more complex incarnations. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development.
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Papo, David
2018-03-01
Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].
Glatzel, Pieter; Schroeder, Henning; Pushkar, Yulia; Boron, Thaddeus; Mukherjee, Shreya; Christou, George; Pecoraro, Vincent L; Messinger, Johannes; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-05-20
The oxygen-evolving complex (OEC) in photosystem II (PS II) was studied in the S0 through S3 states using 1s2p resonant inelastic X-ray scattering spectroscopy. The spectral changes of the OEC during the S-state transitions are subtle, indicating that the electrons are strongly delocalized throughout the cluster. The result suggests that, in addition to the Mn ions, ligands are also playing an important role in the redox reactions. A series of Mn(IV) coordination complexes were compared, particularly with the PS II S3 state spectrum to understand its oxidation state. We find strong variations of the electronic structure within the series of Mn(IV) model systems. The spectrum of the S3 state best resembles those of the Mn(IV) complexes Mn3(IV)Ca2 and saplnMn2(IV)(OH)2. The current result emphasizes that the assignment of formal oxidation states alone is not sufficient for understanding the detailed electronic structural changes that govern the catalytic reaction in the OEC.
Early evolution of efficient enzymes and genome organization
2012-01-01
Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight. PMID:23114029
Invite Everyone in the Conversation about Our Common Future
NASA Astrophysics Data System (ADS)
Taddei, Francois
Major evolutionary transitions have been described by J. Maynard Smith and E. Szathmary. In this nice synthesis of the history of life, the story ends with the invention of human language. In his book Sapiens, Yuval Harari starts exactly there and summarizes the historical transitions from that point on. If one looks at the complex transitions described by evolutionary biologists and historians one can see that some of those that had the most impact were transitions where the acquisition, analysis, evolution, replication, storage, transfer, and integration of information evolved together with new ways for these information to lead to evolving actions. When we see the technological developments of today that impact simultaneously all these dimensions of information, one is tempted to ask if we are not undergoing a historical and even evolutionary transition. Interestingly, we have the ability to become aware of this very transition, a situation that was not present when the first cells evolved for instance. This awareness may be combined with our understanding of complex systems and the previous transitions to help us make individual and collective choices that may impact our common future...
Building genomic resources for Theobroma cacao
USDA-ARS?s Scientific Manuscript database
Theobroma cacao L (cacao: Malvaceae) is a small tree endemic to the Amazonian rain forest, where it most likely evolved. Cacao persists in populations of naturally outcrossing and inbreeding plants, as it is a species with a complex system of self-incompatibility, where only a fraction of the popul...
The draft genome of a termite illuminates alternative social organization
USDA-ARS?s Scientific Manuscript database
Termites have substantial economic and ecological impact worldwide. They are also the oldest organisms living in complex societies, having evolved a caste system independent of that of eusocial Hymenoptera (ants, bees and wasps). Here we provide the first genome sequence for a termite, Zootermopsis ...
Characterizing the evolution of climate networks
NASA Astrophysics Data System (ADS)
Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J.
2014-06-01
Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, Erdős-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.
Gaiti, Federico; Jindrich, Katia; Fernandez-Valverde, Selene L; Roper, Kathrein E; Degnan, Bernard M; Tanurdžić, Miloš
2017-01-01
Combinatorial patterns of histone modifications regulate developmental and cell type-specific gene expression and underpin animal complexity, but it is unclear when this regulatory system evolved. By analysing histone modifications in a morphologically-simple, early branching animal, the sponge Amphimedonqueenslandica, we show that the regulatory landscape used by complex bilaterians was already in place at the dawn of animal multicellularity. This includes distal enhancers, repressive chromatin and transcriptional units marked by H3K4me3 that vary with levels of developmental regulation. Strikingly, Amphimedon enhancers are enriched in metazoan-specific microsyntenic units, suggesting that their genomic location is extremely ancient and likely to place constraints on the evolution of surrounding genes. These results suggest that the regulatory foundation for spatiotemporal gene expression evolved prior to the divergence of sponges and eumetazoans, and was necessary for the evolution of animal multicellularity. DOI: http://dx.doi.org/10.7554/eLife.22194.001 PMID:28395144
Detection of timescales in evolving complex systems
Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo
2016-01-01
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820
Hybrid estimation of complex systems.
Hofbaur, Michael W; Williams, Brian C
2004-10-01
Modern automated systems evolve both continuously and discretely, and hence require estimation techniques that go well beyond the capability of a typical Kalman Filter. Multiple model (MM) estimation schemes track these system evolutions by applying a bank of filters, one for each discrete system mode. Modern systems, however, are often composed of many interconnected components that exhibit rich behaviors, due to complex, system-wide interactions. Modeling these systems leads to complex stochastic hybrid models that capture the large number of operational and failure modes. This large number of modes makes a typical MM estimation approach infeasible for online estimation. This paper analyzes the shortcomings of MM estimation, and then introduces an alternative hybrid estimation scheme that can efficiently estimate complex systems with large number of modes. It utilizes search techniques from the toolkit of model-based reasoning in order to focus the estimation on the set of most likely modes, without missing symptoms that might be hidden amongst the system noise. In addition, we present a novel approach to hybrid estimation in the presence of unknown behavioral modes. This leads to an overall hybrid estimation scheme for complex systems that robustly copes with unforeseen situations in a degraded, but fail-safe manner.
Fernandez-Leon, Jose A; Acosta, Gerardo G; Rozenfeld, Alejandro
2014-10-01
Researchers in diverse fields, such as in neuroscience, systems biology and autonomous robotics, have been intrigued by the origin and mechanisms for biological robustness. Darwinian evolution, in general, has suggested that adaptive mechanisms as a way of reaching robustness, could evolve by natural selection acting successively on numerous heritable variations. However, is this understanding enough for realizing how biological systems remain robust during their interactions with the surroundings? Here, we describe selected studies of bio-inspired systems that show behavioral robustness. From neurorobotics, cognitive, self-organizing and artificial immune system perspectives, our discussions focus mainly on how robust behaviors evolve or emerge in these systems, having the capacity of interacting with their surroundings. These descriptions are twofold. Initially, we introduce examples from autonomous robotics to illustrate how the process of designing robust control can be idealized in complex environments for autonomous navigation in terrain and underwater vehicles. We also include descriptions of bio-inspired self-organizing systems. Then, we introduce other studies that contextualize experimental evolution with simulated organisms and physical robots to exemplify how the process of natural selection can lead to the evolution of robustness by means of adaptive behaviors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Complexity and Health Coaching: Synergies in Nursing
Mitchell, Gail J.; Wong, Winnie; Rush, Danica
2013-01-01
Health care professionals are increasingly aware that persons are complex and live in relation with other complex human communities and broader systems. Complex beings and systems are living and evolving in nonlinear ways through a process of mutual influence. Traditional standardized approaches in chronic disease management do not address these non-linear linkages and the meaning and changes that impact day-to-day life and caring for self and family. The RN health coach role described in this paper addresses the complexities and ambiguities for persons living with chronic illness in order to provide person-centered care and support that are unique and responsive to the context of persons' lives. Informed by complexity thinking and relational inquiry, the RN health coach is an emergent innovation of creative action with community and groups that support persons as they shape their health and patterns of living. PMID:24102025
Globalization in the Face of Standardization: Implications for Teacher Education
ERIC Educational Resources Information Center
Delgado, Rocio; Norman, Patricia
2008-01-01
As globalization affects political and economic systems, cultures, and the environment, it affects the educational needs of a globalized workforce. In this complex, fast-evolving knowledge economy, workers must possess analytic skills, creativity, flexibility, and innovation. They need oral and written communication skills and the disposition to…
Query-Time Optimization Techniques for Structured Queries in Information Retrieval
ERIC Educational Resources Information Center
Cartright, Marc-Allen
2013-01-01
The use of information retrieval (IR) systems is evolving towards larger, more complicated queries. Both the IR industrial and research communities have generated significant evidence indicating that in order to continue improving retrieval effectiveness, increases in retrieval model complexity may be unavoidable. From an operational perspective,…
Reengineering the JPL Spacecraft Design Process
NASA Technical Reports Server (NTRS)
Briggs, C.
1995-01-01
This presentation describes the factors that have emerged in the evolved process of reengineering the unmanned spacecraft design process at the Jet Propulsion Laboratory in Pasadena, California. Topics discussed include: New facilities, new design factors, new system-level tools, complex performance objectives, changing behaviors, design integration, leadership styles, and optimization.
ERIC Educational Resources Information Center
Hotrum, Michael
2005-01-01
The traditional packaging of electronic learning--the learning management system (LMS)--is progressively being regarded as a hindrance to effective online learning. Its design, functionality, complexity, price, and value are being questioned. A new generation of Web-based tools and approaches is evolving that are better suited to meet the need for…
ERIC Educational Resources Information Center
Rahal, Michelle Layer
2010-01-01
Homework has been an integral part of the educational system for over 100 years. What likely began as simple memorization tasks has evolved into complex projects and sparked an increasingly heated debate over the purpose and value of homework assignments. This "Focus On" examines the purpose of homework, how to create homework that has value,…
Resilient organizations: matrix model and service line management.
Westphal, Judith A
2005-09-01
Resilient organizations modify structures to meet the demands of the marketplace. The author describes a structure that enables multihospital organizations to innovate and rapidly adapt to changes. Service line management within a matrix model is an evolving organizational structure for complex systems in which nurses are pivotal members.
A New Funding Model for Extension
ERIC Educational Resources Information Center
Brown, Paul W.; Otto, Daniel M.; Ouart, Michael D.
2006-01-01
The traditional funding model of the Cooperative Extension System has been stretched to its limits by increasing demand for information and programs without concurrent increases in funding by the public sector. As the social, economic, and political environments have evolved and become more complex, extension is often asked to apply the expertise…
Robotics for Computer Scientists: What's the Big Idea?
ERIC Educational Resources Information Center
Touretzky, David S.
2013-01-01
Modern robots, like today's smartphones, are complex devices with intricate software systems. Introductory robot programming courses must evolve to reflect this reality, by teaching students to make use of the sophisticated tools their robots provide rather than reimplementing basic algorithms. This paper focuses on teaching with Tekkotsu, an open…
Data management in the mission data system
NASA Technical Reports Server (NTRS)
Wagner, David A.
2005-01-01
As spacecraft evolve from simple embedded devices to become more sophisticated computing platforms with complex behaviors it is increasingly necessary to model and manage the flow of data, and to provide uniform models for managing data that promote adaptability, yet pay heed to the physical limitations of the embedded and space environments.
Research Notes - An Introduction to Openness and Evolvability Assessment
2016-08-01
importance of different business and technical characteristics that combine to achieve an open solution. The complexity of most large-scale systems of...process characteristic) Granularity of the architecture (size of functional blocks) Modularity (cohesion and coupling) Support for multiple...Description) OV-3 (Operational Information Exchange Matrix) SV-1 (Systems Interface Description) TV-1 ( Technical Standards Profile). Note that there
Klein, Stanley B; Markowitsch, Hans J
2015-01-01
The relations between the semantic and episodic-autobiographical memory systems are more complex than described in the target article. We argue that understanding the noetic/autonoetic distinction provides critical insights into the foundation of the delineation between the two memory systems. Clarity with respect to the criteria for classification of these two systems, and the evolving conceptualization of episodic memory, can further neuroscientifically informed therapeutic approaches.
Key cognitive preconditions for the evolution of language.
Donald, Merlin
2017-02-01
Languages are socially constructed systems of expression, generated interactively in social networks, which can be assimilated by the individual brain as it develops. Languages co-evolved with culture, reflecting the changing complexity of human culture as it acquired the properties of a distributed cognitive system. Two key preconditions set the stage for the evolution of such cultures: a very general ability to rehearse and refine skills (evident early in hominin evolution in toolmaking), and the emergence of material culture as an external (to the brain) memory record that could retain and accumulate knowledge across generations. The ability to practice and rehearse skill provided immediate survival-related benefits in that it expanded the physical powers of early hominins, but the same adaptation also provided the imaginative substrate for a system of "mimetic" expression, such as found in ritual and pantomime, and in proto-words, which performed an expressive function somewhat like the home signs of deaf non-signers. The hominid brain continued to adapt to the increasing importance and complexity of culture as human interactions with material culture became more complex; above all, this entailed a gradual expansion in the integrative systems of the brain, especially those involved in the metacognitive supervision of self-performances. This supported a style of embodied mimetic imagination that improved the coordination of shared activities such as fire tending, but also in rituals and reciprocal mimetic games. The time-depth of this mimetic adaptation, and its role in both the construction and acquisition of languages, explains the importance of mimetic expression in the media, religion, and politics. Spoken language evolved out of voco-mimesis, and emerged long after the more basic abilities needed to refine skill and share intentions, probably coinciding with the common ancestor of sapient humans. Self-monitoring and self-supervised practice were necessary preconditions for lexical invention, and as these abilities evolved further, communicative skills extended to more abstract and complex aspects of the communication environments-that is, the "cognitive ecologies"-being generated by human groups. The hominin brain adapted continuously to the need to assimilate language and its many cognitive byproducts by expanding many of its higher integrative systems, a process that seems to have accelerated and peaked in the past half million years.
Fry, Bryan G; Scheib, Holger; van der Weerd, Louise; Young, Bruce; McNaughtan, Judith; Ramjan, S F Ryan; Vidal, Nicolas; Poelmann, Robert E; Norman, Janette A
2008-02-01
Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.
Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time.
Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G
2014-01-20
Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of "biologically basic to socially specific" information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stoichiometry for binding and transport by the twin arginine translocation system.
Celedon, Jose M; Cline, Kenneth
2012-05-14
Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.
Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense
Price, Aryn A.; Grakoui, Arash; Weiss, David S.
2016-01-01
Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268
Emergence of a Communication System: International Sign
NASA Astrophysics Data System (ADS)
Rosenstock, Rachel
International Sign (henceforth IS) is a communication system that is used widely in the international Deaf Community. The present study is one of the first to research extensively the origin of both the IS lexicon and grammatical structures. Findings demonstrate that IS is both influenced by naturally evolved sign languages used in grown deaf communities (henceforth SLs) and relies heavily on iconic, universal structures. This paper shows that IS continues to develop from a simplistic iconic system into a conventionalized system with increasingly complex rules.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
A Principled Approach to the Specification of System Architectures for Space Missions
NASA Technical Reports Server (NTRS)
McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad
2015-01-01
Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.
Implications of Biospheric Energization
NASA Astrophysics Data System (ADS)
Budding, Edd; Demircan, Osman; Gündüz, Güngör; Emin Özel, Mehmet
2016-07-01
Our physical model relating to the origin and development of lifelike processes from very simple beginnings is reviewed. This molecular ('ABC') process is compared with the chemoton model, noting the role of the autocatalytic tuning to the time-dependent source of energy. This substantiates a Darwinian character to evolution. The system evolves from very simple beginnings to a progressively more highly tuned, energized and complex responding biosphere, that grows exponentially; albeit with a very low net growth factor. Rates of growth and complexity in the evolution raise disturbing issues of inherent stability. Autocatalytic processes can include a fractal character to their development allowing recapitulative effects to be observed. This property, in allowing similarities of pattern to be recognized, can be useful in interpreting complex (lifelike) systems.
Das baden-württembergische Innovationssystem im Wandel:. Akteure vor neuen Herausforderungen
NASA Astrophysics Data System (ADS)
Stahlecker, Thomas; Zenker, Andrea
2017-09-01
Recently, new forms of innovation, new actors and actor constellations can be observed, especially in "mature" innovation systems like Baden-Wuerttemberg, that are flanked by new instruments of innovation support. Against the backdrop of an evolved innovation system heuristics, this paper outlines these new developments in Baden-Wuerttemberg. It uses examples to describe characteristic innovation actors, actors from the research landscape, education and the intermediary function of mediators, social actors as well as the aspect of innovation financing and to reveal current tendencies and trends. It becomes clear that the innovation system in Baden-Wuerttemberg has continuously evolved and become more differentiated. Its industries' research efforts and modernization activities as well as innovation-friendly policies contribute to the adaptability of the system and are major influencing factors for the ongoing success of the innovation system. This is supplemented by diverse innovations at the level of actors, institutions and measures. The question concerns the governance and capacity of this complex system given dynamic changing global circumstances.
Tsianos, George A; Loeb, Gerald E
2017-03-16
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Koorehdavoudi, Hana; Bogdan, Paul
2016-01-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496
NASA Astrophysics Data System (ADS)
Koorehdavoudi, Hana; Bogdan, Paul
2016-06-01
Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.
Historically the natural sciences have played a major role in informing environmental management decisions. However, review of landmark cases like Love Canal, NY and Times Beach, MO have shown that the value of natural science information in decision making can be overwhelmed by ...
LCMS landscape change monitoring system—results from an information needs assessment
Kevin Megown; Brian Schwind; Don Evans; Mark Finco
2015-01-01
Understanding changes in land use and land cover over space and time provides an important means to evaluate complex interactions between human and biophysical systems, to project future conditions, and to design mitigation and adaptive management strategies. Assessing and monitoring landscape change is evolving into a foundational element of climate change adaptation...
Evolving Approaches and Technologies to Enhance the Role of Ecological Modeling in Decision Making
Eric Gustafson; John Nestler; Louis Gross; Keith M. Reynolds; Daniel Yaussy; Thomas P. Maxwell; Virginia H. Dale
2002-01-01
Understanding the effects of management activities is difficult for natural resource managers and decision makers because ecological systems are highly complex and their behavior is difficult to predict. Furthermore, the empirical studies necessary to illuminate all management questions quickly become logistically complicated and cost prohibitive. Ecological models...
Using the Five Faces of Oppression to Teach about Interlocking Systems of Oppression
ERIC Educational Resources Information Center
Shlasko, Davey
2015-01-01
In social justice education a tension sometimes emerges between the complex ideas we want participants to grapple with and the relatively straightforward activities we use to communicate those ideas. We adapt learning activities to meet participants' evolving needs and to communicate emerging theories and analyses, but sometimes adjusting an…
Hospital charitable lotteries: taking a gamble on systems thinking.
Reynolds, Jennifer
2013-12-01
The presence of lotteries can be witnessed worldwide. Charitable lotteries are often portrayed as 'good works', and recently, hospitals have utilized them as a popular fundraising vehicle to raise necessary funds to help achieve organizational goals and objectives. Research indicates that lotteries contribute to gambling-related harms; however, research into charitable lotteries has been underdeveloped. Both the gambling and the health care industries are complex and evolving, consisting of many interacting stakeholders with often different and competing interests. This article seeks to present systems thinking as a conceptual framework to help fill the gap in understanding the use of gambling within hospitals and its possible benefits and unforeseen negative consequences. Addressing the gap in knowledge is important to help inform decision making aimed at reducing gambling-related harms. This article proposes how the school of systems thinking, specifically framing hospitals as complex adaptive systems and system dynamics modelling, can be utilized to understand the policy implications of the adoption of lotteries as a revenue source for hospitals. Hospitals have a duty to care, inform and protect. Hospital charitable lotteries have become big business; however, its incorporation into critical funding strategies needs to be carefully understood. Systems thinking theory and methodologies provide an integrated approach to examine this dynamic and evolving fundraising initiative. Findings from this article can inform the development of action strategies, including policy development at multiple levels. © 2013 John Wiley & Sons Ltd.
Neilson, Matthew P; Mackenzie, John A; Webb, Steven D; Insall, Robert H
2010-11-01
In this paper we present a computational tool that enables the simulation of mathematical models of cell migration and chemotaxis on an evolving cell membrane. Recent models require the numerical solution of systems of reaction-diffusion equations on the evolving cell membrane and then the solution state is used to drive the evolution of the cell edge. Previous work involved moving the cell edge using a level set method (LSM). However, the LSM is computationally very expensive, which severely limits the practical usefulness of the algorithm. To address this issue, we have employed the parameterised finite element method (PFEM) as an alternative method for evolving a cell boundary. We show that the PFEM is far more efficient and robust than the LSM. We therefore suggest that the PFEM potentially has an essential role to play in computational modelling efforts towards the understanding of many of the complex issues related to chemotaxis.
Pattern dynamics of the reaction-diffusion immune system.
Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie
2018-01-01
In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.
Brief history of intermolecular and intersurface forces in complex fluid systems.
Israelachvili, Jacob; Ruths, Marina
2013-08-06
We review the developments of ideas, concepts, and theories of intermolecular and intersurface forces and how these were influenced (or ignored) by observations of nature and, later, systematic experimentation. The emphasis of this review is on the way things gradually changed: experimentation replaced rhetoric, measurement and quantification replaced hand waving, energy replaced force in calculations, discrete atoms replaced the (continuum) aether, thermodynamics replaced mechanistic models, randomness and probability replaced certainty, and delicate experiments on the subnanoscale revealed fascinating self-assembling structures and complex behavior of even the simplest systems. We conclude by discussing today's unresolved challenges: how complex "dynamic" multicomponent--especially living biological--systems that receive a continuous supply of energy can be far from equilibrium and not even in any steady state. Such systems, never static but evolving in both space and time, are still far from being understood both experimentally and theoretically.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Systemic Operational Design: Epistemological Bumpf or the Way Ahead for Operational Design?
2006-05-25
facilitating the design of such architectural frames (meta-concepts), they are doomed to be trapped in a simplistic structuralist approach.”1...systems theory and complexity theory . SOD emerged and evolved in response to inherent challenges in the contemporary Israeli security environment...discussed in subsequent chapters. Theory . Theory is critical to this examination of the CEOD approach and SOD because theory underpins and informs
The NASA Planetary Data System Roadmap Study for 2017 - 2026
NASA Astrophysics Data System (ADS)
McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.
2017-12-01
NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge in the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.
NASA Astrophysics Data System (ADS)
Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.
2017-12-01
The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.
The clinical educator and complexity: a review.
Schoo, Adrian; Kumar, Koshila
2018-02-08
Complexity science perspectives have helped in examining fundamental assumptions about learning and teaching in the health professions. The implications of complexity thinking for how we understand the role and development of the clinical educator is less well articulated. This review article outlines: the key principles of complexity science; a conceptual model that situates the clinical educator in a complex system; and the implications for the individual, organisation and the system. Our conceptual model situates the clinical educator at the centre of a complex and dynamic system spanning four domains and multiple levels. The four domains are: personal (encompassing personal/professional needs and expectations); health services (health agencies and their consumers); educational (educational institutions and their health students); and societal (local community/region and government). The system also comprises: micro or individual, meso or organisational, and macro or socio-political levels. Our model highlights that clinical educators are situated within a complex system comprising different agents and connections. It emphasises that individuals, teams and organisations need to recognise and be responsive to the unpredictability, interconnectedness and evolving nature of this system. Importantly, our article also calls for an epistemological shift from faculty development to capacity building in health professions education, aimed at developing individual, team, organisational and system capabilities to work with(in) complexity. Clinical educators are situated within a complex system comprising different agents and connections. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
From precision polymers to complex materials and systems
NASA Astrophysics Data System (ADS)
Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof
2016-05-01
Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.
NASA Astrophysics Data System (ADS)
Farmer, J. Doyne; Gallegati, M.; Hommes, C.; Kirman, A.; Ormerod, P.; Cincotti, S.; Sanchez, A.; Helbing, D.
2012-11-01
We outline a vision for an ambitious program to understand the economy and financial markets as a complex evolving system of coupled networks of interacting agents. This is a completely different vision from that currently used in most economic models. This view implies new challenges and opportunities for policy and managing economic crises. The dynamics of such models inherently involve sudden and sometimes dramatic changes of state. Further, the tools and approaches we use emphasize the analysis of crises rather than of calm periods. In this they respond directly to the calls of Governors Bernanke and Trichet for new approaches to macroeconomic modelling.
Grounding explanations in evolving, diagnostic situations
NASA Technical Reports Server (NTRS)
Johannesen, Leila J.; Cook, Richard I.; Woods, David D.
1994-01-01
Certain fields of practice involve the management and control of complex dynamic systems. These include flight deck operations in commercial aviation, control of space systems, anesthetic management during surgery or chemical or nuclear process control. Fault diagnosis of these dynamic systems generally must occur with the monitored process on-line and in conjunction with maintaining system integrity.This research seeks to understand in more detail what it means for an intelligent system to function cooperatively, or as a 'team player' in complex, dynamic environments. The approach taken was to study human practitioners engaged in the management of a complex, dynamic process: anesthesiologists during neurosurgical operations. The investigation focused on understanding how team members cooperate in management and fault diagnosis and comparing this interaction to the situation with an Artificial Intelligence(AI) system that provides diagnoses and explanations. Of particular concern was to study the ways in which practitioners support one another in keeping aware of relevant information concerning the state of the monitored process and of the problem solving process.
Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts
Chiang, Herbert; Pudlo, Nicholas A.; Wu, Meng; McNulty, Nathan P.; Abbott, D. Wade; Henrissat, Bernard; Gilbert, Harry J.; Bolam, David N.; Gordon, Jeffrey I.
2011-01-01
Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats. PMID:22205877
Keller, David; Chamberlain, Lisa J
2014-01-01
The Patient Protection and Affordable Care Act (ACA), passed in 2010, focused primarily on the problems of adults, but the changes in payment for and delivery of care it fosters will likely impact the health care of children. The evolving epidemiology of pediatric illness in the United States has resulted in a relatively small population of medically fragile children dispersed through the country and a large population of children with developmental and behavioral health issues who experience wide degrees of health disparities. Review of previous efforts to change the health care system reveals specific innovations in child health delivery that have been designed to address issues of child health. The ACA is complex and contains some language that improves access to care, quality of care, and the particular needs of the pediatric workforce. Most of the payment models and delivery systems proposed in the ACA, however, were not designed with the needs of children in mind and will need to be adapted to address their needs. To assure that the needs of children are met as systems evolve, child health professionals within and outside academe will need to focus their efforts in clinical care, research, education, and advocacy to incorporate child health programs into changing systems and to prevent unintended harm to systems designed to care for children. Copyright © 2014 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Moving sociohydrology forward: a synthesis across studies
NASA Astrophysics Data System (ADS)
Troy, T. J.; Konar, M.; Srinivasan, V.; Thompson, S.
2015-03-01
Sociohydrology is the study of coupled human-water systems with the premise that water and human systems co-evolve, often with two-way coupling. A recent special issue in HESS/ESD, "Predictions under change: water, earth, and biota in the Anthropocene", includes a number of sociohydrologic publications that allow for a survey of the current state of understanding of sociohydrology and the coupled system dynamics and feedbacks, the research methodologies available, and the norms and ethics involved in studying sociohydrologic systems. Although sociohydrology is concerned with coupled human-water systems, it is critical to consider the sociohydrologic system as embedded in a larger, complex social-ecological system through which human-water feedbacks can occur and from which the sociohydrologic system cannot be isolated. As such, sociohydrology can draw on tools developed in the social-ecological and complex systems literature to further our sociohydrologic knowledge, and this is identified as a ripe area of future research.
Unifying Human Centered Design and Systems Engineering for Human Systems Integration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; McGovernNarkevicius, Jennifer
2013-01-01
Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.
The Mentoring Relationship as a Complex Adaptive System: Finding a Model for Our Experience
ERIC Educational Resources Information Center
Jones, Rachel; Brown, Dot
2011-01-01
Mentoring theory and practice has evolved significantly during the past 40 years. Early mentoring models were characterized by the top-down flow of information and benefits to the protege. This framework was reconceptualized as a reciprocal model when scholars realized mentoring was a mutually beneficial process. Recently, in response to rapidly…
Insights into Digestion and Absorption of Major Nutrients in Humans
ERIC Educational Resources Information Center
Goodman, Barbara E.
2010-01-01
Nutrient digestion and absorption is necessary for the survival of living organisms and has evolved into the complex and specific task of the gastrointestinal (GI) system. While most people simply assume that their GI tract will work properly to use nutrients, provide energy, and release wastes, few nonscientists know the details about how various…
THE DIAGNOSIS AND TREATMENT OF SPEECH AND READING PROBLEMS.
ERIC Educational Resources Information Center
DELACATO, CARL H.
THE BASIC THESIS OF THE AUTHOR IS THAT THE NERVOUS SYSTEM OF MAN HAS EVOLVED FROM A VERY SIMPLE TO A VERY COMPLEX MECHANISM. MAN HAS ACHIEVED CORTICAL DOMINANCE WHEREIN ONE SIDE OF THE CORTEX CONTROLS THE SKILLS WHICH SEPARATE MAN FROM OTHER ANIMALS. THIS EVOLUTIONARY PROCESS MUST BE RECAPITULATED ONTOGENETICALLY OR MOBILITY AND COMMUNICATION…
Global Change and the Earth System
NASA Astrophysics Data System (ADS)
Pollack, Henry N.
2004-08-01
The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''
Complex systems as lenses on learning and teaching
NASA Astrophysics Data System (ADS)
Hurford, Andrew C.
From metaphors to mathematized models, the complexity sciences are changing the ways disciplines view their worlds, and ideas borrowed from complexity are increasingly being used to structure conversations and guide research on teaching and learning. The purpose of this corpus of research is to further those conversations and to extend complex systems ideas, theories, and modeling to curricula and to research on learning and teaching. A review of the literatures of learning and of complexity science and a discussion of the intersections between those disciplines are provided. The work reported represents an evolving model of learning qua complex system and that evolution is the result of iterative cycles of design research. One of the signatures of complex systems is the presence of scale invariance and this line of research furnishes empirical evidence of scale invariant behaviors in the activity of learners engaged in participatory simulations. The offered discussion of possible causes for these behaviors and chaotic phase transitions in human learning favors real-time optimization of decision-making as the means for producing such behaviors. Beyond theoretical development and modeling, this work includes the development of teaching activities intended to introduce pre-service mathematics and science teachers to complex systems. While some of the learning goals for this activity focused on the introduction of complex systems as a content area, we also used complex systems to frame perspectives on learning. Results of scoring rubrics and interview responses from students illustrate attributes of the proposed model of complex systems learning and also how these pre-service teachers made sense of the ideas. Correlations between established theories of learning and a complex adaptive systems model of learning are established and made explicit, and a means for using complex systems ideas for designing instruction is offered. It is a fundamental assumption of this research and researcher that complex systems ideas and understandings can be appropriated from more complexity-developed disciplines and put to use modeling and building increasingly productive understandings of learning and teaching.
Interactive Voice/Web Response System in clinical research
Ruikar, Vrishabhsagar
2016-01-01
Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc. PMID:26952178
NASA Technical Reports Server (NTRS)
Mckay, Charles W.; Feagin, Terry; Bishop, Peter C.; Hallum, Cecil R.; Freedman, Glenn B.
1987-01-01
The principle focus of one of the RICIS (Research Institute for Computing and Information Systems) components is computer systems and software engineering in-the-large of the lifecycle of large, complex, distributed systems which: (1) evolve incrementally over a long time; (2) contain non-stop components; and (3) must simultaneously satisfy a prioritized balance of mission and safety critical requirements at run time. This focus is extremely important because of the contribution of the scaling direction problem to the current software crisis. The Computer Systems and Software Engineering (CSSE) component addresses the lifestyle issues of three environments: host, integration, and target.
Interactive Voice/Web Response System in clinical research.
Ruikar, Vrishabhsagar
2016-01-01
Emerging technologies in computer and telecommunication industry has eased the access to computer through telephone. An Interactive Voice/Web Response System (IxRS) is one of the user friendly systems for end users, with complex and tailored programs at its backend. The backend programs are specially tailored for easy understanding of users. Clinical research industry has experienced revolution in methodologies of data capture with time. Different systems have evolved toward emerging modern technologies and tools in couple of decades from past, for example, Electronic Data Capture, IxRS, electronic patient reported outcomes, etc.
NASA Astrophysics Data System (ADS)
di Vito, Mauro Antonio; Arienzo, Ilenia; Braia, Giuseppe; Civetta, Lucia; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni
2011-04-01
The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.
Evolving neural networks through augmenting topologies.
Stanley, Kenneth O; Miikkulainen, Risto
2002-01-01
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
Netgram: Visualizing Communities in Evolving Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2015-01-01
Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538
Epigenomics and the concept of degeneracy in biological systems
Mason, Paul H.; Barron, Andrew B.
2014-01-01
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757
Evolvable synthetic neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2009-01-01
An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.
Etoile Project : Social Intelligent ICT-System for very large scale education in complex systems
NASA Astrophysics Data System (ADS)
Bourgine, P.; Johnson, J.
2009-04-01
The project will devise new theory and implement new ICT-based methods of delivering high-quality low-cost postgraduate education to many thousands of people in a scalable way, with the cost of each extra student being negligible (< a few Euros). The research will create an in vivo laboratory of one to ten thousand postgraduate students studying courses in complex systems. This community is chosen because it is large and interdisciplinary and there is a known requirement for courses for thousand of students across Europe. The project involves every aspect of course production and delivery. Within this the research focused on the creation of a Socially Intelligent Resource Mining system to gather large volumes of high quality educational resources from the internet; new methods to deconstruct these to produce a semantically tagged Learning Object Database; a Living Course Ecology to support the creation and maintenance of evolving course materials; systems to deliver courses; and a ‘socially intelligent assessment system'. The system will be tested on one to ten thousand postgraduate students in Europe working towards the Complex System Society's title of European PhD in Complex Systems. Étoile will have a very high impact both scientifically and socially by (i) the provision of new scalable ICT-based methods for providing very low cost scientific education, (ii) the creation of new mathematical and statistical theory for the multiscale dynamics of complex systems, (iii) the provision of a working example of adaptation and emergence in complex socio-technical systems, and (iv) making a major educational contribution to European complex systems science and its applications.
Bayesian Mixed-Membership Models of Complex and Evolving Networks
2006-12-01
R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e
Computational Electromagnetic Modeling of SansEC(Trade Mark) Sensors
NASA Technical Reports Server (NTRS)
Smith, Laura J.; Dudley, Kenneth L.; Szatkowski, George N.
2011-01-01
This paper describes the preliminary effort to apply computational design tools to aid in the development of an electromagnetic SansEC resonant sensor composite materials damage detection system. The computational methods and models employed on this research problem will evolve in complexity over time and will lead to the development of new computational methods and experimental sensor systems that demonstrate the capability to detect, diagnose, and monitor the damage of composite materials and structures on aerospace vehicles.
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
Ogushi, Fumiko; Kertész, János; Kaski, Kimmo; Shimada, Takashi
2017-08-01
Living organisms, ecosystems, and social systems are examples of complex systems in which robustness against inclusion of new elements is an essential feature. A recently proposed simple model has revealed a general mechanism by which such systems can become robust against inclusion of elements with totally random interactions when the elements have a moderate number of links. The interaction is, however, in many systems often intrinsically bidirectional like for mutual symbiosis and competition in ecology. This study reports the strong reinforcement effect of the bidirectionality of the interactions on the robustness of evolving systems. We show that the system with purely bidirectional interactions can grow with twofold average degree, in comparison with the purely unidirectional system. This drastic shift of the transition point comes from the reinforcement of each node, not from a change in structure of the emergent system. For systems with partially bidirectional interactions we find that the regime of the growing phase gets expanded. In the dense interaction regime, there exists an optimum proportion of bidirectional interactions for the growth rate at around 1/3. In the sparsely connected systems, small but finite fraction of bidirectional links can change the system's behaviour from non-growing to growing.
Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex
ERIC Educational Resources Information Center
Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie
2005-01-01
Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…
ERIC Educational Resources Information Center
Dai, David Yun
2017-01-01
This article presents a new theory of talent development, evolving complexity theory (ECT), in the context of the changing theoretical directions as well as the landscape of gifted education. I argue that gifted education needs a new foundation that provides a broad psychosocial basis than what the notion of giftedness can afford. A focus on…
Simulating evolution of protein complexes through gene duplication and co-option.
Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter
2016-06-21
We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cuypers, Thomas D.; Hogeweg, Paulien
2012-01-01
The picture that emerges from phylogenetic gene content reconstructions is that genomes evolve in a dynamic pattern of rapid expansion and gradual streamlining. Ancestral organisms have been estimated to possess remarkably rich gene complements, although gene loss is a driving force in subsequent lineage adaptation and diversification. Here, we study genome dynamics in a model of virtual cells evolving to maintain homeostasis. We observe a pattern of an initial rapid expansion of the genome and a prolonged phase of mutational load reduction. Generally, load reduction is achieved by the deletion of redundant genes, generating a streamlining pattern. Load reduction can also occur as a result of the generation of highly neutral genomic regions. These regions can expand and contract in a neutral fashion. Our study suggests that genome expansion and streamlining are generic patterns of evolving systems. We propose that the complex genotype to phenotype mapping in virtual cells as well as in their biological counterparts drives genome size dynamics, due to an emerging interplay between adaptation, neutrality, and evolvability. PMID:22234601
Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications.
Patou, François; AlZahra'a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E
2016-09-03
The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods.
Evolvable Smartphone-Based Platforms for Point-of-Care In-Vitro Diagnostics Applications
Patou, François; AlZahra’a Alatraktchi, Fatima; Kjægaard, Claus; Dimaki, Maria; Madsen, Jan; Svendsen, Winnie E.
2016-01-01
The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods. PMID:27598208
Immune evasion by pathogens of bovine respiratory disease complex.
Srikumaran, Subramaniam; Kelling, Clayton L; Ambagala, Aruna
2007-12-01
Bovine respiratory tract disease is a multi-factorial disease complex involving several viruses and bacteria. Viruses that play prominent roles in causing the bovine respiratory disease complex include bovine herpesvirus-1, bovine respiratory syncytial virus, bovine viral diarrhea virus and parinfluenza-3 virus. Bacteria that play prominent roles in this disease complex are Mannheimia haemolytica and Mycoplasma bovis. Other bacteria that infect the bovine respiratory tract of cattle are Histophilus (Haemophilus) somni and Pasteurella multocida. Frequently, severe respiratory tract disease in cattle is associated with concurrent infections of these pathogens. Like other pathogens, the viral and bacterial pathogens of this disease complex have co-evolved with their hosts over millions of years. As much as the hosts have diversified and fine-tuned the components of their immune system, the pathogens have also evolved diverse and sophisticated strategies to evade the host immune responses. These pathogens have developed intricate mechanisms to thwart both the innate and adaptive arms of the immune responses of their hosts. This review presents an overview of the strategies by which the pathogens suppress host immune responses, as well as the strategies by which the pathogens modify themselves or their locations in the host to evade host immune responses. These immune evasion strategies likely contribute to the failure of currently-available vaccines to provide complete protection to cattle against these pathogens.
ERIC Educational Resources Information Center
Nichols, Andrew Howard
2011-01-01
Improving college degree attainment is essential as the United States seeks to remain economically competitive in a globalized marketplace. As the economy continues to evolve and become increasingly more complex, it is critical that our education system provides our youth with the skills, ingenuity, and critical thinking abilities that can…
Keith Reynolds; Philip Murphy; Steven Paplanus
2017-01-01
Spatial decision support systems for forest management have steadily evolved over the past 20+ years in order to better address the complexities of contemporary forest management issues such as the sustainability and resilience of ecosystems on forested landscapes. In this paper, we describe and illustrate new features of the Ecosystem Management Decision Support (EMDS...
Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems
Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...
2014-12-10
Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less
Rapidly evolving homing CRISPR barcodes
Kalhor, Reza; Mali, Prashant; Church, George M.
2017-01-01
We present here an approach for engineering evolving DNA barcodes in living cells. The methodology entails using a homing guide RNA (hgRNA) scaffold that directs the Cas9-hgRNA complex to target the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells. We further evaluate these barcodes in cell populations and show the barcode RNAs can be assayed as single molecules in situ . This integrated approach will have wide ranging applications, such as in deep lineage tracing, cellular barcoding, molecular recording, dissecting cancer biology, and connectome mapping. PMID:27918539
Operational development of small plant growth systems
NASA Technical Reports Server (NTRS)
Scheld, H. W.; Magnuson, J. W.; Sauer, R. L.
1986-01-01
The results of a study undertaken on the first phase of an empricial effort in the development of small plant growth chambers for production of salad type vegetables on space shuttle or space station are discussed. The overall effort is visualized as providing the underpinning of practical experience in handling of plant systems in space which will provide major support for future efforts in planning, design, and construction of plant-based (phytomechanical) systems for support of human habitation in space. The assumptions underlying the effort hold that large scale phytomechanical habitability support systems for future space stations must evolve from the simple to the complex. The highly complex final systems will be developed from the accumulated experience and data gathered from repetitive tests and trials of fragments or subsystems of the whole in an operational mode. These developing system components will, meanwhile, serve a useful operational function in providing psychological support and diversion for the crews.
The Capabilities of Chaos and Complexity
Abel, David L.
2009-01-01
To what degree could chaos and complexity have organized a Peptide or RNA World of crude yet necessarily integrated protometabolism? How far could such protolife evolve in the absence of a heritable linear digital symbol system that could mutate, instruct, regulate, optimize and maintain metabolic homeostasis? To address these questions, chaos, complexity, self-ordered states, and organization must all be carefully defined and distinguished. In addition their cause-and-effect relationships and mechanisms of action must be delineated. Are there any formal (non physical, abstract, conceptual, algorithmic) components to chaos, complexity, self-ordering and organization, or are they entirely physicodynamic (physical, mass/energy interaction alone)? Chaos and complexity can produce some fascinating self-ordered phenomena. But can spontaneous chaos and complexity steer events and processes toward pragmatic benefit, select function over non function, optimize algorithms, integrate circuits, produce computational halting, organize processes into formal systems, control and regulate existing systems toward greater efficiency? The question is pursued of whether there might be some yet-to-be discovered new law of biology that will elucidate the derivation of prescriptive information and control. “System” will be rigorously defined. Can a low-informational rapid succession of Prigogine’s dissipative structures self-order into bona fide organization? PMID:19333445
A modeling framework for exposing risks in complex systems.
Sharit, J
2000-08-01
This article introduces and develops a modeling framework for exposing risks in the form of human errors and adverse consequences in high-risk systems. The modeling framework is based on two components: a two-dimensional theory of accidents in systems developed by Perrow in 1984, and the concept of multiple system perspectives. The theory of accidents differentiates systems on the basis of two sets of attributes. One set characterizes the degree to which systems are interactively complex; the other emphasizes the extent to which systems are tightly coupled. The concept of multiple perspectives provides alternative descriptions of the entire system that serve to enhance insight into system processes. The usefulness of these two model components derives from a modeling framework that cross-links them, enabling a variety of work contexts to be exposed and understood that would otherwise be very difficult or impossible to identify. The model components and the modeling framework are illustrated in the case of a large and comprehensive trauma care system. In addition to its general utility in the area of risk analysis, this methodology may be valuable in applications of current methods of human and system reliability analysis in complex and continually evolving high-risk systems.
Complexity and the Limits of Revolution: What Will Happen to the Arab Spring?
NASA Astrophysics Data System (ADS)
Gard-Murray, Alexander S.; Bar-Yam, Yaneer
The recent social unrest across the Middle East and North Africa has deposed dictators who had ruled for decades. While the events have been hailed as an "Arab Spring" by those who hope that repressive autocracies will be replaced by democracies, what sort of regimes will eventually emerge from the crisis remains far from certain. Here we provide a complex systems framework, validated by historical precedent, to help answer this question. We describe the dynamics of governmental change as an evolutionary process similar to biological evolution, in which complex organizations gradually arise by replication, variation, and competitive selection. Different kinds of governments, however, have differing levels of complexity. Democracies must be more systemically complex than autocracies because of their need to incorporate large numbers of people in decision-making. This difference has important implications for the relative robustness of democratic and autocratic governments after revolutions. Revolutions may disrupt existing evolved complexity, limiting the potential for building more complex structures quickly. Insofar as systemic complexity is reduced by revolution, democracy is harder to create in the wake of unrest than autocracy. Applying this analysis to the Middle East and North Africa, we infer that in the absence of stable institutions or external assistance, new governments are in danger of facing increasingly insurmountable challenges and reverting to autocracy.
The Evolutionary Origins of Hierarchy
Huizinga, Joost; Clune, Jeff
2016-01-01
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881
The Evolutionary Origins of Hierarchy.
Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff
2016-06-01
Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.
Japyassú, Hilton F; Laland, Kevin N
2017-05-01
There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.
Dancing with Swarms: Utilizing Swarm Intelligence to Build, Investigate, and Control Complex Systems
NASA Astrophysics Data System (ADS)
Jacob, Christian
We are surrounded by a natural world of massively parallel, decentralized biological "information processing" systems, a world that exhibits fascinating emergent properties in many ways. In fact, our very own bodies are the result of emergent patterns, as the development of any multi-cellular organism is determined by localized interactions among an enormous number of cells, carefully orchestrated by enzymes, signalling proteins and other molecular "agents". What is particularly striking about these highly distributed developmental processes is that a centralized control agency is completely absent. This is also the case for many other biological systems, such as termites which build their nests—without an architect that draws a plan, or brain cells evolving into a complex `mind machine'—without an explicit blueprint of a network layout.
Nature-Inspired Cognitive Evolution to Play MS. Pac-Man
NASA Astrophysics Data System (ADS)
Tan, Tse Guan; Teo, Jason; Anthony, Patricia
Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.
The Evolution of the Medical School Deanship: From Patriarch to CEO to System Dean
Schieffler, Danny A; Farrell, Philip M; Kahn, Marc J; Culbertson, Richard A
2017-01-01
Medical school deanship in the US has evolved during the past 200 years as the complexity of the US health care system has evolved. With the introduction of Medicare and Medicaid and the growth of the National Institutes of Health, the 19th-century and first half of the 20th-century role of the medical school dean as guild master transformed into that of resource allocator as faculty practice plans grew in scope and grew as an important source of medical school and university revenue. By 2000, the role of the medical school dean had transformed into that of CEO, with the dean having control over school mission and strategy, faculty practice plans, education, research dollars, and philanthropy. An alternative path to the Dean/CEO model has developed—the System Dean, who functions as a team player within a broader health system that determines the mission for the medical school and the related clinical enterprise. In this paper, the authors discuss the evolution of the medical school dean with respect to scope of authority and role within the health care system. PMID:28241915
Application-driven strategies for efficient transfer of medical images over very high speed networks
NASA Astrophysics Data System (ADS)
Alsafadi, Yasser H.; McNeill, Kevin M.; Martinez, Ralph
1993-09-01
The American College of Radiology (ACR) and the National Electrical Manufacturing Association (NEMA) in 1982 formed the ACR-NEMA committee to develop a standard to enable equipment from different vendors to communicate and participate in a picture archiving and communications system (PACS). The standard focused mostly on interconnectivity issues and communication needs of PACS. It was patterned after the international standards organization open systems interconnection (ISO/OSI) reference model. Three versions of the standard appeared, evolving from simple point-to-point specification of connection between two medical devices to a complex standard of a network environment. However, fast changes in network software and hardware technologies makes it difficult for the standard to keep pace. This paper compares two versions of the ACR-NEMA standard and then describes a system that is used at the University of Arizona Intensive Care Unit. In this system, the application should specify the interface to network services and grade of service required. These provisions are suggested to make the application independent from evolving network technology and support true open systems.
Engineering planetary lasers for interstellar communication
NASA Technical Reports Server (NTRS)
Sherwood, Brent; Mumma, Michael J.; Donaldson, Bruce K.
1992-01-01
Spacefaring skills evolved in the twenty-first century will enable missions of unprecedented complexity. One such elaborate project might be to develop tools for efficient interstellar data transfer. Informational links to other star systems would facilitate eventual human expansion beyond our solar system, as well as intercourse with potential extraterrestrial intelligence. This paper reports the major findings of a 600-page, 3-year, NASA-funded study examining in quantitative detail the requirements, some seemingly feasible methods, and implications of achieving reliable extrasolar communications.
Cancer Systems Biology Consortium | Informatics Technology for Cancer Research (ITCR)
Cancer is a complex disease system involving multiple molecular, genetic, and cellular events. From its early initiation through progression and metastasis, cancer can adapt and evolve as a result of both internal and external signals. These properties make cancer difficult to predict, prevent, and treat. There has been significant progress in characterizing the genetics of cancer, as well as the downstream effects on the molecular and cellular pathways that are critical for the initiation and progression of cancer.
What Happens If the Stars Go Out? U.S. Army Dependence on the Global Positioning System
2009-12-11
line in the 1970s has continued to evolve with the technological advances in satellite power management , frequency encryption, and GPS receiver... manage his forces, limitations still exist. As stated by Giles Ebutt from Jane’s International Defense, ―These blue-force tracking (BFT) systems...complexity and thus there exists a need for close examination of the Army’s use, application, and management of GPS data. Chapter 3 guides the reader through
Perspectives on the neuroscience of cognition and consciousness.
Werner, Gerhard
2007-01-01
The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing the problem of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in a metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness.
NASA Technical Reports Server (NTRS)
Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan
2014-01-01
Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.
Caenorhabditis elegans Evolves a New Architecture for the Multi-aminoacyl-tRNA Synthetase Complex*
Havrylenko, Svitlana; Legouis, Renaud; Negrutskii, Boris; Mirande, Marc
2011-01-01
MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains. PMID:21685384
Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex.
Havrylenko, Svitlana; Legouis, Renaud; Negrutskii, Boris; Mirande, Marc
2011-08-12
MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.
A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.
Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie
2018-06-04
Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.
Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems
Kamhi, J. Frances; Arganda, Sara; Moreau, Corrie S.; Traniello, James F. A.
2017-01-01
Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study. PMID:29066958
Integrating Existing Simulation Components into a Cohesive Simulation System
NASA Technical Reports Server (NTRS)
McLaughlin, Brian J.; Barrett, Larry K.
2012-01-01
A tradition of leveraging the re-use of components to help manage costs has evolved in the development of complex system. This tradition continues on in the Joint Polar Satellite System (JPSS) Program with the cloning of the Suomi National Polar-orbiting Partnership (NPP) satellite for the JPSS-1 mission, including the instrument complement. One benefit of re-use on a mission is the availability of existing simulation assets from the systems that were previously built. An issue arises in the continual shift of technology over a long mission, or multi-mission, lifecycle. As the missions mature, the requirements for the observatory simulations evolve. The challenge in this environment becomes re-using the existing components in that ever-changing landscape. To meet this challenge, the system must: establish an operational architecture that minimizes impacts on the implementation of individual components, consolidate the satisfaction of new high-impact requirements into system-level infrastructure, and build in a long-term view of system adaptation that spans the full lifecycle of the simulation system. The Flight Vehicle Test Suite (FVTS) within the JPSS Program is defining and executing this approach to ensure a robust simulation capability for the JPSS multi-mission environment
Somatic evolution of head and neck cancer - biological robustness and latent vulnerability.
Masuda, Muneyuki; Toh, Satoshi; Wakasaki, Takahiro; Suzui, Masumi; Joe, Andrew K
2013-02-01
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of "oncogene addiction", have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro-environmental and metabolic stressors, which well explains the major mechanism of "escaping from oncogene addiction". On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Adopting best practices: "Agility" moves from software development to healthcare project management.
Kitzmiller, Rebecca; Hunt, Eleanor; Sproat, Sara Breckenridge
2006-01-01
It is time for a change in mindset in how nurses operationalize system implementations and manage projects. Computers and systems have evolved over time from unwieldy mysterious machines of the past to ubiquitous computer use in every aspect of daily lives and work sites. Yet, disconcertingly, the process used to implement these systems has not evolved. Technology implementation does not need to be a struggle. It is time to adapt traditional plan-driven implementation methods to incorporate agile techniques. Agility is a concept borrowed from software development and is presented here because it encourages flexibility, adaptation, and continuous learning as part of the implementation process. Agility values communication and harnesses change to an advantage, which facilitates the natural evolution of an adaptable implementation process. Specific examples of agility in an implementation are described, and plan-driven implementation stages are adapted to incorporate relevant agile techniques. This comparison demonstrates how an agile approach enhances traditional implementation techniques to meet the demands of today's complex healthcare environments.
What Is a Complex Innovation System?
Katz, J. Sylvan
2016-01-01
Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
Intrinsic evolution of controllable oscillators in FPTA-2
NASA Technical Reports Server (NTRS)
Sekanina, Lukas; Zebulum, Ricardo S.
2005-01-01
Simple one- and two-bit controllable oscillators were intrinsically evolved using only four cells of Field Programmable Transistor Array (FPTA-2). These oscillators can produce different oscillations for different setting of control signals. Therefore, they could be used, in principle, to compose complex networks of oscillators that could exhibit rich dynamical behavior in order to perform a computation or to model a desired system.
Using Sequence Diagrams to Detect Communication Problems Between Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Chris; Stratton, William C.; Sibol, Deane E.; Ray, Arnab; Yonkwa, Lyly; Kresser, Jan; Godfrey, Sally H.; Knodel, Jens
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is both mission-critical and error-prone. Such communication problems ideally would be detected before deployment. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we show that problems in the communication between two systems can be detected by using sequence diagrams to model the planned communication and by comparing the planned sequence to the actual sequence. We identify different kinds of problems that can be addressed by modeling the planned sequence using different level of abstractions.
Small groups and long memories promote cooperation.
Stewart, Alexander J; Plotkin, Joshua B
2016-06-01
Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists the question is often how group behaviors such as collective action, or decision making that accounts for memories of past experience, can emerge and persist in an evolving system. Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player games that permits us to characterize all cooperative strategies that resist invasion by any mutant strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. We also explore the co-evolution of behavior and memory. We find that even when memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of cooperation, even when the benefits for cooperation are low.
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models
NASA Astrophysics Data System (ADS)
Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter
2013-10-01
Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.
NASA Astrophysics Data System (ADS)
Kelty, Thomas K.; Yin, An; Dash, Batulzii; Gehrels, George E.; Ribeiro, Angela E.
2008-04-01
Understanding the development of the Central Asian Orogenic System (CAOS), which is the largest Phanerozoic accretionary orogen in the world, is critical to the determination of continental growth mechanisms and geological history of central Asia. A key to unraveling its geological history is to ascertain the origin and tectonic setting of the large flysch complexes that dominate the CAOS. These complexes have been variably interpreted as deep-marine deposits that were accreted onto a long-evolving arc against large continents to form a mega-accretionary complex or sediments trapped in back-arc to fore-arc basins within oceanic island-arc systems far from continents. To differentiate the above models we conducted U-Pb geochronological analyses of detrital-zircon grains from turbidites in the composite Hangay-Hentey basin of central Mongolia. This basin was divided by a Cenozoic fault system into the western and eastern sub-basins: the Hangay Basin in the west and Hentey basin in the east. This study focuses on the Hentey basin and indicates two groups of samples within this basin: (1) a southern group that were deposited after the earliest Carboniferous (˜ 339 Ma to 354 Ma) and a northern group that were deposited after the Cambrian to Neoproterozoic (˜ 504 Ma to 605 Ma). The samples from the northern part of the basin consistently contain Paleoproterozoic and Archean zircon grains that may have been derived from the Tuva-Mongol massif and/or the Siberian craton. In contrast, samples from the southern part of the basin contain only a minor component of early Paleozoic to Neoproterozoic zircon grains, which were derived from the crystalline basement bounding the Hangay-Hentey basin. Integrating all the age results from this study, we suggest that the Hangay-Hentey basin was developed between an island-arc system with a Neoproterozoic basement in the south and an Andean continental-margin arc in the north. The initiation of the southern arc occurred at or after the early Carboniferous, allowing accumulation of a flysch complex in a long-evolving accretionary complex.
Consistent visualizations of changing knowledge
Tipney, Hannah J.; Schuyler, Ronald P.; Hunter, Lawrence
2009-01-01
Networks are increasingly used in biology to represent complex data in uncomplicated symbolic form. However, as biological knowledge is continually evolving, so must those networks representing this knowledge. Capturing and presenting this type of knowledge change over time is particularly challenging due to the intimate manner in which researchers customize those networks they come into contact with. The effective visualization of this knowledge is important as it creates insight into complex systems and stimulates hypothesis generation and biological discovery. Here we highlight how the retention of user customizations, and the collection and visualization of knowledge associated provenance supports effective and productive network exploration. We also present an extension of the Hanalyzer system, ReOrient, which supports network exploration and analysis in the presence of knowledge change. PMID:21347184
Schörner, Mario; Beyer, Sebastian Reinhardt; Southall, June; Cogdell, Richard J; Köhler, Jürgen
2015-11-05
The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.
Refined views of multi-protein complexes in the erythrocyte membrane
Mankelow, TJ; Satchwell, TJ; Burton, NM
2015-01-01
The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level. PMID:22465511
Atmospheric studies in complex terrain: a planning guide for future studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orgill, M.M.
The objective of this study is to assist the US Department of Energy in Conducting its atmospheric studies in complex terrain (ASCOT0 by defining various complex terrain research systems and relating these options to specific landforms sites. This includes: (1) reviewing past meteorological and diffusion research on complex terrain; (2) relating specific terrain-induced airflow phenomena to specific landforms and time and space scales; (3) evaluating the technical difficulty of modeling and measuring terrain-induced airflow phenomena; and (4) avolving severdal research options and proposing candidate sites for continuing and expanding field and modeling work. To evolve research options using variable candidatemore » sites, four areas were considered: site selection, terrain uniqueness and quantification, definition of research problems and research plans. 36 references, 111 figures, 20 tables.« less
Biosphere 2: a prototype project for a permanent and evolving life system for Mars base.
Nelson, M; Allen, J P; Dempster, W F
1992-01-01
As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.
Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms
2016-01-01
A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053
The Major Histocompatibility Complex in Bovines: A Review
Behl, Jyotsna Dhingra; Verma, N. K.; Tyagi, Neha; Mishra, Priyanka; Behl, Rahul; Joshi, B. K.
2012-01-01
Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign. PMID:23738132
From Astrochemistry to prebiotic chemistry? An hypothetical approach toward Astrobiology
NASA Astrophysics Data System (ADS)
Le Sergeant d'Hendecourt, L.; Danger, G.
2012-12-01
We present in this paper a general perspective about the evolution of molecular complexity, as observed from an astrophysicist point of view and its possible relation to the problem of the origin of life on Earth. Based on the cosmic abundances of the elements and the molecular composition of our life, we propose that life cannot really be based on other elements. We discuss where the necessary molecular complexity is built-up in astrophysical environments, actually within inter/circumstellar solid state materials known as ``grains''. Considerations based on non-directed laboratory experiments, that must be further extended in the prebiotic domain, lead to the hypothesis that if the chemistry at the origin of life may indeed be a rather universal and deterministic phenomenon, once molecular complexity is installed, the chemical evolution that generated the first prebiotic reactions that involve autoreplication must be treated in a systemic approach because of the strong contingency imposed by the complex local environment(s) and associated processes in which these chemical systems have evolved.
An Open Simulation System Model for Scientific Applications
NASA Technical Reports Server (NTRS)
Williams, Anthony D.
1995-01-01
A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.
Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao
2017-02-01
This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of Osmolytes in Regulating Immune System.
Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar
2016-01-01
The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Bian, Songhan
2017-05-01
In this paper, we apply the empirical mode decomposition (EMD) method to the recurrence plot (RP) and recurrence quantification analysis (RQA), to evaluate the frequency- and time-evolving dynamics of the traffic flow. Based on the cumulative intrinsic mode functions extracted by the EMD, the frequency-evolving RP regarding different oscillation of modes suggests that apparent dynamics of the data considered are mainly dominated by its components of medium- and low-frequencies while severely affected by fast oscillated noises contained in the signal. Noises are then eliminated to analyze the intrinsic dynamics and consequently, the denoised time-evolving RQA diversely characterizes the properties of the signal and marks crucial points more accurately where white bands in the RP occur, whereas a strongly qualitative agreement exists between all the non-denoised RQA measures. Generally, the EMD combining with the recurrence analysis sheds more reliable, abundant and inherent lights into the traffic flow, which is meaningful to the empirical analysis of complex systems.
NASA Astrophysics Data System (ADS)
Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh
2016-09-01
In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.
Reverse Ecology: from systems to environments and back.
Levy, Roie; Borenstein, Elhanan
2012-01-01
The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph
Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline ofmore » CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.« less
Dynamic Business Networks: A Headache for Sustainable Systems Interoperability
NASA Astrophysics Data System (ADS)
Agostinho, Carlos; Jardim-Goncalves, Ricardo
Collaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property. When achieved seamlessly, efficiency is increased in the entire product life cycle. Nowadays, most organizations try to attain interoperability by establishing peer-to-peer mappings with the different partners, or in optimized networks, by using international standard models as the core for information exchange. In current industrial practice, mappings are only defined once, and the morphisms that represent them, are hardcoded in the enterprise systems. This solution has been effective for static environments, where enterprise and product models are valid for decades. However, with an increasingly complex and dynamic global market, models change frequently to answer new customer requirements. This paper draws concepts from the complex systems science and proposes a framework for sustainable systems interoperability in dynamic networks, enabling different organizations to evolve at their own rate.
Complexity analysis and mathematical tools towards the modelling of living systems.
Bellomo, N; Bianca, C; Delitala, M
2009-09-01
This paper is a review and critical analysis of the mathematical kinetic theory of active particles applied to the modelling of large living systems made up of interacting entities. The first part of the paper is focused on a general presentation of the mathematical tools of the kinetic theory of active particles. The second part provides a review of a variety of mathematical models in life sciences, namely complex social systems, opinion formation, evolution of epidemics with virus mutations, and vehicular traffic, crowds and swarms. All the applications are technically related to the mathematical structures reviewed in the first part of the paper. The overall contents are based on the concept that living systems, unlike the inert matter, have the ability to develop behaviour geared towards their survival, or simply to improve the quality of their life. In some cases, the behaviour evolves in time and generates destructive and/or proliferative events.
Tool for simplifying the complex interactions within resilient communities
NASA Astrophysics Data System (ADS)
Stwertka, C.; Albert, M. R.; White, K. D.
2016-12-01
In recent decades, scientists have observed and documented impacts from climate change that will impact multiple sectors, will be impacted by decisions from multiple sectors, and will change over time. This complex human-engineered system has a large number of moving, interacting parts, which are interdependent and evolve over time towards their purpose. Many of the existing resilience frameworks and vulnerability frameworks focus on interactions between the domains, but do not include the structure of the interactions. We present an engineering systems approach to investigate the structural elements that influence a community's ability to be resilient. In this presentation we will present and analyze four common methods for building community resilience, utilizing our common framework. For several existing case studies we examine the stress points in the system and identify the impacts on the outcomes from the case studies. In ongoing research we will apply our system tool to a new case in the field.
Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity.
Frickel, Jens; Theodosiou, Loukas; Becks, Lutz
2017-10-17
Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus-host and prey-predator) with a more complex three-species system (virus-host-predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host-virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host-virus coevolution in the complex system and that the virus' effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species.
Kelty-Stephen, Damian; Dixon, James A
2012-01-01
The neurobiological sciences have struggled to resolve the physical foundations for biological and cognitive phenomena with a suspicion that biological and cognitive systems, capable of exhibiting and contributing to structure within themselves and through their contexts, are fundamentally distinct or autonomous from purely physical systems. Complexity science offers new physics-based approaches to explaining biological and cognitive phenomena. In response to controversy over whether complexity science might seek to "explain away" biology and cognition as "just physics," we propose that complexity science serves as an application of recent advances in physics to phenomena in biology and cognition without reducing or undermining the integrity of the phenomena to be explained. We highlight that physics is, like the neurobiological sciences, an evolving field and that the threat of reduction is overstated. We propose that distinctions between biological and cognitive systems from physical systems are pretheoretical and thus optional. We review our own work applying insights from post-classical physics regarding turbulence and fractal fluctuations to the problems of developing cognitive structure. Far from hoping to reduce biology and cognition to "nothing but" physics, we present our view that complexity science offers new explanatory frameworks for considering physical foundations of biological and cognitive phenomena.
Actionable Capability for Social and Economic Systems (ACSES)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Steven J; Brecke, Peter K; Carmichael, Theodore D
The foundation of the Actionable Capability for Social and Economic Systems (ACSES) project is a useful regional-scale social-simulation system. This report is organized into five chapters that describe insights that were gained concerning the five key feasibility questions pertaining to such a system: (1) Should such a simulation system exist, would the current state of data sets or collectible data sets be adequate to support such a system? (2) By comparing different agent-based simulation systems, is it feasible to compare simulation systems and select one appropriate for a given application with agents behaving according to modern social theory rather thanmore » ad hoc rule sets? (3) Provided that a selected simulation system for a region of interest could be constructed, can the simulation system be updated with new and changing conditions so that the universe of potential outcomes are constrained by events on the ground as they evolve? (4) As these results are constrained by evolving events on the ground, is it feasible to still generate surprise and emerging behavior to suggest outcomes from novel courses of action? (5) As these systems may for the first time require large numbers (hundreds of millions) of agents operating with complexities demanded of modern social theories, can results still be generated within actionable decision cycles?« less
Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.
Weber, Bruce H
2011-03-01
Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Bennett, Matthew
2006-01-01
The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.
Submillimeter Array reveals molecular complexity of dying stars
NASA Astrophysics Data System (ADS)
Tomasz
2018-01-01
The unique capabilities of the Submillimeter Array (SMA) have allowed unprecedented studies of cool evolved stars at submillimeter wavelengths. In particular, the SMA now offers the possibility to image multiple molecular transitions at once, owing to the 32-GHz wide instantaneous bandwidth of SWARM, the SMA’s new correlator. Molecular gas located far and very close to the photosphere of an asymptotic-giant branch (AGB) star, a red supergiant, or a pre-planetary nebula can now be examined in transitions observed simultaneously from a wide range of energy levels. This allows a very detailed quantitative investigation of physical and chemical conditions around these variable objects. Several imaging line surveys have been obtained with the SMA to reveal the beautiful complexity of these evolved systems. The surveys resulted in first submillimeter-wave identifications of molecules of prime astrophysical interest, e.g. of TiO, TiO2, and of rotational transitions at excited vibrational states of CO. An overview of recent SMA observations of cool evolved stars will be given with an emphasize on the interferometric line surveys. We will demonstrate their importance in unraveling the mass-loss phenomena, propagation of shocks in the circumstellar medium, and production of dust at elevated temperatures. The SMA studies of these molecular factories have a direct impact on our understanding of the chemical evolution of the Galaxy and stellar evolution at low and high masses.
Human-Computer Interaction and Information Management Research Needs
2003-10-01
Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...hand-held personal digital assistants, networked sensors and actuators, and low-power computers on satellites. 5 most complex tools that humans have...calculations using data on external media such as tapes evolved into our multi-functional 21st century systems. More ideas came as networks of computing
Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing
NASA Astrophysics Data System (ADS)
Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.
2016-12-01
Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.
Kasl, Emily L; McAllister, Chris T; Robison, Henry W; Connior, Matthew B; Font, William F; Criscione, Charles D
2015-12-01
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female-biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self-fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three-host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Was there a universal tRNA before specialized tRNAs came into existence?
NASA Technical Reports Server (NTRS)
Lacey, James C., Jr.; Staves, Mark P.
1990-01-01
It is generally true that evolving systems begin simply and become more complex in the evolutionary process. For those who try to understand the origin of a biochemical system, what is required is the development of an idea as to what simpler system preceded the present one. A hypothesis is presented that a universal tRNA molecule, capable of reading many codons, may have preceded the appearance of individual tRNAs. Evidence seems to suggest that this molecule may have been derived from a common ancestor of the contemporary 5S rRNAs and tRNAs.
From problem solving to problem definition: scrutinizing the complex nature of clinical practice.
Cristancho, Sayra; Lingard, Lorelei; Regehr, Glenn
2017-02-01
In medical education, we have tended to present problems as being singular, stable, and solvable. Problem solving has, therefore, drawn much of medical education researchers' attention. This focus has been important but it is limited in terms of preparing clinicians to deal with the complexity of the 21st century healthcare system in which they will provide team-based care for patients with complex medical illness. In this paper, we use the Soft Systems Engineering principles to introduce the idea that in complex, team-based situations, problems usually involve divergent views and evolve with multiple solution iterations. As such we need to shift the conversation from (1) problem solving to problem definition, and (2) from a problem definition derived exclusively at the level of the individual to a definition derived at the level of the situation in which the problem is manifested. Embracing such a focus on problem definition will enable us to advocate for novel educational practices that will equip trainees to effectively manage the problems they will encounter in complex, team-based healthcare.
Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.
Kelson, Andrew B; Carnevali, Maia; Truong-Le, Vu
2013-10-01
Microbes have evolved elaborate iron-acquisition systems to sequester iron from the host environment using siderophores and heme uptake systems. Gallium(III) is structurally similar to iron(III), except that it cannot be reduced under physiological conditions, therefore gallium has the potential to serve as an iron analog, and thus an anti-microbial. Because Ga(III) can bind to virtually any complex that binds Fe(III), simple gallium salts as well as more complex siderophores and hemes are potential carriers to deliver Ga(III) to the microbes. These gallium complexes represent a new class of anti-infectives that is different in mechanism of action from conventional antibiotics. Simple gallium salts such as gallium nitrate, maltolate, and simple gallium siderophore complexes such as gallium citrate have shown good antibacterial activities. The most studied complex has been gallium citrate, which exhibits broad activity against many Gram negative bacteria at ∼1-5μg/ml MICs, strong biofilm activity, low drug resistance, and efficacy in vivo. Using the structural features of specific siderophore and heme made by pathogenic bacteria and fungi, researchers have begun to evaluate new gallium complexes to target key pathogens. This review will summarize potential iron-acquisition system targets and recent research on gallium-based anti-infectives. Copyright © 2013 Elsevier Ltd. All rights reserved.
Propulsion Control Technology Development in the United States A Historical Perspective
NASA Technical Reports Server (NTRS)
Jaw, Link C.a; Garg, Sanjay
2005-01-01
This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.
Towards Engineering Biological Systems in a Broader Context.
Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P
2016-02-27
Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Controlled droplet microfluidic systems for multistep chemical and biological assays.
Kaminski, T S; Garstecki, P
2017-10-16
Droplet microfluidics is a relatively new and rapidly evolving field of science focused on studying the hydrodynamics and properties of biphasic flows at the microscale, and on the development of systems for practical applications in chemistry, biology and materials science. Microdroplets present several unique characteristics of interest to a broader research community. The main distinguishing features include (i) large numbers of isolated compartments of tiny volumes that are ideal for single cell or single molecule assays, (ii) rapid mixing and negligible thermal inertia that all provide excellent control over reaction conditions, and (iii) the presence of two immiscible liquids and the interface between them that enables new or exotic processes (the synthesis of new functional materials and structures that are otherwise difficult to obtain, studies of the functions and properties of lipid and polymer membranes and execution of reactions at liquid-liquid interfaces). The most frequent application of droplet microfluidics relies on the generation of large numbers of compartments either for ultrahigh throughput screens or for the synthesis of functional materials composed of millions of droplets or particles. Droplet microfluidics has already evolved into a complex field. In this review we focus on 'controlled droplet microfluidics' - a portfolio of techniques that provide convenient platforms for multistep complex reaction protocols and that take advantage of automated and passive methods of fluid handling on a chip. 'Controlled droplet microfluidics' can be regarded as a group of methods capable of addressing and manipulating droplets in series. The functionality and complexity of controlled droplet microfluidic systems can be positioned between digital microfluidics (DMF) addressing each droplet individually using 2D arrays of electrodes and ultrahigh throughput droplet microfluidics focused on the generation of hundreds of thousands or even millions of picoliter droplets that cannot be individually addressed by their location on a chip.
Anderson, Ross P; Jimenez, Geronimo; Bae, Jin Yung; Silver, Diana; Macinko, James; Porfiri, Maurizio
2016-01-01
Detecting and explaining the relationships among interacting components has long been a focal point of dynamical systems research. In this paper, we extend these types of data-driven analyses to the realm of public policy, whereby individual legislative entities interact to produce changes in their legal and political environments. We focus on the U.S. public health policy landscape, whose complexity determines our capacity as a society to effectively tackle pressing health issues. It has long been thought that some U.S. states innovate and enact new policies, while others mimic successful or competing states. However, the extent to which states learn from others, and the state characteristics that lead two states to influence one another, are not fully understood. Here, we propose a model-free, information-theoretical method to measure the existence and direction of influence of one state's policy or legal activity on others. Specifically, we tailor a popular notion of causality to handle the slow time-scale of policy adoption dynamics and unravel relationships among states from their recent law enactment histories. The method is validated using surrogate data generated from a new stochastic model of policy activity. Through the analysis of real data in alcohol, driving safety, and impaired driving policy, we provide evidence for the role of geography, political ideology, risk factors, and demographic and economic indicators on a state's tendency to learn from others when shaping its approach to public health regulation. Our method offers a new model-free approach to uncover interactions and establish cause-and-effect in slowly-evolving complex dynamical systems.
Anderson, Ross P.; Jimenez, Geronimo; Bae, Jin Yung; Silver, Diana; Macinko, James; Porfiri, Maurizio
2017-01-01
Detecting and explaining the relationships among interacting components has long been a focal point of dynamical systems research. In this paper, we extend these types of data-driven analyses to the realm of public policy, whereby individual legislative entities interact to produce changes in their legal and political environments. We focus on the U.S. public health policy landscape, whose complexity determines our capacity as a society to effectively tackle pressing health issues. It has long been thought that some U.S. states innovate and enact new policies, while others mimic successful or competing states. However, the extent to which states learn from others, and the state characteristics that lead two states to influence one another, are not fully understood. Here, we propose a model-free, information-theoretical method to measure the existence and direction of influence of one state’s policy or legal activity on others. Specifically, we tailor a popular notion of causality to handle the slow time-scale of policy adoption dynamics and unravel relationships among states from their recent law enactment histories. The method is validated using surrogate data generated from a new stochastic model of policy activity. Through the analysis of real data in alcohol, driving safety, and impaired driving policy, we provide evidence for the role of geography, political ideology, risk factors, and demographic and economic indicators on a state’s tendency to learn from others when shaping its approach to public health regulation. Our method offers a new model-free approach to uncover interactions and establish cause-and-effect in slowly-evolving complex dynamical systems. PMID:29075163
Grip on health: A complex systems approach to transform health care.
van Wietmarschen, Herman A; Wortelboer, Heleen M; van der Greef, Jan
2018-02-01
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem. © 2016 John Wiley & Sons, Ltd.
A Practical Measure for the Complexity of Evolving Seismicity Patterns
NASA Astrophysics Data System (ADS)
Goltz, C.
2005-12-01
Earthquakes are a "complex" phenomenon. There is, however, no clear definition of what complexity actually is. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns. Such a measurement is desirable, not only for fundamental understanding but also for monitoring and possibly for forecasting. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such a measure of complexity to temporally evolving real-world seismicity patterns. Finally, I discuss the usefulness of the approach and regard the results in view of the occurrence of large earthquakes.
NGC 5291: Implications for the Formation of Dwarf Galaxies
NASA Technical Reports Server (NTRS)
Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.
1997-01-01
The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from the material associated with the system and that this entire complex contains several proto- or young dwarf irregular galaxies in various stages of development. We are therefore witnessing the early evolution of a number of genuinely young galaxies. Given the evident importance of the NGC 5291 system as a 'nursery' for young galaxies, careful modeling is required if we are to understand this remarkable galaxy.
NASA Astrophysics Data System (ADS)
Moulin-Frier, Clément; Verschure, Paul F. M. J.
2016-03-01
In the target paper [1], M.A. Arbib proposes a quite exhaustive review of the (often computational) models developed during the last decades that support his detailed scenario on language evolution (the Mirror System Hypothesis, MSH). The approach considers that language evolved from a mirror system for grasping already present in LCA-m (the last common ancestor of macaques and humans), to a simple imitation system for grasping present in LCA-c (the last common ancestor of chimpanzees and humans), to a complex imitation system for grasping that developed in the hominid line since that ancestor. MSH considers that this complex imitation system is a key evolutionary step for a language-ready brain, providing all the required elements for an open-ended gestural communication system. The transition from the gestural (bracchio-manual and visual) to the vocal (articulatory and auditory) domain is supposed to be a less important evolutionary step.
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-04-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
Bioconvection in Second Grade Nanofluid Flow Containing Nanoparticles and Gyrotactic Microorganisms
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed
2018-06-01
The bioconvection in steady second grade nanofluid thin film flow containing nanoparticles and gyrotactic microorganisms is considered using passively controlled nanofluid model boundary conditions. A real-life system evolves under the flow and various taxis. The study is initially proposed in the context of gyrotactic system, which is used as a key element for the description of complex bioconvection patterns and dynamics in such systems. The governing partial differential equations are transformed into a system of ordinary ones through the similarity variables and solved analytically via homotopy analysis method (HAM). The solution is expressed through graphs and illustrated which show the influences of all the parameters.
The evolution of location and data collection systems in the United States.
NASA Technical Reports Server (NTRS)
Morakis, J. C.; Cote, C. E.
1973-01-01
Satellite location and data collection systems development began in the early 1960's in NASA and the French CNES. These systems were initially developed for application to meteorology and oceanography as a means of tracking moving platforms on a global scale. Additional applications such as geology, hydrology, and ecology have since evolved. To date, five successful missions have been completed. With each successive launch, systems improved in accordance with user requirements - particularly reduction in cost and complexity of platform equipment. With planned launches, facilities will be available to the user community through 1980; NASA is currently forecasting needs beyond 1980.
Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E
2007-06-01
We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.
Yedid, G; Ofria, C A; Lenski, R E
2008-09-01
Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.
NASA Astrophysics Data System (ADS)
Canetta, D.; Capozza, A.; Iovino, G.
The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed.
Salvati, Luca; Mavrakis, Anastasios; Colantoni, Andrea; Mancino, Giuseppe; Ferrara, Agostino
2015-07-15
Degradation of soils and sensitivity of land to desertification are intensified in last decades in the Mediterranean region producing heterogeneous spatial patterns determined by the interplay of factors such as climate, land-use changes, and human pressure. The present study hypothesizes that rising levels of soil degradation and land sensitivity to desertification are reflected into increasingly complex (and non-linear) relationships between environmental and socioeconomic variables. To verify this hypothesis, the Complex Adaptive Systems (CAS) framework was used to explore the spatiotemporal dynamics of eleven indicators derived from a standard assessment of soil degradation and land sensitivity to desertification in Italy. Indicators were made available on a detailed spatial scale (773 agricultural districts) for various years (1960, 1990, 2000 and 2010) and analyzed through a multi-dimensional exploratory data analysis. Our results indicate that the number of significant pair-wise correlations observed between indicators increased with the level of soil and land degradation, although with marked differences between northern and southern Italy. 'Fast' and 'slow' factors underlying soil and land degradation, and 'rapidly-evolving' or 'locked' agricultural districts were identified according to the rapidity of change estimated for each of the indicators studied. In southern Italy, 'rapidly-evolving' districts show a high level of soil degradation and land sensitivity to desertification during the whole period of investigation. On the contrary, those districts in northern Italy are those experiencing a moderate soil degradation and land sensitivity to desertification with the highest increase in the level of sensitivity over time. The study framework contributes to the assessment of complex local systems' dynamics in affluent but divided countries. Results may inform thematic strategies for the mitigation of land and soil degradation in the framework of action plans to combat desertification. Copyright © 2015 Elsevier B.V. All rights reserved.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Multi-level systems modeling and optimization for novel aircraft
NASA Astrophysics Data System (ADS)
Subramanian, Shreyas Vathul
This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission best achieved via a large collection of interacting simple systems, or a relatively few highly capable, complex air vehicles). The vastly unexplored area of optimization in evolving design spaces will be studied and incorporated into the SoS optimization framework. We envision a framework that resembles a multi-level, mult-fidelity, multi-disciplinary assemblage of optimization problems. The challenge is not simply one of scaling up to a new level (the SoS), but recognizing that the aircraft sub-systems and the integrated vehicle are now intensely cyber-physical, with hardware and software components interacting in complex ways that give rise to new and improved capabilities. The work presented here is a step closer to modeling the information flow that exists in realistic SoS optimization problems between sub-contractors, contractors and the SoS architect.
The evolution of immunity in relation to colonization and migration.
O'Connor, Emily A; Cornwallis, Charlie K; Hasselquist, Dennis; Nilsson, Jan-Åke; Westerdahl, Helena
2018-05-01
Colonization and migration have a crucial effect on patterns of biodiversity, with disease predicted to play an important role in these processes. However, evidence of the effect of pathogens on broad patterns of colonization and migration is limited. Here, using phylogenetic analyses of 1,311 species of Afro-Palaearctic songbirds, we show that colonization events from regions of high (sub-Saharan Africa) to low (the Palaearctic) pathogen diversity were up to 20 times more frequent than the reverse, and that migration has evolved 3 times more frequently from African- as opposed to Palaearctic-resident species. We also found that resident species that colonized the Palaearctic from Africa, as well as African species that evolved long-distance migration to breed in the Palaearctic, have reduced diversity of key immune genes associated with pathogen recognition (major histocompatibility complex class I). These results suggest that changes in the pathogen community that occur during colonization and migration shape the evolution of the immune system, potentially by adjusting the trade-off between the benefits of extensive pathogen recognition and the costs of immunopathology that result from high major histocompatibility complex class I diversity.
Water oxidation chemistry of photosystem II.
Vrettos, John S; Brudvig, Gary W
2002-01-01
The O(2)-evolving complex of photosystem II catalyses the light-driven four-electron oxidation of water to dioxygen in photosynthesis. In this article, the steps leading to photosynthetic O(2) evolution are discussed. Emphasis is given to the proton-coupled electron-transfer steps involved in oxidation of the manganese cluster by oxidized tyrosine Z (Y(*)(Z)), the function of Ca(2+) and the mechanism by which water is activated for formation of an O-O bond. Based on a consideration of the biophysical studies of photosystem II and inorganic manganese model chemistry, a mechanism for photosynthetic O(2) evolution is presented in which the O-O bond-forming step occurs via nucleophilic attack on an electron-deficient Mn(V)=O species by a calcium-bound water molecule. The proposed mechanism includes specific roles for the tetranuclear manganese cluster, calcium, chloride, Y(Z) and His190 of the D1 polypeptide. Recent studies of the ion selectivity of the calcium site in the O(2)-evolving complex and of a functional inorganic manganese model system that test key aspects of this mechanism are also discussed. PMID:12437878
Natural history of chronic hepatitis B: phases in a complex relationship.
Croagh, Catherine M N; Lubel, John S
2014-08-14
Chronic hepatitis B (CHB) is a condition of global prevalence and its sequelae include cirrhosis and hepatocellular carcinoma. The natural history of CHB is a complex interplay of virological, environmental and host factors. The dynamic relationship between the virus and host evolves over the duration of the infection and different phases of the disease have been observed and described. These have been conceptualized in terms of the state of balance between the host immune system and the hepatitis B virus and have been given the labels immune tolerant, immune clearance, immune control and immune escape although other nomenclature is also used. Host factors, such as age at infection, determine progression to chronicity. Virological factors including hepatitis B viral load, mutations and genotype also have an impact on the adverse outcomes of the infection, as do hepatotoxic cofactors such as alcohol. Our understanding of the natural history of CHB has evolved significantly over the past few decades and characterizing the phase of disease of CHB remains an integral part of managing this virus in the clinic.
The structure and resilience of financial market networks
NASA Astrophysics Data System (ADS)
Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.
2012-03-01
Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.
Evolution of Self-Organized Task Specialization in Robot Swarms
Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom
2015-01-01
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. PMID:26247819
Evolution of Self-Organized Task Specialization in Robot Swarms.
Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom
2015-08-01
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.
The long story of mitochondrial DNA and respiratory complex I.
Degli Esposti, Mauro
2017-01-01
This article examines the long story of the relationship between mitochondrial DNA (mtDNA) and respiratory complex I, NADH:Ubiquinone Oxidoreductase, from its beginning in the genome of the bacterial endosymbiont which then evolved into the mitochondria of our cells. The story begins with the evolution of ancient forms of bacterial complex I into the Nuo14 complex I that was present in the alpha proteobacterial ancestor of mitochondria. The story then becomes complicated in the diversity of eukaryotic organisms that are currently recognized. Therefore, it does not have a clear end, because currently available information shows different situations of metabolic adaptation and gene loss, indicating cases of de-evolution of the original protonmotive complex into a system that may fundamentally assist [FeFe]-hydrogenases in re-oxidising metabolically produced NADH under anaerobic conditions. The history of complex I is thus a never ending story of molecular and physiological evolution producing new perspectives for studying the enzyme complex that occupies the largest proportion of mitochondrial DNA.
A Quantitative Approach to Assessing System Evolvability
NASA Technical Reports Server (NTRS)
Christian, John A., III
2004-01-01
When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
Chance vs. necessity in living systems: a false antinomy.
Buiatti, Marcello; Buiatti, Marco
2008-01-01
The concepts of order and randomness are crucial to understand 'living systems' structural and dynamical rules. In the history of biology, they lay behind the everlasting debate on the relative roles of chance and determinism in evolution. Jacques Monod [1970] built a theory where chance (randomness) and determinism (order) were considered as two complementary aspects of life. In the present paper, we will give an up to date version of the problem going beyond the dichotomy between chance and determinism. To this end, we will first see how the view on living systems has evolved from the mechanistic one of the 19th century to the one stemming from the most recent literature, where they emerge as complex systems continuously evolving through multiple interactions among their components and with the surrounding environment. We will then report on the ever increasing evidence of "friendly" co-existence in living beings between a number of "variability generators", fixed by evolution, and the "spontaneous order" derived from interactions between components. We will propose that the "disorder" generated is "benevolent" because it allows living systems to rapidly adapt to changes in the environment by continuously changing, while keeping their internal harmony.
Protein and genome evolution in Mammalian cells for biotechnology applications.
Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J
2009-06-01
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.
Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; McClain, Charles R.
2010-01-01
Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.
NASA Astrophysics Data System (ADS)
Venugopal, Swetha; Moune, Séverine; Williams-Jones, Glyn
2016-10-01
Cerro Negro, the youngest volcano along the Central American Volcanic Belt (CAVB), is a polygenetic cinder cone with relatively frequent basaltic eruptions. The neighbouring El Hoyo complex, of which Las Pilas is the dominant edifice, is a much larger and older complex with milder and less frequent eruptions. Previous studies have suggested a deep link beneath these two closely spaced volcanoes (McKnight, 1995; MacQueen, 2013). Melt inclusions were collected from various tephra samples in order to determine whether a connection exists and to delineate the features of this link. Major, volatile, and trace elemental compositions reveal a distinct geochemical continuum with Cerro Negro defining the primitive endmember and El Hoyo representing the evolved endmember. Magmatic conditions at the time of melt inclusion entrapment were estimated with major and volatile contents: 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for El Hoyo melts with an overall oxygen fugacity at the NNO buffer. Trace element contents are distinct and suggest Cerro Negro magmas fractionally crystallise while El Hoyo magmas are a mix between primitive Cerro Negro melts and residual and evolved El Hoyo magma. Modelling of end member compositions with alphaMELTS confirms the unique nature of El Hoyo magmas as resulting from incremental mixing between Cerro Negro and residual evolved magma at 4 km depth. Combining all available literature data, this study presents a model of the interconnected subsurface plumbing system. This model considers the modern day analogue of the Lemptégy cinder cones in Massif Central, France and incorporates structurally controlled dykes. The main implications of this study are the classification of Cerro Negro as the newest conduit within the El Hoyo Complex as well as the potential re-activation of the El Hoyo edifice.
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W
2016-04-18
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
Flexibility of centromere and kinetochore structures
Burrack, Laura S.; Berman, Judith
2012-01-01
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility manifests in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for studying them. PMID:22445183
CONNECTIVITY OF ENVIRONMENT, HUMAN HEALTH AND SOCIOECONOMICS: IMPLICATIONS FOR SCIENCE AND POLICY
Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization of commerce, evolving patterns of land use, and technological advances in such areas as manufacturing and genetically modified food...
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
NASA Astrophysics Data System (ADS)
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
A journey from reductionist to systemic cell biology aboard the schooner Tara.
Karsenti, Eric
2012-07-01
In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells-hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.
Engineering the object-relation database model in O-Raid
NASA Technical Reports Server (NTRS)
Dewan, Prasun; Vikram, Ashish; Bhargava, Bharat
1989-01-01
Raid is a distributed database system based on the relational model. O-raid is an extension of the Raid system and will support complex data objects. The design of O-Raid is evolutionary and retains all features of relational data base systems and those of a general purpose object-oriented programming language. O-Raid has several novel properties. Objects, classes, and inheritance are supported together with a predicate-base relational query language. O-Raid objects are compatible with C++ objects and may be read and manipulated by a C++ program without any 'impedance mismatch'. Relations and columns within relations may themselves be treated as objects with associated variables and methods. Relations may contain heterogeneous objects, that is, objects of more than one class in a certain column, which can individually evolve by being reclassified. Special facilities are provided to reduce the data search in a relation containing complex objects.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
Xiao, Yi; Jiang, Wen; Zhang, Fuzhong
2017-10-20
Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.
Applications of Evolving Robotic Technology for Head and Neck Surgery.
Sharma, Arun; Albergotti, W Greer; Duvvuri, Umamaheswar
2016-03-01
Assess the use and potential benefits of a new robotic system for transoral radical tonsillectomy, transoral supraglottic laryngectomy, and retroauricular thyroidectomy in a cadaver dissection. Three previously described robotic procedures (transoral radical tonsillectomy, transoral supraglottic laryngectomy, and retroauricular thyroidectomy) were performed in a cadaver using the da Vinci Xi Surgical System. Surgical exposure and access, operative time, and number of collisions were examined objectively. The new robotic system was used to perform transoral radical tonsillectomy with dissection and preservation of glossopharyngeal nerve branches, transoral supraglottic laryngectomy, and retroauricular thyroidectomy. There was excellent exposure without any difficulties in access. Robotic operative times (excluding set-up and docking times) for the 3 procedures in the cadaver were 12.7, 14.3, and 21.2 minutes (excluding retroauricular incision and subplatysmal elevation), respectively. No robotic arm collisions were noted during these 3 procedures. The retroauricular thyroidectomy was performed using 4 robotic ports, each with 8 mm instruments. The use of updated and evolving robotic technology improves the ease of previously described robotic head and neck procedures and may allow surgeons to perform increasingly complex surgeries. © The Author(s) 2015.
Coherence and incoherence collective behavior in financial market
NASA Astrophysics Data System (ADS)
Zhao, Shangmei; Xie, Qiuchao; Lu, Qing; Jiang, Xin; Chen, Wei
2015-10-01
Financial markets have been extensively studied as highly complex evolving systems. In this paper, we quantify financial price fluctuations through a coupled dynamical system composed of phase oscillators. We find that a Financial Coherence and Incoherence (FCI) coexistence collective behavior emerges as the system evolves into the stable state, in which the stocks split into two groups: one is represented by coherent, phase-locked oscillators, the other is composed of incoherent, drifting oscillators. It is demonstrated that the size of the coherent stock groups fluctuates during the economic periods according to real-world financial instabilities or shocks. Further, we introduce the coherent characteristic matrix to characterize the involvement dynamics of stocks in the coherent groups. Clustering results on the matrix provides a novel manifestation of the correlations among stocks in the economic periods. Our analysis for components of the groups is consistent with the Global Industry Classification Standard (GICS) classification and can also figure out features for newly developed industries. These results can provide potentially implications on characterizing the inner dynamical structure of financial markets and making optimal investment into tragedies.
Applications of different design methodologies in navigation systems and development at JPL
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.
Game Changing: NASA's Space Launch System and Science Mission Design
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2013-01-01
NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
Game changing: NASA's space launch system and science mission design
NASA Astrophysics Data System (ADS)
Creech, S. D.
NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan
2017-01-01
Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727
Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.
2015-01-01
A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918
Topics in Complexity: Dynamical Patterns in the Cyberworld
NASA Astrophysics Data System (ADS)
Qi, Hong
Quantitative understanding of mechanism in complex systems is a common "difficult" problem across many fields such as physical, biological, social and economic sciences. Investigation on underlying dynamics of complex systems and building individual-based models have recently been fueled by big data resulted from advancing information technology. This thesis investigates complex systems in social science, focusing on civil unrests on streets and relevant activities online. Investigation consists of collecting data of unrests from open digital source, featuring dynamical patterns underlying, making predictions and constructing models. A simple law governing the progress of two-sided confrontations is proposed with data of activities at micro-level. Unraveling the connections between activity of organizing online and outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, through which adversarial groups evolve online and hyper-escalate ahead of real-world uprisings. Based on the patterns found, noticeable improvement of prediction of civil unrests is achieved. Meanwhile, novel model created from combination of mobility dynamics in the cyberworld and a traditional contagion model can better capture the characteristics of modern civil unrests and other contagion-like phenomena than the original one.
Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paz, Aaron; Mueller, Robert
2016-01-01
ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system
Symplectic evolution of Wigner functions in Markovian open systems.
Brodier, O; Almeida, A M Ozorio de
2004-01-01
The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.
The Evolution of Public Health Emergency Management as a Field of Practice.
Rose, Dale A; Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey
2017-09-01
The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve.
The Evolution of Public Health Emergency Management as a Field of Practice
Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey
2017-01-01
The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve. PMID:28892444
Using NASA's Space Launch System to Enable Game Changing Science Mission Designs
NASA Technical Reports Server (NTRS)
Creech, Stephen D.
2013-01-01
NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.
Ratcliff, William C.; Herron, Matthew D.; Howell, Kathryn; Pentz, Jennifer T.; Rosenzweig, Frank; Travisano, Michael
2013-01-01
The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. PMID:24193369
Schut, Gerrit J; Zadvornyy, Oleg; Wu, Chang-Hao; Peters, John W; Boyd, Eric S; Adams, Michael W W
2016-07-01
Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt. Copyright © 2016 Elsevier B.V. All rights reserved.
The natural science underlying big history.
Chaisson, Eric J
2014-01-01
Nature's many varied complex systems-including galaxies, stars, planets, life, and society-are islands of order within the increasingly disordered Universe. All organized systems are subject to physical, biological, or cultural evolution, which together comprise the grander interdisciplinary subject of cosmic evolution. A wealth of observational data supports the hypothesis that increasingly complex systems evolve unceasingly, uncaringly, and unpredictably from big bang to humankind. These are global history greatly extended, big history with a scientific basis, and natural history broadly portrayed across ∼14 billion years of time. Human beings and our cultural inventions are not special, unique, or apart from Nature; rather, we are an integral part of a universal evolutionary process connecting all such complex systems throughout space and time. Such evolution writ large has significant potential to unify the natural sciences into a holistic understanding of who we are and whence we came. No new science (beyond frontier, nonequilibrium thermodynamics) is needed to describe cosmic evolution's major milestones at a deep and empirical level. Quantitative models and experimental tests imply that a remarkable simplicity underlies the emergence and growth of complexity for a wide spectrum of known and diverse systems. Energy is a principal facilitator of the rising complexity of ordered systems within the expanding Universe; energy flows are as central to life and society as they are to stars and galaxies. In particular, energy rate density-contrasting with information content or entropy production-is an objective metric suitable to gauge relative degrees of complexity among a hierarchy of widely assorted systems observed throughout the material Universe. Operationally, those systems capable of utilizing optimum amounts of energy tend to survive, and those that cannot are nonrandomly eliminated.
The Difference between Uncertainty and Information, and Why This Matters
NASA Astrophysics Data System (ADS)
Nearing, G. S.
2016-12-01
Earth science investigation and arbitration (for decision making) is very often organized around a concept of uncertainty. It seems relatively straightforward that the purpose of our science is to reduce uncertainty about how environmental systems will react and evolve under different conditions. I propose here that approaching a science of complex systems as a process of quantifying and reducing uncertainty is a mistake, and specifically a mistake that is rooted in certain rather hisoric logical errors. Instead I propose that we should be asking questions about information. I argue here that an information-based perspective facilitates almost trivial answers to environmental science questions that are either difficult or theoretically impossible to answer when posed as questions about uncertainty. In particular, I propose that an information-centric perspective leads to: Coherent and non-subjective hypothesis tests for complex system models. Process-level diagnostics for complex systems models. Methods for building complex systems models that allow for inductive inference without the need for a priori specification of likelihood functions or ad hoc error metrics. Asymptotically correct quantification of epistemic uncertainty. To put this in slightly more basic terms, I propose that an information-theoretic philosophy of science has the potential to resolve certain important aspects of the Demarcation Problem and the Duhem-Quine Problem, and that Hydrology and other Earth Systems Sciences can immediately capitalize on this to address some of our most difficult and persistent problems.
Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity
Frickel, Jens; Theodosiou, Loukas
2017-01-01
Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus–host and prey–predator) with a more complex three-species system (virus–host–predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host–virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host–virus coevolution in the complex system and that the virus’ effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species. PMID:28973943
Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments
Mey, Alexandra R.; Wyckoff, Elizabeth E.
2015-01-01
SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001
Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops
Erickson, Gregory M.; Sidebottom, Mark A.; Kay, David I.; Turner, Kevin T.; Ip, Nathan; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.
2015-01-01
Herbivorous reptiles rarely evolve occluding dentitions that allow for the mastication (chewing) of plant matter. Conversely, most herbivorous mammals have occluding teeth with complex tissue architectures that self-wear to complex morphologies for orally processing plants. Dinosaurs stand out among reptiles in that several lineages acquired the capacity to masticate. In particular, the horned ceratopsian dinosaurs, among the most successful Late Cretaceous dinosaurian lineages, evolved slicing dentitions for the exploitation of tough, bulky plant matter. We show how Triceratops, a 9-m-long ceratopsian, and its relatives evolved teeth that wore during feeding to create fullers (recessed central regions on cutting blades) on the chewing surfaces. This unique morphology served to reduce friction during feeding. It was achieved through the evolution of a complex suite of osseous dental tissues rivaling the complexity of mammalian dentitions. Tribological (wear) properties of the tissues are preserved in ~66-million-year-old teeth, allowing the creation of a sophisticated three-dimensional biomechanical wear model that reveals how the complexes synergistically wore to create these implements. These findings, along with similar discoveries in hadrosaurids (duck-billed dinosaurs), suggest that tissue-mediated changes in dental morphology may have played a major role in the remarkable ecological diversification of these clades and perhaps other dinosaurian clades capable of mastication. PMID:26601198
Di Palma, A; Seeman, O D; Alberti, G
2017-07-01
Gamasine mites, mainly of the taxon Dermanyssina, possess a secondarily evolved insemination system (sperm access system), of which there are two, generally recognized, structurally different types, the laelapid- and the phytoseiid-type. The ultrastructure of the female sperm access system in Afrocypholaelaps africana is described. It consists of paired insemination pores, opening between the bases of legs three and four, and paired cuticle-lined tubules that converge into a large, sack-like spermatheca, remarkably cuticle-lined as well. The entire spermatheca and part of the tubules are embedded in a peculiar syncytial tissue where numerous sperm cells are present. The general organization of this insemination system is of the laelapid-type. However, it presents striking structural differences, compared with the systems described in Varroa destructor and Hattena cometis, the other gamasine mites having a laelapid-type system studied ultrastructurally until now. The functional morphology, complexity and variations of the sperm access system in Dermanyssina are discussed and correlated with the evolutionary biology of the group.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
Brains, brawn and sociality: a hyaena’s tale
Holekamp, Kay E.; Dantzer, Ben; Stricker, Gregory; Shaw Yoshida, Kathryn C.; Benson-Amram, Sarah
2015-01-01
Theoretically intelligence should evolve to help animals solve specific types of problems posed by the environment, but it remains unclear how environmental complexity or novelty facilitates the evolutionary enhancement of cognitive abilities, or whether domain-general intelligence can evolve in response to domain-specific selection pressures. The social complexity hypothesis, which posits that intelligence evolved to cope with the labile behaviour of conspecific group-mates, has been strongly supported by work on the sociocognitive abilities of primates and other animals. Here we review the remarkable convergence in social complexity between cercopithecine primates and spotted hyaenas, and describe our tests of predictions of the social complexity hypothesis in regard to both cognition and brain size in hyaenas. Behavioural data indicate that there has been remarkable convergence between primates and hyaenas with respect to their abilities in the domain of social cognition. Furthermore, within the family Hyaenidae, our data suggest that social complexity might have contributed to enlargement of the frontal cortex. However, social complexity failed to predict either brain volume or frontal cortex volume in a larger array of mammalian carnivores. To address the question of whether or not social complexity might be able to explain the evolution of domain-general intelligence as well as social cognition in particular, we presented simple puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species housed in zoos and found that species with larger brains relative to their body mass were more innovative and more successful at opening the boxes. However, social complexity failed to predict success in solving this problem. Overall our work suggests that, although social complexity enhances social cognition, there are no unambiguous causal links between social complexity and either brain size or performance in problem-solving tasks outside the social domain in mammalian carnivores. PMID:26160980
Oz, Tugce; Guvenek, Aysegul; Yildiz, Sadik; Karaboga, Enes; Tamer, Yusuf Talha; Mumcuyan, Nirva; Ozan, Vedat Burak; Senturk, Gizem Hazal; Cokol, Murat; Yeh, Pamela; Toprak, Erdal
2014-09-01
Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The formation, elements of success, and challenges in managing a critical care program: part II.
St Andre, Arthur
2015-05-01
Leaders of critical care services require knowledge and skills not typically acquired during their medical education and training. Leaders possess personality characteristics and evolve and adopt behaviors and knowledge in addition to those useful in the care of patients and rounding with an ICU team. Successful leaders have impeccable integrity, possess a service mentality, are decisive, and speak the truth consistently and accurately. Effective leaders are thoughtful listeners, introspective, develop a range of relationships, and nurture others. They understand group psychology, observe, analyze assumptions, decide, and improve the system of care and the performance of their team members. A leader learns to facilely adapt to circumstance, generate new ideas, and be a catalyst of change. Those most successful further their education as a leader and learn when and where to seek mentorship. Leaders understand their organization and its operational complexities. Leaders learn to participate and knowledgeably contribute to the fiscal aspects of income, expense, budget, and contracts from an institutional and department perspective. Clinician compensation must be commensurate with expectations and be written to motivate and make clear duties that are clinical and nonclinical. A leader understands and plans to address the evolving challenges facing healthcare, especially resource constraints, the emotions and requirements of managing the end of life, the complexities of competing demands and motivations, the bureaucracy of healthcare practice, and reimbursement. Responsibilities to manage and evolve must be met with intelligence, sensitivity, and equanimity.
Kato, Takaaki; Hakari, Yuichiro; Ikeda, Satoru; Jia, Qingxin; Iwase, Akihide; Kudo, Akihiko
2015-03-19
Upon forming a solid solution between CuGaS2 and ZnS, we have successfully developed a highly active (CuGa)(1-x)Zn(2x)S2 photocatalyst for H2 evolution in the presence of sacrificial reagents under visible light irradiation. The Ru-loaded (CuGa)0.8Zn0.4S2 functioned as a H2-evolving photocatalyst in a Z-scheme system with BiVO4 of an O2-evolving photocatalyst and Co complexes of an electron mediator. The Z-scheme system split water into H2 and O2 under visible light and simulated sunlight irradiation. The (CuGa)(1-x)Zn(2x)S2 possessed a p-type semiconductor character. The photoelectrochemical cell with a Ru-loaded (CuGa)0.5ZnS2 photocathode and a CoO(x)-modified BiVO4 photoanode split water even without applying an external bias. Thus, we successfully demonstrated that the metal sulfide material group can be available for Z-scheme and electrochemical systems to achieve solar water splitting into H2 and O2.
User assembly and servicing system for Space Station, an evolving architecture approach
NASA Technical Reports Server (NTRS)
Lavigna, Thomas A.; Cline, Helmut P.
1988-01-01
On-orbit assembly and servicing of a variety of scientific and applications hardware systems is expected to be one of the Space Station's primary functions. The hardware to be serviced will include the attached payloads resident on the Space Station, the free-flying satellites and co-orbiting platforms brought to the Space Station, and the polar orbiting platforms. The requirements for assembly and servicing such a broad spectrum of missions have led to the development of an Assembly and Servicing System Architecture that is composed of a complex array of support elements. This array is comprised of US elements, both Space Station and non-Space Station, and elements provided by Canada to the Space Station Program. For any given servicing or assembly mission, the necessary support elements will be employed in an integrated manner to satisfy the mission-specific needs. The structure of the User Assembly and Servicing System Architecture and the manner in which it will evolved throughout the duration of the phased Space Station Program are discussed. Particular emphasis will be placed upon the requirements to be accommodated in each phase, and the development of a logical progression of capabilities to meet these requirements.
Activation of preexisting transverse structures in an evolving magmatic rift in East Africa
NASA Astrophysics Data System (ADS)
Muirhead, J. D.; Kattenhorn, S. A.
2018-01-01
Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.
Practical aspects of modeling aircraft dynamics from flight data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1984-01-01
The purpose of parameter estimation, a subset of system identification, is to estimate the coefficients (such as stability and control derivatives) of the aircraft differential equations of motion from sampled measured dynamic responses. In the past, the primary reason for estimating stability and control derivatives from flight tests was to make comparisons with wind tunnel estimates. As aircraft became more complex, and as flight envelopes were expanded to include flight regimes that were not well understood, new requirements for the derivative estimates evolved. For many years, the flight determined derivatives were used in simulations to aid in flight planning and in pilot training. The simulations were particularly important in research flight test programs in which an envelope expansion into new flight regimes was required. Parameter estimation techniques for estimating stability and control derivatives from flight data became more sophisticated to support the flight test programs. As knowledge of these new flight regimes increased, more complex aircraft were flown. Much of this increased complexity was in sophisticated flight control systems. The design and refinement of the control system required higher fidelity simulations than were previously required.
Sinzobahamvya, Nicodème; Photiadis, Joachim; Kopp, Thorsten; Arenz, Claudia; Haun, Christoph; Schindler, Ehrenfried; Hraska, Viktor; Asfour, Boulos
2012-01-01
Planning and budgeting for congenital heart surgery depend primarily on how closely reimbursement matches costs and on the number and complexity of the surgical procedures. Aristotle complexity scores for the year 2010 were correlated with hospital costs and with reimbursement according to the German diagnosis-related groups (DRG) system. Unit surgical performance was estimated as surgical performance (complexity score × hospital survival) times the number of primary procedures. This study investigated how this performance evolved during years 2006 to 2010. Hospital costs and reimbursements correlated highly with Aristotle comprehensive complexity levels (Spearman r = 1). Mean costs and reimbursement reached 35,050
The Battle for Iron between Humans and Microbes.
Carver, Peggy L
2018-01-01
Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Human systems dynamics: Toward a computational model
NASA Astrophysics Data System (ADS)
Eoyang, Glenda H.
2012-09-01
A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Eaton-Rye, Julian J; Tomo, Tatsuya; Nishihara, Hiroshi; Satoh, Kimiyuki; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I
2014-09-01
The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese-calcium (Mn₄CaO₅(H₂O)₄) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.
The Natural Science Underlying Big History
Chaisson, Eric J.
2014-01-01
Nature's many varied complex systems—including galaxies, stars, planets, life, and society—are islands of order within the increasingly disordered Universe. All organized systems are subject to physical, biological, or cultural evolution, which together comprise the grander interdisciplinary subject of cosmic evolution. A wealth of observational data supports the hypothesis that increasingly complex systems evolve unceasingly, uncaringly, and unpredictably from big bang to humankind. These are global history greatly extended, big history with a scientific basis, and natural history broadly portrayed across ∼14 billion years of time. Human beings and our cultural inventions are not special, unique, or apart from Nature; rather, we are an integral part of a universal evolutionary process connecting all such complex systems throughout space and time. Such evolution writ large has significant potential to unify the natural sciences into a holistic understanding of who we are and whence we came. No new science (beyond frontier, nonequilibrium thermodynamics) is needed to describe cosmic evolution's major milestones at a deep and empirical level. Quantitative models and experimental tests imply that a remarkable simplicity underlies the emergence and growth of complexity for a wide spectrum of known and diverse systems. Energy is a principal facilitator of the rising complexity of ordered systems within the expanding Universe; energy flows are as central to life and society as they are to stars and galaxies. In particular, energy rate density—contrasting with information content or entropy production—is an objective metric suitable to gauge relative degrees of complexity among a hierarchy of widely assorted systems observed throughout the material Universe. Operationally, those systems capable of utilizing optimum amounts of energy tend to survive, and those that cannot are nonrandomly eliminated. PMID:25032228
Multifunctional nanoparticulate polyelectrolyte complexes.
Hartig, Sean M; Greene, Rachel R; DasGupta, Jayasri; Carlesso, Gianluca; Dikov, Mikhail M; Prokop, Ales; Davidson, Jeffrey M
2007-12-01
Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <-30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Water dynamics in glass ionomer cements
NASA Astrophysics Data System (ADS)
Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.
2016-07-01
Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson, Jill K; Bianconi, Matheus; Besnard, Guillaume; Dunning, Luke T; Lundgren, Marjorie R; Holota, Helene; Vorontsova, Maria S; Hidalgo, Oriane; Leitch, Ilia J; Nosil, Patrik; Osborne, Colin P; Christin, Pascal-Antoine
2016-12-01
Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C 4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C 4 and non-C 4 genotypes, with some populations using laterally acquired C 4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C 4 and non-C 4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C 4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C 4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C 4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.
Drucker, Daniel J
2016-03-01
Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawton, Craig R.
2015-01-01
The military is undergoing a significant transformation as it modernizes for the information age and adapts to address an emerging asymmetric threat beyond traditional cold war era adversaries. Techniques such as traditional large-scale, joint services war gaming analysis are no longer adequate to support program evaluation activities and mission planning analysis at the enterprise level because the operating environment is evolving too quickly. New analytical capabilities are necessary to address modernization of the Department of Defense (DoD) enterprise. This presents significant opportunity to Sandia in supporting the nation at this transformational enterprise scale. Although Sandia has significant experience with engineeringmore » system of systems (SoS) and Complex Adaptive System of Systems (CASoS), significant fundamental research is required to develop modeling, simulation and analysis capabilities at the enterprise scale. This report documents an enterprise modeling framework which will enable senior level decision makers to better understand their enterprise and required future investments.« less
Jackson, Timothy N W; Fry, Bryan G
2016-09-07
The "function debate" in the philosophy of biology and the "venom debate" in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between "venomous" and "non-venomous" species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology.
Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)
NASA Astrophysics Data System (ADS)
Newman, David
2015-03-01
Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.
NASA Astrophysics Data System (ADS)
Yoon, Susan Anne
Understanding the world through a complex systems lens has recently garnered a great deal of interest in many knowledge disciplines. In the educational arena, interactional studies, through their focus on understanding patterns of system behaviour including the dynamical processes and trajectories of learning, lend support for investigating how a complex systems approach can inform educational research. This study uses previously existing literature and tools for complex systems applications and seeks to extend this research base by exploring learning outcomes of a complex systems framework when applied to curriculum and instruction. It is argued that by applying the evolutionary dynamics of variation, interaction and selection, complexity may be harnessed to achieve growth in both the social and cognitive systems of the classroom. Furthermore, if the goal of education, i.e., the social system under investigation, is to teach for understanding, conceptual knowledge of the kind described in Popper's (1972; 1976) World 3, needs to evolve. Both the study of memetic processes and knowledge building pioneered by Bereiter (cf. Bereiter, 2002) draw on the World 3 notion of ideas existing as conceptual artifacts that can be investigated as products outside of the individual mind providing an educational lens from which to proceed. The curricular topic addressed is the development of an ethical understanding of the scientific and technological issues of genetic engineering. 11 grade 8 students are studied as they proceed through 40 hours of curricular instruction based on the complex systems evolutionary framework. Results demonstrate growth in both complex systems thinking and content knowledge of the topic of genetic engineering. Several memetic processes are hypothesized to have influenced how and why ideas change. Categorized by factors influencing either reflective or non-reflective selection, these processes appear to have exerted differential effects on students' abilities to think and act in complex ways at various points throughout the study. Finally, an analysis of winner and loser memes is offered that is intended to reveal information about the conceptual system---its strengths and deficiencies---that can help educators assess curricular goals and organize and construct additional educational activities.
A Complex Systems Model Approach to Quantified Mineral Resource Appraisal
Gettings, M.E.; Bultman, M.W.; Fisher, F.S.
2004-01-01
For federal and state land management agencies, mineral resource appraisal has evolved from value-based to outcome-based procedures wherein the consequences of resource development are compared with those of other management options. Complex systems modeling is proposed as a general framework in which to build models that can evaluate outcomes. Three frequently used methods of mineral resource appraisal (subjective probabilistic estimates, weights of evidence modeling, and fuzzy logic modeling) are discussed to obtain insight into methods of incorporating complexity into mineral resource appraisal models. Fuzzy logic and weights of evidence are most easily utilized in complex systems models. A fundamental product of new appraisals is the production of reusable, accessible databases and methodologies so that appraisals can easily be repeated with new or refined data. The data are representations of complex systems and must be so regarded if all of their information content is to be utilized. The proposed generalized model framework is applicable to mineral assessment and other geoscience problems. We begin with a (fuzzy) cognitive map using (+1,0,-1) values for the links and evaluate the map for various scenarios to obtain a ranking of the importance of various links. Fieldwork and modeling studies identify important links and help identify unanticipated links. Next, the links are given membership functions in accordance with the data. Finally, processes are associated with the links; ideally, the controlling physical and chemical events and equations are found for each link. After calibration and testing, this complex systems model is used for predictions under various scenarios.
Complexity in the Chinese stock market and its relationships with monetary policy intensity
NASA Astrophysics Data System (ADS)
Ying, Shangjun; Fan, Ying
2014-01-01
This paper introduces how to formulate the CSI300 evolving stock index using the Paasche compiling technique of weighed indexes after giving the GCA model. It studies dynamics characteristics of the Chinese stock market and its relationships with monetary policy intensity, based on the evolving stock index. It concludes by saying that it is possible to construct a dynamics equation of the Chinese stock market using three variables, and that it is useless to regular market-complexity according to changing intensity of external factors from a chaos point of view.
A blueprint for strategic urban research: the urban piazza
Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S.; Rodríguez-Pose, Andrés
2014-01-01
Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this ‘urban century’ demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ‘New Urban World’ research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues. PMID:25339782
A blueprint for strategic urban research: the urban piazza.
Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S; Rodríguez-Pose, Andrés
2014-01-01
Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this 'urban century' demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ' New Urban World ' research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues.
Clynne, Michael A.; Calvert, Andrew T.; Wolfe, Edward W.; Evarts, Russell C.; Fleck, Robert J.; Lanphere, Marvin A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Preliminary petrographic analysis of these older rocks suggests that the volcano’s magmatic system was simpler during the Ape Canyon stage than during subsequent stages and that the magmatic system has evolved from relatively simple to more complex as the volcano matured. Compositional cycles as envisioned by C.A. Hopson and W.G. Melson for the Spirit Lake stage probably did not occur during the Ape Canyon stage but developed later during the Cougar and Swift Creek stages.
Model of mobile agents for sexual interactions networks
NASA Astrophysics Data System (ADS)
González, M. C.; Lind, P. G.; Herrmann, H. J.
2006-02-01
We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
Efficiency Analysis of Integrated Public Hospital Networks in Outpatient Internal Medicine.
Ortíz-Barrios, Miguel Angel; Escorcia-Caballero, Juan P; Sánchez-Sánchez, Fabián; De Felice, Fabio; Petrillo, Antonella
2017-09-07
Healthcare systems are evolving towards a complex network of interconnected services due to the increasing costs and the increasing expectations for high service levels. It is evidenced in the literature the importance of implementing management techniques and sophisticated methods to improve the efficiency of healthcare systems, especially in emerging economies. This paper proposes an integrated collaboration model between two public hospitals to reach the reduction of weighted average lead time in outpatient internal medicine department. A strategic framework based on value stream mapping and collaborative practices has been developed in real case study settled in Colombia.
Transition Metals and Virulence in Bacteria
Palmer, Lauren D.; Skaar, Eric P.
2016-01-01
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971
Evolutionary rewiring of bacterial regulatory networks
Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.
2015-01-01
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301
Transition Metals and Virulence in Bacteria.
Palmer, Lauren D; Skaar, Eric P
2016-11-23
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
NASA Astrophysics Data System (ADS)
Domercant, Jean Charles
The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different portfolios of candidate system types are used to generate an array of architecture alternatives that are then evaluated using an engagement model. This performance data is combined with both measured architecture complexity and programmatic data to assign an acquisition value to each alternative. This proves useful when selecting alternatives most likely to meet current and future capability needs.
Nonsomatotopic organization of the higher motor centers in octopus.
Zullo, Letizia; Sumbre, German; Agnisola, Claudio; Flash, Tamar; Hochner, Binyamin
2009-10-13
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Parallel dispatch: a new paradigm of electrical power system dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang
Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complexmore » power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.« less
Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall
2018-05-23
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Nanotechnology use with cosmeceuticals.
Golubovic-Liakopoulos, Nevenka; Simon, Sanford R; Shah, Bhavdeep
2011-09-01
The skin is a complex organ and its aging is a complex process. Cutaneous aging is influenced by factors such as sun exposure, genetics, stress and the environment. While skin laxity, rhytides, and dyschromia appear on the surface, these processes originate in deeper layers including the dermis and subcutaneous tissues. Until recently, most topical skin treatments were applied to, and consequently only affected the skin surface. Skin care has evolved to be scientifically based, and as knowledge increases about the physiology of the skin, novel methods of maintaining its health and appearance are developed. New generation skin care products are targeting multiple aging mechanisms by utilizing functional active ingredients in combination with innovative delivery systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamic Skin Patterns in Cephalopods
How, Martin J.; Norman, Mark D.; Finn, Julian; Chung, Wen-Sung; Marshall, N. Justin
2017-01-01
Cephalopods are unrivaled in the natural world in their ability to alter their visual appearance. These mollusks have evolved a complex system of dermal units under neural, hormonal, and muscular control to produce an astonishing variety of body patterns. With parallels to the pixels on a television screen, cephalopod chromatophores can be coordinated to produce dramatic, dynamic, and rhythmic displays, defined collectively here as “dynamic patterns.” This study examines the nature, context, and potential functions of dynamic patterns across diverse cephalopod taxa. Examples are presented for 21 species, including 11 previously unreported in the scientific literature. These range from simple flashing or flickering patterns, to highly complex passing wave patterns involving multiple skin fields. PMID:28674500
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
2007-01-01
Engineers, who design systems using text specification documents, focus their work upon the completed system to meet Performance, time and budget goals. Consistency and integrity is difficult to maintain within text documents for a single complex system and more difficult to maintain as several systems are combined into higher-level systems, are maintained over decades, and evolve technically and in performance through updates. This system design approach frequently results in major changes during the system integration and test phase, and in time and budget overruns. Engineers who build system specification documents within a model-based systems environment go a step further and aggregate all of the data. They interrelate all of the data to insure consistency and integrity. After the model is constructed, the various system specification documents are prepared, all from the same database. The consistency and integrity of the model is assured, therefore the consistency and integrity of the various specification documents is insured. This article attempts to define model-based systems relative to such an environment. The intent is to expose the complexity of the enabling problem by outlining what is needed, why it is needed and how needs are being addressed by international standards writing teams.
University participation via UNIDATA, part 1
NASA Technical Reports Server (NTRS)
Dutton, J.
1986-01-01
The UNIDATA Project is a cooperative university project, operated by the University Corporation for Atmospheric Research (UCAR) with National Science Foundation (NSF) funding, aimed at providing interactive communication and computations to the university community in the atmospheric and oceanic sciences. The initial focus has been on providing access to data for weather analysis and prediction. However, UNIDATA is in the process of expanding and possibly providing access to the Pilot Climate Data System (PCDS) through the UNIDATA system in an effort to develop prototypes for an Earth science information system. The notion of an Earth science information system evolved from discussions within NASA and several advisory committees in anticipation of receiving data from the many Earth observing instruments on the space station complex (Earth Observing System).
Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J
2012-01-01
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.
Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B
2015-12-01
Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Independent origins of neurons and synapses: insights from ctenophores
Moroz, Leonid L.; Kohn, Andrea B.
2016-01-01
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once. PMID:26598724
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
NASA Technical Reports Server (NTRS)
Smith, Phillip J.; Billings, Charles; McCoy, C. Elaine; Orasanu, Judith
1999-01-01
The air traffic management system in the United States is an example of a distributed problem solving system. It has elements of both cooperative and competitive problem-solving. This system includes complex organizations such as Airline Operations Centers (AOCs), the FAA Air Traffic Control Systems Command Center (ATCSCC), and traffic management units (TMUs) at enroute centers and TRACONs, all of which have a major focus on strategic decision-making. It also includes individuals concerned more with tactical decisions (such as air traffic controllers and pilots). The architecture for this system has evolved over time to rely heavily on the distribution of tasks and control authority in order to keep cognitive complexity manageable for any one individual operator, and to provide redundancy (both human and technological) to serve as a safety net to catch the slips or mistakes that any one person or entity might make. Currently, major changes are being considered for this architecture, especially with respect to the locus of control, in an effort to improve efficiency and safety. This paper uses a series of case studies to help evaluate some of these changes from the perspective of system complexity, and to point out possible alternative approaches that might be taken to improve system performance. The paper illustrates the need to maintain a clear understanding of what is required to assure a high level of performance when alternative system architectures and decompositions are developed.
A Network Based Theory of Health Systems and Cycles of Well-being
Rhodes, Michael Grant
2013-01-01
There are two dominant approaches to describe and understand the anatomy of complete health and well-being systems internationally. Yet, neither approach has been able to either predict or explain occasional but dramatic crises in health and well-being systems around the world and in developed emerging market or developing country contexts. As the impacts of such events can be measured not simply in terms of their social and economic consequences but also public health crises, there is a clear need to look for and formulate an alternative approach. This paper examines multi-disciplinary theoretical evidence to suggest that health systems exhibit natural and observable systemic and long cycle characteristics that can be modelled. A health and well-being system model of two slowly evolving anthropological network sub-systems is defined. The first network sub-system consists of organised professional networks of exclusive suppliers of health and well-being services. The second network sub-system consists of communities organising themselves to resource those exclusive services. Together these two network sub-systems interact to form the specific (sovereign) health and well-being systems we know today. But the core of a truly ‘complex adaptive system’ can also be identified and a simplified two sub-system model of recurring Lotka-Volterra predator-prey cycles is specified. The implications of such an adaptive and evolving model of system anatomy for effective public health, social security insurance and well-being systems governance could be considerable. PMID:24596831
Homan, J Michael
2010-01-01
The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours.
Vodovotz, Y; Zasypkin, D; Lertsiriyothin, W; Lee, T C; Bourland, C T
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
Quantification and characterization of volatiles evolved during extrusion of rice and soy flours
NASA Technical Reports Server (NTRS)
Vodovotz, Y.; Zasypkin, D.; Lertsiriyothin, W.; Lee, T. C.; Bourland, C. T.
2000-01-01
NASA-Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long-duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice, and wheat) may be a central feature of a biologically based Advanced Life Support System. To convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate and reach toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture, and triplicate samples were extruded using a tabletop single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMACs). Results showed a combination of alcohols, aldehydes, ketones, and carbonyl compounds in the different flours. Each compound and its SMAC value, as well as its impact on the air revitalization system, was discussed.
From complexity to reality: providing useful frameworks for defining systems of care.
Levison-Johnson, Jody; Wenz-Gross, Melodie
2010-02-01
Because systems of care are not uniform across communities, there is a need to better document the process of system development, define the complexity, and describe the development of the structures, processes, and relationships within communities engaged in system transformation. By doing so, we begin to identify the necessary and sufficient components that, at minimum, move us from usual care within a naturally occurring system to a true system of care. Further, by documenting and measuring the degree to which key components are operating, we may be able to identify the most successful strategies in creating system reform. The theory of change and logic model offer a useful framework for communities to begin the adaptive work necessary to effect true transformation. Using the experience of two system of care communities, this new definition and the utility of a theory of change and logic model framework for defining local system transformation efforts will be discussed. Implications for the field, including the need to further examine the natural progression of systems change and to create quantifiable measures of transformation, will be raised as new challenges for the evolving system of care movement.
Moving sociohydrology forward: a synthesis across studies
NASA Astrophysics Data System (ADS)
Troy, T. J.; Konar, M.; Srinivasan, V.; Thompson, S.
2015-08-01
Sociohydrology is the study of coupled human-water systems, building on the premise that water and human systems co-evolve: the state of the water system feeds back onto the human system, and vice versa, a situation denoted as "two-way coupling". A recent special issue in HESS/ESD, "Predictions under change: water, earth, and biota in the Anthropocene", includes a number of sociohydrologic publications that allow for a survey of the current state of understanding of sociohydrology and the dynamics and feedbacks that couple water and human systems together, of the research methodologies being employed to date, and of the normative and ethical issues raised by the study of sociohydrologic systems. Although sociohydrology is concerned with coupled human-water systems, the feedback may be filtered by a connection through natural or social systems, for example, the health of a fishery or through the global food trade, and therefore it may not always be possible to treat the human-water system in isolation. As part of a larger complex system, sociohydrology can draw on tools developed in the social-ecological and complex systems literature to further our sociohydrologic knowledge, and this is identified as a ripe area of future research.
EarthCube as an information resource marketplace; the GEAR Project conceptual design
NASA Astrophysics Data System (ADS)
Richard, S. M.; Zaslavsky, I.; Gupta, A.; Valentine, D.
2015-12-01
Geoscience Architecture for Research (GEAR) is approaching EarthCube design as a complex and evolving socio-technical federation of systems. EarthCube is intended to support the science research enterprise, for which there is no centralized command and control, requirements are a moving target, the function and behavior of the system must evolve and adapt as new scientific paradigms emerge, and system participants are conducting research that inherently implies seeking new ways of doing things. EarthCube must address evolving user requirements and enable domain and project systems developed under different management and for different purposes to work together. The EC architecture must focus on creating a technical environment that enables new capabilities by combining existing and newly developed resources in various ways, and encourages development of new resource designs intended for re-use and interoperability. In a sense, instead of a single architecture design, GEAR provides a way to accommodate multiple designs tuned to different tasks. This agile, adaptive, evolutionary software development style is based on a continuously updated portfolio of compatible components that enable new sub-system architecture. System users make decisions about which components to use in this marketplace based on performance, satisfaction, and impact metrics collected continuously to evaluate components, determine priorities, and guide resource allocation decisions by the system governance agency. EC is designed as a federation of independent systems, and although the coordinator of the EC system may be named an enterprise architect, the focus of the role needs to be organizing resources, assessing their readiness for interoperability with the existing EC component inventory, managing dependencies between transient subsystems, mechanisms of stakeholder engagement and inclusion, and negotiation of standard interfaces, rather than actual specification of components. Composition of components will be developed by projects that involve both domain scientists and CI experts for specific research problems. We believe an agile, marketplace type approach is an essential architectural strategy for EarthCube.
Immune Ecosystem of Virus-Infected Host Tissues.
Maarouf, Mohamed; Rai, Kul Raj; Goraya, Mohsan Ullah; Chen, Ji-Long
2018-05-06
Virus infected host cells serve as a central immune ecological niche during viral infection and replication and stimulate the host immune response via molecular signaling. The viral infection and multiplication process involves complex intracellular molecular interactions between viral components and the host factors. Various types of host cells are also involved to modulate immune factors in delicate and dynamic equilibrium to maintain a balanced immune ecosystem in an infected host tissue. Antiviral host arsenals are equipped to combat or eliminate viral invasion. However, viruses have evolved with strategies to counter against antiviral immunity or hijack cellular machinery to survive inside host tissue for their multiplication. However, host immune systems have also evolved to neutralize the infection; which, in turn, either clears the virus from the infected host or causes immune-mediated host tissue injury. A complex relationship between viral pathogenesis and host antiviral defense could define the immune ecosystem of virus-infected host tissues. Understanding of the molecular mechanism underlying this ecosystem would uncover strategies to modulate host immune function for antiviral therapeutics. This review presents past and present updates of immune-ecological components of virus infected host tissue and explains how viruses subvert the host immune surveillances.
Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.
Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi
2016-01-19
We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.
Evolving virtual creatures and catapults.
Chaumont, Nicolas; Egli, Richard; Adami, Christoph
2007-01-01
We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.
Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan
2016-10-28
Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.
2009-04-16
CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the first stage of the Delta II rocket waits on the gantry for the solid rocket boosters. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett
Manned Mars mission communication and data management systems
NASA Technical Reports Server (NTRS)
White, Ronald E.
1986-01-01
A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen
2017-11-01
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evolving Identities: The Person(al), the Profession(al), and the Artist(ic)
ERIC Educational Resources Information Center
Kaimal, Girija
2015-01-01
In this viewpoint, the author shares some experiences of living in the United States for the past 16 years and explores the uses of art and narratives in uncovering bias, illustrating lived experience, and informing research enterprises. In addition, contradictions, vulnerabilities, and complexities that underlie evolving constructions of culture,…
Optimists' Creed: Brave New Cyberlearning, Evolving Utopias (Circa 2041)
ERIC Educational Resources Information Center
Burleson, Winslow; Lewis, Armanda
2016-01-01
This essay imagines the role that artificial intelligence innovations play in the integrated living, learning and research environments of 2041. Here, in 2041, in the context of increasingly complex wicked challenges, whose solutions by their very nature continue to evade even the most capable experts, society and technology have co-evolved to…
Evolution of the Division of Labor between Genes and Enzymes in the RNA World
Boza, Gergely; Szilágyi, András; Kun, Ádám; Santos, Mauro; Szathmáry, Eörs
2014-01-01
The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA. PMID:25474573
Evolution of the division of labor between genes and enzymes in the RNA world.
Boza, Gergely; Szilágyi, András; Kun, Ádám; Santos, Mauro; Szathmáry, Eörs
2014-12-01
The RNA world is a very likely interim stage of the evolution after the first replicators and before the advent of the genetic code and translated proteins. Ribozymes are known to be able to catalyze many reaction types, including cofactor-aided metabolic transformations. In a metabolically complex RNA world, early division of labor between genes and enzymes could have evolved, where the ribozymes would have been transcribed from the genes more often than the other way round, benefiting the encapsulating cells through this dosage effect. Here we show, by computer simulations of protocells harboring unlinked RNA replicators, that the origin of replicational asymmetry producing more ribozymes from a gene template than gene strands from a ribozyme template is feasible and robust. Enzymatic activities of the two modeled ribozymes are in trade-off with their replication rates, and the relative replication rates compared to those of complementary strands are evolvable traits of the ribozymes. The degree of trade-off is shown to have the strongest effect in favor of the division of labor. Although some asymmetry between gene and enzymatic strands could have evolved even in earlier, surface-bound systems, the shown mechanism in protocells seems inevitable and under strong positive selection. This could have preadapted the genetic system for transcription after the subsequent origin of chromosomes and DNA.
Mechanosensation is evolutionarily tuned to locomotor mechanics
Aiello, Brett R.; Westneat, Mark W.; Hale, Melina E.
2017-01-01
The biomechanics of animal limbs has evolved to meet the functional demands for movement associated with different behaviors and environments. Effective movement relies not only on limb mechanics but also on appropriate mechanosensory feedback. By comparing sensory ability and mechanics within a phylogenetic framework, we show that peripheral mechanosensation has evolved with limb biomechanics, evolutionarily tuning the neuromechanical system to its functional demands. We examined sensory physiology and mechanics of the pectoral fins, forelimb homologs, in the fish family Labridae. Labrid fishes exhibit extraordinary morphological and behavioral diversity and use pectoral fin-based propulsion with fins ranging in shape from high aspect ratio (AR) wing-like fins to low AR paddle-like fins. Phylogenetic character analysis demonstrates that high AR fins evolved independently multiple times in this group. Four pairs of species were examined; each included a plesiomorphic low AR and a high AR species. Within each species pair, the high AR species demonstrated significantly stiffer fin rays in comparison with the low AR species. Afferent sensory nerve activity was recorded during fin ray bending. In all cases, afferents of stiffer fins were more sensitive at lower displacement amplitudes, demonstrating mechanosensory tuning to fin mechanics and a consistent pattern of correlated evolution. We suggest that these data provide a clear example of parallel evolution in a complex neuromechanical system, with a strong link between multiple phenotypic characters: pectoral fin shape, swimming behavior, fin ray stiffness, and mechanosensory sensitivity. PMID:28396411
From STEM to STEAM: Toward a Human-Centered Education
NASA Technical Reports Server (NTRS)
Boy, Guy A.
2013-01-01
The 20th century was based on local linear engineering of complicated systems. We made cars, airplanes and chemical plants for example. The 21st century has opened a new basis for holistic non-linear design of complex systems, such as the Internet, air traffic management and nanotechnologies. Complexity, interconnectivity, interaction and communication are major attributes of our evolving society. But, more interestingly, we have started to understand that chaos theories may be more important than reductionism, to better understand and thrive on our planet. Systems need to be investigated and tested as wholes, which requires a cross-disciplinary approach and new conceptual principles and tools. Consequently, schools cannot continue to teach isolated disciplines based on simple reductionism. Science; Technology, Engineering, and Mathematics (STEM) should be integrated together with the Arts1 to promote creativity together with rationalization, and move to STEAM (with an "A" for Arts). This new concept emphasizes the possibility of longer-term socio-technical futures instead of short-term financial predictions that currently lead to uncontrolled economies. Human-centered design (HCD) can contribute to improving STEAM education technologies, systems and practices. HCD not only provides tools and techniques to build useful and usable things, but also an integrated approach to learning by doing, expressing and critiquing, exploring possible futures, and understanding complex systems.
Methodological Problems of Nanotechnoscience
NASA Astrophysics Data System (ADS)
Gorokhov, V. G.
Recently, we have reported on the definitions of nanotechnology as a new type of NanoTechnoScience and on the nanotheory as a cluster of the different natural and engineering theories. Nanotechnology is not only a new type of scientific-engineering discipline, but it evolves also in a “nonclassical” way. Nanoontology or nano scientific world view has a function of the methodological orientation for the choice the theoretical means and methods toward a solution to the scientific and engineering problems. This allows to change from one explanation and scientific world view to another without any problems. Thus, nanotechnology is both a field of scientific knowledge and a sphere of engineering activity, in other words, NanoTechnoScience is similar to Systems Engineering as the analysis and design of large-scale, complex, man/machine systems but micro- and nanosystems. Nano systems engineering as well as Macro systems engineering includes not only systems design but also complex research. Design orientation has influence on the change of the priorities in the complex research and of the relation to the knowledge, not only to “the knowledge about something”, but also to the knowledge as the means of activity: from the beginning control and restructuring of matter at the nano-scale is a necessary element of nanoscience.
NASA Astrophysics Data System (ADS)
Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew
2017-04-01
Landscape Evolution Models (LEMs) are proven to be useful tools in understanding the morphodynamics of coast and estuarine systems. However, perhaps owing to the lack of research in this area, current models are not capable of simulating the dynamic interactions between these systems and their co-evolution at the meso-scale. Through a novel coupling of numerical models, this research is designed to explore coupled coastal-estuarine interactions, controls on system behaviour and the influence that environmental change could have. This will contribute to the understanding of the morphodynamics of these systems and how they may behave and evolve over the next century in response to climate changes, with the aim of informing management practices. This goal is being achieved through the modification and coupling of the one-line Coastline Evolution Model (CEM) with the hydrodynamic LEM CAESAR-Lisflood (C-L). The major issues faced with coupling these programs are their differing complexities and the limited graphical visualisations produced by the CEM that hinder the dissemination of results. The work towards overcoming these issues and reported here, include a new version of the CEM that incorporates a range of more complex geomorphological processes and boasts a graphical user interface that guides users through model set-up and projects a live output during model runs. The improved version is a stand-alone tool that can be used for further research projects and for teaching purposes. A sensitivity analysis using the Morris method has been completed to identify which key variables, including wave climate, erosion and weathering values, dominate the control of model behaviour. The model is being applied and tested using the evolution of the Holderness Coast, Humber Estuary and Spurn Point on the east coast of England (UK), which possess diverse geomorphologies and complex, co-evolving sediment pathways. Simulations using the modified CEM are currently being completed to ascertain the processes influential to the morphodynamics and evolution of these systems; presently this includes increasing sea levels and changing wave climate patterns. Outputs and findings from these runs will be presented and discussed, with the aid of the improved graphical visualisations and animations that illustrate the evolution of simulated environments.
Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan
2016-01-01
Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829
The Complex Origins of the Registrar
ERIC Educational Resources Information Center
Smith, Shawn C.
2012-01-01
The origins of the registrar's office are complex. According to common tradition, the registrar was, or evolved from, the office of the beadle (sometimes referred to as "bedel") in the medieval university. This tradition is incorrect; the story is more complex. The beadle sometimes performed functions similar to those performed by the…
Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Holman, Karen L. McFarlane; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 Å rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10° (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80°. Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0° and 23° for the average angle between the Sr–Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn4Ca cluster of the oxygen-evolving complex in PS II. PMID:15491134
A walk on the tundra: Host-parasite interactions in an extreme environment.
Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G
2014-08-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems.
A walk on the tundra: Host–parasite interactions in an extreme environment
Kutz, Susan J.; Hoberg, Eric P.; Molnár, Péter K.; Dobson, Andy; Verocai, Guilherme G.
2014-01-01
Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164
Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L
2005-05-22
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.
Richter, Corinna; Chang, James T; Fineran, Peter C
2012-10-19
Phages are the most abundant biological entities on earth and pose a constant challenge to their bacterial hosts. Thus, bacteria have evolved numerous 'innate' mechanisms of defense against phage, such as abortive infection or restriction/modification systems. In contrast, the clustered regularly interspaced short palindromic repeats (CRISPR) systems provide acquired, yet heritable, sequence-specific 'adaptive' immunity against phage and other horizontally-acquired elements, such as plasmids. Resistance is acquired following viral infection or plasmid uptake when a short sequence of the foreign genome is added to the CRISPR array. CRISPRs are then transcribed and processed, generally by CRISPR associated (Cas) proteins, into short interfering RNAs (crRNAs), which form part of a ribonucleoprotein complex. This complex guides the crRNA to the complementary invading nucleic acid and targets this for degradation. Recently, there have been rapid advances in our understanding of CRISPR/Cas systems. In this review, we will present the current model(s) of the molecular events involved in both the acquisition of immunity and interference stages and will also address recent progress in our knowledge of the regulation of CRISPR/Cas systems.
Inverting pump-probe spectroscopy for state tomography of excitonic systems.
Hoyer, Stephan; Whaley, K Birgitta
2013-04-28
We propose a two-step protocol for inverting ultrafast spectroscopy experiments on a molecular aggregate to extract the time-evolution of the excited state density matrix. The first step is a deconvolution of the experimental signal to determine a pump-dependent response function. The second step inverts this response function to obtain the quantum state of the system, given a model for how the system evolves following the probe interaction. We demonstrate this inversion analytically and numerically for a dimer model system, and evaluate the feasibility of scaling it to larger molecular aggregates such as photosynthetic protein-pigment complexes. Our scheme provides a direct alternative to the approach of determining all Hamiltonian parameters and then simulating excited state dynamics.
The Evolvement of Automobile Steering System Based on TRIZ
NASA Astrophysics Data System (ADS)
Zhao, Xinjun; Zhang, Shuang
Products and techniques pass through a process of birth, growth, maturity, death and quit the stage like biological evolution process. The developments of products and techniques conform to some evolvement rules. If people know and hold these rules, they can design new kind of products and forecast the develop trends of the products. Thereby, enterprises can grasp the future technique directions of products, and make product and technique innovation. Below, based on TRIZ theory, the mechanism evolvement, the function evolvement and the appearance evolvement of automobile steering system had been analyzed and put forward some new ideas about future automobile steering system.
Agyepong, Irene Akua; Kodua, Augustina; Adjei, Sam; Adam, Taghreed
2012-10-01
Implementation of policies (decisions) in the health sector is sometimes defeated by the system's response to the policy itself. This can lead to counter-intuitive, unanticipated, or more modest effects than expected by those who designed the policy. The health sector fits the characteristics of complex adaptive systems (CAS) and complexity is at the heart of this phenomenon. Anticipating both positive and negative effects of policy decisions, understanding the interests, power and interaction between multiple actors; and planning for the delayed and distal impact of policy decisions are essential for effective decision making in CAS. Failure to appreciate these elements often leads to a series of reductionist approach interventions or 'fixes'. This in turn can initiate a series of negative feedback loops that further complicates the situation over time. In this paper we use a case study of the Additional Duty Hours Allowance (ADHA) policy in Ghana to illustrate these points. Using causal loop diagrams, we unpack the intended and unintended effects of the policy and how these effects evolved over time. The overall goal is to advance our understanding of decision making in complex adaptive systems; and through this process identify some essential elements in formulating, updating and implementing health policy that can help to improve attainment of desired outcomes and minimize negative unintended effects.
Genetic constraints predict evolutionary divergence in Dalechampia blossoms.
Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott
2014-08-19
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance.
A Single Mutation Unlocks Cascading Exaptations in the Origin of a Potent Pitviper Neurotoxin.
Whittington, A Carl; Mason, Andrew J; Rokyta, Darin R
2017-04-01
Evolutionary innovations and complex phenotypes seemingly require an improbable amount of genetic change to evolve. Rattlesnakes display two dramatically different venom phenotypes. Type I venoms are hemorrhagic with low systemic toxicity and high expression of tissue-destroying snake venom metalloproteinases. Type II venoms are highly neurotoxic and lack snake venom metalloproteinase expression and associated hemorrhagic activity. This dichotomy hinges on Mojave toxin (MTx), a phospholipase A2 (PLA2) based β-neurotoxin expressed in Type II venoms. MTx is comprised of a nontoxic acidic subunit that undergoes extensive proteolytic processing and allosterically regulates activity of a neurotoxic basic subunit. Evolution of the acidic subunit presents an evolutionary challenge because the need for high expression of a nontoxic venom component and the proteolytic machinery required for processing suggests genetic changes of seemingly little immediate benefit to fitness. We showed that MTx evolved through a cascading series of exaptations unlocked by a single nucleotide change. The evolution of one new cleavage site in the acidic subunit unmasked buried cleavage sites already present in ancestral PLA2s, enabling proteolytic processing. Snake venom serine proteases, already present in the venom to disrupt prey hemostasis, possess the requisite specificities for MTx acidic subunit proteolysis. The dimerization interface between MTx subunits evolved by exploiting a latent, but masked, hydrophobic interaction between ancestral PLA2s. The evolution of MTx through exaptation of existing functional and structural features suggests complex phenotypes that depend on evolutionary innovations can arise from minimal genetic change enabled by prior evolution.
Taking it to the streets: delivering on deployment.
Carr, Dafna; Welch, Vickie; Fabik, Trish; Hirji, Nadir; O'Connor, Casey
2009-01-01
From inception to deployment, the Wait Time Information System (WTIS) project faced significant challenges associated with time, scope and complexity. It involved not only the creation and deployment of two large-scale province-wide systems (the WTIS and Ontario's Client Registry/Enterprise Master Patient Index) within aggressive time frames, but also the active engagement of 82 Ontario hospitals, scores of healthcare leaders and several thousand clinicians who would eventually be using the new technology and its data. The provincial WTIS project team (see Figure 1) also had to be able to adapt and evolve their planning in an environment that was changing day-by-day. This article looks at the factors that allowed the team to take the WTIS out to the field and shares the approach, processes and tools used to deploy this complex and ambitious information management and information technology (IM/IT) initiative.
Bahensky, James A; Ward, Marcia M; Nyarko, Kwame; Li, Pengxiang
2011-08-01
Small rural hospitals face considerable financial and personnel resource shortages which hinder their efforts to implement complex health information technology (HIT) systems. A survey on the use of HIT was completed by 85% of Iowa's 82 Critical Access Hospitals (CAH). Analyses indicate that low IT staffing in CAHs is a barrier to implementing HIT solutions. CAHs with fewer staff tend to employ alternative business strategies. There is a clear relationship between having IT staff at a CAH and the types of technologies used. Many CAHs report having difficulty expanding upon HIT functionalities due to the challenges of finding IT staff with healthcare expertise. Most CAHs are in the transition point of planning for or beginning implementation of complex clinical information systems. Strategies for addressing these challenges will need to evolve as the HIT investments by rural hospitals race to keep pace with the goals for the nation.
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
The Capsaspora genome reveals a complex unicellular prehistory of animals.
Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki
2013-01-01
To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.
Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong
2018-04-01
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
Partitioning the Fitness Components of RNA Populations Evolving In Vitro
Díaz Arenas, Carolina; Lehman, Niles
2013-01-01
All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Molecules evolving in a test tube can also face complex environments and dynamics, and their fitness measurements should reflect the complexity of various contributing factors as well. Here, the fitnesses of a set of ligase ribozymes evolved by the continuous in vitro evolution system were measured. During these evolution cycles there are three different catalytic steps, ligation, reverse transcription, and forward transcription, each with a potential differential influence on the total fitness of each ligase. For six distinct ligase ribozyme genotypes that resulted from continuous evolution experiments, the rates of reaction were measured for each catalytic step by tracking the kinetics of enzymes reacting with their substrates. The reaction products were analyzed for the amount of product formed per time. Each catalytic step of the evolution cycle was found to have a differential incidence in the total fitness of the ligases, and therefore the total fitness of any ligase cannot be inferred from only one catalytic step of the evolution cycle. Generally, the ribozyme-directed ligation step tends to impart the largest effect on overall fitness. Yet it was found that the ligase genotypes have different absolute fitness values, and that they exploit different stages of the overall cycle to gain a net advantage. This is a new example of molecular niche partitioning that may allow for coexistence of more than one species in a population. The dissection of molecular events into multiple components of fitness provides new insights into molecular evolutionary studies in the laboratory, and has the potential to explain heretofore counterintuitive findings. PMID:24391957
Positioning infrastructure and technologies for low-carbon urbanization
NASA Astrophysics Data System (ADS)
Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.
2014-10-01
The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.
Ethical Issues in Integrated Health Care: Implications for Social Workers.
Reamer, Frederic G
2018-05-01
Integrated health care has come of age. What began modestly in the 1930s has evolved into a mature model of health care that is quickly becoming the standard of care. Social workers are now employed in a wide range of comprehensive integrated health care organizations. Some of these settings were designed as integrated health care delivery systems from their beginning. Others evolved over time, some incorporating behavioral health into existing primary care centers and others incorporating primary care into existing behavioral health agencies. In all of these contexts, social workers are encountering complex, sometimes unprecedented, ethical challenges. This article identifies and discusses ethical issues facing social workers in integrated health care settings, especially related to informed consent, privacy, confidentiality, boundaries, dual relationships, and conflicts of interest. The author includes practical resources that social workers can use to develop state-of-the-art ethics policies and protocols.
Intracardiac metastasis originated from chondrosarcoma.
Maurea, Nicola; Ragone, Gianluca; Coppola, Carmela; Caronna, Antonietta; Tocchetti, Carlo G; Agozzino, Lucio; Apice, Gaetano; Iaffaioli, Rosario V
2017-05-01
Primary cardiac tumors are extremely rare. By comparison, metastatic involvement of the heart is over 20 times more common and has been reported in autopsy series in up to one in five patients dying of cancer. Cardiac metastasis of chondrosarcoma is absolutely not frequent. In the recent literature, a cardiac metastasis from chondrosarcoma has never been described. We report the case of an 18-year-old man with a diagnosis of cardiac metastasis that originated from a left scapular chondrosarcoma. Chondrosarcoma is a skeletal tumor with various grades of malignancy, rapidly evolving, and with a strong tendency to metastasize, with low responsiveness to chemotherapy. The onset of characteristic systemic symptoms in the late stage of the disease led to the diagnosis of a mass localized in the right atrium. Management and differential diagnosis of infective heart lesions were also very complex in a rapidly evolving life-threatening condition.
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
Dosage Compensation of the Sex Chromosomes
Disteche, Christine M.
2013-01-01
Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302
Physician's emerging roles relating to trends in health information technology.
David Johnson, J
2014-08-12
Objective: To determine the new roles that physicians will adopt in the near future to adjust to accelerating trends from managed care to outcome-based practice to health care reform to health information technology to the evolving role of health consumers. Methods: Trends and related developments concerning the changing roles of physicians based on prior literature reviews. Results: Six possible roles, traditional, gatekeeper, coach, navigator, informatician and one voice among many, are discussed in terms of physician's centrality, patient autonomy, decision-making and uncertainty, information seeking, satisfaction and outcomes, particularly those related to compliance. Conclusion: A greater understanding of these emerging roles could lead to more efficacious outcomes in our ever changing, increasingly complex medical system. Patients often have little understanding of emerging trends that lead to the development of specialized roles such as hospitalist and navigators and, relatedly, the evolving roles of physicians.
H theorem for generalized entropic forms within a master-equation framework
NASA Astrophysics Data System (ADS)
Casas, Gabriela A.; Nobre, Fernando D.; Curado, Evaldo M. F.
2016-03-01
The H theorem is proven for generalized entropic forms, in the case of a discrete set of states. The associated probability distributions evolve in time according to a master equation, for which the corresponding transition rates depend on these entropic forms. An important equation describing the time evolution of the transition rates and probabilities in such a way as to drive the system towards an equilibrium state is found. In the particular case of Boltzmann-Gibbs entropy, it is shown that this equation is satisfied in the microcanonical ensemble only for symmetric probability transition rates, characterizing a single path to the equilibrium state. This equation fulfils the proof of the H theorem for generalized entropic forms, associated with systems characterized by complex dynamics, e.g., presenting nonsymmetric probability transition rates and more than one path towards the same equilibrium state. Some examples considering generalized entropies of the literature are discussed, showing that they should be applicable to a wide range of natural phenomena, mainly those within the realm of complex systems.
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates
Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker
2016-01-01
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043
Homan, J. Michael
2010-01-01
Objective: The 2009 Janet Doe Lecture reflects on the continuing value and increasing return on investment of librarian-mediated services in the constantly evolving digital ecology and complex knowledge environment of the health sciences. Setting: The interrelationship of knowledge, decision making based on knowledge, technology used to access and retrieve knowledge, and the important linkage roles of expert librarian intermediaries is examined. Methodology: Professional experiences from 1969 to 2009, occurring during a time of unprecedented changes in the digital ecology of librarianship, are the base on which the evolving role and value of librarians as knowledge coaches and expert intermediaries are examined. Conclusion: Librarian-mediated services linking knowledge and critical decision making in health care have become more valuable than ever as technology continues to reshape an increasingly complex knowledge environment. PMID:20098655
Method and System for Hydrogen Evolution and Storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2008-10-21
A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
ERIC Educational Resources Information Center
Balmer, Dorene; D'Alessandro, Donna; Risko, Wanessa; Gusic, Maryellen E.
2011-01-01
Introduction: Mentoring is increasingly recognized as central to career development. Less attention has been paid, however, to how mentoring relationships evolve over time. To provide a more complete picture of these complex relationships, the authors explored mentoring from a mentee's perspective within the context of a three-year faculty…
Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces
Partha, Raghavendran; Raman, Karthik
2014-01-01
Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641
Creation of Functional Micro/Nano Systems through Top-down and Bottom-up Approaches
Wong, Tak-Sing; Brough, Branden; Ho, Chih-Ming
2009-01-01
Mimicking nature’s approach in creating devices with similar functional complexity is one of the ultimate goals of scientists and engineers. The remarkable elegance of these naturally evolved structures originates from bottom-up self-assembly processes. The seamless integration of top-down fabrication and bottom-up synthesis is the challenge for achieving intricate artificial systems. In this paper, technologies necessary for guided bottom-up assembly such as molecular manipulation, molecular binding, and the self assembling of molecules will be reviewed. In addition, the current progress of synthesizing mechanical devices through top-down and bottom-up approaches will be discussed. PMID:19382535
Privacy as an enabler, not an impediment: building trust into health information exchange.
McGraw, Deven; Dempsey, James X; Harris, Leslie; Goldman, Janlori
2009-01-01
Building privacy and security protections into health information technology systems will bolster trust in such systems and promote their adoption. The privacy issue, too long seen as a barrier to electronic health information exchange, can be resolved through a comprehensive framework that implements core privacy principles, adopts trusted network design characteristics, and establishes oversight and accountability mechanisms. The public policy challenges of implementing this framework in a complex and evolving environment will require improvements to existing law, new rules for entities outside the traditional health care sector, a more nuanced approach to the role of consent, and stronger enforcement mechanisms.
NASA Astrophysics Data System (ADS)
Sienkiewicz, J.; Holyst, J. A.
2005-05-01
We have examined a topology of 21 public transport networks in Poland. Our data exhibit several universal features in considered systems when they are analyzed from the point of view of evolving networks. Depending on the assumed definition of a network topology the degree distribution can follow a power law p(k) ˜ k-γ or can be described by an exponential function p(k) ˜ exp (-α k). In the first case one observes that mean distances between two nodes are a linear function of logarithms of their degrees product.
NASA Astrophysics Data System (ADS)
Yu, Shuiyuan; Xu, Chunshan
2014-12-01
Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.
Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A
2016-04-28
The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.
Najafpour, Mohammad Mahdi
2011-06-01
In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.
2009-04-23
of Code Need for increased functionality will be a forcing function to bring the fields of software and systems engineering... of Software-Intensive Systems is Increasing 3 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the Precision of ...Engineering in Continued Partnership 4 How Evolving Trends in Systems and Software Technologies Bode Well for Advancing the
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
The evolution of the complex sensory and motor systems of the human brain.
Kaas, Jon H
2008-03-18
Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.
[Adjustment of the German DRG system in 2009].
Wenke, A; Franz, D; Pühse, G; Volkmer, B; Roeder, N
2009-07-01
The 2009 version of the German DRG system brought significant changes for urology concerning coding of diagnoses, medical procedures and the DRG structure. In view of the political situation and considerable economic pressure, a critical analysis of the 2009 German DRG system is warranted. Analysis of relevant diagnoses, medical procedures and G-DRGs in the versions 2008 and 2009 based on the publications of the German DRG-institute (InEK) and the German Institute of Medical Documentation and Information (DIMDI). The relevant diagnoses, medical procedures and German DRGs in the versions 2008 and 2009 were analysed based on the publications of the German DRG Institute (InEK) and the German Institute of Medical Documentation and Information (DIMDI). Changes for 2009 focus on the development of the DRG structure, DRG validation and codes for medical procedures to be used for very complex cases. The outcome of these changes for German hospitals may vary depending in the range of activities. The German DRG system again gained complexity. High demands are made on correct and complete coding of complex urology cases. The quality of case allocation in the German DRG system was improved. On the one hand some of the old problems (e.g. enterostomata) still persist, while on the other hand new problems evolved out of the attempt to improve the case allocation of highly complex and expensive cases. Time will tell whether the increase in highly specialized DRG with low case numbers will continue to endure and reach acceptable rates of annual fluctuations.
HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes
NASA Astrophysics Data System (ADS)
Carlson, J. M.; Hillers, G.; Archuleta, R. J.
2006-12-01
We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a 2D fault model, where we investigate different feedback mechanisms and their effect on seismicity evolution. We introduce an approach to estimate the state of a fault and thus its capability of generating a large (system-wide) event assuming likely heterogeneous distributions of hypocenters and stresses, respectively.
Solving a real-world problem using an evolving heuristically driven schedule builder.
Hart, E; Ross, P; Nelson, J
1998-01-01
This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.
Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark
2016-01-01
In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.
Levers and linkages: mechanical trade-offs in a power-amplified system.
Anderson, Philip S L; Claverie, Thomas; Patek, S N
2014-07-01
Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
Method and system for hydrogen evolution and storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2012-12-11
A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
Empirical and theoretical analysis of complex systems
NASA Astrophysics Data System (ADS)
Zhao, Guannan
This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group structures evolve on a similar timescale to individual level transmission, we investigated the process of transmission through a model population comprising of social groups which follow simple dynamical rules for growth and break-up, and the profiles produced bear a striking resemblance to empirical data obtained from social, financial and biological systems. Finally, for better implementation of a widely accepted power law test algorithm, we have developed a fast testing procedure using parallel computation.
Complex dynamics in the Leslie-Gower type of the food chain system with multiple delays
NASA Astrophysics Data System (ADS)
Guo, Lei; Song, Zi-Gen; Xu, Jian
2014-08-01
In this paper, we present a Leslie-Gower type of food chain system composed of three species, which are resource, consumer, and predator, respectively. The digestion time delays corresponding to consumer-eat-resource and predator-eat-consumer are introduced for more realistic consideration. It is called the resource digestion delay (RDD) and consumer digestion delay (CDD) for simplicity. Analyzing the corresponding characteristic equation, the stabilities of the boundary and interior equilibrium points are studied. The food chain system exhibits the species coexistence for the small values of digestion delays. Large RDD/CDD may destabilize the species coexistence and induce the system dynamic into recurrent bloom or system collapse. Further, the present of multiple delays can control species population into the stable coexistence. To investigate the effect of time delays on the recurrent bloom of species population, the Hopf bifurcation and periodic solution are investigated in detail in terms of the central manifold reduction and normal form method. Finally, numerical simulations are performed to display some complex dynamics, which include multiple periodic solution and chaos motion for the different values of system parameters. The system dynamic behavior evolves into the chaos motion by employing the period-doubling bifurcation.
Hammerschmidt, Katrin; Kurtz, Joachim
2005-01-01
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host–parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence. PMID:16271977
Scale-invariant cascades in turbulence and evolution
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas Ryan
In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.
Genetic constraints predict evolutionary divergence in Dalechampia blossoms
Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott
2014-01-01
If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700
Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces
Junghans, Ann; Watkins, Erik B.; Barker, Robert D.; ...
2015-03-16
Because of its high sensitivity for light elements and the scattering contrast manipulation via isotopic substitutions, neutron reflectometry (NR) is an excellent tool for studying the structure of soft-condensed material. These materials include model biophysical systems as well as in situ living tissue at the solid–liquid interface. The penetrability of neutrons makes NR suitable for probing thin films with thicknesses of 5–5000 Å at various buried, for example, solid–liquid, interfaces [J. Daillant and A. Gibaud, Lect. Notes Phys. 770, 133 (2009); G. Fragneto-Cusani, J. Phys.: Condens. Matter 13, 4973 (2001); J. Penfold, Curr. Opin. Colloid Interface Sci. 7, 139 (2002)].more » Over the past two decades, NR has evolved to become a key tool in the characterization of biological and biomimetic thin films. Highlighted In the current report are some of the authors' recent accomplishments in utilizing NR to study highly complex systems, including in-situ experiments. Such studies will result in a much better understanding of complex biological problems, have significant medical impact by suggesting innovative treatment, and advance the development of highly functionalized biomimetic materials.« less
Self-determined mechanisms in complex networks
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin
2008-03-01
Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.
Levels of behavioral organization and the evolution of division of labor
NASA Astrophysics Data System (ADS)
Page, Robert E.; Erber, Joachim
2002-03-01
The major features of insect societies that fascinate biologists are the self-sacrificing altruism expressed by colony members, the complex division of labor, and the tremendous plasticity demonstrated in the face of changing environments. The social behavior of insects is a result of complex interactions at different levels of biological organization. Genes give rise to proteins and peptides that build the nervous and muscular systems, regulate their own synthesis, interact with each other, and affect the behavior of individuals. Social behavior emerges from the complex interactions of individuals that are themselves far removed from the direct effects of the genes. In order to understand how social organization evolves, we must understand the mechanisms that link the different levels of organization. In this review, we discuss how behavior is influenced by genes and the neural system and how social behavior emerges from the behavioral activities of individuals. We show how different levels of organization share common features and are linked through common mechanisms. We focus on the behavior of the honey bee, the best studied of all social insects.
Marasca, Federica; Bodega, Beatrice; Orlando, Valerio
2018-04-01
Cells and tissues are continuously exposed to a changing microenvironment, hence the necessity of a flexible modulation of gene expression that in complex organism have been achieved through specialized chromatin mechanisms. Chromatin-based cell memory enables cells to maintain their identity by fixing lineage specific transcriptional programs, ensuring their faithful transmission through cell division; in particular PcG-based memory system evolved to maintain the silenced state of developmental and cell cycle genes. In evolution the complexity of this system have increased, particularly in vertebrates, indicating combinatorial and dynamic properties of Polycomb proteins, in some cases even overflowing outside the cell nucleus. Therefore, their function may not be limited to the imposition of rigid states of genetic programs, but on the ability to recognize signals and allow plastic transcriptional changes in response to different stimuli. Here, we discuss the most novel PcG mediated memory functions in facing and responding to the challenges posed by a fluctuating environment. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Complex adaptive therapeutic strategy (CATS) for cancer.
Cho, Yong Woo; Kim, Sang Yoon; Kwon, Ick Chan; Kim, In-San
2014-02-10
Tumors begin with a single cell, but as each tumor grows and evolves, it becomes a wide collection of clones that display remarkable heterogeneity in phenotypic features, which has posed a big challenge to current targeted anticancer therapy. Intra- and inter-tumoral heterogeneity is attributable in part to genetic mutations but also to adaptation and evolution of tumors to heterogeneity in tumor microenvironments. If tumors are viewed not only as a disease but also as a complex adaptive system (CAS), tumors should be treated as such and a more systemic approach is needed. Some of many tumors therapeutic strategies are discussed here from a view of a tumor as CAS, which can be collectively called a complex adaptive therapeutic strategy (CATS). The central theme of CATS is based on three intermediate concepts: i) disruption of artifacts, ii) disruption of connections, and iii) reprogramming of cancer-immune dynamics. Each strategy presented here is a piece of the puzzle for CATS. Although each piece by itself may be neither novel nor profound, an assembled puzzle could be a novel and innovative cancer therapeutic strategy. Copyright © 2013 Elsevier B.V. All rights reserved.
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia; ...
2016-10-13
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznedelov, Konstantin; Mekler, Vladimir; Lemak, Sofia
The Escherichia coli type I-E CRISPR-Cas system Cascade effector is a multisubunit complex that binds CRISPR RNA (crRNA). Through its 32-nucleotide spacer sequence, Cascade-bound crRNA recognizes protospacers in foreign DNA, causing its destruction during CRISPR interference or acquisition of additional spacers in CRISPR array during primed CRISPR adaptation. Within Cascade, the crRNA spacer interacts with a hexamer of Cas7 subunits. We show that crRNAs with a spacer length reduced to 14 nucleotides cause primed adaptation, while crRNAs with spacer lengths of more than 20 nucleotides cause both primed adaptation and target interference in vivo. Shortened crRNAs assemble into altered-stoichiometry Cascademore » effector complexes containing less than the normal amount of Cas7 subunits. The results show that Cascade assembly is driven by crRNA and suggest that multi-subunit type I CRISPR effectors may have evolved from much simpler ancestral complexes.« less
Statistical mechanics of complex economies
NASA Astrophysics Data System (ADS)
Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo
2017-04-01
In the pursuit of ever increasing efficiency and growth, our economies have evolved to remarkable degrees of complexity, with nested production processes feeding each other in order to create products of greater sophistication from less sophisticated ones, down to raw materials. The engine of such an expansion have been competitive markets that, according to general equilibrium theory (GET), achieve efficient allocations under specific conditions. We study large random economies within the GET framework, as templates of complex economies, and we find that a non-trivial phase transition occurs: the economy freezes in a state where all production processes collapse when either the number of primary goods or the number of available technologies fall below a critical threshold. As in other examples of phase transitions in large random systems, this is an unintended consequence of the growth in complexity. Our findings suggest that the Industrial Revolution can be regarded as a sharp transition between different phases, but also imply that well developed economies can collapse if too many intermediate goods are introduced.
Quantifying complexity of financial short-term time series by composite multiscale entropy measure
NASA Astrophysics Data System (ADS)
Niu, Hongli; Wang, Jun
2015-05-01
It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.
Time Dependent Data Mining in RAVEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Joshua Joseph; Chen, Jun; Patel, Japan Ketan
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The goal of this type of analyses is to understand the response of such systems in particular with respect their probabilistic behavior, to understand their predictability and drivers or lack of thereof. Data mining capabilities are the cornerstones to perform such deep learning of system responses. For this reason static data mining capabilities were added last fiscal year (FY 15). In real applications, when dealing with complex multi-scale, multi-physics systems it seems natural that, during transients, the relevance of themore » different scales, and physics, would evolve over time. For these reasons the data mining capabilities have been extended allowing their application over time. In this writing it is reported a description of the new RAVEN capabilities implemented with several simple analytical tests to explain their application and highlight the proper implementation. The report concludes with the application of those newly implemented capabilities to the analysis of a simulation performed with the Bison code.« less
Jackson, Timothy N. W.; Fry, Bryan G.
2016-01-01
The “function debate” in the philosophy of biology and the “venom debate” in the science of toxinology are conceptually related. Venom systems are complex multifunctional traits that have evolved independently numerous times throughout the animal kingdom. No single concept of function, amongst those popularly defended, appears adequate to describe these systems in all their evolutionary contexts and extant variations. As such, a pluralistic view of function, previously defended by some philosophers of biology, is most appropriate. Venom systems, like many other functional traits, exist in nature as points on a continuum and the boundaries between “venomous” and “non-venomous” species may not always be clearly defined. This paper includes a brief overview of the concept of function, followed by in-depth discussion of its application to venom systems. A sound understanding of function may aid in moving the venom debate forward. Similarly, consideration of a complex functional trait such as venom may be of interest to philosophers of biology. PMID:27618098
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
Reframing the challenges to integrated care: a complex-adaptive systems perspective.
Tsasis, Peter; Evans, Jenna M; Owen, Susan
2012-01-01
Despite over two decades of international experience and research on health systems integration, integrated care has not developed widely. We hypothesized that part of the problem may lie in how we conceptualize the integration process and the complex systems within which integrated care is enacted. This study aims to contribute to discourse regarding the relevance and utility of a complex-adaptive systems (CAS) perspective on integrated care. In the Canadian province of Ontario, government mandated the development of fourteen Local Health Integration Networks in 2006. Against the backdrop of these efforts to integrate care, we collected focus group data from a diverse sample of healthcare professionals in the Greater Toronto Area using convenience and snowball sampling. A semi-structured interview guide was used to elicit participant views and experiences of health systems integration. We use a CAS framework to describe and analyze the data, and to assess the theoretical fit of a CAS perspective with the dominant themes in participant responses. Our findings indicate that integration is challenged by system complexity, weak ties and poor alignment among professionals and organizations, a lack of funding incentives to support collaborative work, and a bureaucratic environment based on a command and control approach to management. Using a CAS framework, we identified several characteristics of CAS in our data, including diverse, interdependent and semi-autonomous actors; embedded co-evolutionary systems; emergent behaviours and non-linearity; and self-organizing capacity. One possible explanation for the lack of systems change towards integration is that we have failed to treat the healthcare system as complex-adaptive. The data suggest that future integration initiatives must be anchored in a CAS perspective, and focus on building the system's capacity to self-organize. We conclude that integrating care requires policies and management practices that promote system awareness, relationship-building and information-sharing, and that recognize change as an evolving learning process rather than a series of programmatic steps.
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
An Overview of the Planetary Data System Roadmap Study for 2017 - 2026
NASA Astrophysics Data System (ADS)
Morgan, Thomas H.; McNutt, Ralph L.; Gaddis, Lisa; Law, Emily; Beyer, Ross A.; Crombie, Kate; Ebel, Denton; Ghosh, Amitahba; Grayzeck, Edwin J.; Paganelli, Flora; Raugh, Anne C.; Stein, Thomas; Tiscareno, Matthew S.; Weber, Renee; E Banks, Maria; Powell, Kathryn
2017-10-01
NASA’s Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has since evolved into an online collection of digital data managed and served by a federation of 6 science discipline nodes and 2 technical support nodes. Several ad-hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions.The new PDS Roadmap Study for 2017-2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes PDS history, its functions and characteristics, and its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex evolving system, the PDS must respond to new pressures and opportunities. The report provides details on challenges now facing the PDS, 19 detailed findings and suggested remediations that could be used to respond to these findings, and a summary of the potential future of planetary data archiving. These findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and physical samples. Finally, the report discusses the current structure and governance of PDS and the impact of this on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge on the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.
Quantification and Characterization of Volatiles Evolved During Extrusion of Rice and Soy Flours
NASA Technical Reports Server (NTRS)
Zasypkin, D.; Lertsiriyothin, W.; Lee, T. C.; Bourland, C. T.; Bond, Robert L. (Technical Monitor)
1999-01-01
NASA Johnson Space Center is designing and building a habitat (Bioregenerative Planetary Life Support Systems Test Complex, BIO-Plex) intended for evaluating advanced life support systems developed for long duration missions to the Moon or Mars where all consumables will be recycled and reused. A food system based on raw products obtained from higher plants (such as soybeans, rice and wheat) may be a central feature of a biological ly-based Advanced Life Support System (ALSS). In order to convert raw crops to edible ingredients or food items, multipurpose processing equipment such as an extruder is ideal. Volatile compounds evolved during the manufacturing of these food products may accumulate reaching toxic levels. Additionally, off-odors often dissipated in open-air environments without consequence, may cause significant discomfort in the BIO-Plex. Rice and defatted soy flours were adjusted to 16% moisture and triplicate samples were extruded using a table top single-screw extruder. The extrudate was collected in specially designed Tedlar bags from which air samples could be extracted. The samples were analyzed by GC-MS with special emphasis on compounds with Spacecraft Maximum Allowable Concentrations (SMAC). Results showed a combination of alcohols, aldehydes, ketones and carbonyl compounds in the different flours. Each compound and its SMAC value as well as its impact on the air revitalization system was discussed.
Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...
2014-09-14
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less
Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo
2014-01-01
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490
A self-cognizant dynamic system approach for prognostics and health management
NASA Astrophysics Data System (ADS)
Bai, Guangxing; Wang, Pingfeng; Hu, Chao
2015-03-01
Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and predicts how and when a system will degrade its performance and lose its partial or whole functionality. Due to the complexity and invisibility of rules and states of most dynamic systems, developing an effective approach to track evolving system states becomes a major challenge. This paper presents a new self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex system response which is challenging task in general due to inaccessible system physics. The trained FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dynamics. A recursive computation technique used to update the FFNN model using online measurements is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an experimental application. After modeling the battery system by a FFNN model and a state-space model, the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the proposed approach. Experimental results suggest that the proposed approach improves the efficiency and accuracy for battery health management.
Non-Systemic Drugs: A Critical Review
Charmot, Dominique
2012-01-01
Non-systemic drugs act within the intestinal lumen without reaching the systemic circulation. The first generation included polymeric resins that sequester phosphate ions, potassium ions, or bile acids for the treatment of electrolyte imbalances or hypercholesteremia. The field has evolved towards non-absorbable small molecules or peptides targeting luminal enzymes or transporters for the treatment of mineral metabolism disorders, diabetes, gastrointestinal (GI) disorders, and enteric infections. From a drug design and development perspective, non-systemic agents offer novel opportunities to address unmet medical needs while minimizing toxicity risks, but also present new challenges, including developing a better understanding and control of non-transcellular leakage pathways into the systemic circulation. The pharmacokinetic-pharmacodynamic relationship of drugs acting in the GI tract can be complex due to the variability of intestinal transit, interaction with chyme, and the complex environment of the surface epithelia. We review the main classes of non-absorbable agents at various stages of development, and their therapeutic potential and limitations. The rapid progress in the identification of intestinal receptors and transporters, their functional characterization and role in metabolic and inflammatory disorders, will undoubtedly renew interest in the development of novel, safe, non-systemic therapeutics. PMID:22300258
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska
2012-12-05
The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.
Reliable aluminum contact formation by electrostatic bonding
NASA Astrophysics Data System (ADS)
Kárpáti, T.; Pap, A. E.; Radnóczi, Gy; Beke, B.; Bársony, I.; Fürjes, P.
2015-07-01
The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of -1000 V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450 °C intermetallic diffusion causes aluminum ions to migrate between metal layers.
Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2012-01-01
New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.
Homeostatic Immunity and the Microbiota.
Belkaid, Yasmine; Harrison, Oliver J
2017-04-18
The microbiota plays a fundamental role in the induction, education, and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. Here we review the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. Published by Elsevier Inc.
Hripcsak, George
1997-01-01
Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884
Homeostatic immunity and the microbiota
Belkaid, Yasmine; Harrison, Oliver J.
2017-01-01
The microbiota plays a fundamental role in the induction, education and function of the host immune system. In return, the host immune system has evolved multiple means by which to maintain its symbiotic relationship with the microbiota. The maintenance of this dialogue allows the induction of protective responses to pathogens and the utilization of regulatory pathways involved in the sustained tolerance to innocuous antigens. The ability of microbes to set the immunological tone of tissues, both locally and systemically, requires tonic sensing of microbes and complex feedback loops between innate and adaptive components of the immune system. In this review, we will highlight the dominant cellular mediators of these interactions and discuss emerging themes associated with our current understanding of the homeostatic immunological dialogue between the host and its microbiota. PMID:28423337
Reducing the Complexity Gap: Expanding the Period of Human Nurturance
ERIC Educational Resources Information Center
Kiel, L. Douglas
2014-01-01
Socio-techno-cultural reality, in the current historical era, evolves at a faster rate than do human brain or human institutions. This reality creates a "complexity gap" that reduces human and institutional capacities to adapt to the challenges of late modernity. New insights from the neurosciences may help to reduce the complexity gap.…