Sample records for evolved gas analyses

  1. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  2. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    NASA Technical Reports Server (NTRS)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  3. VAPoR - Volatile Analysis by Pyrolysis of Regolith - an Instrument for In Situ Detection of Water, Noble Gases, and Organics on the Moon

    NASA Technical Reports Server (NTRS)

    ten Kate, I. L.; Cardiff, E. H.; Feng, S. H.; Holmes, V.; Malespin, C.; Stern, J. G.; Swindle, T. D.; Glavin, D. P.

    2010-01-01

    We present the Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument design and demonstrate the validity of an in situ pyrolysis mass spectrometer for evolved gas analyses of lunar and planetary regolith samples. In situ evolved gas analyses of the lunar regolith have not yet been carried out and no atmospheric or evolved gas measurements have been made at the lunar poles. VAPoR is designed to do both kinds of measurements, is currently under development at NASA's Goddard Space Flight Center, and will be able to heat powdered regolith samples or rock drill fines up to 1400 C in vacuo. To validate the instrument concept, evolved gas species released from different planetary analogs were determined as a function of temperature using a laboratory breadboard. Evolved gas measurements of an Apollo 16 regolith sample and a fragment of the carbonaceous meteorite Murchison were made by VAPoR and our results compared with existing data. The results imply that in situ evolved gas measurements of the lunar regolith at the polar regions by VAPoR will be a very powerful tool for identifying water and other volatile signatures of lunar or exogenous origin as potential resources for future human exploration.

  4. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G. A.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.

  5. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  6. Insights into the Sulfur Mineralogy of Martian Soil at Rocknest, Gale Crater, Enabled by Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A.; Franz, H.; Archer, P., Jr.; Freissinet, C.; Sutter, B.; Glavin, D.; Eigenbrode, J.; Bower, H.; Stern, J.; Mchaffy, P.; hide

    2013-01-01

    The first solid samples analysed by the Chemistry and Mineralogy (CheMin) instrument and Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) consisted of < 150 m fines sieved from aeolian bedform material at a site named Rocknest. All four samples of this material analyzed by SAM s evolved gas analysis mass spectrometry (EGA-MS) released H2O, CO2, O2, and SO2 (Fig. 1), as well as H2S and possibly NO. This is the first time evolved SO2 (and evolved H2S) has been detected from thermal analysis of martian materials. The identity of these evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Constraints on phases responsible for evolved CO2 and O2 are detailed elsewhere [1,2,3]. Here, we focus on potential constraints on phases that evolved SO2, H2S, and H2O during thermal analysis.

  7. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; hide

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  8. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  9. Laboratory Evolved Gas Analyses of Si-rich Amorphous Materials: Implications for Analyses of Si-rich Amorphous Material in Gale Crater by the Mars Science Laboratory Sample Analysis at Mars Instrument

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Knudson, C. A.; Sutter, B.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Franz, H. B.; Eigenbrode, J. L.; Morris, R. V.; Ming, D. W.; Sun, V. Z.; Milliken, R.; Wilhelm, M. B.; Mahaffy, P. R.; Navarro-Gonzalez, R.

    2016-12-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Science Laboratory (MSL) rover detected Si-rich amorphous or poorly ordered materials in several samples from Murray Formation mudstones and Stimson Formation sandstones. High-SiO2 amorphous materials such as opal-A or rhyolitic glass are candidate phases, but CheMin data cannot be used to distinguish between these possibilities. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, evolved gas analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500°C, which had not been observed from previous samples. BS also had a significant broad evolution <450-500°C. We have undertaken a laboratory study targeted at understanding if the data from SAM analyses can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500°C H2O evolutions, with lesser H2O evolved above 500°C. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300°C and >500°C, or a broad peak centered around 400°C. For samples that produced two evolutions, the lower temperature peak was more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500°C. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.

  10. Isotopic and Geochemical Investigation of Two Distinct Mars Analog Environments Using Evolved Gas Techniques in Svalbard, Norway

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer Claire; Mcadam, Amy Catherine; Ten Kate, Inge L.; Bish, David L.; Blake, David F.; Morris, Richard V.; Bowden, Roxane; Fogel, Marilyn L.; Glamoclija, Mihaela; Mahaffy, Paul R.; hide

    2013-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using methodologies and techniques to be deployed on Mars Science Laboratory (MSL). AMASErelated research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite on MSL includes pyrolysis ovens, a gas-processing manifold, a quadrupole mass spectrometer (QMS), several gas chromatography columns, and a Tunable Laser Spectrometer (TLS). An integral part of SAM development is the deployment of SAM-like instrumentation in the field. During AMASE 2010, two parts of SAM participated as stand-alone instruments. A Hiden Evolved Gas Analysis- Mass Spectrometer (EGA-QMS) system represented the EGA-QMS component of SAM, and a Picarro Cavity Ring Down Spectrometer (EGA-CRDS), represented the EGA-TLS component of SAM. A field analog of CheMin, the XRD/XRF on MSL, was also deployed as part of this field campaign. Carbon isotopic measurements of CO2 evolved during thermal decomposition of carbonates were used together with EGA-QMS geochemical data, mineral composition information and contextual observations made during sample collection to distinguish carbonates formation associated with chemosynthetic activity at a fossil methane seep from abiotic processes forming carbonates associated with subglacial basaltic eruptions. Carbon and oxygen isotopes of the basalt-hosted carbonates suggest cryogenic carbonate formation, though more research is necessary to clarify the history of these rocks.

  11. Reduced and Oxidized Sulfur Compounds Detected by Evolved Gas Analyses of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D., Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    Sulfate minerals have been directly detected or strongly inferred from several Mars datasets and indicate that aqueous alteration of martian surface materials has occurred. Indications of reduced sulfur phases (e.g., sulfides) from orbital and in situ investigations of martian materials have been fewer in number, but these phases are observed in martian meteorites and are likely because they are common minor phases in basaltic rocks. Here we discuss potential sources for the S-bearing compounds detected by the Mars Science Laboratory (MSL) Sample Analysis at Mars (SAM) instrument’s evolved gas analysis (EGA) experiments.

  12. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune

    NASA Astrophysics Data System (ADS)

    Sutter, B.; McAdam, A. C.; Mahaffy, P. R.; Ming, D. W.; Edgett, K. S.; Rampe, E. B.; Eigenbrode, J. L.; Franz, H. B.; Freissinet, C.; Grotzinger, J. P.; Steele, A.; House, C. H.; Archer, P. D.; Malespin, C. A.; Navarro-González, R.; Stern, J. C.; Bell, J. F.; Calef, F. J.; Gellert, R.; Glavin, D. P.; Thompson, L. M.; Yen, A. S.

    2017-12-01

    The sample analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2, and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248-2373 ± 820 μgC(CO2)/g) and CO (11 ± 3-320 ± 130 μgC(CO)/g) suggest that organic C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32 ± 0.05-0.70 ± 0.1 wt % CO3). Evolved NO amounts to 0.002 ± 0.007-0.06 ± 0.03 wt % NO3. Evolution of O2 suggests that oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025-1.05 ± 0.44 wt % ClO4) are present, while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3-2.5 ± 1.6 wt % H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population.

  13. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (<150 µm) from three sites in Yellowknife Bay, an aeolian bedform termed Rocknest (hereafter "RN") and two samples drilled from the Sheepbed mudstone at sites named John Klein ("JK") and Cumberland ("CB"). SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases. The identity of evolved gases and temperature (T) of evolution can support mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  14. Planetary Surface Instruments Workshop

    NASA Technical Reports Server (NTRS)

    Meyer, Charles (Editor); Treiman, Allan H. (Editor); Kostiuk, Theodor (Editor)

    1996-01-01

    This report on planetary surface investigations and planetary landers covers: (1) the precise chemical analysis of solids; (2) isotopes and evolved gas analyses; (3) planetary interiors; planetary atmospheres from within as measured by landers; (4) mineralogical examination of extraterrestrial bodies; (5) regoliths; and (6) field geology/processes.

  15. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  16. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  17. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  18. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  19. Constraints on the Mineralogy of Gale Crater Mudstones from MSL SAM Evolved Water

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Sutter, B.; Franz, H. B.; Hogancamp, J. V. (Clark); Knudson, C. A.; Andrejkovicova, S.; Archer, P. D.; Eigenbrode, J. L.; Ming, D. W.; Mahaffy, P. R.

    2017-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analysed more than 150 micron fines from 14 sites at Gale Crater. Here we focus on the mudstone samples. Two were drilled from sites John Klein (JK) and Cumberland (CB) in the Sheepbed mudstone. Six were drilled from Murray Formation mudstone: Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin (BK), Oudam (OU), Marimba (MB). SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). Here we will focus on SAM H2O data and comparisons to SAM-like analyses of key reference materials.

  20. Differential Scanning Calorimetry and Evolved Gas Analysis of Hydromagnesite

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Golden, D. C.; Ming, Douglas W.; Boynton, W. V.

    1999-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates and sulfates) may be important phases on the surface of Mars. In order to characterize these phases the Thermal and Evolved Gas Analyzer (TEGA) flying on the Mars'98 lander will perform analyses on surface samples from Mars. Hydromagnesite [Mg5(CO3)4(OH)2.4H2O] is considered a good standard mineral to examine as a Mars soil analog component because it evolves both H2O and CO2 at temperatures between 0 and 600 C. Our aim here is to interpret the DSC signature of hydromagnesite under ambient pressure and 20 sccm N2 flow in the range 25 to 600 C. The DSC curve for hydromagnesite under the above conditions consists of three endothermic peaks at temperatures 296, 426, and 548 and one sharp exotherm at 511 C. X-ray analysis of the sample at different stop temperatures suggested that the exotherm corresponded with the formation of crystalline magnesite. The first endotherm was due to dehydration of hydromagnesite, and then the second one was due to the decomposition of carbonate, immediately followed by the formation of magnesite (exotherm) and its decomposition to periclase (last endotherm). Evolution of water and CO2 were consistent with the observed enthalpy changes. A library of such DSC-evolved gas curves for putative Martian minerals are currently being acquired in order to facilitate the interpretation of results obtained by a robotic lander.

  1. MSL SAM-Like Evolved Gas Analyses of Si-rich Amorphous Materials

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Knudson, Christine; Sutter, Brad; Andrejkovicova, Slavka; Archer, P. Douglas; Franz, Heather; Eigenbrode, Jennifer; Morris, Richard; Ming, Douglas; Sun, Vivian; hide

    2016-01-01

    Chemical and mineralogical analyses of several samples from Murray Formation mudstones and Stimson Formation sandstones by the Mars Science Laboratory (MSL) revealed the presence of Si-rich amorphous or poorly ordered materials. It is possible to identify the presence of high-SiO2 vs. lower SiO2 amorphous materials (e.g., basaltic glasses), based on the position of the resulting wide diffraction features in XRD patterns from the Chemistry and Mineralogy (CheMin) instrument, but it is not possible to distinguish between several candidate high-SiO2 amorphous materials such as opal-A or rhyolitic glass. In the Buckskin (BS) sample from the upper Murray Formation, and the Big Sky (BY) and Greenhorn (GH) samples from the Stimson Formation, analyses by the Sample Analysis at Mars (SAM) instrument showed very broad H2O evolutions during sample heating at temperatures >450-500degC which had not been observed from previous samples. BS also had a significant broad evolution <450-500degC. We have undertaken a laboratory study targeted at understanding if the data from SAM can be used to place constraints on the nature of the amorphous phases. SAM-like evolved gas analyses have been performed on several opal and rhyolitic glass samples. Opal-A samples exhibited wide <500degC H2O evolutions, with lesser H2O evolved above 500degC. H2O evolution traces from rhyolitic glasses varied, having either two broad H2O peaks, <300degC and >500degC, or a broad peak centered around 400degC. For samples that produced two evolutions, the lower temperature peak is more intense than the higher temperature peak, a trend also exhibited by opal-A. This trend is consistent with data from BS, but does not seem consistent with data from BY and GH which evolved most of their H2O >500degC. It may be that dehydration of opal-A and/or rhyolitic glass can result in some preferential loss of lower temperature H2O, to produce traces that more closely resemble BY and GH. This is currently under investigation and results will be reported.

  2. Evolved Gas Analysis and X-Ray Diffraction of Carbonate Samples from the 2009 Arctic Mars Analog Svalbard Expedition: Implications for Mineralogical Inferences from the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.

    2010-01-01

    The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.

  3. Thermal Analyses of Apollo Lunar Soils Provide Evidence for Water in Permanently Shadowed Areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Smith, M. C.; Gibson, E. K.

    2011-01-01

    Thermally-evolved-gas analyses were performed on the Apollo lunar soils shortly after their return to Earth [1-8]. The analyses revealed the presence of water evolving at temperatures above 200 C. Of particular interest are samples that were collected from permanently-shadowed locations (e.g., under a boulder) with a second sample collected in nearby sunlight, and pairs in which one was taken from the top of a trench, and the second was taken at the base of the trench, where the temperature would have been -10 to -20 C prior to the disturbance [9]. These samples include 63340/63500, 69941/69961, and 76240/76280. At the time that this research was first reported, the idea of hydrated minerals on the lunar surface was somewhat novel. Nevertheless, goethite was observed in lunar breccias from Apollo 14 [10], and it was shown that goethite, hematite and magnetite could originate in an equilibrium assemblage of lunar rocks

  4. By-Product Carrying Humidified Hydrogen: An Underestimated Issue in the Hydrolysis of Sodium Borohydride.

    PubMed

    Petit, Eddy; Miele, Philippe; Demirci, Umit B

    2016-07-21

    Catalyzed hydrolysis of sodium borohydride generates up to four molecules of hydrogen, but contrary to what has been reported so far, the humidified evolved gas is not pure hydrogen. Elemental and spectroscopic analyses show, for the first time, that borate by-products pollute the stream as well as the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    NASA Astrophysics Data System (ADS)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome, and must be the result of an oscillating supply of gas into the dome. The oscillating gas supply may result from alternating gas-rich and gas-poor regions of rising magma, so-called "porosity waves" within the conduit. These internal pressure fluctuations lead to periodic reductions in the stress required to fracture the dome and induce explosion.

  6. A DTA/GC for the in Situ Identification of the Martian Surface Material

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; White, M. R.; Orenberg, J. B.

    1993-01-01

    The composition and mineralogy of the Martian surface material remain largely unknown. To determine its composition and mineralogy, several techniques are being considered for in situ analyses of the Martian surface material during missions to Mars. We have successfully developed, constructed, and tested a laboratory DTA/GC. The DTA is a Dupont model 1600 high temperature DTA coupled with a GC equipped with a MID detector. The system is operated by a Sun Sparc 11 workstation. When gas evolves during a thermal chemical event, it is shunted into the GC and the temperature is recorded in association with the specific thermal event. We have used this laboratory instrument to define experimental criteria necessary for determining the composition and mineralogy of the Martian surface in situ (e.g., heating of sample to 1100 C to distinguish clays). Our studies indicate that DTA/GC will provide a broad spectrum of mineralogical and evolved gas data pertinent to exobiology, geochemistry, and geology.

  7. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    NASA Technical Reports Server (NTRS)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  8. Model for origin and evolution of water at volcanoes in São Miguel, Azores (Portugal), based on geochemical and isotopic data set

    NASA Astrophysics Data System (ADS)

    Woitischek, Julia; Dietzel, Martin; Virgílio Cruz, J.; Inguaggiato, Salvatore; Leis, Albrecht; Böttcher, Michael E.

    2016-04-01

    A conceptual model is presented to better constrain the origin and evolution of discharges at Sete Cidades, Fogo and Furnas Volcano, using geochemical and isotopic analyses of rock and water as well as recalculated gas composition. The evolution of thermal water clearly reveals that Na-HCO3 and Na-SO4 type of springs have their origin in meteoric water as isotope data are close to the local meteoric water line (δ 18OH2O =-3 ± 1 ‰ V-SMOW; δ DH2O= -13 ± 7 ‰ V-SMOW) with exception of a Na-Cl spring named Ferraria, Sete Cidades area (δ 18OH2O = 0.45 ‰ V-SMOW ; δ DH2O= 4.18 ‰ V-SMOW). Analysed solutions are chemical evolved by evaporation, uptake of volcanic gas, leaching of local basaltic rocks, precipitation of solids, partly admixture of sea water and/or biological activity. Following the individual concentrations supports this model e.g.: HCO3 concentration and the recalculated isotopic composition of gaseous CO2 (δ 13CCO_2 = -4 ± 2.5 ‰ V-PDB) reflect evolved magmatic CO2 uptake and the subsequent leaching progress; High SO42- concentration of up to 16.5 mmol L-1 with δ 34SSO4 = 0.35 ± 0.3 ‰ (V-CDT) reflects magmatic origin which mainly control water chemistry of boiling pools of both Fogo and Furnas lake; δ 18OSO4 = 10.5 ‰ (V-SMOW) suggests organic origin and fits together with the observation of stromatolitic structures in the related precipitates; Molar Mg/Caratio (≈ 0.77) of all thermal discharges reflects leaching of analysed local basalt (Mg/Ca≈ 0.78). Furthermore, shallow and evolved outgassing effects can be distinguished. Equilibrium temperatures for various minerals given in SI vs. T plots and further geothermometers (e.g. Na-K, Na-K-Ca geothermometers) were discussed to estimate temperatures of reservoirs.

  9. Thermal and Evolved Gas Analysis of Magnesium Perchlorate: Implications for Perchlorates in Soils at the Mars Phoenix Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R.V.; Lauer, H. V.; Sutter, B.; Golden, D.C.; Boynton, W.V.

    2009-01-01

    Perchlorate salts were discovered in the soils around the Phoenix landing site on the northern plains of Mars [1]. Perchlorate was detected by an ion selective electrode that is part of the MECA Wet Chemistry Laboratory (WCL). The discovery of a mass 32 fragment (likely 02) by the Thermal and Evolved-Gas Analyzer (TEGA) provided additional confirmation of a strong oxidizer in the soils around the landing site. The purpose of this paper is to evaluate the thermal and evolved gas behavior of perchlorate salts using TEGA-like laboratory testbed instruments. TEGA ovens were fabricated from high purity Ni. Hence, an additional objective of this paper is to determine the effects that Ni might have on the evolved gas behavior of perchlorate salts.

  10. Trends and anomalies in gas evolution from coal samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorres, K.S.

    1993-09-01

    As part of the stability studies on these sealed samples a number of the samples were given to the Analytical Chemistry Laboratory at ANL for periodic gas analysis. 1. Higher rank coals evolve methane, and lower rank coals evolve carbon dioxide with some evolution of both gases for the intermediate ranks. 2. The evolution proceeds over times of years for pulverized coals in sealed ampules. 3. Gas concentrations are higher above -20 mesh samples than above -100 mesh material. 4. Carbon monoxide is not evolved.

  11. [Origin of the oxygen detected by the Viking stations in an analysis of Mars soil].

    PubMed

    Imshenetskiĭ, A A; Murzakov, B G; Dorofeeva, I K

    1978-01-01

    Reactions between the mineral limonite and hydrogen peroxide were studied and gases produced thereupon were analysed by gas chromatography. Oxygen did not evolve if limonite was added to hydrogen peroxide frozen at a temperature of dry ice. However, at room temperature, a vigorous chemical reaction occurred and a large amount of oxygen evolved. Apparently, the ground of Mars contains not only hydrated iron oxides but also frozen hydrogen peroxide whose thawing in the incubation chamber of Viking resulted in its catalytic degradation under the action of iron ions. The evidence thus obtained and its comparison with the data of American scientists account for considerable evolution of oxygen detected by Viking upon analysis of the Mars ground.

  12. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  13. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of <150 micron fines from ten sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform (RN) and drilled Sheepbed mudstone from sites John Klein (JK) and Cumberland (CB). One was drilled from the Windjana (WJ) site on a sandstone of the Kimberly formation. Four were drilled from sites Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP) and Buckskin (BK) of the Murray Formation at the base of Mt. Sharp. Two were drilled from sandstones of the Stimson formation targeting relatively unaltered (Big Sky, BY) and then altered (Greenhorn, GH) material associated with a light colored fracture zone. CheMin analyses provided quantitative sample mineralogy. SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases. This contribution will focus on evolved SO2. All samples evolved SO2 above 500 C. The shapes of the SO2 evolution traces with temperature vary between samples but most have at least two "peaks' within the wide high temperature evolution, from approx. 500-700 and approx. 700-860 C (Fig. 1). In many cases, the only sulfur minerals detected with CheMin were Ca sulfates (e.g., RN and GH), which should thermally decompose at temperatures above those obtainable by SAM (>860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  14. Atomic gas in debris discs

    NASA Astrophysics Data System (ADS)

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.

    2017-04-01

    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  15. On-line gas chromatographic analysis of airborne particles

    DOEpatents

    Hering, Susanne V [Berkeley, CA; Goldstein, Allen H [Orinda, CA

    2012-01-03

    A method and apparatus for the in-situ, chemical analysis of an aerosol. The method may include the steps of: collecting an aerosol; thermally desorbing the aerosol into a carrier gas to provide desorbed aerosol material; transporting the desorbed aerosol material onto the head of a gas chromatography column; analyzing the aerosol material using a gas chromatograph, and quantizing the aerosol material as it evolves from the gas chromatography column. The apparatus includes a collection and thermal desorption cell, a gas chromatograph including a gas chromatography column, heated transport lines coupling the cell and the column; and a quantization detector for aerosol material evolving from the gas chromatography column.

  16. Thermal and Evolved Gas Analysis of Geologic Samples Containing Organic Materials: Implications for the 2007 Mars Phoenix Scout Mission

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Golden, D. C.; Boynton, W. V.

    2006-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument scheduled to fly onboard the 2007 Mars Phoenix Scout Mission will perform differential scanning calorimetry (DSC) and evolved gas analysis (EGA) of soil samples and ice collected from the surface and subsurface at a northern landing site on Mars. We have been developing a sample characterization data library using a laboratory DSC integrated with a quadrupole mass spectrometer to support the interpretations of TEGA data returned during the mission. The laboratory TEGA test-bed instrument has been modified to operate under conditions similar to TEGA, i.e., reduced pressure (e.g., 100 torr) and reduced carrier gas flow rates. We have previously developed a TEGA data library for a variety of volatile-bearing mineral phases, including Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates. Here we examine the thermal and evolved gas properties of samples that contain organics. One of the primary objectives of the Phoenix Scout Mission is to search for habitable zones by assessing organic or biologically interesting materials in icy soil. Nitrogen is currently the carrier gas that will be used for TEGA. In this study, we examine two possible modes of detecting organics in geologic samples; i.e., pyrolysis using N2 as the carrier gas and combustion using O2 as the carrier gas.

  17. Hydroxylammonium Nitrate Compatibility Tests with Various Materials - A Liquid Propellant Study

    DTIC Science & Technology

    1990-07-01

    evolved gas was determined by gas analysis. The propellant off-loaded from the test tube was analyzed for leached metals (if the material was a...HAN Solution 15 - The amount of gas evolved during the 30-day observation period was calculated from the ullage volume of the flask, the pressure read...much volume and was ignored. The length of the U-gauge was 34 cm from top to bottom of the U. The full scale range was 300 mm Hg corresponding to a gas

  18. Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Archer, P. D., Jr.; Sutter, B.; Niles, P. B.; Ming, Douglas W.

    2012-01-01

    Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size.

  19. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  20. ALMA observations of TiO2 around VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  1. Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Bristow, T.; Steele, A.; Amundsen, H. E. F.

    2012-01-01

    The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy.

  2. Clustering impact regime with shocks in freely evolving granular gas

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  3. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  4. Summary of Results from the Mars Phoenix Lander's Thermal Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Hoffman, J.; Lauer, H. V.; Golden, D. C.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect evolved volatiles and organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS) that can detect masses in the 2 to 140 dalton range [1]. Five Martian soils were individually heated to 1000 C in the DSC ovens where evolved gases from mineral decompostion products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil.

  5. Martian Chlorobenzene Identified by Curiosity in Yellowknife Bay: Evidence for the Preservation of Organics in a Mudstone on Mars

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Freissinet, C.; Mahaffy, P.; Miller, K.; Eigenbrode, J.; Summons, R.; Martin, M.; Franz, H.; Steele, A.; Archer, D.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first sample analyzed by SAM at the Rocknest (RN) aeolian deposit revealed chlorohydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. No conclusive evidence for martian chlorohydrocarbons in the RN sand was found. After RN, Curiosity traveled to Yellowknife Bay and drilled two holes separated by 2.75 m designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone (called Sheepbed) consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. Last year at LPSC we reported elevated abundances of chlorobenzene (CBZ) and a more diverse suite of chlorinated hydrocarbons including dichloroalkanes in CB compared to RN, suggesting that martian or meteoritic organic compounds may be preserved in the mudstone. Here we present SAM data from additional analyses of the CB sample and of Confidence Hills (CH), another drill sample collected at the base of Mt. Sharp. This new SAM data along with supporting laboratory analog experiments indicate that most of the chlorobenzene detected in CB is derived from martian organic matter preserved in the mudstone.

  6. Isotopic Composition of Carbon Dioxide Released from Confidence Hills Sediment as Measured by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.; hide

    2015-01-01

    In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.

  7. Mechanistic prediction of fission-gas behavior during in-cell transient heating tests on LWR fuel using the GRASS-SST and FASTGRASS computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J; Gehl, S M

    1979-01-01

    GRASS-SST and FASTGRASS are mechanistic computer codes for predicting fission-gas behavior in UO/sub 2/-base fuels during steady-state and transient conditions. FASTGRASS was developed in order to satisfy the need for a fast-running alternative to GRASS-SST. Althrough based on GRASS-SST, FASTGRASS is approximately an order of magnitude quicker in execution. The GRASS-SST transient analysis has evolved through comparisons of code predictions with the fission-gas release and physical phenomena that occur during reactor operation and transient direct-electrical-heating (DEH) testing of irradiated light-water reactor fuel. The FASTGRASS calculational procedure is described in this paper, along with models of key physical processes included inmore » both FASTGRASS and GRASS-SST. Predictions of fission-gas release obtained from GRASS-SST and FASTGRASS analyses are compared with experimental observations from a series of DEH tests. The major conclusions is that the computer codes should include an improved model for the evolution of the grain-edge porosity.« less

  8. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  9. Container and method for absorbing and reducing hydrogen concentration

    DOEpatents

    Wicks, George G.; Lee, Myung W.; Heung, Leung K.

    2001-01-01

    A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.

  10. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone?

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Freissinet, Caroline; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R.; Steele, A.; Franz, H.; Archer, D.; Brinkerhoff, W.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest (RN), revealed chlorinated hydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background. Chlorobenzene (CBZ) was also identified by SAM GCMS at RN at trace levels (approx.0.007 nmol) and was attributed to the reaction of chlorine with the Tenax polymers used in the hydrocarbon traps. After the RN analyses, Curiosity traveled to Yellowknife Bay and drilled two separate holes designated John Klein (JK) and Cumberland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone consisting of approx.20 wt% smectite clays, which on Earth are known to aid the concentration and preservation of organic matter. In addition, higher abundances and a more diverse suite of chlorinated hydrocarbons in CB compared to RN suggests that martian or meteoritic organic sources may be preserved in the mudstone. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  11. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    PubMed

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  12. Field Characterization of the Mineralogy and Organic Chemistry of Carbonates from the 2010 Arctic Mars Analog Svalbard Expedition by Evolved Gas Analysis

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Ten Kate, I. L.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Morris, R. V.; Steele, A.; Amundson, H. E. F.

    2011-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.

  13. The evolution of the metallicity gradient and the star formation efficiency in disc galaxies

    NASA Astrophysics Data System (ADS)

    Sillero, Emanuel; Tissera, Patricia B.; Lambas, Diego G.; Michel-Dansac, Leo

    2017-12-01

    We study the oxygen abundance profiles of the gas-phase components in hydrodynamical simulations of pre-prepared disc galaxies including major mergers, close encounters and isolated configurations. We analyse the evolution of the slope of oxygen abundance profiles and the specific star formation rate (sSFR) along their evolution. We find that galaxy-galaxy interactions could generate either positive or negative gas-phase oxygen profiles, depending on the state of evolution. Along the interaction, galaxies are found to have metallicity gradients and sSFR consistent with observations, on average. Strong gas inflows produced during galaxy-galaxy interactions or as a result of strong local instabilities in gas-rich discs are able to produce both a quick dilution of the central gas-phase metallicity and a sudden increase of the sSFR. Our simulations show that, during these events, a correlation between the metallicity gradients and the sSFR can be set up if strong gas inflows are triggered in the central regions in short time-scales. Simulated galaxies without experiencing strong disturbances evolve smoothly without modifying the metallicity gradients. Gas-rich systems show large dispersion along the correlation. The dispersion in the observed relation could be interpreted as produced by the combination of galaxies with different gas-richness and/or experiencing different types of interactions. Hence, our findings suggest that the observed relation might be the smoking gun of galaxies forming in a hierarchical clustering scenario.

  14. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  15. A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier

    2017-11-01

    Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.

  16. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Brunner, Anna; McAdam, Amy; Franz, Heather; Conrad, Pamela; Webster, Chris; Cabane, Michel

    2009-01-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at aMars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-60s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000 C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity Sam breadboards the type of chemical information we expect SAM to provide.

  17. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    USGS Publications Warehouse

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009–3032 and presents new information regarding selected aspects of unconventional shale gas development in the Appalachian Basin (primarily Virginia, West Virginia, Maryland, Pennsylvania, Ohio, and New York). This document was prepared by the USGS, in cooperation with the U.S. Department of Energy, and reviews the evolving technical advances and scientific studies made in the Appalachian Basin between 2009 and the present (2013), addressing past and current issues for oil and gas development in the region.

  18. Oil and gas impacts on transportation.

    DOT National Transportation Integrated Search

    2015-01-01

    Colorados oil and gas industry is continually evolving, and there have been considerable changes in drilling techniques and geographic focus since the 2010 CDOT research study on Energy Development and the Transportation System. This research stud...

  19. Thermal and Evolved Gas Analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru (Pampas de la Joya): Implications for the Phoenix Mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris

    TEGA is one of several instruments on board of the Phoenix Lander that will perform differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high-temperature furnace and a mass spectrometer that will be use to analyze samples delivered to instrument via a robotic arm. The samples will be heated at a programmed ramp rate up to 1000° C and the power required for heating will be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process will be analyzed with the evolved-gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolizer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the thermal and evolved gas properties of six types of hyperarid soils from the Pampas de La Joya southern Peru, a possible analog to Mars, which has been previously enriched with microorganisms (Salmonella thypimurium, Micrococcus luteus, and Candida albicans) to investigate the effect of soil matrix over TEGA response. Between 20 to 40 mg of soil pre-treated to 500° C for 24 hours to remove traces of organics, was mixed with or without 5mg biomass lyophilized (dry weight). Additionally 20 mg of each one microorganism were analyzed. The samples were placed in the pyrolizer that reached 1200° C at 1 hour. The volatiles released were transferred to the MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 40-350m/z. As expected, there were significant differences in the evolved gas behaviors for microorganism samples with or without a soil matrix under similar heating conditions. In addition, samples belonging to the most arid environments had significant differences compared with less arid soils. Organic C in the form of CO2 (ion 44 m/z) for microorganisms evolved between 326±19.5° C showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were found too. Interestingly, the release of CO2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it is subjected to temperature. Samples of soil pre-treated show CO2 evolved up to 650° C suggesting thermal decomposition of carbonates. Finally in hyperarid soils, ion 44 began its release to 330±30° C while the less arid soils to 245±45° C. These results indicate that some organics (mixed with soils) are oxidized to CO2, and that carbonates present in hyperarid soils also decompose into CO2. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown. Key words: Thermal analysis, TEGA, Atacama desert, La Joya desert, hyperarid soils.

  20. Hot Gas in Merging Subgroups; Probing the Early Stages of Structure Formation

    NASA Astrophysics Data System (ADS)

    Machacek, Marie

    2014-08-01

    To fully understand the growth of large scale structure in hierarchical cosmological models, we must first understand how their building blocks, low mass galaxy subgroups, evolve through mergers. These galaxy subgroups are X-ray faint and difficult to observe at high redshift. The study of near-by subgroup mergers may be used as templates to gain insight into the dominant dynamical processes that are at work in the early universe. We use Chandra observations of edges, tails and wings in a sample of near-by galaxy groups ( Pavo, Telescopium, Pegasus, NGC7618/UGC12491 to measure the properties of the diffuse gas, merger velocities, shocks and non-hydrostatic gas 'sloshing', as their common ICM envelopes evolves.

  1. Ionization in MHD-Gas interactions

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Diver, D. A.

    2013-09-01

    The study of partially ionized plasmas is important in a number of astrophysical situations and is vital for the study of laboratory plasmas. The interactions between a neutral gas and a plasma define a hybrid medium that has aspects of each, but does not only sustain the pure modes of the individual species. Previously we have shown that momentum coupling between the gas and the magnetized plasma alters the behaviour of both; as an extension of that simulation, we present results for the extension to the coupling in which the relative motion between the species provides enough kinetic energy in the flow to allow a measure of species exchange Alfvén ionization (AI) (also known as critical velocity ionization), allowing the ionization fraction to evolve as the dynamics evolve.

  2. Searching for Reduced Carbon on the Surface of Mars: The SAM Combustion Experiment

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Mahaffy, P. R.; Webster, C. R.; Eigenbrode, J. L.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Glavin, D. P.; hide

    2014-01-01

    The search for reduced carbon has been a major focus of past and present missions to Mars. Thermal evolved gas analysis was used by the Viking and Phoenix landers and is currently in use by the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) to characterize volatiles evolved from solid samples, including those associated with reduced organic species. SAM has the additional capability to perform a combustion experiment, in which a sample of Mars regolith is heated in the presence of oxygen and the composition of the evolved gases is measured using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS) [1]. Organics detection on the Martian surface has been complicated by oxidation and destruction during heating by soil oxidants [2], including oxychlorine compounds, and terrestrial organics in the SAM background contributed by one of the SAM wet chemistry reagents MTBSTFA (N-Methyl-N-tertbutyldimethylsilyl- trifluoroacetamide) [3,4]. Thermal Evolved Gas Analysis (TEGA) results from Phoenix show a mid temperature CO2 release between 400 C - 680 C speculated to be carbonate, CO2 adsorbed to grains, or combustion of organics by soil oxidants [5]. Low temperature CO2 evolutions (approx. 200 C - 400 C) were also present at all three sites in Gale Crater where SAM Evolved Gas Analysis (EGA) was performed, and potential sources include combustion of terrestrial organics from SAM, as well as combustion and/or decarboxylation either indigenous martian or exogenous organic carbon [4,6]. By performing an experiment to intentionally combust all reduced materials in the sample, we hope to compare the bulk abundance of CO2 and other oxidized species evolved by combustion to that evolved during an EGA experiment to estimate how much CO2 could be contributed by reduced carbon sources. In addition, C, O, and H isotopic compositions of CO2 and H2O measured by TLS can contribute information regarding the potential sources of these volatiles.

  3. Uranium and organic matters: use of pyrolysis-gas chromatography, carbon, hydrogen, and uranium contents to characterize the organic matter from sandstone-type deposits

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic matter seems to play an important role in the genesis of uranium deposits in sandstones in the western United States. Organic materials associated with ore from the Texas coastal plain, Tertiary basins of Wyoming, Grants mineral belt of New Mexico, and the Uravan mineral belt of Utah and Colorado vary widely in physical appearance and chemical composition. Partial characterization of organic materials is achieved by chemical analyses to determine atomic hydrogen-to-carbon (H/C) ratios and by gas chromatographic analyses to determine the molecular fragments evolved during stepwise pyrolysis. From the pyrolysis experiments the organic materials can be classified and grouped: (a) lignites from Texas and Wyoming and (b) hydrogen poor materials, from Grants and Uravan mineral belts and Wyoming; (c) naphthalene-containing materials from Grants mineral belt and Wyoming; and (d) complex and aromatic materials from Uravan, Grants and Wyoming. The organic materials analyzed have atomic H/C ratios that range from approximately 0.3 to at least 1.5. The samples with higher H/C ratios yield pyrolysis products that contain as many as 30 carbon atoms per molecule. Samples with low H/C ratios are commonly more uraniferous and yield mostly methane and low-molecular-weight gases during pyrolysis.

  4. Antibiofilm activity of cashew juice pulp against Staphylococcus aureus, high performance liquid chromatography/diode array detection and gas chromatography-mass spectrometry analyses, and interference on antimicrobial drugs.

    PubMed

    Dias-Souza, Marcus V; Dos Santos, Renan M; de Siqueira, Ezequias P; Ferreira-Marçal, Pedro H

    2017-07-01

    The epidemiology of Staphylococcus aureus infections has evolved in recent years, as this species is a major Gram-positive pathogen associated with healthcare services. The antimicrobial resistance of this species raises an urgent need for new treatment strategies. Fruits play important nutritional and economic roles in society, but their biological and pharmacological features are poorly explored when compared to nonedible parts of plants such as barks and leaves. In this study, we show that the cashew apple juice [cashew juice pulp (CJP)] extract is active against the planktonic cells of S. aureus strains, and for the first time, we show that CJP is also active against S. aureus biofilms. High performance liquid chromatography and gas chromatography-mass spectrometry analyses were conducted to prospect for polyphenols and free carbohydrates, respectively. Cashew apple juice, which is rich in nutrients, is widely consumed in Brazil; therefore, the quality attributes of CJPs were investigated. Samples were evaluated for pH, total titratable acidity, vitamin C levels, and total soluble solids. We also detected an antagonistic interference of CJP when it was combined with different antimicrobial drugs. Copyright © 2016. Published by Elsevier B.V.

  5. Global variation of the dust-to-gas ratio in evolving protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Hughes, Anna L. H.; Armitage, Philip J.

    2012-06-01

    Recent theories suggest planetesimal formation via streaming and/or gravitational instabilities may be triggered by localized enhancements in the dust-to-gas ratio, and one hypothesis is that sufficient enhancements may be produced in the pile-up of small solid particles inspiralling under aerodynamic drag from the large mass reservoir in the outer disc. Studies of particle pile-up in static gas discs have provided partial support for this hypothesis. Here, we study the radial and temporal evolution of the dust-to-gas ratio in turbulent discs that evolve under the action of viscosity and photoevaporation. We find that particle pile-ups do not generically occur within evolving discs, particularly if the introduction of large grains is restricted to the inner, dense regions of a disc. Instead, radial drift results in depletion of solids from the outer disc, while the inner disc maintains a dust-to-gas ratio that is within a factor of ˜2 of the initial value. We attribute this result to the short time-scales for turbulent diffusion and radial advection (with the mean gas flow) in the inner disc. We show that the qualitative evolution of the dust-to-gas ratio depends only weakly upon the parameters of the disc model (the disc mass, size, viscosity and value of the Schmidt number), and discuss the implications for planetesimal formation via collective instabilities. Our results suggest that in discs where there is a significant level of midplane turbulence and accretion, planetesimal formation would need to be possible in the absence of large-scale enhancements. Instead, trapping and concentration of particles within local turbulent structures may be required as a first stage of planetesimal formation.

  6. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  7. Tendency towards maximum complexity in a nonequilibrium isolated system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calbet, Xavier; Lopez-Ruiz, Ricardo

    2001-06-01

    The time evolution equations of a simplified isolated ideal gas, the {open_quotes}tetrahedral{close_quotes} gas, are derived. The dynamical behavior of the Lopez-Ruiz{endash}Mancini{endash}Calbet complexity [R. Lopez-Ruiz, H. L. Mancini, and X. Calbet, Phys. Lett. A >209, 321 (1995)] is studied in this system. In general, it is shown that the complexity remains within the bounds of minimum and maximum complexity. We find that there are certain restrictions when the isolated {open_quotes}tetrahedral{close_quotes} gas evolves towards equilibrium. In addition to the well-known increase in entropy, the quantity called disequilibrium decreases monotonically with time. Furthermore, the trajectories of the system in phase space approach themore » maximum complexity path as it evolves toward equilibrium.« less

  8. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures < 500 C, and an evolution peak at higher temperatures near approx 750 C. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife Bay clay minerals may also be available from the detection of H2 evolved during SAM EGA-MS at high temperature. A likely source of at least some of this H2 is H2O evolved from the smectite clays at high temperature, and it is possible these evolutions can be used in a similar fashion to high temperature H2O releases to provide constraints on the clay minerals in a sample. In addition, the D/H of this high temperature H2, as well as the H2O, can be derived from SAM MS and Tunable Laser Spectrometer (TLS) data, respectively. These D/H values may help to inform the provenance of high and low temperature water evolved from martian samples

  9. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  10. Practical Problems in the Cement Industry Solved by Modern Research Techniques

    ERIC Educational Resources Information Center

    Daugherty, Kenneth E.; Robertson, Les D.

    1972-01-01

    Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)

  11. Detection and Quantification of Nitrogen Compounds in Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, Paul Douglas; Buch, Arnaud; Eigenbrode, Jennifer L.; Franz, Heather; Glavin, Daniel Patrick; Ming, Douglas W/; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials from three sites at Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-Nmethyl-acetamide). On Earth, nitrogen is a crucial bio-element, and nitrogen availability controls productivity in many environments. Nitrogen has also recently been detected in the form of CN in inclusions in the Martian meteorite Tissint, and isotopically heavy nitrogen (delta N-15 approx +100per mille) has been measured during stepped combustion experiments in several SNC meteorites. The detection of nitrogen-bearing compounds in Martian regolith would have important implications for the habitability of ancient Mars. However, confirmation of indigenous Martian nitrogen bearing compounds will require ruling out their formation from the terrestrial derivatization reagents (e.g. N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. The nitrogen species we detect in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples. However, this does not preclude a Martian origin for some of these compounds, which are present in nanomolar concentrations in SAM evolved gas analyses. Analysis of SAM data and laboratory breadboard tests are underway to determine whether nitrogen species are present at higher concentrations than can be accounted for by maximum estimates of nitrogen contribution from MTBSTFA and DMF. In addition, methods are currently being developed to use GC Column 6, (functionally similar to a commercial Q-Bond column), to separate and identify unretained compounds such as NO, N2O, and NO2, which are difficult to detect by EGA-MS due to mass interferences at 30, 44 and 46, respectively. Here we present evolved gas analysis-mass spectrometry (EGA-MS) and gas chromatography mass spectrometry (GC-MS) data on the identification and quantification of these nitrogen-bearing compounds, and suggestions for their origins

  12. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; Glavin, D.; Coll, P.; Summons, R. E.; Mahaffy, P.; Archer, D.; Brunner, A.; Conrad, P.; Freissinet, C.; Martin, M.; hide

    2013-01-01

    key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.

  13. Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices, An

    EIA Publications

    2005-01-01

    This article compares realized Henry Hub spot market prices for natural gas during the three most recent winters with futures prices as they evolve from April through the following February, when trading for the March contract ends.

  14. Gas Evolution from Insulating Materials for Superconducting Coil of Iter by Gamma Ray Irradiation at Liquid Nitrogen Temperature

    NASA Astrophysics Data System (ADS)

    Idesaki, A.; Koizumi, N.; Sugimoto, M.; Morishita, N.; Ohshima, T.; Okuno, K.

    2008-03-01

    A laminated material composed of glass cloth/polyimide film/epoxy resin will be used as an insulating material for superconducting coil of International Thermonuclear Experimental Reactor (ITER). In order to keep safe and stable operation of the superconducting coil system, it is indispensable to evaluate radiation resistance of the material, because the material is exposed to severe environments such as high radiation field and low temperature of 4 K. Especially, it is important to estimate the amount of gases evolved from the insulating material by irradiation, because the gases affect on the purifying system of liquid helium in the superconducting coil system. In this work, the gas evolution from the laminated material by gamma ray irradiation at liquid nitrogen temperature (77 K) was investigated, and the difference of gas evolution behavior due to difference of composition in the epoxy resin was discussed. It was found that the main gases evolved from the laminated material by the irradiation were hydrogen, carbon monoxide and carbon dioxide, and that the amount of gases evolved from the epoxy resin containing cyanate ester was about 60% less than that from the epoxy resin containing tetraglycidyl-diaminophenylmethane (TGDDM).

  15. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study

    NASA Astrophysics Data System (ADS)

    Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.

    2018-01-01

    Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.

  16. Effects of exposure to sulfur mustard on speech aerodynamics.

    PubMed

    Heydari, Fatemeh; Ghanei, Mostafa

    2011-01-01

    Sulfur mustard is an alkylating agent with highly cytotoxic properties even at low exposure. It was used widely against both military and civilian population by Iraqi forces in the Iraq-Iran war (1983-1988). Although various aspects of mustard gas effects on patients with chemical injury have been relatively well characterized, its effects on speech are still evolving. We evaluated aerodynamics of speech in male patients following sulfur mustard inhalation. In a case-control study patients with chemical injuries (n=19) along with age and sex-matched healthy control group (n=20) were selected. Aerodynamic analyses were performed by using the Glasgow Airflow Measurement System (known as ST1 dysphonia). Results indicated that except mean flow rate, there were statistically significant differences in vital capacity, phonation time, phonation volume, vocal velocity index, total expired volume and phonation quotient of patients between experimental and control groups (P<0.05). This study demonstrated mustard gas can impair different parameters of speech aerodynamics. As a result of this activity, the reader will be able to describe: (1) the evaluation of air flow in relation to speech system dysfunction and efficiency; (2) the effect of sulfur mustard known as mustard gas on respiratory physiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  18. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    PubMed Central

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Chlorine gas represents a hazardous material threat from industrial accidents and as a terrorist weapon. This review will summarize recent events involving chlorine disasters and its use by terrorists, discuss pre-hospital considerations and suggest strategies for the initial management for acute chlorine exposure events. PMID:20823965

  19. Characterizing Environmental Transformation of Multi-walled Carbon Nanotubes and Carbon Nano-Fiber Composites using Thermal Analysis and Related Hyphenated Techniques

    EPA Science Inventory

    Thermogravimetric analysis (TGA) coupled with gas chromatography and mass spectroscopy (TGA/GCMS), for the evolved gas analysis, has given insight to the stability and kinetics of structural changes and determining adsorbed organics to nanomaterials and nanocomposites. TGA is als...

  20. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Franz, H.; McAdam, A.; Conrad, P. G.; Brunner, A.; Cabane, M.; Webster, C. R.

    2011-12-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at Mars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-70s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will illustrate through a variety of evolved gas experiments implemented under SAM-like gas flow and temperature ramp conditions on terrestrial analog minerals on high fidelity SAM breadboards the type of chemical information we expect SAM to provide. Bibring, J.-P., et al. (2006), Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science, 312, 400-404, doi:10.1126/science.1122659. Malin, M. C., and K. S. Edgett (2000), Sedimentary rocks of early Mars, Science, 290, 1927-1937, doi:10.1126/science.290.5498.1927. Milliken, R. E., J. P. Grotzinger, and B. J. Thomson (2010), Paleoclimate of Mars as captured by the strati- graphic record in Gale Crater, Geophys. Res. Lett., 37, L04201, doi:10.1029/2009GL041870.

  1. Analyses of multi-pion Hanbury Brown–Twiss correlations for the pion-emitting sources with Bose–Einstein condensation

    NASA Astrophysics Data System (ADS)

    Bary, Ghulam; Ru, Peng; Zhang, Wei-Ning

    2018-06-01

    We calculate the three- and four-particle correlations of identical pions in an evolving pion gas (EPG) model with Bose–Einstein condensation. The multi-pion correlation functions in the EPG model are analyzed in different momentum intervals and compared with the experimental data for Pb–Pb collisions at \\sqrt{{s}{NN}}=2.76 {TeV}. It is found that the multi-pion correlation functions and cumulant correlation functions are sensitive to the condensation fraction of the EPG sources in the low average transverse-momentum intervals of the three and four pions. The model results of the multi-pion correlations are consistent with the experimental data in a considerable degree, which gives a source condensation fraction between 16% and 47%.

  2. HSR combustion analytical research

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1992-01-01

    Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.

  3. Radiolytic decomposition of ammonium halides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlov, S.L.; Gromov, V.V.; Saunin, E.I.

    1988-11-01

    Chromatographic analyses were made of the gaseous products of the radiolysis of polycrystalline NH/sub 4/F, NH/sub 4/Cl, NH/sub 4/Br, and NH/sub 4/I, of particle size 0.25-0.5 mm. The irradiation was performed with /sup 60/Co ..sigma..-quanta, at room temperature in previously evacuated and sealed glass ampules. Determination was made of the amount of gas liberated into the space of the ampule during the irradiation, and of the amount retained in the crystal matrix and evolved on dissolution of the resulting samples in deaerated water. At the same time quantitative determinations of halogen were made by the thiosulfate method. It was shownmore » that hydrogen and nitrogen were formed in the radiolysis of all the compounds investigated. The yields are listed.« less

  4. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Franz, H.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, A.; Sutter, B.; Archer, P. D.; Ming, D. W.; Morris, R. V.; Atreya, S. K.; Team, M.

    2013-12-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise ~20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000oC and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures <500oC, and an evolution peak at higher temperatures near ~750oC. The low temperature H2O evolution has many potential contributors, including adsorbed H2O, smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the ~20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife Bay clay minerals may also be available from the detection of H2 evolved during SAM EGA-MS at high temperature. A likely source of at least some of this H2 is H2O evolved from the smectite clays at high temperature, and it is possible these evolutions can be used in a similar fashion to high temperature H2O releases to provide constraints on the clay minerals in a sample. In addition, the D/H of this high temperature H2, as well as the H2O, can be derived from SAM MS and Tunable Laser Spectrometer (TLS) data, respectively. These D/H values may help to inform the provenance of high and low temperature water evolved from martian samples (Mahaffy et al., this meeting).

  5. Risks and risk governance in unconventional shale gas development.

    PubMed

    Small, Mitchell J; Stern, Paul C; Bomberg, Elizabeth; Christopherson, Susan M; Goldstein, Bernard D; Israel, Andrei L; Jackson, Robert B; Krupnick, Alan; Mauter, Meagan S; Nash, Jennifer; North, D Warner; Olmstead, Sheila M; Prakash, Aseem; Rabe, Barry; Richardson, Nathan; Tierney, Susan; Webler, Thomas; Wong-Parodi, Gabrielle; Zielinska, Barbara

    2014-01-01

    A broad assessment is provided of the current state of knowledge regarding the risks associated with shale gas development and their governance. For the principal domains of risk, we identify observed and potential hazards and promising mitigation options to address them, characterizing current knowledge and research needs. Important unresolved research questions are identified for each area of risk; however, certain domains exhibit especially acute deficits of knowledge and attention, including integrated studies of public health, ecosystems, air quality, socioeconomic impacts on communities, and climate change. For these, current research and analysis are insufficient to either confirm or preclude important impacts. The rapidly evolving landscape of shale gas governance in the U.S. is also assessed, noting challenges and opportunities associated with the current decentralized (state-focused) system of regulation. We briefly review emerging approaches to shale gas governance in other nations, and consider new governance initiatives and options in the U.S. involving voluntary industry certification, comprehensive development plans, financial instruments, and possible future federal roles. In order to encompass the multiple relevant disciplines, address the complexities of the evolving shale gas system and reduce the many key uncertainties needed for improved management, a coordinated multiagency federal research effort will need to be implemented.

  6. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  7. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  8. The Mars Phoenix Thermal Evolved-Gas Analysis: The Role of an Organic Free Blank in the Search for Organics

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, Douglas W.; Sutter, B.; Golden, D. C.; Morris, Richard V.; Boynton, W. V.

    2008-01-01

    The Thermal Evolved-Gas Analyzer (TEGA) instrument onboard the 2007 Phoenix Lander will perform differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. Data from the instrument will be compared with Mars analog mineral standards, collected under TEGA Mars-like conditions to identify the volatile-bearing mineral phases [1] (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) found in the Martian soil. Concurrently, the instrument will be looking for indications of organics that might also be present in the soil. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. The spacecraft will certainly bring organic contaminants to Mars even though numerous steps were taken to minimize contamination during the spacecraft assembly and testing. It will be essential to distinguish possible Mars organics from terrestrial contamination when TEGA instrument begins analyzing icy soils. To address the above, an Organic Free Blank (OFB) was designed, built, tested, and mounted on the Phoenix spacecraft providing a baseline for distinguishing Mars organics from terrestrial organic contamination. Our objective in this report is to describe some of the considerations used in selecting the OFB material and then report on the processing and analysis of the final candidate material

  9. Assessment of the Persistence of Vapour Evolved from Neat CH contamination on Prairie Terrain (Record of FPP-81-1)

    DTIC Science & Technology

    1983-01-01

    infrared gas analyzer, equipped with a 20 m pathlenth gas cell , was used to obtain vapour concentration in real time. The sampling probe for the...lth’lt lrt’ nt1 ) sli tiongly absorbed by the vegetation. I-SIl KI(’TFl

  10. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  11. Is there any pristine gas in nearby starburst galaxies?

    NASA Astrophysics Data System (ADS)

    Lebouteiller, Vianney; Kunth, Daniel

    2008-12-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H ii regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50 Z⊙ for extremely-metal poor galaxies.

  12. Metal enrichment in the neutral gas of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Lebouteiller, V.; Kunth, D.; Désert, J.-M.; Thuan, T. X.

    2009-05-01

    We derive the chemical composition of the neutral gas in the blue compact dwarf (BCD) Pox 36 observed with FUSE. Metals (N, O, Ar, and Fe) are underabundant as compared to the ionized gas associated with H II regions by a factor ~7. The neutral gas, although it is not pristine, is thus probably less chemically evolved than the ionized gas. This could be due to different dispersal and mixing timescales. Results are compared to those of other BCDs observed with FUSE. The metallicity of the neutral gas in BCDs seems to reach a lower threshold of ~1/50Zsolar for extremely-metal poor galaxies.

  13. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  14. Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Gluyas, Richard E.; Snyder, William J.

    1992-01-01

    The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.

  15. Robotic Arm Camera Image of the South Side of the Thermal and Evolved-Gas Analyzer (Door TA4

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Evolved-Gas Analyzer (TEGA) instrument aboard NASA's Phoenix Mars Lander is shown with one set of oven doors open and dirt from a sample delivery. After the 'seventh shake' of TEGA, a portion of the dirt sample entered the oven via a screen for analysis. This image was taken by the Robotic Arm Camera on Sol 18 (June 13, 2008), or 18th Martian day of the mission.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions.

    PubMed

    German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S

    2016-12-12

    In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (<100 nm radius), and weakly dependent on the nature of the gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.

  17. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  18. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  19. Adaptive Evolution under Extreme Genetic Drift in Oxidatively Stressed Caenorhabditis elegans

    PubMed Central

    Christy, Stephen F; Wernick, Riana I; Lue, Michael J; Velasco, Griselda; Howe, Dana K; Denver, Dee R

    2017-01-01

    Abstract A mutation-accumulation (MA) experiment with Caenorhabditis elegans nematodes was conducted in which replicate, independently evolving lines were initiated from a low-fitness mitochondrial electron transport chain mutant, gas-1. The original intent of the study was to assess the effect of electron transport chain dysfunction involving elevated reactive oxygen species production on patterns of spontaneous germline mutation. In contrast to results of standard MA experiments, gas-1 MA lines evolved slightly higher mean fitness alongside reduced among-line genetic variance compared with their ancestor. Likewise, the gas-1 MA lines experienced partial recovery to wildtype reactive oxygen species levels. Whole-genome sequencing and analysis revealed that the molecular spectrum but not the overall rate of nuclear DNA mutation differed from wildtype patterns. Further analysis revealed an enrichment of mutations in loci that occur in a gas-1-centric region of the C. elegans interactome, and could be classified into a small number of functional-genomic categories. Characterization of a backcrossed four-mutation set isolated from one gas-1 MA line revealed this combination to be beneficial on both gas-1 mutant and wildtype genetic backgrounds. Our combined results suggest that selection favoring beneficial mutations can be powerful even under unfavorable population genetic conditions, and agree with fitness landscape theory predicting an inverse relationship between population fitness and the likelihood of adaptation. PMID:29069345

  20. The highly ionized, high-velocity gas in NGC 6231

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    2017-02-01

    It is well known that clusters of massive stars are influenced by the presence of strong winds, that they are sources of diffuse X-rays from shocked gas, and that this gas can be vented into the surrounding region or the halo through the champagne effect. However, the details of how these different environments interact and evolve are far from complete. This paper attributes the broad C IVλλ1500 absorption features (extending to -1900 km s-1) that are seen in the spectra of main sequence B stars in NGC 6231 to gas in the cluster environment and not the B stars themselves. It is shown that the presence of a WC star, WR 79, in the cluster makes this gas detectable because its wind enriches the cluster gas with carbon. Given the available data, it is not clear whether the absorbing gas is simply the far wind of WR 79 or a collective cluster wind enriched by carbon from the wind of WR 79. If it is simply due to the wind, then this wind must flow, unimpeded for more than 2 pc, suggesting that the inner region of the cluster is nearly devoid of obstructing material. If it is actually a collective wind from the cluster, then we could be witnessing an important stage of galactic feedback. In either case, the observations provide a unique and significant piece to the puzzle of how massive, open clusters evolve.

  1. Search for Primitive Matter in the Solar System

    NASA Technical Reports Server (NTRS)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  2. Five Years of Analyses of Volatiles, Isotopes and Organics in Gale Crater Materials

    NASA Astrophysics Data System (ADS)

    McAdam, A.; Mahaffy, P. R.; Andrejkovicova, S. C.; Archer, P. D., Jr.; Atreya, S. K.; Buch, A.; Coll, P. J.; Conrad, P. G.; Eigenbrode, J. L.; Farley, K. A.; Flesch, G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Hogancamp, J. V.; House, C. H.; Knudson, C. A.; Lewis, J. M.; Malespin, C.; Martin, P. M.; Millan, M.; Ming, D. W.; Morris, R. V.; Navarro-Gonzalez, R.; Steele, A.; Stern, J. C.; Summons, R. E.; Sutter, B.; Szopa, C.; Teinturier, S.; Trainer, M. G.; Webster, C. R.; Wong, G. M.

    2017-12-01

    Over the last five years, the Curiosity rover has explored a variety of fluvial, lacustrine and aeolian sedimentary rocks, and soils. The Sample Analysis at Mars (SAM) instrument has analysed 3 soil and 12 rock samples, which exhibit significant chemical and mineralogical diversity in over 200 meters of vertical section. Here we will highlight several key insights enabled by recent measurements of the chemical and isotopic composition of inorganic volatiles and organic compounds detected in Gale Crater materials. Until recently samples have evolved O2 during SAM evolved gas analyses (EGA), attributed to the thermal decomposition of oxychlorine phases. A lack of O2 evolution from recent mudstone samples may indicate a difference in the composition of depositional or diagenetic fluids, and can also have implications for the detection of organic compounds since O2 can combust organics to CO2 in the SAM ovens. Recent mudstone samples have also shown little or no evolution of NO attributable to nitrate salts, possibly also as a result of changes in the chemical composition of fluids [1]. Measurements of the isotopic composition of sulfur, hydrogen, nitrogen, chlorine, and carbon in methane evolved during SAM pyrolysis are providing constraints on the conditions of possible paleoenvironments [e.g., 2, 3]. There is evidence of organic C from both EGA and GCMS measurements of Gale samples [e.g., 4, 5]. Organic sulfur volatiles have been detected in several samples, and the first opportunistic derivatization experiment produced a rich dataset indicating the presence of several organic compounds [6, 7]. A K-Ar age has been obtained from the Mojave mudstone, and the age of secondary materials formed by aqueous alteration is likely <3 Ga [8]. This relatively young formation age suggests fluid interactions after the end of most fluvial activity on the surface of Mars. As these highlights show, SAM measurements of solid samples have made diverse and important contributions to the exploration of Gale's rock records of martian environmental history and habitability. [1] Sutter et al. (2017) LPSC 3009. [2] Franz et al., this mtg. [3] Stern et al., this mtg. [4] Ming et al. (2014) Science 343. [5] Freissinet et al. (2015) JGR 120. [6] Eigenbrode et al. (2016) AGU P21D-08. [7] Freissinet et al. (2017) LPSC 2687. [8] Martin et al. (2017) LPSC 1531.

  3. shock driven instability of a multi-phase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob; Black, Wolfgang; Dahal, Jeevan; Morgan, Brandon

    2015-11-01

    A computational study of a shock driven instability of a multiphse particle-gas system is presented. This instability can evolve in a similar fashion to the Richtmyer-Meshkov (RM) instability, but has addition parameters to be considered. Particle relaxation times, and density differences of the gas and particle-gas system can be adjusted to produce results which are different from the classical RM instability. We will show simulation results from the Ares code, developed at Lawrence Livermore National Laboratory, which uses a particle-in-cell approach to study the effects of the particle-gas system parameters. Mixing parameters will be presented to highlight the suppression of circulation and gas mixing by the particle phase.

  4. Aging in freely evolving granular gas with impact velocity dependent coefficient of restitution

    NASA Astrophysics Data System (ADS)

    Kumari, Shikha; Ahmad, Syed Rashid

    2018-05-01

    The evolution of granular system is governed by the concept of coefficient of restitution that gives a relationship between normal component of relative velocities before and after collision. Most of the studies consider a simplified collision model where particles interact through coefficient of restitution which is a constant while in reality, the coefficient of restitution must be a variable that depends on the impact velocity of colliding particles. In this work, we have considered the aging in the velocity autocorrelation function, A(τw, τ) for a granular gas of realistic particles interacting through coefficient of restitution that is depending on impact velocity. Molecular dynamics simulation is used to study granular gas that is evolving freely in absence of any external force. From the simulation results, we observe that A(τw, τ) depends explicitly on waiting time τw and collision time τ. Initially, the function decays exponentially but as the waiting time increases the decay of function becomes slow due to correlations that emerge in velocity field.

  5. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  6. Dating native gold by noble gas analyses

    NASA Technical Reports Server (NTRS)

    Niedermann, S.; Eugster, O.; Hofmann, B.; Thalmann, CH.; Reimold, W. U.

    1993-01-01

    Our recent work on He, Ne, and Ar in Alpine gold samples has demonstrated that gold is extremely retentive for He and could thus, in principle, be used for U/Th-He-4 dating. For vein-type gold from Brusson, Northern Italy, we derived a U/Th-He-4 age of 36 Ma, in agreement with the K-Ar formation age of associated muscovites and biotites. However, in placer gold from the Napf area, Central Switzerland, we observed large excesses of both He-4 and radiogenic Ar-40 (Ar-40 sub rad, defined as Ar-40-295.5-Ar-.36). The gas release systematics indicate two distinct noble gas components, one of which is released below about 800 C and the other one at the melting point of gold (1064 C). We now present results of He and Xe measurements in a 1 g placer gold sample from the river Kruempelgraben, as well as He and Ar data for Brusson vein-type gold and for gold from the Lily Gold Mine, South Africa. We calculate reasonable U/Th-He-4 as well as U-Xe ages based on those gases which are released at approximately 800 C. Probably the low-temperature components represent in-situ-produced radiogenic He and fission Xe, whereas the gases evolving when gold melts have been trapped during gold formation. Therefore, only the low-temperature components are relevant for dating purposes.

  7. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  8. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale

    DOE PAGES

    Gerber, Christoph; Vaikmae, Rein; Aeschbach, Werner; ...

    2017-01-31

    Analyses for 81Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water (δ 18O ≈ –10.4‰) with a poorly evolved chemical and noble gas signature, glacial meltwater (δ 18O ≤ –18‰) with elevated noble gas concentrations, and an old, high-salinity brine component (δ 18O ≥ –4.5‰, ≥ 90 g Cl –/L) withmore » strongly depleted atmospheric noble gas concentrations. The 81Kr measurements are interpreted within this mixing framework to estimate the age of the end-members. Deconvoluted 81Kr ages range from 300 ka to 1.3 Ma for interglacial or recent meteoric water and glacial meltwater. For the brine component, ages exceed the dating range of the ATTA-3 instrument of 1.3 Ma. The radiogenic noble gas components 4He* and 40Ar* are less conclusive but also support an age of > 1 Ma for the brine. Based on the chemical and noble gas concentrations and the dating results, we conclude that the brine originates from evaporated seawater that has been modified by later water–rock interaction. Furthermore, as the obtained tracer ages cover several glacial cycles, we discuss the impact of the glacial cycles on flow patterns in the studied aquifer system.« less

  9. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  10. Global Evolution of Solid Matter in Turbulent Protoplanetry Disks. Part 1; Aerodynamics of Solid Particles

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    The problem of planetary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to decouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52) g/sq cm/s is allowed to evolve due to turbulent viscosity characterized by either alpha = 10(exp -2) or alpha = 10(exp -3). The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger than 0.1 cm but smaller than 10(exp 3) cm have inward radial velocities much larger than the gas, whereas particles larger than 10(exp 4) cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.

  11. The Importance of Chemosynthetic Communities and 'Seep-Hunting' to Deepwater Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    McConnell, D.; Gharib, J. J.; Orange, D.; Henderson, J.; Danque, H.; Digby, A.

    2007-12-01

    Seafloor surveying techniques have often evolved as the industry's needs have evolved. Oil and gas exploration costs have escalated over the last several years, both as a result of increasing offshore overhead costs as well as the increased demand being met by offshore service-related companies. Consequently, more companies are prospecting using inexpensive techniques that rely on scientific expertise, such as seep-hunting, as a means of identifying reservoirs, and the past few years have seen several large-scale industrial deepwater surveys with locating hydrocarbon seeps as a primary goal. The identification of seeps is also a necessity for many pre-drilling operations, as many potential developers must conform to local regulations protecting chemosynthetic communities (eg MMS NTL 2000-G20 for Gulf of Mexico development). In addition to identifying chemosynthetic communities for permitting issues, as prospecting has moved into deeper water the ability to identify seep-related drilling hazards, such as hardgrounds or shallow gas (and hydrates) has also increased in importance. The specialized field of identifying seeps, and related chemosynthetics, hardgrounds, etc., is rapidly growing, aided by advances in mapping technology, such as multibeam backscatter and interferometry, among others. Today all of the geophysical data can be brought into a common interpretation environment providing multiple perspectives, different data overlays, and/or 3D visualizations. Using these techniques, high resolution multibeam and/or side-scan surveys rapidly cover large swaths of seafloor and identify potential seeps in real- time. These targets can then be examined geochemically with a coring program, potentially working simultaneously with the multibeam program. Modern USBL navigation can position a deepwater core in <10m diameter targets. Much of the geochemistry can be analyzed in near-real time at sea (eg headspace/interstitial gas, trace/minor/major ions in porefluids, etc; only isotopic analyses are restricted to better equipped research vessels). The advantages of integrating these data are considerable, and they can be obtained for a fraction of the cost of exploratory drilling or submersible operations. This presentation intends to outline the recent history of the industry's approach to seep-hunting, its increasing importance to oil prospectivity, and future trends in industrial applications and how this might affect academic study in this field (especially related to the advances in seep-hunting technology and software that are becoming industry-standards).

  12. Evaluation of carbon and nitrogen pools in different soil types amended with different organic inputs by thermogravimetric/calorimetric analysis

    NASA Astrophysics Data System (ADS)

    Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; Faz, Ángel; Mermut, Ahmet R.

    2017-04-01

    The objective of this study was to assess the short-term changes in soil organic C (SOC) and N pools after incubation of three different soil types (Regosol, Luvisol and Kastanozem) treated with three amendments differing in organic matter stability (raw pig slurry (PS), manure, and biochar (BC), and to establish relationships between different chemical, spectral and thermal/calorimetric data to assess if thermal/calorimetric analysis could replace conventional analyses to monitor changes in SOC and N poos. Thermogravimetry-Differential Scanning Calorimetry (TG-DSC) analysis showed that amendments had little effect on volatile SOC and inorganic matter, compared to unamended samples in all soils. All amendments significantly increased the labile SOC in Regosol. Manure and BC increased recalcitrant SOC in Regosol and Luvisol. BC significantly increased recalcitrant SOC in all soils. Refractory SOC slightly increased with amendments in the Luvisol compared to the control. These results support the findings obtained with chemical analyses. Selected evolved ions (m/z 30 and 44) detected by quadrupole mass spectrometry (QMS) confirmed findings from TG-DSC. Emissions of C and N containing gases from the Regosol significantly increased with the amendments because this soil contains low SOC content, and the application of these amendments provided additional C. An increase in the CO2 containing gas species (m/z 44) from volatile SOC was observed with PS application only in the Regosol. Carbon dioxide increments (m/z 44) from recalcitrant (380-475°C) and refractory (475-550/600°C) SOC pools were observed with all amendments in all soils especially with BC application. The evolved ions at m/z 44 were higher in the initial soil samples from Kastanozem than after incubation, suggesting a loss of organic compounds, mainly volatile and labile upon incubation. NO peaks (m/z 30) showed similar trends to the C containing gas species in all soils. We carried out linear regressions to estimate soil properties measured by conventional chemical procedures by the use of TG-DSC-QMS. We obtained accurate models to estimate SOC, soil carbonates, recalcitrant C, soluble C and soluble N. These results encourage the use of thermal analyses to study SOM dynamics in soils, since it provides feasible and accurate information about different organic and inorganic C and N fractions. Thermal methods are quite inexpensive, require little sample preparation, are rapid and give reproducible results. However, no relationship between thermal analyses and C and N mineralization and N volatilization was found, suggesting that this technique may be valid to assess the current value of different organic fractions in a soil in a concrete time, but not indicated to predict mineralization or volatilization trends after application of amendments.

  13. Membrane water deaerator investigation. [fluid filter breadboard model

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The purpose of the membrane water deaerator program was to develop data on a breadboard hollow fiber membrane unit that removes both dissolved and evolved gas from a water transfer system in order to: (1) assure a hard fill of the EVLSS expendable water tank; (2) prevent flow blockage by gas bubbles in circulating systems; and (3) prevent pump cavitation.

  14. Carbon Isotopic Composition of CO2, Evolved During Perchlorate-Induced Reactions in Mars Analog Materials: Interpreting SAM/MSL Rocknest Data

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; McAdam, A. C.; Archer, P. D., Jr.; Bower, H.; Buch, A.; Eigenbrode, J.; Freissinet, C.; Franz, H. B.; Glavin, D.; Jones, J. H.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL) Rover Curiosity made its first solid sample evolved gas analysis of unconsolidated material at aeolian bedform Rocknest in Gale Crater. The magnitude of O2 evolved in each run as well as the chlorinated hydrocarbons detected by SAM gas chromatograph/ mass spectrometer (GCMS) [1] suggest a chlorinated oxidant such as perchlorate in Rocknest materials [2]. Perchlorate induced combustion of organics present in the sample would contribute to the CO2 volatile inventory, possibly overlapping with CO2 from inorganic sources. The resulting carbon and oxygen isotopic composition of CO2 sent to the Tunable Laser Spectrometer (TLS) for analysis would represent mixed sources. This work was undertaken to better understand a) how well the carbon isotopic composition ( 13C) of CO2 from partially combusted products represents their source and b) how the 13C of combusted products can be deconvolved from other carbon sources such as thermal decomposition of carbonate.

  15. A Possible Organic Contribution to the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, P. D. Jr.; Lauer, H. V., Jr.; Sutter, B.; Ming, D. W.; Niles, P. B.; Boynton, W. V.

    2012-01-01

    Two of the most important discoveries of the Phoenix Mars Lander were the discovery of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in the soils at the landing site in the martian northern plains. The Thermal and Evolved Gas Analyzer (TEGA) instrument was one of the tools that made this discovery. After soil samples were delivered to TEGA and transferred into small ovens, the samples could be heated up to approx.1000 C and the gases that evolved during heating were monitored by a mass spectrometer. A CO2 signal was detected at high temperature (approx.750 C) that has been attributed to calcium carbonate decomposition. In addition to this CO2 release, a lower temperature signal was seen. This lower temperature CO2 release was postulated to be one of three things: 1) desorption of CO2, 2) decomposition of a different carbonate mineral, or 3) CO2 released due to organic combustion. Cannon et al. [3] present another novel hypothesis involving the interaction of decomposition products of a perchlorate salt and calcium carbonate.

  16. Thermally evolved gas analysis (TEGA) of hyperarid soils doped with microorganisms from the Atacama Desert in southern Peru: Implications for the Phoenix mission

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-González, Rafael; McKay, Christopher

    2009-07-01

    TEGA, one of several instruments on board of the Phoenix Lander, performed differential scanning calorimetry and evolved gas analysis of soil samples and ice, collected from the surface and subsurface at a northern landing site on Mars. TEGA is a combination of a high temperature furnace and a mass spectrometer (MS) that was used to analyze samples delivered to the instrument via a robotic arm. The samples were heated at a programmed ramp rate up to 1000 °C. The power required for heating can be carefully and continuously monitored (scanning calorimetry). The evolved gases generated during the process can be analyzed with the evolved gas analyzer (a magnetic sector mass spectrometer) in order to determine the composition of gases released as a function of temperature. Our laboratory has developed a sample characterization method using a pyrolyzer integrated to a quadrupole mass spectrometer to support the interpretations of TEGA data. Here we examine the evolved gas properties of six types of hyperarid soils from the Pampas de La Joya in southern Peru (a possible analog to Mars), to which we have added with microorganisms ( Salmonella typhimurium, Micrococcus luteus, and Candida albicans) in order to investigate the effect of the soil matrix on the TEGA response. Between 20 and 40 mg of soil, with or without ˜5 mg of lyophilized microorganism biomass (dry weight), were placed in the pyrolyzer and heated from room temperature to 1200 °C in 1 h at a heating rate of 20 °C/min. The volatiles released were transferred to a MS using helium as a carrier gas. The quadrupole MS was ran in scan mode from 10 to 200 m/z. In addition, ˜20 mg of each microorganism without a soil matrix were analyzed. As expected, there were significant differences in the gases released from microorganism samples with or without a soil matrix, under similar heating conditions. Furthermore, samples from the most arid environments had significant differences compared with less arid soils. Organic carbon released in the form of CO 2 (ion 44 m/z) from microorganisms evolved at temperatures of ˜326.0 ± 19.5 °C, showing characteristic patterns for each one. Others ions such as 41, 78 and 91 m/z were also found. Interestingly, during the thermal process, the release of CO 2 increased and ions previously found disappeared, demonstrating a high-oxidant activity in the soil matrix when it was subjected to high temperature. Finally, samples of soil show CO 2 evolved up to 650 °C consistent with thermal decomposition of carbonates. These results indicate that organics mixed with these hyperarid soils are oxidized to CO 2. Our results suggest the existence of at least two types of oxidants in these soils, a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Furthermore, we find that the interaction of biomass added to soil samples gives a different set of breakdown gases than organics resident in the soil. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  17. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    NASA Astrophysics Data System (ADS)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (<29 K), gaseous CO colliding with the grains gets converted into CO2 and other more complex ices, lowering the CO gas abundance between the O2 and CO thermal icelines. This effect can mimic a CO iceline at a higher temperature than suggested by its binding energy. Conclusions: Chemistry in the disk midplane is ionisation-driven, and evolves over time. This affects which molecules go into forming planets and their atmospheres. In order to reliably predict the atmospheric compositions of forming planets, as well as to relate observed atmospheric C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and implemented into planet formation models.

  18. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-Surface Martian Materials?

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen

    2015-01-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  19. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.

  20. TEGA Whirligig Model

    NASA Image and Video Library

    2008-06-09

    This is a photo of an engineering model of the Thermal and Evolved-Gas Analyzer TEGA instrument on board NASA Phoenix Mars Lander. This view shows a TEGA oven-loading mechanism beneath the input screen.

  1. Molecular Cloud Structures and Massive Star Formation in N159

    NASA Astrophysics Data System (ADS)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  2. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  3. Chronic subdural haematoma evolving from traumatic subdural hydroma.

    PubMed

    Wang, Yaodong; Wang, Chuanwei; Liu, Yuguang

    2015-01-01

    This study aimed to investigate the incidence and clinical characteristics of chronic subdural haematoma (CSDH) evolving from traumatic subdual hydroma (TSH). The clinical characteristics of 44 patients with CSDH evolving from TSH were analysed retrospectively and the relevant literature was reviewed. In 22.6% of patients, TSH evolved into CSDH. The time required for this evolution was 14-100 days after injury. All patients were cured with haematoma drainage. TSH is one possible origin of CSDH. The clinical characteristics of TSH evolving into CSDH include polarization of patient age and chronic small effusion. The injuries usually occur during deceleration and are accompanied by mild cerebral damage.

  4. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; hide

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using the SAM/MTBSTFA technique.

  5. Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft

    USGS Publications Warehouse

    Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.

    1980-01-01

    Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.

  6. Genomic profiles of low-grade murine gliomas evolve during progression to glioblastoma. | Office of Cancer Genomics

    Cancer.gov

    Background: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear.Methods: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease.

  7. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars.

    PubMed

    Bristow, Thomas F; Rampe, Elizabeth B; Achilles, Cherie N; Blake, David F; Chipera, Steve J; Craig, Patricia; Crisp, Joy A; Des Marais, David J; Downs, Robert T; Gellert, Ralf; Grotzinger, John P; Gupta, Sanjeev; Hazen, Robert M; Horgan, Briony; Hogancamp, Joanna V; Mangold, Nicolas; Mahaffy, Paul R; McAdam, Amy C; Ming, Doug W; Morookian, John Michael; Morris, Richard V; Morrison, Shaunna M; Treiman, Allan H; Vaniman, David T; Vasavada, Ashwin R; Yen, Albert S

    2018-06-01

    Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe 3+ -bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate.

  8. Development of an open-path gas analyser for plume detection in security applications

    NASA Astrophysics Data System (ADS)

    Hay, Kenneth G.; Norberg, Ola; Normand, Erwan; Önnerud, Hans; Black, Paul

    2017-04-01

    We present here an open-path analyser, initially intended for security applications, specifically for the detection of gas plumes from illicit improvised explosive device (IED) manufacturing. Subsequently, the analysers were adapted for methane measurement and used to investigate its applicability for leak detection in different scenarios (e.g. unconventional gas extraction sites). Preliminary results showed consistent measurements of gas plumes in the open path.

  9. Survey of natural helium occurrences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinnah, D.W.; Hamak, J.E.

    1993-01-01

    Since 1917, gas samples from oil and gas wells and natural gas pipelines throughout the United States and other countries worldwide have been collected by the USBM in a continuing search for helium occurrences. Analyses of 15,583 of the samples, which were collected from 40 States and 26 foreign countries, are available from the USBM. The USBM is charged with the responsibility of ensuring a continuing supply of helium to meet essential Government needs, and this survey of the world's natural gas fields is made in connection with this responsibility. Most of these analyses have been published in USBM publications.more » The first of this series of publications was Bulletin 486 and was followed by two more bulletins. These three publications contained data on analyses of 5,218 gas samples collected from the beginning of the survey through 1960. Data on gas analyses since 1961 have been published on an annual basis, and 35 Information Circulars have presented the analyses of 10,365 gas samples collected through 1991. These analyses are also available on magnetic tape and 3.5-inch diskettes from the National Technical Information Service. The helium survey program is conducted by soliciting natural gas samples throughout the United States and from other countries with free market economies. Without the assistance of the oil and gas industry, State and National agencies, and many individuals engaged in oil and gas exploration and production, the present scope of the helium survey would have been impossible. 39 refs., 3 tabs.« less

  10. Superfluid density of states and pseudogap phenomenon in the BCS-BEC crossover regime of a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Ryota; Tsuchiya, Shunji; CREST

    2010-10-15

    We investigate single-particle excitations and strong-coupling effects in the BCS-BEC crossover regime of a superfluid Fermi gas. Including phase and amplitude fluctuations of the superfluid order parameter within a T-matrix theory, we calculate the superfluid density of states (DOS), as well as single-particle spectral weight, over the entire BCS-BEC crossover region below the superfluid transition temperature T{sub c}. We clarify how the pseudogap in the normal state evolves into the superfluid gap, as one passes through T{sub c}. While the pseudogap in DOS continuously evolves into the superfluid gap in the weak-coupling BCS regime, the superfluid gap in the crossovermore » region is shown to appear in DOS after the pseudogap disappears below T{sub c}. In the phase diagram with respect to the temperature and interaction strength, we determine the region where strong pairing fluctuations dominate over single-particle properties of the system. Our results would be useful for the study of strong-coupling phenomena in the BCS-BEC crossover regime of a superfluid Fermi gas.« less

  11. Extreme events in a vortex gas simulation of a turbulent half-jet

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Pathikonda, Gokul; Narasimha, Roddam

    2012-11-01

    Extensive simulations [arXiv:1008.2876v1 [physics.flu-dyn], BAPS.2010.DFD.LE.4] have shown that the temporally evolving vortex gas mixing layer has 3 regimes, including one which has a universal spreading rate. The present study explores the development of spatially evolving mixing layers, using a vortex gas model based on Basu et al. (1995 Appl. Math. Modelling). The effects of the velocity ratio (r) are analyzed via the most extensive simulations of this kind till date, involving up to 10000 vortices and averaging over up to 1000 convective times. While the temporal limit is approached as r approaches unity, striking features such as extreme events involving coherent structures, bending, deviation of the convection velocity from mean velocity, spatial feedback and greater sensitivity to downstream and free stream boundary conditions are observed in the half-jet (r = 0) limit. A detailed statistical analysis reveals possible causes for the large scatter across experiments, as opposed to the commonly adopted explanation of asymptotic dependence on initial conditions. Supported in part by contract no. Intel/RN/4288.

  12. A Neutral Particle Analyser Proposed On Board Bepicolombo Planetary Orbiter: Serena (searching For Exospheric Refilling and Emitted Neutral Abundances)

    NASA Astrophysics Data System (ADS)

    Orsini, S.; Npa-Serena Team

    The Neutral Particle Analyser SERENA, proposed on board the BepiColombo Mer- cury Planetary Orbiter (MPO), has the purpose of investigating the Hermean exo- spheric and energetic neutral populations. Local and detailed analysis of the exo- spheric composition will be performed by a ram-pointing sensor (MAIA), while en- ergetic neutrals produced through sputtering and charge-exchange processes will be collected by two nadir-pointing sensors (L-ENA, MH-ENA). A central problem in the understanding of the evolution of solar system bodies is the role played by the so- lar wind, solar radiation and micro-meteorite bombardment in controlling mass losses. The direct in situ detection of the Hermean exosphere, the gas evolving from the planet as a product of the different physical processes acting onto the surface, is of crucial importance to understand the past and present evolution of the crust. Current knowl- edge of the origin and evolution of the solar system is based on detailed measurement of chemical, elemental, and isotopic composition of matter. The proposed instrument suite is unique in its capability to perform quantitative analysis and resolve exospheric gas composition under all these three aspects. The value of neutral particles mea- surements for getting a comprehensive picture of the solar wind-planets interaction has been appreciated since the late eighties. Comparison of the measurements in the Mercury environment with those achieved by neutral particle imagers already flying around Earth (IMAGE), Mars (Mars Express), Jupiter and Saturn (Cassini) will allow comparative investigations of evolution and dynamics of planetary magnetospheres.

  13. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  14. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  15. The physical and chemical evolution of disks during planet formation

    NASA Astrophysics Data System (ADS)

    Gorti, Uma

    2018-06-01

    Protoplanetary disks evolve and disperse rapidly during the early stages of star and planet formation. While disks initially inherit a full complement of interstellar cloud material that is mainly accreted on to the central star, their gas and dust components appear to evolve along distinct pathways. Dust accumulates to form rocky planets, whereas only a small fraction of the available gas may be incorporated into gas giants in a typical exoplanetary system. However, the radial distribution of gas and its chemistry are expected to impact the architecture and composition of formed planets. Recent ALMA results have underscored the importance of ices and grain surface chemistry in disks, and their significance for planet formation. I will describe disk models that aim to probe the physical and chemical processes in the disk at various stages of evolution, and specifically discuss diagnostics of conditions in the innermost regions of disks which will become accessible for the first time with the launch of JWST. Current theoretical modeling is however hindered by many uncertainties in input parameters and poorly known chemical and physical processes. I will highlight some gaps in our current understanding, and discuss how laboratory astrophysics can help in preparing for the JWST era and aid in the interpretation of future line and continuum emission studies.

  16. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013). Chloromethane and dichloromethane were also identified after thermal volatilization of the surface soils by the GCMS instruments at the Viking landing sites, although no other chlorinated hydrocarbons were reported (Biemann et al. 1977). Here we focus on the origin of the chlorinated hydrocarbons detected in the Sheepbed mudstone by SAM and the implications for the preservation of organic matter in near-surface materials on Mars.

  17. State-of-the-art report on piping fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M.

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects andmore » limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.« less

  18. Oxidant activity in hyperarid soils from Atacama Desert in southern Peru, under conditions of the labeled release and thermal evolved gas analysis experiments: Implications for the search of organic matter on Mars

    NASA Astrophysics Data System (ADS)

    Valdivia-Silva, Julio E.; Navarro-Gonzalez, Rafael; McKay, Chris

    Thermal evolved gas analysis (TEGA), one of several instruments on board of the Phoenix Lander, is a combination of a high temperature furnace and a mass spectrometer that was used to analyze Mars soil samples heated at a programmed ramp rate up to 1000 ° C. The evolved gases generated during the process were analyzed with the evolved gas analyzer (a mass spectrometer) in order to determine the composition of gases released as a function of temperature. In other hand, labeled release experiment (LR), one of the Viking biology anal-ysis used on Mars, monitored the radioactive gas evolution after the addition of a 14C-labeled aqueous organic substrate into a sealed test cell that contained a Martian surface sample. This experiment was designed to test Martian surface samples for the presence of life by measuring metabolic activity and distinguishing it from physical or chemical activity. The interpretation of the Viking LR experiment was that the tested soils were chemically reactive and not biolog-ically active, and that at least two oxidative processes with different kinetics were required to explain the observed decomposition of organics, while TEGA experiment of the Phoenix mis-sion apparently didn't detect organic matter on the surface of Mars. Both of these experiments showed little possibility of the presence of organics, and therefore the presence of life. Here we examine the evolved gas properties of hyperarid soils from the Pampas de La Joya, which is considered as a new analogue to Mars, in order to investigate the effect of the soil matrix on the TEGA response, and additionally, we conducted experiments under Viking LR protocol to test the decomposition kinetics of organic compounds in aqueous solution added to these soils. Our TEGA results indicate that native or added organics present in these samples were oxidized to CO2 during thermal process, suggesting the existence in these soils of a thermolabile oxidant which is highly oxidative and other thermostable oxidant which has a minor oxidative activity and that survives the heat-treatment. Interestingly, LR experiment shows that the 13C-labeled formate and DL-alanine were oxidized to 13CO2 when added in aqueous solution to soils collected from the Pampas de La Joya region. The observation of similar 13CO2 initial releasing by soils treated with L-alanine, compared to soils treated D-alanine, indicates the presence of one or more nonbiological chemical decomposition mechanisms similar to Yungay soils and the Viking LR experiment. Thus, the soils from Pampas of La Joya, are potentially excellent analogues of the oxidative processes that occur on Mars, and can be used to study mechanisms of destruction of organics on this planet. The nature of oxidant(s) present in the soils from Pampas de La Joya is still unknown.

  19. Molecules in the transition disk orbiting T Chamaeleontis

    NASA Astrophysics Data System (ADS)

    Sacco, G. G.; Kastner, J. H.; Forveille, T.; Principe, D.; Montez, R.; Zuckerman, B.; Hily-Blant, P.

    2014-01-01

    Aims: We seek to establish the presence and properties of gas in the circumstellar disk orbiting T Cha, a nearby (d ~ 110 pc), relatively evolved (age ~5-7 Myr) yet actively accreting 1.5 M⊙ T Tauri star. Methods: We used the Atacama Pathfinder Experiment (APEX) 12 m radiotelescope to search for submillimeter molecular emission from the T Cha disk, and we reanalyzed archival XMM-Newton imaging spectroscopy of T Cha to ascertain the intervening absorption due to disk gas along the line of sight to the star (NH). Results: We detected submillimeter rotational transitions of 12CO, 13CO, HCN, CN, and HCO+ from the T Cha disk. The 12CO line (and possibly the 13CO line) appears to display a double-peaked line profile indicative of Keplerian rotation; hence, these molecular line observations constitute the first direct demonstration of the presence of cold molecular gas orbiting T Cha. Analysis of the CO emission line data indicates that the disk around T Cha has a mass (Mdisk,H2 = 80 M⊕) similar to, but more compact (Rdisk,CO ~ 80 AU) than other nearby, evolved molecular disks (e.g., V4046 Sgr, TW Hya, MP Mus) in which cold molecular gas has been previously detected. The HCO+/13CO and HCN/13CO line ratios measured for T Cha appear similar to those of other evolved circumstellar disks (i.e., TW Hya and V4046 Sgr). The CN/13CO ratio appears somewhat weaker, but due to the low signal-to-noise ratio of our detection, this discrepancy is not strongly significant. Analysis of the XMM-Newton X-ray spectroscopic data shows that the atomic absorption NH toward T Cha is one to two orders of magnitude larger than toward the other nearby T Tauri with evolved disks, which are seen at much lower inclination angles. Furthermore, the ratio between atomic absorption and optical extinction NH/AV toward T Cha is higher than the typical value observed for the interstellar medium and young stellar objects in the Orion nebula cluster. This may suggest that the fraction of metals in the disk gas is higher than in the interstellar medium. However, an X-ray absorption model appropriate for the physical and chemical conditions of a circumstellar disk is required to address this issue. Conclusions: Our results confirm that pre-main-sequence stars older than ~5 Myr retain cold molecular disks when accreting, and that those relatively evolved disks display similar physical and chemical properties. Based on submillimeter and X-ray observations. Submillimeter observations have been collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, with the Atacama Pathfinder Experiment APEX (Prog. ID 088.C-0441 and E-089.C-0518A). X-ray archival observations used in this paper have been obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.

  20. Origin of the high velocity gas in NGC 6231

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    2017-08-01

    It is well known that clusters of massive stars are influenced by the presence of strong winds, that they are sources of diffuse X-rays from shocked gas, and that this gas can be vented into the surrounding region or the halo, forming a critical element in the process of galactic feedback. However, the details of how these different environments interact and evolve are far from complete. Recently, Massa (2017) showed that the peculiar C IV 1550 Ang absorption seen in several otherwise normal main sequence B stars in NGC 6231 is not intrinsic to the stars. Instead, this absorption, which extends to more than -2000 km/s, is due to intervening carbon rich, high speed gas in the cluster environment. In this proposal, we seek to identify the origin of the high speed gas. The proposed observations will enable us to determine whether it is due to the outer wind of the WC star WR79, or to a collective cluster wind, enriched by carbon from the wind of WR79. If it is due to the wind of WR79, then the new data will furnish a novel, less model dependent estimate of the mass loss rate of a WC star. If it is due to a collective wind from the cluster, then we could be witnessing an important stage of galactic feedback. In either case, the proposed observations will provide a unique and significant insight on how massive, open clusters evolve - insight that can only be obtained through UV spectroscopy.

  1. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.

    2011-06-20

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varyingmore » sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 {mu}m) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.« less

  2. Possible Detection of Perchlorates by Evolved Gas Analysis of Rocknest Soils: Global Implication

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Sutter, B.; Ming, D. W.; McKay, C. P.; Navarro-Gonzalez, R.; Franz, H. B.; McAdam, A.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. Rocknest was selected as the source of the first samples analyzed because it is representative of both windblown material in Gale crater as well as the globally-distributed dust. The four samples analyzed by SAM were portioned from the fifth scoop at this location. The material delivered to SAM passed through a 150 m sieve and should have been well mixed during the sample acquisition/ preparation/handoff process. Rocknest samples were heated to 835 C at a 35 C/minute ramp rate with a He carrier gas flow rate of 1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar. Evolved gases were detected by a quadrupole mass spectrometer (QMS).

  3. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone

    NASA Technical Reports Server (NTRS)

    Glavin, D.; Freissnet, C.; Eigenbrode, J.; Miller, K.; Martin, M.; Summons, R. E.; Steele, A.; Archer, D.; Brunner, A.; Buch, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.

  4. Impurity characterization of magnesium diuranate using simultaneous TG-DTA-FTIR measurements

    NASA Astrophysics Data System (ADS)

    Raje, Naina; Ghonge, Darshana K.; Hemantha Rao, G. V. S.; Reddy, A. V. R.

    2013-05-01

    Current studies describe the application of simultaneous thermogravimetry-differential thermal analysis - evolved gas analysis techniques for the compositional characterization of magnesium diuranate (MDU) with respect to the impurities present in the matrix. The stoichiometric composition of MDU was identified as MgU2O7ṡ3H2O. Presence of carbonate and sulphate as impurities in the matrix was confirmed through the evolved gas analysis using Fourier Transformation Infrared Spectrometry detection. Carbon and magnesium hydroxide content present as impurities in magnesium diuranate have been determined quantitatively using TG and FTIR techniques and the results are in good agreement. Powder X-ray diffraction analysis of magnesium diuranate suggests the presence of magnesium hydroxide as impurity in the matrix. Also these studies confirm the formation of magnesium uranate, uranium sesquioxide and uranium dioxide above 1000 °C, due to the decomposition of magnesium diuranate.

  5. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  6. Method and apparatus for controlling gas evolution from chemical reactions

    DOEpatents

    Skorpik, J.R.; Dodson, M.G.

    1999-05-25

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846. 8 figs.

  7. Assessment of Aeromedical Evacuation Transport Patient Outcomes With and Without Cabin Altitude Restriction

    DTIC Science & Technology

    2017-08-24

    reaction to stress (physical restraints) Other • Acute post-hemorrhagic anemia • Post-operative infection • Traumatic shock • Fat embolism ...decompression sickness/air gas embolism , and severe pulmonary disease [9]. The goal of this retrospective matched case-control study was to determine whether...patients who have cardiopulmonary concerns, free air in any closed cavity (e.g., skull, peritoneal cavity, injury, embolism ), or evolved gas (e.g

  8. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.

  9. Variation in beliefs about ‘fracking’ between the UK and US

    NASA Astrophysics Data System (ADS)

    Evensen, Darrick; Stedman, Richard; O'Hara, Sarah; Humphrey, Mathew; Andersson-Hudson, Jessica

    2017-12-01

    In decision-making on the politically-contentious issue of unconventional gas development, the UK Government and European Commission are attempting to learn from the US experience. Although economic, environmental, and health impacts and regulatory contexts have been compared cross-nationally, public perceptions and their antecedents have not. We conducted similar online panel surveys of national samples of UK and US residents simultaneously in September 2014 to compare public perceptions and beliefs affecting such perceptions. The US sample was more likely to associate positive impacts with development (i.e. production of clean energy, cheap energy, and advancing national energy security). The UK sample was more likely to associate negative impacts (i.e. water contamination, higher carbon emissions, and earthquakes). Multivariate analyses reveal divergence cross-nationally in the relationship between beliefs about impacts and support/opposition—especially for beliefs about energy security. People who associated shale gas development with increased energy security in the UK were over three times more likely to support development than people in the US with this same belief. We conclude with implications for policy and communication, discussing communication approaches that could be successful cross-nationally and policy foci to which the UK might need to afford more attention in its continually evolving regulatory environment.

  10. Recycling of electronic waste: Printed wiring boards

    NASA Astrophysics Data System (ADS)

    Luyima, Alex

    Pyrolysis and leaching are the dominant techniques applied in the recycling of waste printed wiring boards (PWBs). Waste PWB pyrolysis is a highly polluting technology and produces brominated pyrolysis oils in addition to hydrogen bromide (HBr) gas. Moreover, leaching as a treatment process of waste PWBs is not well investigated. In this work, the pyrolysis of waste PWBs has been studied with the aim of reducing the amount of brominated oils and HBr gas evolved. The effects of powder inorganic chemicals (CaO, CaCO3, Fe 2O3, Al2O3, Y-Zeolite, and ZSM-5) additions on the pyrolysis of waste PWBs has been studied through experiments using a thermogravimetric-differential thermal analyzer connected to a mass spectrometer (TG-DTA-MS) and in a tube furnace at 900 °C. It has been shown that the kinetic models by Friedman, Flynn-Wall-Ozawa, and Kissinger are applicable to waste PWB pyrolysis at temperatures below 400 °C. Moreover, CaO, CaCO3, Fe2O3, Y-Zeolite, and ZSM-5 show a potential to reduce the amount of HBr gas evolved during pyrolysis in TG-DTA-MS. However, in the tube furnace pyrolysis experiments, CaO and CaCO3 were found to be the most effective chemical additions, with more than 90% reduction in total bromine (HBr and other brominated gases) evolved. It has also been demonstrated that the sequential leaching of waste PWBs with hydrochloric acid, nitric acid and aqua regia is capable of selective recovery of base and precious metals contained in waste PWBs.

  11. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  12. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  13. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    NASA Astrophysics Data System (ADS)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  14. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGES

    Patel, Mogon; Bowditch, Martin; Jones, Ben; ...

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-EN TM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cmmore » -1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  15. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.

  16. Preparation of water samples for carbon-14 dating

    USGS Publications Warehouse

    Feltz, H.R.; Hanshaw, Bruce B.

    1963-01-01

    For most natural water, a large sample is required to provide the 3 grams of carbon needed for a carbon-14 determination. A field procedure for isolating total dissolved-carbonate species is described. Carbon dioxide gas is evolved by adding sulfuric acid to the water sample; the gas is then collected in a sodium hydroxide trap by recycling in a closed system. The trap is then transported to the dating laboratory where the carbon-14 is counted.

  17. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    PubMed

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  18. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    PubMed

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fueling nuclear activity in disk galaxies: Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Heller, Clayton H.; Shlosman, Isaac

    1994-03-01

    We study the evolution of the gas distribution in a globally unstable galactic disk with a particular emphasis on the gasdynamics in the central kiloparsec and the fueling activity there. The two-component self-gravitating disk is embedded in a responsive halo of comparable mass. The gas and stars are evolved using a three-dimensional hybrid smoothed particle hydrodynamics/N-body code and the gravitational interactions are calculated using a hierarchical TREE algorithm. A massive 'star formation' is introduced when the gas becomes Jeans unstable and locally exceeds the critical density of approximately 100 solar mass pc-3. The newly formed OB stars deposit energy in the gas by means of radiation-driven winds and supernovae. This energy is partially thermalized (efficiency of a few percent); the rest is radiated away. Models without star formation are evolved for a comparison. The effect of a massive object at the disk center is studied by placing a 'seed' black hole (BH) of 5 x 107 solar mass with an accretion radius of 20 pc. The tendency of the system to form a massive object 'spontaneously' is tested in models without the BH. We find that for models without star formation the bar- or dynamical friction-driven inflows lead to (1) domination of the central kpc by a few massive clouds that evolve into a single object probably via a cloud binary system, with and without a 'seed' BH, (2) accretion onto the BH which has a sporadic character, and (3) formation of remnant disks around the BH with a radius of 60-80 pc which result from the capture and digestion of clouds. For models with star formation, we find that (1) the enrgy input into the gas induces angular momentum loss and inflow rates by a factor less than 3, (2) the star formation is concentrated mainly at the apocenters of the gaseous circulation in the stellar bar and in the nuclear region, (3) the nuclear starburst phase appears to be very luminous approximately 1045-1046 erg/s and episodic with a typical single burst duration of aproximately 107 yr, and (4) the starburst phase coincides with both the gas becoming dynamically important and the catastrophic growth of the BH. It ends with the formation of cold residual less than 1 kpc radius gas disks. Models without the 'seed' BH form less than 1 kpc radius fat disks which dominate the dynamics. Gaseous bars follow, drive further inflow, and may fission into a massive cloud binary system at the center.

  20. TGS pipeline primed for Argentine growth, CEO says

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Share, J.

    Nowhere in Latin America has the privatization process been more aggressively pursued than in Argentina where President Carlos Menem has successfully turned over the bulk of state companies to the private sector. In the energy sector, that meant the divestiture in 1992 of Gas del Estado, the state-owned integrated gas transportation and distribution company. It was split in two transportation companies: Transportadora de Gas del Sur (TGS) and Transportadora de Gas del Norte (TGN), and eight distribution companies. TGS is the largest transporter of natural gas in Argentina, delivering more than 60 percent of that nation`s total gas consumption withmore » a capacity of 1.9 Bcf/d. This is the second in a series of Pipeline and Gas Journal special reports that discuss the evolving strategies of the natural gas industry as it continues to restructure amid deregulation. The article focuses on TGS, the Argentine pipeline system in which Enron Corp. is a key participant.« less

  1. Sample analysis at Mars

    NASA Astrophysics Data System (ADS)

    Coll, P.; Cabane, M.; Mahaffy, P. R.; Brinckerhoff, W. B.; Sam Team

    The next landed missions to Mars, such as the planned Mars Science Laboratory and ExoMars, will require sample analysis capabilities refined well beyond what has been flown to date. A key science objective driving this requirement is the determination of the carbon inventory of Mars, and particularly the detection of organic compounds. The Sample Analysis at Mars (SAM) suite consists of a group of tightly-integrated experiments that would analyze samples delivered directly from a coring drill or by a facility sample processing and delivery (SPAD) mechanism. SAM consists of an advanced GC/MS system and a laser desorption mass spectrometer (LDMS). The combined capabilities of these techniques can address Mars science objectives with much improved sensitivity, resolution, and analytical breadth over what has been previously possible in situ. The GC/MS system analyzes the bulk composition (both molecular and isotopic) of solid-phase and atmospheric samples. Solid samples are introduced with a highly flexible chemical derivatization/pyrolysis subsystem (Pyr/GC/MS) that is significantly more capable than the mass spectrometers on Viking. The LDMS analyzes local elemental and molecular composition in solid samples vaporized and ionized with a pulsed laser. We will describe how each of these capabilities has particular strengths that can achieve key measurement objectives at Mars. In addition, the close codevelopment of the GC/MS and LDMS along with a sample manipulation system enables the the sharing of resources, the correlation of results, and the utilization of certain approaches that would not be possible with separate instruments. For instance, the same samples could be analyzed with more than one technique, increasing efficiency and providing cross-checks for quantification. There is also the possibility of combining methods, such as by permitting TOF-MS analyses of evolved gas (Pyr/EI-TOF-MS) or GC/MS analyses of laser evaporated gas (LD-GC/MS).

  2. Analytical characterization of products obtained from slow pyrolysis of Calophyllum inophyllum seed cake: study on performance and emission characteristics of direct injection diesel engine fuelled with bio-oil blends.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-01

    This paper aims to analyse the characteristics and properties of the fractions obtained from slow pyrolysis of non-edible seed cake of Calophyllum inophyllum (CI). The gas, bio-oil and biochar obtained from the pyrolysis carried out at 500 °C in a fixed bed batch type reactor at a heating rate of 30 °C/min were characterized by various analytical techniques. Owing to the high volatile content of CI biomass (72.61%), it was selected as the raw material in this present investigation. GC-MS and FT-IR analysis of bio-oil showed the presence of higher amount of oxygenated compounds, phenol derivatives, esters, acid and furans. The physicochemical properties of the bio-oil were tested as per ASTM norms which imply that bio-oil is a highly viscous liquid with lower heating value as compared to that of diesel fuel. The chemical composition of evolved gas was analysed by using GC testing which revealed the presence of combustible components. The FT-IR characterization of biochar showed the presence of aliphatic and aromatic hydrocarbons whereas the elevated amount of carbon in biochar indicates its potential to be used as solid fuel. The performance and emission characteristics of CI engine were assessed with different CI bio-oil blends and compared with baseline diesel fuel. The results showed that addition of bio-oil leads to decreased brake thermal efficiency and increased brake specific energy consumption. Meanwhile, increase in blend ratio reduces harmful pollutants such as oxides of nitrogen and smoke in the exhaust. From the engine testing, it is suggested to employ 20% of CI bio-oil blends in CI engine to obtain better operation.

  3. Bio-conversion of water hyacinths into methane gas, part 1

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1974-01-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane content of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants.

  4. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; Mahaffy, P. R.; Stern, J. C.; Eigenbrode, J. L.; Steele, A.; Ming, D. W.; McAdam, A. C.; Freissinet, C.; Glavin, D. P.; Archer, P. D.; hide

    2014-01-01

    Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.

  5. Evidence of refractory organic matter preserved in the mudstones of Yellowknife Bay and the Murray Formations

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Steele, A.; Summons, R. E.; Sutter, B.; McAdam, A.; Franz, H. B.; Mahaffy, P. R.; Conrad, P. G.; Freissinet, C.; Glavin, D. P.; Millan, M.; Ming, D. W.

    2015-12-01

    Volatiles from high-temperature (above 500°C) pyrolysis of drilled and sieved deltaic/lacustrine mudstones at Yellowknife Bay and Pahrump Hills were detected by the Sample Analysis at Mars (SAM) instrument's evolved gas analysis experiment onboard the Curiosity rover in Gale Crater, Mars. Mass fragments detected from the mudstones are consistent with C1-C4 alkyl and single-ring aromatic components that evolve at different temperatures and often in multiple phases. Concurrent release of oxidized sulfur (sulfur dioxide and sulfur trioxide), sulfide gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, dimethylsulfide or thiol, and thiophene) suggest that either these gases are evolving directly from the mudstone or are products of gas phase reactions in the SAM oven, or both. Multiple chlorohydrocarbon releases are also observed in analysis of the Mojave mudstone indicating punctuated organic releases from the sample. The organic signatures observed are unique to specific samples and are not observed in blanks or all samples, nor can the SAM background explain them. These results suggest that geologically refractory organic matter has been preserved in some Hesperian mudstones despite possible acid-sulfate weathering (as suggested by jarosite in Mojave) and exposure to ionizing cosmic rays after exhumation. We will report on ongoing study of these samples.

  6. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington

    NASA Technical Reports Server (NTRS)

    Criswell, C. William

    1987-01-01

    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  7. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  8. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-07-01

    Gas giants' early (≲5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether the stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲2 MJ planets interior to 5 au in the FUV scenario, a sharp concentration of ≲3 MJ planets between ≈1.5-2 au in the EUV case and a relative abundance of ≈2-3.5 MJ giants interior to 0.5 au in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, although our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  9. Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction.

    PubMed

    Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter

    2017-02-01

    Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, J.F.

    1995-10-10

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

  11. Thermochromatography and activation analysis

    NASA Astrophysics Data System (ADS)

    Stattarov, G. S.; Kist, A. A.

    1999-01-01

    Gas thermochromatography is a promising method in combination with neutron activation analysis. The procedure includes heating of irradiated samples in a stream of reacting gas carrier (air, chlorine, etc.) or heating in presence of compounds evolving gas at high temperatures. Gaseous products are passed through a tube with certain temperature gradient filled with various sorbents and the gases condense in different parts of the column. Studies of the processes of producing and trapping of volatile compounds allowed to work out various set-ups of apparatus with sorption tubes of various length and various temperature gradients, various filters, sorbents, etc. Sensitivity of these methods is sufficiently better then in INAA.

  12. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, John F.

    1995-01-01

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.

  13. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  14. Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders.

    PubMed

    Lupše, Nik; Cheng, Ren-Chung; Kuntner, Matjaž

    2016-08-17

    In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.

  15. Clay mineral diversity and abundance in sedimentary rocks of Gale crater, Mars

    PubMed Central

    Chipera, Steve J.; Hazen, Robert M.; Horgan, Briony; Hogancamp, Joanna V.; Mangold, Nicolas; Morookian, John Michael; Morris, Richard V.; Vaniman, David T.; Yen, Albert S.

    2018-01-01

    Clay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5–billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals. We demonstrate that the species of clay minerals deduced from x-ray diffraction and evolved gas analysis show a strong paleoenvironmental dependency. While perennial lake mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt %) quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to the redistribution of nutrients and potentially influencing the cycling of gases that help regulate climate. PMID:29881776

  16. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    NASA Astrophysics Data System (ADS)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  17. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    USGS Publications Warehouse

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  18. 75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.

  19. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  20. Evolution and development of fetal membranes and placentation in amniote vertebrates.

    PubMed

    Ferner, Kirsten; Mess, Andrea

    2011-08-31

    We review aspects of fetal membrane evolution and patterns of placentation within amniotes, the most successful land vertebrates. Special reference is given to embryonic gas supply. The evolution of fetal membranes is a prerequisite for reproduction independent from aquatic environments. Starting from a basically similar repertoire of fetal membranes - the amnion, chorion, allantois and yolk sac, which form the cleidoic egg - different structural solutions for embryonic development have evolved. In oviparous amniotes the chorioallantoic membrane is the major site for the exchange of respiratory gases between fetus and outer environment. The richly vascularised yolk sac and allantois in concert with the chorion play an important role in the evolution of placentation in various viviparous amniotes. Highly complex placentas have evolved independently among squamate sauropsids and in marsupial and placental mammals. In conclusion, there seems to be a natural force to improve gas exchange processes in intrauterine environments by reducing the barrier between the blood systems and optimising the exchange areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  2. Application of ion-induced nucleation mass spectrometry in the analysis of trace gases evolved from a polyimide film during the thermal curing stages

    NASA Technical Reports Server (NTRS)

    Smith, A. C.

    1982-01-01

    Trace gases evolved from a polyimide film during its thermal curing stages have been studied using ion-induced nucleation mass spectrometry. The technique involved exposing the test gas sample to a low energy beta source and recording the masses of the ion-induced molecular clusters formed in the reaction chamber. On the basis of the experimentally observed molecular cluster spectra, it has been concluded that the dominant trace component had a molecular weight of 87 atomic mass units. This component has been identified as a molecule of dimethylacetamide (DMAC) which had been used as a solvent in the preparation of the test polyimide specimen. This identification has been further confirmed by comparing the spectra of the test gas sample and the DMAC calibration sample obtained with a conventional mass spectrometer. The advantages of the ion-induced nucleation mass spectrometer versus the conventional mass spectrometer are discussed.

  3. Cosmic Collisions: Galaxy Mergers and Evolution

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  4. The detection of the imprint of filaments on cosmic microwave background lensing

    NASA Astrophysics Data System (ADS)

    He, Siyu; Alam, Shadab; Ferraro, Simone; Chen, Yen-Chi; Ho, Shirley

    2018-05-01

    Galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS)2, 6-Degree-Field Survey (6dF)3, Galaxy And Mass Assembly survey (GAMA)4 and VIMOS Public Extragalactic Redshift Survey (VIPERS)5, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.

  5. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-06-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies (ETGs) observed with the Spectrographic Areal Unit for Research on Optical Nebulae integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early types (dEs) of Sybilska et al. and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analysed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] versus [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal versus dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  6. X-ray Scaling Relations of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo

    2015-08-01

    We will review recent results of the X-ray scaling relations of early type galaxies. With high quality Chandra X-ray data, the properties (Lx and T) of hot ISM are accurately measured from gas-poor to gas-rich galaxies. We found a strong correlation between Lx(gas) and M(total) among ETGs with independently measured M(total), indicating that the total mass is the primary factor in regulating the amount of hot gas. We found a tight correlation between Lx(gas) and T(gas) among normal (non-cD), genuine (passively evolving, sigma-supported) ellipticals. This relation holds in a large range of Lx (several 1038 - a few 1041 erg/s). While this relation can be understood among gas-rich galaxies (Lx > 1040 erg/s) as a consequence of virialized gaseous halos in the dark matter potentials, the same tight relation is unexpected among gas-poor galaxies where the hot gas is in a wind/outflow state. We also found an interesting difference between cDs and giant Es, the former having an order of magnitude higher Lx(gas) with a similar T(gas). We will discuss the implications of our results by comparing with other observations of galaxies/groups and recent simulations.

  7. Publications - GMC 405 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 405 Publication Details Title: Geochemical analyses of oil and gas cuttings from the of Alaska, and TestAmerica Laboratories, Inc., 2012, Geochemical analyses of oil and gas cuttings (265.0 K) Keywords Geochemistry; Oil and Gas Top of Page Department of Natural Resources, Division of

  8. Local assessment of the risk on groundwater resources related to unconventional hydrocarbon development

    NASA Astrophysics Data System (ADS)

    Raynauld, Melanie; Peel, Morgan; Lefebvre, Rene; Crow, Heather; Gloaguen, Erwan; Molson, John; Ahad, Jason; Aquilina, Luc

    2014-05-01

    A study was carried out in the Haldimand sector of Gaspé, Québec, Canada, to assess the potential link between a tight sandstone petroleum reservoir, whose potential is being evaluated, and the shallow fractured rock aquifer system. Petroleum exploration operations are taking place in the forested core of a hilly 40 km2 peninsula by the sea (up to 200 m amsl). Houses located on the periphery of the peninsula use wells for their water supply. This study served as a test case for a new framework proposed specifically to regulate oil and gas exploration and production activities. Significant concerns have been voiced in Quebec about such relatively new activities in the past few years. The study thus also aimed to provide a sound scientific perspective on the actual risk to groundwater resources related to oil and gas industry upstream activities. The study was based on the compilation of existing hydrogeological, geological and petroleum exploration data and on a field characterization. The field work involved 1) the installation of 17 observation wells and their hydraulic testing, including two fully-cored wells, 2) groundwater and surface water sampling in observation wells and more than 70 residential wells within a 2 km radius of a proposed new drill pad, and 3) geophysical logging of the open-hole observation wells. On all samples, chemical analyses involved major and minor inorganics, a wide range of organics, dissolved light hydrocarbon gases and CH4 isotopes, where present. More specialized analyses were done on observation wells (stable isotopes, tritium, 13C and 14C, noble gases, CFCs and SF6, organic acids). The hydrogeological conditions were then defined on the basis of existing and newly acquired data. Fracturing was found to control groundwater flow which is more intense in the upper 15 m of the rock aquifer. Recharge occurs on topographic highs where the rock is not covered by a low permeability glacial till, as found almost everywhere. Hydrogeochemical conditions were defined on the basis of a multivariate analysis of 16 chemical parameters. Quite wide variations in geochemistry were encountered, with evolved groundwater types affected by cation exchange or mixing with sea water. Groundwater residence time can thus be quite long, which may be due to the relatively high porosity (5-10%) of the rock. Methane is of mixed origin and preferentially associated with evolved water types. SALTFLOW, a variable-density flow and mass transport simulator, was used to represent the peninsula as well as the adjacent highlands in a 2D vertical section model. The interaction of the highland and peninsula recharge leads to nested flow systems with converging-diverging flow conditions under the peninsula, with a relatively shallow active flow zone. The observed and simulated conditions support a conceptual model that can be used to infer the level of risk for groundwater quality related to oil and gas industry activities.

  9. A mysterious dust clump in a disk around an evolved binary star system.

    PubMed

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  10. The cGAS-STING Defense Pathway and Its Counteraction by Viruses.

    PubMed

    Ma, Zhe; Damania, Blossom

    2016-02-10

    Upon virus infection, host cells mount a concerted innate immune response involving type I interferon and pro-inflammatory cytokines to enable elimination of the pathogen. Recently, cGAS and STING have been identified as intracellular sensors that activate the interferon pathway in response to virus infection and thus mediate host defense against a range of DNA and RNA viruses. Here we review how viruses are sensed by the cGAS-STING signaling pathway as well as how viruses modulate this pathway. Mechanisms utilized by viral proteins to inhibit cGAS and/or STING are also discussed. On the flip side, host cells have also evolved strategies to thwart viral immune escape. The balance between host immune control and viral immune evasion is pivotal to viral pathogenesis, and we discuss this virus-host stand-off in the context of the cGAS-STING innate immune pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong

    2017-02-01

    Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.

  12. Small gas turbine engine technology

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.; Meitner, Peter L.

    1988-01-01

    Performance of small gas turbine engines in the 250 to 1,000 horsepower size range is significantly lower than that of large engines. Engines of this size are typically used in rotorcraft, commutercraft, general aviation, and cruise missile applications. Principal reasons for the lower efficiencies of a smaller engine are well known: component efficients are lower by as much as 8 to 10 percentage points because of size effects. Small engines are designed for lower cycle pressures and temperatures because of smaller blading and cooling limitations. The highly developed analytical and manufacturing techniques evolved for large engines are not directly transferrable to small engines. Thus, it was recognized that a focused effort addressing technologies for small engies was needed and could significantly impact their performance. Recently, in-house and contract studies were undertaken at the NASA Lewis Research Center to identify advanced engine cycle and component requirements for substantial performance improvement of small gas turbines for projected year 2000 applications. The results of both in-house research and contract studies are presented. In summary, projected fuel savings of 22 to 42 percent could be obtained. Accompanying direct operating cost reductions of 11 to 17 percent, depending on fuel cost, were also estimated. High payoff technologies are identified for all engine applications, and recent results of experimental research to evolve the high payoff technologies are described.

  13. Optimal allocation of leaf epidermal area for gas exchange.

    PubMed

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  14. Determining Gram-Equivalent Mass by Evolution of Hydrogen: An Improved Experiment.

    ERIC Educational Resources Information Center

    Hopper, Marlon E.

    1993-01-01

    Describes an experiment where the gram-equivalent mass of an unknown metal is determined by reacting the metal with dilute hydrochloric acid and collecting the evolved gas over water. This simple, reliable experiment routinely gives results within 1% of the accepted value. (PR)

  15. Predicting Residential Exposure to Phthalate Plasticizer Emitted from Vinyl Flooring - A Mechanistic Analysis

    EPA Science Inventory

    A two-room model is developed to estimate the emission rate of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring and the evolving gas-phase and adsorbed surface concentrations in a realistic indoor environment. Adsorption isotherms for phthalates and plasticizers on interior ...

  16. IPCC Methodologies for the Waste Sector: Past, Present, and Future

    USDA-ARS?s Scientific Manuscript database

    The reporting of national greenhouse gas (GHG) emissions began more than a decade ago by the signatory countries of the United Nations Framework Convention on Climate Change (UNFCCC). National GHG inventories rely on the evolving Intergovernmental Panel on Climate Change (IPCC) national GHG inventor...

  17. SAM Gcms Chromatography Performed at Mars : Elements of Interpretation

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Coll, P. J.; Buch, A.; François, P.; Cabane, M.; Coscia, D.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Mahaffy, P. R.

    2013-12-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Interpretation of the data collected after SAM pyrolysis evolved gas analysis (EGA) and gas chromatography mass spectrometry (GC-MS) experiments on the first soil samples collected by MSL at the Rocknest Aeolian Deposit in Gale Crater has been challenging due to the concomitant presence in the ovens of an oxychlorine phase present in the samples, and a derivatization agent coming from the SAM wet chemistry experiment (Glavin et al., 2013). Moreover, accurate identification and quantification, in the SAM EGA mode, of volatiles released from the heated sample, or generated by reactions occurring in the SAM pyrolysis oven, is also difficult for a few compounds due to evolution over similar temperature ranges and overlap of their MS signatures. Hence, the GC analyses, coupled with MS, enabled the separation and identification and quantification of most of the volatile compounds detected. These results can have been obtained through tests and calibration done with GC individual spare components and with the SAM testbed. This paper will present a view of the interpretation of the chromatograms obtained when analyzing the Rocknest and John Klein solid samples delivered to SAM, on sols 96 and 199 respectively, supported by laboratory calibrations.

  18. Integration and Ruggedization of a Commercially Available Gas Chromatograph and Mass Spectrometer (GCMS) for the Resource Prospector Mission (RPM)

    NASA Technical Reports Server (NTRS)

    Loftin, Kathleen; Griffin, Timothy; Captain, Janine

    2013-01-01

    The Resource Prospector is a mission to prospect for lunar volatiles (primarily water) at one of the two lunar poles, as well as demonstrate In-Situ Resource Utilization (ISRU) on the Moon. The Resource Prospector consists of a lander, a rover, and a rover-borne scientific payload. The Regolith and Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload, will be able to (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The gas chromatograph mass spectrometer (GCMS) is the primary instrument in the RESOLVE instrumentation suite responsible for identification and quantification of the volatiles evolved from the lunar regolith. Specifically, this instrument must have: a low mass, a low power consumption, be able to perform fast analyses of samples ranging from less than one to greater than ninety nine percent water by mass, be autonomously controlled by the payload's software and avionics platform, and be able to operate in the harsh lunar environment. The RPM's short mission duration is the primary driver of the requirement for a very fast analysis time currently base lined at less than 2 minutes per sample. This presentation will discuss the requirements levied upon the GCMS design, lessons learned from a preliminary field demonstration deployment, the current design, and the path forward.

  19. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus.

    PubMed

    Bachert, Beth A; Choi, Soo J; LaSala, Paul R; Harper, Tiffany I; McNitt, Dudley H; Boehm, Dylan T; Caswell, Clayton C; Ciborowski, Pawel; Keene, Douglas R; Flores, Anthony R; Musser, James M; Squeglia, Flavia; Marasco, Daniela; Berisio, Rita; Lukomski, Slawomir

    2016-01-01

    The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.

  20. STAR FORMATION ACTIVITY IN THE GALACTIC H II COMPLEX S255-S257

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojha, D. K.; Ghosh, S. K.; Samal, M. R.

    We present results on the star formation activity of an optically obscured region containing an embedded cluster (S255-IR) and molecular gas between two evolved H II regions, S255 and S257. We have studied the complex using optical and near-infrared (NIR) imaging, optical spectroscopy, and radio continuum mapping at 15 GHz, along with Spitzer-IRAC results. We found that the main exciting sources of the evolved H II regions S255 and S257 and the compact H II regions associated with S255-IR are of O9.5-B3 V nature, consistent with previous observations. Our NIR observations reveal 109 likely young stellar object (YSO) candidates inmore » an area of {approx}4.'9 x 4.'9 centered on S255-IR, which include 69 new YSO candidates. To see the global star formation, we constructed the V - I/V diagram for 51 optically identified IRAC YSOs in an area of {approx}13' x 13' centered on S255-IR. We suggest that these YSOs have an approximate age between 0.1 and 4 Myr, indicating a non-coeval star formation. Using spectral energy distribution models, we constrained physical properties and evolutionary status of 31 and 16 YSO candidates outside and inside the gas ridge, respectively. The models suggest that the sources associated with the gas ridge are younger (mean age {approx}1.2 Myr) than the sources outside the gas ridge (mean age {approx}2.5 Myr). The positions of the young sources inside the gas ridge at the interface of the H II regions S255 and S257 favor a site of induced star formation.« less

  1. Sulfur-Bearing Phases Detected by Evolved Gas Analysis of the Rocknest Aeolian Deposit, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Mcadam, Amy Catherine; Franz, Heather Bryant

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from approx.450 to 800 C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2(approx. 3-22 micro-mol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (approx.41-109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (approx.1-5 nmol) and CS2(approx.0.2-1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.

  2. Publications - GMC 275 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 275 Publication Details Title: Geochemical analyses from the following North Slope oil/gas Piggott, Neil, 1997, Geochemical analyses from the following North Slope oil/gas exploratory well

  3. Bio-conversion of water hyacinths into methane gas. Part 1. [Effects of cadmium and nickel pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Mcdonald, R.C.; Gordon, J.

    1974-07-01

    Bio-gas and methane production from the microbial anaerobic decomposition of water hyacinths (Eichhornia crassipes) (Mart) Solms was investigated. These experiments demonstrated the ability of water hyacinths to produce an average of 13.9 ml of methane gas per gram of wet plant weight. This study revealed that sample preparation had no significant effect on bio-gas and/or methane production. Pollution of water hyacinths by two toxic heavy materials, nickel and cadmium, increased the rate of methane production from 51.8 ml/day for non-contaminated plants incubated at 36 C to 81.0 ml/day for Ni-Cd contaminated plants incubated at the same temperature. The methane contentmore » of bio-gas evolved from the anaerobic decomposition of Ni-Cd contaminated plants was 91.1 percent as compared to 69.2 percent methane content of bio-gas collected from the fermentation of non-contaminated plants. (Author) (GRA)« less

  4. X-radiation from clusters of galaxies: Spectral evidence for a hot evolved gas

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.; Swank, J. H.

    1976-01-01

    OSO-8 observations of the X-ray flux in the range 2-60 keV from the Virgo, Perseus, and Coma Clusters provide strong evidence for the thermal origin of the radiation, including iron line emission. The data are adequately described by emission from an isothermal plasma with an iron abundance in near agreement with cosmic levels. A power law description is generally less acceptable and is ruled out in the case of Perseus. Implications on the origin of the cluster gas are discussed.

  5. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  6. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  7. Massive Black Hole Mergers: Can We "See" what LISA will "Hear"?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2010-01-01

    The final merger of massive black holes produces strong gravitational radiation that can be detected by the space-borne LISA. If the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We will review current efforts to simulate these systems, and discuss possibilities for observing the electromagnetic signals they produce.

  8. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  9. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton

    2007-01-01

    Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.

  10. Method of preparing pure fluorine gas

    DOEpatents

    Asprey, Larned B.

    1976-01-01

    A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.

  11. Remote control flare stack igniter for combustible gases

    NASA Technical Reports Server (NTRS)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  12. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  13. Dual Source Time-of-flight Mass Spectrometer and Sample Handling System

    NASA Astrophysics Data System (ADS)

    Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.

    We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging and laser microprobe studies would necessarily precede the pyrolysis step to assure that the grain-scale composition is captured.)

  14. Implications of Abundant Gas and Oil for Climate Forcing

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2015-12-01

    Perhaps the most important development in the field of energy over the past decade has been the advent of technologies that enable the production of larger volumes of natural gas and oil at lower cost. The availability of more abundant gas and oil is reshaping the global energy system, with implications for both evolving emissions of CO2 and other climate forcers. More abundant gas and oil will also transform the character of greenhouse gas emissions mitigation. We review recent findings regarding the impact of abundant gas and oil for climate forcing and the challenge of emissions mitigation. We find strong evidence that, absent policies to limits its penetration against renewable energy, abundant gas has little observable impact on CO2 emissions, and tends to increase overall climate forcing, though the latter finding is subject to substantial uncertainty. The presence of abundant gas also affects emissions mitigation. There is relatively little literature exploring the implication of expanded gas availability on the difficulty in meeting emissions mitigation goals. However, preliminary results indicate that on global scales abundant gas does not substantially affect the cost of emissions mitigation, even though natural gas could have an expanded role in emissions mitigation scenarios as compared with scenarios in which natural gas is less abundant.

  15. Propensity score matching and persistence correction to reduce bias in comparative effectiveness: the effect of cinacalcet use on all-cause mortality.

    PubMed

    Gillespie, Iain A; Floege, Jürgen; Gioni, Ioanna; Drüeke, Tilman B; de Francisco, Angel L; Anker, Stefan D; Kubo, Yumi; Wheeler, David C; Froissart, Marc

    2015-07-01

    The generalisability of randomised controlled trials (RCTs) may be limited by restrictive entry criteria or by their experimental nature. Observational research can provide complementary findings but is prone to bias. Employing propensity score matching, to reduce such bias, we compared the real-life effect of cinacalcet use on all-cause mortality (ACM) with findings from the Evaluation of Cinacalcet Therapy to Lower Cardiovascular Events (EVOLVE) RCT in chronic haemodialysis patients. Incident adult haemodialysis patients receiving cinacalcet, recruited in a prospective observational cohort from 2007-2009 (AROii; n = 10,488), were matched to non-exposed patients regardless of future exposure status. The effect of treatment crossover was investigated with inverse probability of censoring weighted and lag-censored analyses. EVOLVE ACM data were analysed largely as described for the primary composite endpoint. AROii patients receiving cinacalcet (n = 532) were matched to 1790 non-exposed patients. The treatment effect of cinacalcet on ACM in the main AROii analysis (hazard ratio 1.03 [95% confidence interval (CI) 0.78-1.35]) was closer to the null than for the Intention to Treat (ITT) analysis of EVOLVE (0.94 [95%CI 0.85-1.04]). Adjusting for non-persistence by 0- and 6-month lag-censoring and by inverse probability of censoring weight, the hazard ratios in AROii (0.76 [95%CI 0.51-1.15], 0.84 [95%CI 0.60-1.18] and 0.79 [95%CI 0.56-1.11], respectively) were comparable with those of EVOLVE (0.82 [95%CI 0.67-1.01], 0.83 [95%CI 0.73-0.96] and 0.87 [95%CI 0.71-1.06], respectively). Correcting for treatment crossover, we observed results in the 'real-life' setting of the AROii observational cohort that closely mirrored the results of the EVOLVE RCT. Persistence-corrected analyses revealed a trend towards reduced ACM in haemodialysis patients receiving cinacalcet therapy. Copyright © 2015 John Wiley & Sons, Ltd.

  16. A unified model for age-velocity dispersion relations in Local Group galaxies: disentangling ISM turbulence and latent dynamical heating

    NASA Astrophysics Data System (ADS)

    Leaman, Ryan; Mendel, J. Trevor; Wisnioski, Emily; Brooks, Alyson M.; Beasley, Michael A.; Starkenburg, Else; Martig, Marie; Battaglia, Giuseppina; Christensen, Charlotte; Cole, Andrew A.; de Boer, T. J. L.; Wills, Drew

    2017-12-01

    We analyse age-velocity dispersion relations (AVRs) from kinematics of individual stars in eight Local Group galaxies ranging in mass from Carina (M* ∼ 106 M⊙) to M31 (M* ∼ 1011 M⊙). Observationally the σ versus stellar age trends can be interpreted as dynamical heating of the stars by giant molecular clouds, bars/spiral arms or merging subhaloes; alternatively the stars could have simply been born out of a more turbulent interstellar medium (ISM) at high redshift and retain that larger velocity dispersion till present day - consistent with recent integral field unit kinematic studies. To ascertain the dominant mechanism and better understand the impact of instabilities and feedback, we develop models based on observed star formation histories (SFHs) of these Local Group galaxies in order to create an evolutionary formalism that describes the ISM velocity dispersion due to a galaxy's evolving gas fraction. These empirical models relax the common assumption that the stars are born from gas that has constant velocity dispersion at all redshifts. Using only the observed SFHs as input, the ISM velocity dispersion and a mid-plane scattering model fits the observed AVRs of low-mass galaxies without fine tuning. Higher mass galaxies above Mvir ≳ 1011 M⊙ need a larger contribution from latent dynamical heating processes (for example minor mergers), in excess of the ISM model. Using the SFHs, we also find that supernovae feedback does not appear to be a dominant driver of the gas velocity dispersion compared to gravitational instabilities - at least for dispersions σ ≳ 25 km s-1. Together our results point to stars being born with a velocity dispersion close to that of the gas at the time of their formation, with latent dynamical heating operating with a galaxy mass-dependent efficiency. These semi-empirical relations may help constrain the efficiency of feedback and its impact on the physics of disc settling in galaxy formation simulations.

  17. Enhanced Photoacoustic Gas Analyser Response Time and Impact on Accuracy at Fast Ventilation Rates during Multiple Breath Washout

    PubMed Central

    Horsley, Alex; Macleod, Kenneth; Gupta, Ruchi; Goddard, Nick; Bell, Nicholas

    2014-01-01

    Background The Innocor device contains a highly sensitive photoacoustic gas analyser that has been used to perform multiple breath washout (MBW) measurements using very low concentrations of the tracer gas SF6. Use in smaller subjects has been restricted by the requirement for a gas analyser response time of <100 ms, in order to ensure accurate estimation of lung volumes at rapid ventilation rates. Methods A series of previously reported and novel enhancements were made to the gas analyser to produce a clinically practical system with a reduced response time. An enhanced lung model system, capable of delivering highly accurate ventilation rates and volumes, was used to assess in vitro accuracy of functional residual capacity (FRC) volume calculation and the effects of flow and gas signal alignment on this. Results 10–90% rise time was reduced from 154 to 88 ms. In an adult/child lung model, accuracy of volume calculation was −0.9 to 2.9% for all measurements, including those with ventilation rate of 30/min and FRC of 0.5 L; for the un-enhanced system, accuracy deteriorated at higher ventilation rates and smaller FRC. In a separate smaller lung model (ventilation rate 60/min, FRC 250 ml, tidal volume 100 ml), mean accuracy of FRC measurement for the enhanced system was minus 0.95% (range −3.8 to 2.0%). Error sensitivity to flow and gas signal alignment was increased by ventilation rate, smaller FRC and slower analyser response time. Conclusion The Innocor analyser can be enhanced to reliably generate highly accurate FRC measurements down at volumes as low as those simulating infant lung settings. Signal alignment is a critical factor. With these enhancements, the Innocor analyser exceeds key technical component recommendations for MBW apparatus. PMID:24892522

  18. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  19. Evolving neural networks through augmenting topologies.

    PubMed

    Stanley, Kenneth O; Miikkulainen, Risto

    2002-01-01

    An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

  20. A study of volatile organic compounds evolved from the decaying human body.

    PubMed

    Statheropoulos, M; Spiliopoulou, C; Agapiou, A

    2005-10-29

    Two men were found dead near the island of Samos, Greece, in the Mediterranean sea. The estimated time of death for both victims was 3-4 weeks. Autopsy revealed no remarkable external injuries or acute poisoning. The exact cause of death remained unclear because the bodies had advanced decomposition. Volatile organic compounds (VOCs) evolved from these two corpses were determined by thermal desorption/gas chromatography/mass spectrometry analysis (TD/GC/MS). Over 80 substances have been identified and quantified. The most prominent among them were dimethyl disulfide (13.39 nmol/L), toluene (10.11 nmol/L), hexane (5.58 nmol/L), benzene 1,2,4-trimethyl (4.04 nmol/L), 2-propanone (3.84 nmol/L), 3-pentanone (3.59 nmol/L). Qualitative and quantitative differences among the evolved VOCs and CO2 mean concentration values might indicate different rates of decomposition between the two bodies. The study of the evolved VOCs appears to be a promising adjunct to the forensic pathologist as they may offer important information which can be used in his final evaluation.

  1. Critique of analyses of natural gas pricing alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemon, R.

    The Administration has predicted that deregulation would add $210 billion to gas producers' profits over the next eight years; by contrast, a study done for the Natural Gas Supply Committee by Edward Erickson concludes that deregulation would mean a $126 billion savings to consumers over the same period. This article examines the analyses done in the past year by nine organizations. By examining the assumptions and projections of each analysis on wellhead prices, gas supplies, retail gas prices, and alternative energy costs and mixes, an attempt is made to explain divergent projections of the costs of energy under the threemore » alternative natural-gas-pricing scenarios: continuance under FPC's Opinion 770-A; National Energy Plan (NEP); and deregulation of new gas.« less

  2. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in concentrations too low to be detected by the current DORISS instrument. In situ analyses of the hydrates show them to be structure I hydrates with methane as the primary guest molecule; the data compare well to laboratory data.

  3. Upcoming Studies and Other Analyses- September 2012 Workshop

    EPA Pesticide Factsheets

    View presentations on on upcoming studies and other analyses of methane emissions, presented at the Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas (GHG) Emissions and Sinks on Friday, September 14, 2012.

  4. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  5. Maintenance Training Simulators Design and Acquisition: Summary of Current Procedures.

    DTIC Science & Technology

    1979-11-01

    of maintenance training and training equipment for new systems . This organization has a core of highly experienced ISD team personnel and has evolved...S LABORATORY AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BAbE,TEXAS 78235 ." .~ 8. . NOTI(’F When U.S. Government drawings. specifications. ot otlher...Force personirel in performning 4 Instrutinal Systems Devlopmrent (ISO) analyses to define maintenance training equipment requirements. and byv

  6. GHGRP Natural Gas and Natural Gas Liquids Suppliers Sector Industrial Profile

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Natural Gas and Natural Gas Suppliers indust

  7. Gas content and composition of gas hydrate from sediments of the southeastern North American continental margin

    USGS Publications Warehouse

    Lorenson, T.D.; Collett, T.S.

    2000-01-01

    Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from ??13C of -62.5??? to -70.7??? and ??D of -175??? to -200??? and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from ??13C of -5.7 to -6.9, about 15??? lighter than CO2 derived from nearby sediment.

  8. Measurements of Oxychlorine species on Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Quinn, R. C.; Archer, P. D.; Glavin, D. P.; Glotch, T. D.; Kounaves, S. P.; Osterloo, M. M.; Rampe, E. B.; Ming, D. W.

    2017-07-01

    Mars landed and orbiter missions have instrumentation capable of detecting oxychlorine phases (e.g. perchlorate, chlorate) on the surface. Perchlorate (~0.6 wt%) was first detected by the Wet Chemistry Laboratory in the surface material at the Phoenix Mars Landing site. Subsequent analyses by the Thermal Evolved Gas Analyser aboard the same lander detected an oxygen release (~465°C) consistent with the thermal decomposition of perchlorate. Recent thermal analysis by the Mars Science Laboratory's Sample Analysis at Mars instrument has also indicated the presence of oxychlorine phases (up to 1.2 wt%) in Gale Crater materials. Despite being at detectable concentrations, the Chemistry and Mineralogy (CheMin) X-ray diffractometer has not detected oxychlorine phases. This suggests that Gale Crater oxychlorine may exist as poorly crystalline phases or that perchlorate/chlorate mixtures exist, so that individual oxychlorine concentrations are below CheMin detection limits (~1 wt%). Although not initially designed to detect oxychlorine phases, reinterpretation of Viking Gas Chromatography/Mass Spectrometer data also suggest that oxychlorine phases are present in the Viking surface materials. Remote near-infrared spectral analyses by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument indicate that at least some martian recurring slope lineae (RSL) have spectral signatures consistent with the presence of hydrated perchlorates or chlorates during the seasons when RSL are most extensive. Despite the thermal emission spectrometer, Thermal Emission Imaging System, Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité and CRISM detection of hundreds of anhydrous chloride (~10-25 vol%) deposits, expected associated oxychlorine phases (>5-10 vol%) have not been detected. Total Cl and oxychlorine data sets from the Phoenix Lander and the Mars Science Laboratory missions could be used to develop oxychlorine versus total Cl correlations, which may constrain oxychlorine concentrations at other locations on Mars by using total Cl determined by other missions (e.g. Viking, Pathfinder, MER and Odyssey). Development of microfluidic or `lab-on-a-chip' instrumentation has the potential to be the next generation analytical capability used to identify and quantify individual oxychlorine species on future landed robotic missions to Mars.

  9. Quenching versus quiescence: forming realistic massive ellipticals with a simple starvation model

    NASA Astrophysics Data System (ADS)

    Gutcke, Thales A.; Macciò, Andrea V.; Dutton, Aaron A.; Stinson, Greg S.

    2017-04-01

    The decrease in star formation (SF) and the morphological change necessary to produce the z = 0 elliptical galaxy population are commonly ascribed to a sudden quenching event, which is able to rid the central galaxy of its cold gas reservoir in a short time. Following this event, the galaxy is able to prevent further SF and stay quiescent via a maintenance mode. We test whether such a quenching event is truly necessary using a simple model of quiescence. In this model, hot gas (all gas above a temperature threshold) in an ˜1012 M⊙ halo mass galaxy at redshift z ˜ 3 is prevented from cooling. The cool gas continues to form stars at a decreasing rate and the galaxy stellar mass, morphology, velocity dispersion and position on the colour-magnitude diagram (CMD) proceed to evolve. By z = 0, the halo mass has grown to 1013 M⊙ and the galaxy has attained characteristics typical of an observed z = 0 elliptical galaxy. Our model is run in the framework of a cosmological, smooth particle hydrodynamic code that includes SF, early stellar feedback, supernova feedback, metal cooling and metal diffusion. Additionally, we post-process our simulations with a radiative transfer code to create a mock CMD. In contrast to previous assumptions that a pure 'fade away' model evolves too slowly to account for the sparsity of galaxies in the 'green valley', we demonstrate crossing times of ≲1 Gyr. We conclude that no sudden quenching event is necessary to produce such rapid colour transitions.

  10. Characterizing the thermal distributions of warm molecular hydrogen in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2016-01-01

    Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. Recent studies done by Hoadley et al. 2015 and Banzatti & Pontipoddan 2015 suggest that gas in the inner disks of PPDs appear to "respond" to the loss of small dust grains with evolving PPD stage, and IR-CO emission may either be thermally or photo-excited by stellar UV radiation, depending on PPD evolutionary stage. Because far-UV H2 emission lines are dominantly photo-excited by stellar HI-Lyman alpha photons, we observe H2 absorption features against the stellar Lyman alpha wings in a large sample of PPDs at various evolutionary stages. We aim to characterize whether the inner disk H2 environment is in thermal equilibrium at various stages of PPD evolution. We use a sophisticated first-principles approach to fitting multiple absorption features along the red- and blue-wings of the observed stellar Lyman alpha profiles to extract column density estimates of H2 along the line of sight to the target. We find that the high kinetic energy H2 observed in absorption against the LyA wing may be described as a part of the thermal distribution with high kinetic temperature - a potential indication of an inner disk molecular hazy "envelope" around the cooler bulk disk. Ongoing research may help determine the state of the gas and whether it evolves with disk evolutionary stage.

  11. 30 CFR 550.116 - How do I determine producibility if my well is in the Gulf of Mexico?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General... analyses that show that the section is capable of producing oil or gas. (3) Wireline formation test and/or mud-logging analyses that show that the section is capable of producing oil or gas. (4) A resistivity...

  12. 30 CFR 550.116 - How do I determine producibility if my well is in the Gulf of Mexico?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General... analyses that show that the section is capable of producing oil or gas. (3) Wireline formation test and/or mud-logging analyses that show that the section is capable of producing oil or gas. (4) A resistivity...

  13. 30 CFR 550.116 - How do I determine producibility if my well is in the Gulf of Mexico?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF General... analyses that show that the section is capable of producing oil or gas. (3) Wireline formation test and/or mud-logging analyses that show that the section is capable of producing oil or gas. (4) A resistivity...

  14. Steady-state canopy gas exchange: system design and operation

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1992-01-01

    This paper describes the use of a commercial growth chamber for canopy photosynthesis, respiration, and transpiration measurements. The system was designed to measure transpiration via water vapor fluxes, and the importance of this measurement is discussed. Procedures for continuous measurement of root-zone respiration are described, and new data is presented to dispel myths about sources of water vapor interference in photosynthesis and in the measurement of CO2 by infrared gas analysis. Mitchell (1992) has described the fundamentals of various approaches to measuring photosynthesis. Because our system evolved from experience with other types of single-leaf and canopy gas-exchange systems, it is useful to review advantages and disadvantages of different systems as they apply to various research objectives.

  15. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part I: Pyrolysis and autothermal pyrolysis

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.

  16. Combustion of Organic Molecules by the Thermal Decomposition of Perchlorate Salts: Implications for Organics at the Mars Phoenix Scout Landing Site

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Morris, R.V.; Niles, B.; Lauer, H.V.; Archer, P.D.; Sutter, B.; Boynton, W.V.; Golden, D.C.

    2009-01-01

    The Mars 2007 Phoenix Scout Mission successfully landed on May 25, 2008 and operated on the northern plains of Mars for 150 sols. The primary mission objective was to study the history of water and evaluate the potential for past and present habitability in Martian arctic ice-rich soil [1]. Phoenix landed near 68 N latitude on polygonal terrain created by ice layers that are a few centimeters under loose soil materials. The Phoenix Mission is assessing the potential for habitability by searching for organic molecules in the ice or icy soils at the landing site. Organic molecules are necessary building blocks for life, although their presence in the ice or soil does not indicate life itself. Phoenix searched for organic molecules by heating soil/ice samples in the Thermal and Evolved-Gas Analyzer (TEGA, [2]). TEGA consists of 8 differential scanning calorimeter (DSC) ovens integrated with a magnetic-sector mass spectrometer with a mass range of 2-140 daltons [2]. Endothermic and exothermic reactions are recorded by the TEGA DSC as samples are heated from ambient to 1000 C. Evolved gases, including any organic molecules and their fragments, are simultaneously measured by the mass spectrometer during heating. Phoenix TEGA data are still under analysis; however, no organic fragments have been identified to date in the evolved gas analysis (EGA). The MECA Wet Chemistry Lab (WCL) discovered a perchlorate salt in the Phoenix soils and a mass 32 peak evolved between 325 and 625 C for one surface sample dubbed Baby Bear [3]. The mass 32 peak is attributed to evolved O2 generated during the thermal decomposition of the perchlorate salt. Perchlorates are very strong oxidizers when heated, so it is possible that organic fragments evolved in the temperature range of 300-600 C were combusted by the O2 released during the thermal decomposition of the perchlorate salt. The byproduct of the combustion of organic molecules is CO2. There is a prominent release of CO2 between 200-600 C for several of the Phoenix soils analyzed by TEGA. This low temperature release of CO2 might be any combination of 1) desorption of adsorbed CO2, 2) thermal decomposition of Fe- and Mg-carbonates, and 3) combustion of organic molecules [2].

  17. Gas expulsion in highly substructured embedded star clusters

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  18. Sonar gas seepage characterization using high resolution systems at short ranges

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.

    2017-12-01

    Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.

  19. Testing alternative response designs for training forest disturbance and attribution models

    Treesearch

    T. Schroeder; G. Moisen; K. Schleeweis

    2014-01-01

    Understanding and modeling land cover and land use change is evolving into a foundational element of climate, environmental, and sustainability science. Land cover and land use data are core to applications such as carbon accounting, greenhouse gas emissions reporting, biomass and bioenergy assessments, hydrologic function assessments, fire and fuels planning and...

  20. Nitrogen oxides from burning forest fuels examined by thermogravimetry and evolved gas analysis

    Treesearch

    H.B. Clements; Charles K. McMahon

    1980-01-01

    Abstract. Twelve forest fuels that varied widely in nitrogen content were burned in a thermogravimetric system, and nitrogen oxide production was analyzed by chemiluminescence. The effects of fuel nitrogen concentration, available oxygen, flow rate, and heating rate on nitrogen oxide production were examined.Results show that fuel nitrogen is an...

  1. Molecular Astrophysics from Space: the Physical and Chemical Effects of Star Formation and the Destruction of Planetary Systems around Evolved Stars

    NASA Technical Reports Server (NTRS)

    Neufeld, David

    2005-01-01

    The research conducted during the reporting period is grouped into three sections: 1) Warm molecular gas in the interstellar medium (ISM); 2) Absorption line studies of "cold" molecular clouds; 3) Vaporization of comets around the AGB star IRC+10216.

  2. Evolving School-Crisis Management since 9/11

    ERIC Educational Resources Information Center

    Brickman, Heather K.; Jones, Stephanie E.; Groom, Sara E.

    2004-01-01

    The word "terrorism" has become commonplace in the headlines, workplaces, and homes since September 11, 2001. In the past, school crisis plans commonly addressed how to evacuate in the event of a gas leak or fire. Today, schools must be prepared to address biological, chemical, and radiological attacks, as well as car bombings, suicide attacks,…

  3. A rapid and cost effective method for soil carbon mineralization under static incubations

    USDA-ARS?s Scientific Manuscript database

    Soil incubations with subsequent measurement of carbon dioxide (CO2) evolved are common soil assays to estimate C mineralization rates and active organic C. Two common methods used to detect CO2 in laboratory incubations are gas chromatography (GC) and alkali absorption followed by titration (NaOH)...

  4. A QUANTITATIVE STUDY OF THE EVOLUTION OF GASES FROM ELECTRON TUBES AND MATERIALS.

    DTIC Science & Technology

    spectrometer, ion pumps, ionization gauges and precision orifices to measure the flow rate of individual gases. It has been used to examine several...amounts comprise about 95% of the gas evolved during cathode conversion and activation. Additional experiments in the dynamic analysis of tube processes are suggested. (Author)

  5. Dynamics of the baryonic component in hierarchical clustering universes

    NASA Technical Reports Server (NTRS)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  6. Novel Calibration Technique for a Coulometric Evolved Vapor Analyzer for Measuring Water Content of Materials

    NASA Astrophysics Data System (ADS)

    Bell, S. A.; Miao, P.; Carroll, P. A.

    2018-04-01

    Evolved vapor coulometry is a measurement technique that selectively detects water and is used to measure water content of materials. The basis of the measurement is the quantitative electrolysis of evaporated water entrained in a carrier gas stream. Although this measurement has a fundamental principle—based on Faraday's law which directly relates electrolysis current to amount of substance electrolyzed—in practice it requires calibration. Commonly, reference materials of known water content are used, but the variety of these is limited, and they are not always available for suitable values, materials, with SI traceability, or with well-characterized uncertainty. In this paper, we report development of an alternative calibration approach using as a reference the water content of humid gas of defined dew point traceable to the SI via national humidity standards. The increased information available through this new type of calibration reveals a variation of the instrument performance across its range not visible using the conventional approach. The significance of this is discussed along with details of the calibration technique, example results, and an uncertainty evaluation.

  7. Numerical study of heterogeneous mean temperature and shock wave in a resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Takeru

    2015-10-28

    When a frequency of gas oscillation in an acoustic resonator is sufficiently close to one of resonant frequencies of the resonator, the amplitude of gas oscillation becomes large and hence the nonlinear effect manifests itself. Then, if the dissipation effects due to viscosity and thermal conductivity of the gas are sufficiently small, the gas oscillation may evolve into the acoustic shock wave, in the so-called consonant resonators. At the shock front, the kinetic energy of gas oscillation is converted into heat by the dissipation process inside the shock layer, and therefore the temperature of the gas in the resonator rises.more » Since the acoustic shock wave travels in the resonator repeatedly over and over again, the temperature rise becomes noticeable in due course of time even if the shock wave is weak. We numerically study the gas oscillation with shock wave in a resonator of square cross section by solving the initial and boundary value problem of the system of three-dimensional Navier-Stokes equations with a finite difference method. In this case, the heat conduction across the boundary layer on the wall of resonator causes a spatially heterogeneous distribution of mean (time-averaged) gas temperature.« less

  8. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  9. Review of Sector and Regional Trends in U.S. Electricity Markets. Focus on Natural Gas. Natural Gas and the Evolving U.S. Power Sector Monograph Series. Number 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Jeffrey; Medlock, III, Kenneth B.; Boyd, William C.

    2015-10-15

    This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entiremore » eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.« less

  10. Formation of jets in Comet 19P/Borrelly by subsurface geysers

    USGS Publications Warehouse

    Yelle, R.V.; Soderblom, L.A.; Jokipii, J.R.

    2004-01-01

    Observations of the inner coma of Comet 19P/Borrelly with the camera on the Deep Space 1 spacecraft revealed several highly collimated dust jets emanating from the nucleus. The observed jets can be produced by acceleration of evolved gas from a subsurface cavity through a narrow orifice to the surface. As long as the cavity is larger than the orifice, the pressure in the cavity will be greater than the ambient pressure in the coma and the flow from the geyser will be supersonic. The gas flow becomes collimated as the sound speed is approached and dust entrainment in the gas flow creates the observed jets. Outside the cavity, the expanding gas loses its collimated character, but the density drops rapidly decoupling the dust and gas, allowing the dust to continue in a collimated beam. The hypothesis proposed here can explain the jets seen in the inner coma of Comet 1P/Halley as well, and may be a primary mechanism for cometary activity. ?? 2003 Published by Elsevier Inc.

  11. Instruments as Empirical Evidence for the Analysis of Higher Education Policies

    ERIC Educational Resources Information Center

    Reale, Emanuela; Seeber, Marco

    2013-01-01

    This paper focuses on policy implementation in Higher Education (HE) analysed through the evolution and transformation of policy instruments related to government funding and evaluation. We investigate how steering and governance tools have been put into action, in order to analyse how original policy rationales and justifications have evolved and…

  12. Organic Combustion in the Presence of Ca-Carbonate and Mg-Perchlorate: A Possible Source for the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, Douglas; Ming, D.; Niles, P.; Sutter, B.; Lauer, H.

    2012-01-01

    Two of the most important discoveries of the Phoenix Lander were the detection of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in landing site soils. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander could heat samples up to approx.1000 C and monitor evolved gases with a mass spectrometer. TEGA detected a low (approx.350 C) and high (approx.750 C) temperature CO2 release. The high temp release was attributed to the thermal decomposition of Ca-carbonate (calcite). The low temperature CO2 release could be due to desorption of CO2, decomposition of a different carbonate mineral, or the combustion of organic material. A new hypothesis has also been proposed that the low temperature CO2 release could be due to the early breakdown of calcite in the presence of the decomposition products of certain perchlorate salts [3]. We have investigated whether or not this new hypothesis is also compatible with organic combustion. Magnesium perchlorate is stable as Mg(ClO4)2-6H2O on the martian surface [4]. During thermal decomposition, this perchlorate salt releases H2O, Cl2, and O2 gases. The Cl2 can react with water to form HCl which then reacts with calcite, releasing CO2 below the standard thermal decomposition temperature of calcite. However, when using concentrations of perchlorate and calcite similar to what was detected by Phoenix, the ratio of high:low temperature CO2 evolved is much larger in the lab, indicating that although this process might contribute to the low temp CO2 release, it cannot account for all of it. While H2O and Cl2 cause calcite decomposition, the O2 evolved during perchlorate decomposition can lead to the combustion of any reduced carbon present in the sample [5]. We investigate the possible contribution of organic molecules to the low temperature CO2 release seen on Mars.

  13. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian B.; Joy, Marshall

    1995-01-01

    We present ROSAT high-resolution images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, X-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. If real, the enhancements may be associated with clumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  14. ROSAT HRI images of Abell 85 and Abell 496: Evidence for inhomogeneities in cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Guimond, Stephen J.; Luginbuhl, Christian; Joy, Marshall

    1994-01-01

    We present ROSAT HRI images of two clusters of galaxies with cooling flows, Abell 496 and Abell 85. In these clusters, x-ray emission on small scales above the general cluster emission is significant at the 3 sigma level. There is no evidence for optical counterparts. The enhancements may be associated with lumps of gas at a lower temperature and higher density than the ambient medium, or hotter, denser gas perhaps compressed by magnetic fields. These observations can be used to test models of how thermal instabilities form and evolve in cooling flows.

  15. Gas liquid flow at microgravity conditions - Flow patterns and their transitions

    NASA Technical Reports Server (NTRS)

    Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.

    1987-01-01

    The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.

  16. Point-of-care testing of electrolytes and calcium using blood gas analysers: it is time we trusted the results.

    PubMed

    Mirzazadeh, Mehdi; Morovat, Alireza; James, Tim; Smith, Ian; Kirby, Justin; Shine, Brian

    2016-03-01

    Point-of-care testing allows rapid analysis of samples to facilitate prompt clinical decisions. Electrolyte and calcium abnormalities are common in acutely ill patients and can be associated with life-threatening consequences. There is uncertainty whether clinical decisions can be based on the results obtained from blood gas analysers or if laboratory results should be awaited. To assess the agreement between sodium, potassium and calcium results from blood gas and laboratory mainstream analysers in a tertiary centre, with a network consisting of one referral and two peripheral hospitals, consisting of three networked clinical biochemistry laboratories. Using the laboratory information management system database and over 11 000 paired samples in three hospital sites, the results of sodium, potassium and ionised calcium on blood gas analysers were studied over a 5-year period and compared with the corresponding laboratory results from the same patients booked in the laboratory within 1 h. The Pearson's linear correlation coefficient between laboratory and blood gas results for sodium, potassium and calcium were 0.92, 0.84 and 0.78, respectively. Deming regression analysis showed a slope of 1.04 and an intercept of -5.7 for sodium, slope of 0.93 and an intercept of 0.22 for potassium and a slope of 1.23 with an intercept of -0.55 for calcium. With some strict statistical assumptions, percentages of results lying outside the least significant difference were 9%, 26.7% and 20.8% for sodium, potassium and calcium, respectively. Most clinicians wait for the laboratory confirmation of results generated by blood gas analysers. In a large retrospective study we have shown that there is sufficient agreement between the results obtained from the blood gas and laboratory analysers to enable prompt clinical decisions to be made. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Physical gills prevent drowning of many wetland insects, spiders and plants.

    PubMed

    Pedersen, Ole; Colmer, Timothy D

    2012-03-01

    Insects, spiders and plants risk drowning in their wetland habitats. The slow diffusion of O(2) can cause asphyxiation when underwater, as O(2) supply cannot meet respiratory demands. Some animals and plants have found a common solution to the major challenge: how to breathe underwater with respiratory systems evolved for use in air? Hydrophobic surfaces on their bodies possess gas films that act as a 'physical gill' to collect O(2) when underwater and thus sustain respiration. In aquatic insects, this feature/process has been termed 'plastron respiration'. Here, we demonstrate the similarities in function between underwater respiration of insect (Aphelocheirus aestivalis) plastrons and gas films on leaves of wetland plants (Phalaris arundinacea) and also show the importance of these physical gills by the resulting changes upon their removal. The gas films provide an enlarged gas-water interface to enhance O(2) uptake underwater that is above that if only spiracles (insects) or stomata (plants) provided the gas-phase contact with the water. Body-surface gas films contribute to the survival of many insects, spiders and plants in aquatic and flood-prone environments.

  18. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less

  19. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser environments, which suggests environmental effects as a likely cause for the existence of line-less galaxies on the red sequence. In the second part of this dissertation I focus on the study of resolved chemical abundances by characterising the gas phase oxygen and nitrogen abundance gradients in a large sample of star forming galaxies. I analyse the deviations from an exponential profile at small and large radii and the dependence of the gradients on stellar mass. These findings are interpreted in the context of the inside-out paradigm of disc growth. I then demonstrate the necessity of gas flows, which are responsible for the observed flattening of the metallicity and N/O ratio gradients at large radii. Finally, I present a case study based on one nearby galaxy (NGC 628), in which I combine IFS and cold gas data to derive a spatially resolved metal bud- get and estimate the mass of metals lost by the galaxy throughout its lifetime. By using simple physically-motivated models of chemical evolution I infer the average outflow loading factor to be of order unity.

  20. Nesting behaviour influences species-specific gas exchange across avian eggshells.

    PubMed

    Portugal, Steven J; Maurer, Golo; Thomas, Gavin H; Hauber, Mark E; Grim, Tomáš; Cassey, Phillip

    2014-09-15

    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (G(H2O)) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell G(H2O) and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in G(H2O) has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between G(H2O) and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher G(H2O) than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher G(H2O) than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the G(H2O) are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher G(H2O) to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher G(H2O) to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours. © 2014. Published by The Company of Biologists Ltd.

  1. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  2. The Ice Line in Pre-Solar Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2012-01-01

    Protoplanetary disks contain abundant quantities of water molecules in both gas and solid phases. The distribution of these two phases in an evolving protoplanetary disk will have important consequences regarding water sequestration in planetary embryos. The boundary between gaseous and solid water is the "ice line" or "snow line" A simplified model that captures the complicated two-branched structure of the ice line is developed and compared with recent investigations. The effect of an evolving Sun is also included for the first time. This latter parameter could have important consequences regarding the thermodynamic state and the surface reaction environment for the time-dependent chemical reactions occurring during the 1- to 10-million-year lifetime of the pre-solar disk.

  3. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  4. Nonprevalence of biochemical fossils in kerogen from pre-Phanerozoic sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leventhal, J.; Suess, S. E.; Cloud, P.

    Evidence of biochemical and geochemical evolution was sought in insoluble carbonaceous matter from 30 selected pre-Phanerozoic sediments ranging in age from about 3.8 to about 0.7 x 10 9 years. The carbon isotope ratios observed were in the range of -20 to -32 per mil with reference to the Peedee belemnite standard, similar to those previously reported. No systematic trends are obvious to us. Stepwise pyrolysis-gas-chromatography showed only molecules with fewer than 8 carbon atoms at the level of sensitivity of 10 -9 g of organics in a 10 mg rock sample. Carbon, hydrogen, and nitrogen analyses showed noncarbonate carbonmore » from less than 0.1 percent to more than 3 percent, with very small amounts of N. The H/C (atomic) ratios on HCl-leached and HF-treated samples were generally less than 0.3. Evidence of low pyrolysis yields (micro-analysis) and low H/C atomic ratios (macro-analysis) implies that the carbonaceous solids in even the least metamorphosed of these ancient sediments have evolved far toward amorphous carbon or graphite and do not yield useful ''biochemical fossils.''« less

  5. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    NASA Astrophysics Data System (ADS)

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-06-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration.

  6. Mars aqueous chemistry experiment

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.; Mason, Larry W.

    1994-06-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  7. GCMS/MS Analyses of Biological Samples in Support of Evaluation of Toxicity Associated with Intravenous Exposure to VX Stereoisomers in Guinea Pigs

    DTIC Science & Technology

    2017-07-01

    14. ABSTRACT: This report documents the results of the gas chromatography–tandem mass spectrometry analyses of blood, tissues, and organs (heart...quantified using chemical ionization mass spectrometry with isotope dilution. 15. SUBJECT TERMS Gas chromatography–tandem mass spectrometry (GC–MS...characterize the pharmacokinetics of the individual stereoisomers and their racemic mixtures. This report details the results of gas chromatography–tandem

  8. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  9. Preservation of organic matter on Mars by sulfur

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Steele, A.; Summons, R. E.; McAdam, A.; Sutter, B.; Franz, H. B.; Freissinet, C.; Millan, M.; Glavin, D. P.; Szopa, C.; Conrad, P. G.; Mahaffy, P. R.

    2016-12-01

    Deltaic-lacustrine mudstones at Pahrump Hills, Gale Crater, Mars yielded a variety of sulfur-containing volatiles upon heating to 500-860°C, as detected by the Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover. The detection of organosulfur compounds comprising thiophenes, dimethylsulfide and thiols by gas chromatography-mass spectrometry and evolved gas analyses, together with aromatic and other hydrocarbon molecules with distributions specific to the sample (i.e., not from the SAM background) indicate that some or all of these organic fragments released at high temperatures are indigenous to the mudstones. The organosulfur compounds are most likely derived from sulfur organics in the sediments. However, there is a possibility that sulfurization of some organic fragments occurred in the oven. On Earth, sulfurization of organic matter is a key process that aids preservation over geological time-scales. This is because it reduces reactive functional groups and adds cross links between small unstable molecules thereby converting them into recalcitrant macromolecules. Sulfurization of organic materials prior to deposition and during early diagenesis may have been a key mechanism responsible for organic matter preservation in the Murray formation mudstones. Sulfur-bearing organics have also been observed in carbonaceous meteorites and there is indication of their presence in the Tissint martian meteorite. A quantitative assessment of organosulfur compounds relative to their non-organic counterparts will be presented for the Murray formation mudstones analyzed by SAM and meteorites analyzed in the laboratory under similar analytical conditions.

  10. How does the association of iron oxides and perchlorate salts influence organic matter evolution when using Sample Analysis at Mars pyrolysis onboard Curiosity?

    NASA Astrophysics Data System (ADS)

    François, Pascaline; Coll, Patrice; Szopa, Cyril; Buch, Arnaud; Cabane, Michel; McAdam, Amy; Freissinet, Caroline; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Navarro-Gonzalez, Rafael; Mahaffy, Paul R.

    2014-05-01

    The Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover is designed to characterize organic and inorganic volatiles thermally evolved from solid samples. It can analyze evolved volatiles directly with its quadrupole mass spectrometer (MS) to perform evolved gas analysis (EGA) or it can analyze volatiles after they have been sent through a gas chromatography column to perform pyrolysis-gas chromatograph-mass spectrometry (pyr-GC-MS) [1]. Three solid samples have been analyzed by SAM, a scoop of basaltic sand at Rocknest (RN) and two rocks drilled at Yellowknife Bay designated as John Klein (JK) and Cumberland (CB). All these samples contain an oxychlorine phase (e.g., a perchlorate salt) [2, 3] that evolves HCl, Cl2 and O2 on heating leading to the possible chlorination and/or combustion of organic molecules [4]. Chlorohydrocarbons detected at RN, JK and CB are derived from reactions between martian oxychlorine compounds and terrestrial carbon that is part of the SAM background (e.g., MTBSTFA [2]) as well as potentially reactions with martian carbon and/or thermal desorption directly from the samples for the production of chlorobenzene evolved during pyrolysis of CB. RN, JK and CB samples also contain iron oxides (e.g., hematite, magnetite) [5] which could oxidize organic compounds and catalyze their decomposition [6] leading to differences in the amount and/or nature of pyrolysis products. In order to help interpretation of in situ data obtained by SAM, we study the influence of an iron oxide, hematite, and an oxychlorine phase, Ca-perchlorate, individually, as well as mixed, on alanine, a common amino acid, under conditions simulating the SAM pyrolysis. This work aims to help to determine the influences of key sample minerals on the production of organic compounds detected with SAM in both GC-MS and EGA mode, and to identify potential parent molecules. References: [1] Mahaffy, P. et al. (2012), Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Ming, D. et al. (2013), Science, DOI: 10.1126/science.1245267 [4] Navarro-Gonzalez, R. et al. (2010), JGR. [5] Vaniman, D. T. et al (2013), Science, DOI: 10.1126/science.1243480. 71, 9-17. [6] Iniguez, E. et al. (2009), Geophysical Research Letters, 36. Acknowledgments: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex. J. Eigenbrode and D. Glavin were supported by the NASA MSL participating scientist program.

  11. Highly-evolved stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1981-01-01

    The ways in which the IUE has proved useful in studying highly evolved stars are reviewed. The importance of high dispersion spectra for abundance analyses of the sd0 stars and for studies of the wind from the central star of NGC 6543 and the wind from the 0 type component of Vela X-1 is shown. Low dispersion spectra are used for absolute spectrophotometry of the dwarf nova, Ex Hya. Angular resolution is important for detecting and locating UV sources in globular clusters.

  12. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  13. Emissions measurements from vegetation fires: A comparative evaluation of methods and results

    Treesearch

    D. E. Ward; L. F. Radke

    1993-01-01

    Fires in the open environment produce a diversity of combustion products. Special techniques are needed to characterize the emissions ranging from microcombustion-evolved gas analysis to airborne monitoring of the full-scale phenomenon. This chapter discusses the advantages and disadvantages of each, the use of data in models for full-scale fires, and provides a...

  14. PBX 9502 Gas Generation Progress Report FY17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, Matthew David; Erickson, Michael Andrew Englert

    The self-ignition (“cookoff”) behavior of PBX 9502 depends on the dynamic evolution of gas permeability and physical damage in the material. The time-resolved measurement of product gas generation yields insight regarding the crucial properties that dominate cookoff behavior. We report on small-scale laboratory testing performed in FY17, in which small unconfined samples of PBX 9502 were heated in a small custom-built sealed pressure vessel to self-ignition. We recorded time-lapse video of the evolving physical changes in the sample, quasi-static long-duration pressure rise, then high-speed video and dynamic pressure rise of the cookoff event. We report the full pressure attained duringmore » the cookoff of a 1.02g sample in a free volume of 62.5 cm 3.« less

  15. Evaluation of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the quality assessment of citrus liqueurs.

    PubMed

    Schipilliti, Luisa; Bonaccorsi, Ivana; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi

    2013-02-27

    Citrus liqueurs are alcoholic beverages obtained by maceration. The European Parliament protects these alcoholic beverages, forbidding the addition of nature-identical flavoring substances. However, for economical and technological reasons, producers often add natural and/or synthetic flavors to the alcoholic syrup, obtaining artificial spirit drinks. The aim of this study is to investigate the authenticity of Italian liqueurs, of lemon, bergamot, and mandarin (locally known as "limoncello", "bargamino", and "mandarinetto"), comparing the carbon isotope ratios with values determined in genuine cold-pressed peel oils. Authenticity assessment was performed using headspace-solid phase microextraction coupled to gas chromatography-combustion-isotope ratio mass spectrometry. Additional analyses were performed by direct enantioselective gas chromatography to determine the enantiomeric distribution of selected chiral volatiles and by gas chromatography-mass spectrometry for the qualitative analyses of the samples. The method allowed confirmation of genuineness. Enantioselective gas chromatography analyses confirmed the results, demonstrating the reliability of the method.

  16. Neutral ISM, Ly α , and Lyman-continuum in the Nearby Starburst Haro 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper,more » we reanalyze Hubble Space Telescope ( HST )-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Ly α line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Ly α , but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David

    We have discovered recent star formation in the outermost portion ((1-4) x R {sub 25}) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring,more » the average star formation rate (SFR) surface density ({Sigma}{sub SFR}) is {approx}2.2 x 10{sup -5} M {sub sun} yr{sup -1} kpc{sup -2}. Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10{sup -3} M {sub sun} yr{sup -1}. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to {approx}1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.« less

  18. Analysis and quantitation of volatile organic compounds emitted from plastics used in museum construction by evolved gas analysis-gas chromatography-mass spectrometry.

    PubMed

    Samide, Michael J; Smith, Gregory D

    2015-12-24

    Construction materials used in museums for the display, storage, and transportation of artwork must be assessed for their tendency to emit harmful pollution that could potentially damage cultural treasures. Traditionally, a subjective metals corrosion test known as the Oddy test has been widely utilized in museums for this purpose. To augment the Oddy test, an instrumental sampling approach based on evolved gas analysis (EGA) coupled to gas chromatography (GC) with mass spectral (MS) detection has been implemented for the first time to qualitatively identify off-gassed pollutants under specific conditions. This approach is compared to other instrumental methods reported in the literature. This novel application of the EGA sampling technique yields several benefits over traditional testing, including rapidity, high sensitivity, and broad detectability of volatile organic compounds (VOCs). Furthermore, unlike other reported instrumental approaches, the EGA method was used to determine quantitatively the amount of VOCs emitted by acetate resins and polyurethane foams under specific conditions using both an external calibration method as well as surrogate response factors. EGA was successfully employed to rapidly characterize emissions from 12 types of common plastics. This analysis is advocated as a rapid pre-screening method to rule out poorly performing materials prior to investing time and energy in Oddy testing. The approach is also useful for rapid, routine testing of construction materials previously vetted by traditional testing, but which may experience detrimental formulation changes over time. As an example, a case study on batch re-orders of rigid expanded poly(vinyl chloride) board stock is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Searching for a "Pedagogy of Hope": Teacher Education and the Social Sciences

    ERIC Educational Resources Information Center

    Samuel, Michael

    2010-01-01

    I analyse module outlines within a particular school of social sciences located in a faculty of education, and uncover the evolving systems of teaching social sciences in a teacher education curriculum. The data are analysed through two theoretical lenses: firstly, through the lense of models of teacher education and professional development, and…

  20. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  1. Shallow groundwater quality and geochemistry in the Fayetteville Shale gas-production area, north-central Arkansas, 2011

    USGS Publications Warehouse

    Kresse, Timothy M.; Warner, Nathaniel R.; Hays, Phillip D.; Down, Adrian; Vengosh, Avner; Jackson, Robert B.

    2012-01-01

    The Mississippian Fayetteville Shale serves as an unconventional gas reservoir across north-central Arkansas, ranging in thickness from approximately 50 to 550 feet and varying in depth from approximately 1,500 to 6,500 feet below the ground surface. Primary permeability in the Fayetteville Shale is severely limited, and successful extraction of the gas reservoir is the result of advances in horizontal drilling techniques and hydraulic fracturing to enhance and develop secondary fracture porosity and permeability. Drilling and production of gas wells began in 2004, with a steady increase in production thereafter. As of April 2012, approximately 4,000 producing wells had been completed in the Fayetteville Shale. In Van Buren and Faulkner Counties, 127 domestic water wells were sampled and analyzed for major ions and trace metals, with a subset of the samples analyzed for methane and carbon isotopes to describe general water quality and geochemistry and to investigate the potential effects of gas-production activities on shallow groundwater in the study area. Water-quality analyses from this study were compared to historical (pregas development) shallow groundwater quality collected in the gas-production area. An additional comparison was made using analyses from this study of groundwater quality in similar geologic and topographic areas for well sites less than and greater than 2 miles from active gas-production wells. Chloride concentrations for the 127 groundwater samples collected for this study ranged from approximately 1.0 milligram per liter (mg/L) to 70 mg/L, with a median concentration of 3.7 mg/L, as compared to maximum and median concentrations for the historical data of 378 mg/L and 20 mg/L, respectively. Statistical analysis of the data sets revealed statistically larger chloride concentrations (p-value <0.001) in the historical data compared to data collected for this study. Chloride serves as an important indicator parameter based on its conservative transport characteristics and relatively elevated concentrations in production waters associated with gas extraction activities. Major ions and trace metals additionally had lower concentrations in data gathered for this study than in the historical analyses. Additionally, no statistical difference existed between chloride concentrations from water-quality data collected for this study from 94 wells located less than 2 miles from a gas-production well and 33 wells located 2 miles or more from a gas-production well; a Wilcoxon rank-sum test showed a p-value of 0.71. Major ion chemistry was investigated to understand the effects of geochemical and reduction-oxidation (redox) processes on the shallow groundwater in the study area along a continuum of increased rock-water interaction represented by increases in dissolved solids concentration. Groundwater in sandstone formations is represented by a low dissolved solids concentration (less than 30 mg/L) and slightly acidic water type. Shallow shale aquifers were represented by dissolved solids concentrations ranging upward to 686 mg/L, and water types evolving from a dominantly mixed-bicarbonate and calcium-bicarbonate to a strongly sodium-bicarbonate water type. Methane concentration and carbon isotopic composition were analyzed in 51 of the 127 samples collected for this study. Methane occurred above a detection limit of 0.0002 mg/L in 32 of the 51 samples, with concentrations ranging upward to 28.5 mg/L. Seven samples had methane concentrations greater than or equal to 0.5 mg/L. The carbon isotopic composition of these higher concentration samples, including the highest concentration of 28.5 mg/L, shows the methane was likely biogenic in origin with carbon isotope ratio values ranging from -57.6 to -74.7 per mil. Methane concentrations increased with increases in dissolved solids concentrations, indicating more strongly reducing conditions with increasing rock-water interaction in the aquifer. As such, groundwater-quality data collected for this study indicate that groundwater chemistry in the shallow aquifer system in the study area is a result of natural processes, beginning with recharge of dilute atmospheric precipitation and evolution of observed groundwater chemistry through rock-water interaction and redox processes.

  2. Ecological Relationships Between Components in Closed Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara; Somova, Lydia

    The work considers the problems of relationships between algae and other microorganisms in aquatic ecosystems. Using small-scale laboratory "autotroph-heterotroph" ecosystems with different types of closure, we showed the results of the investigation into the ecological relation-ships of algae in biocenoses. The autotrophic component was represented by green microalgae, and the heterotrophic component -by yeast and bacteria. An important role in functioning of algobacterial communities is played by 2 -2 (oxygen -carbon dioxide) exchange. The gas exchange between algae and yeast was studied in the "autotroph-heterotroph" gas-closed ecosystem with space-divided components. It was shown that the gas exchange closure of the components into a system prolongs its existence. Hav-ing increased the degree of the system closure by introducing two yeast species with positive metabolic interaction to the heterotrophic component, we observed a significant increase in the gas exchange between the components and thus in the biomass of algae and yeast. The most ancient and ecologically relevant symbioses known in nature are symbiotic associa-tions of algae and heterotrophic organisms. The main symbionts of algae in aquatic ecosystems are bacteria. The cenosis-forming role of algae is based on two characteristics: firstly, their mucous covers and membranes are able to absorb and retain large amounts of water; secondly, many algae evolve various organic substances during their lifetime. An example of algobacterial associations are microalgae Chlorella vulgaris and accompanying microbial flora. Experiments with non-sterile batch culture of algae showed that the increase in the algae biomass was accompanied by the increase in the bacterial biomass. As a result of theoretical and experi-mental investigation into their relationships, it was shown that the largest biomass of bacteria is achieved when using organic substances evolved by algae and having bacteria grow on dead algae; i.e. bacteria can also act as decomposers. It was demonstrated that the cenosis-forming role of algae and bacteria in an algobacterial cenosis is determined by accumulation of both organic matter and nitrogen which is included into the cycle of matter. Thus, the process of C-compound evolution by algae in an algobacterial cenosis is strongly connected with the process of consumption of these compounds by corresponding bacteria, which, in their turn, ensure photosynthesis and algae development by evolving 2 and nitrogen.

  3. GHGRP Petroleum and Natural Gas Systems Sector Industrial Profile

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. These profiles contain detailed analyses for Petroleum and Natural Gas Systems.

  4. A Raman spectroscopic study of thermally treated glushinskite--the natural magnesium oxalate dihydrate.

    PubMed

    Frost, Ray L; Adebajo, Moses; Weier, Matt L

    2004-02-01

    Raman spectroscopy has been used to study the thermal transformations of natural magnesium oxalate dihydrate known in mineralogy as glushinskite. The data obtained by Raman spectroscopy was supplemented with that of infrared emission spectroscopy. The vibrational spectroscopic data was complimented with high resolution thermogravimetric analysis combined with evolved gas mass spectrometry. TG-MS identified two mass loss steps at 146 and 397 degrees C. In the first mass loss step water is evolved only, in the second step carbon dioxide is evolved. The combination of Raman microscopy and a thermal stage clearly identifies the changes in the molecular structure with thermal treatment. Glushinskite is the dihydrate phase in the temperature range up to the pre-dehydration temperature of 146 degrees C. Above 397 degrees C, magnesium oxide is formed. Infrared emission spectroscopy shows that this mineral decomposes at around 400 degrees C. Changes in the position and intensity of the CO and CC stretching vibrations in the Raman spectra indicate the temperature range at which these phase changes occur.

  5. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    PubMed

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  6. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    NASA Astrophysics Data System (ADS)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  7. Evolution of the Interstellar Gas Fraction Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy; CANDELS

    2018-01-01

    Galaxies evolve by transforming gas into stars. The gas is acquired through accretion and mergers and is a highly intricate process where feed-back processes play an important role. Directly measuring the gas content in distant galaxies is, however, both complicated and time consuming. A direct observations involves either observing neutral hydrogen using the 21cm line or observing the molecular gas component using tracer molecules such as CO. The former method is impeded by man-made radio interference, and the latter is time consuming even with sensitive instruments such s ALMA. An indirect method is to observe the Raleigh-Jeans part of the dust SED and from this infer the gas mass. Here we present the results from a project using ALMA to measure the RJ part of the dust SED in a carefully selected sample of 70 galaxies at redshifts z=2-5. The galaxies are selected solely based on their redshift and stellar mass and therefore represents an unbiased sample. The stellar masses are selected using the MEAM method and thus the sample corresponds to progenitors of a z=0 galaxy of a particular stellar mass. Preliminary results show that the average gas fraction increases with redshift over the range z=2-3 in accordance with theoretical models, but at z≥4 the observed gas fraction is lower.

  8. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.

    PubMed

    Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki

    2014-11-25

    Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry.  Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.

  9. In-situ generation of carrier gases for scientific analyses on Mars

    NASA Technical Reports Server (NTRS)

    Finn, J. E.; Sridhar, K. R.

    1997-01-01

    The search for useful raw materials on planetary surfaces will involve various scientific analyses of soil and rock samples. The devices performing these measurements often require inert carrier gases for moving analytes and purging instrumentation. At present, the carrier or sweep gas must be carried from Earth in a compressed gas cylinder, and so the supply of this depletable resource sets a hard limit on the (flexible) life span of the experiment. If a suitable carrier gas could be produced in-situ, then the scientific return of exploration missions could be extended and enhanced greatly. Many more samples could be analyzed, long-ranging rovers could have independent gas supplies, and designs could have added flexibility with respect to gas consumption.

  10. Archive of GHGRP Petroleum and Natural Gas Systems Sector Industrial Profile

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. These profiles contain detailed analyses for Petroleum and Natural Gas Systems.

  11. Using artificial neural networks to constrain the halo baryon fraction during reionization

    NASA Astrophysics Data System (ADS)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  12. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  13. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  14. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P., E-mail: jslavin@cfa.harvard.edu

    2015-04-10

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grainmore » destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s{sup −1} for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM.« less

  15. Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.

  16. The relation between the gas, dust and total mass in edge-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Allaert, Flor

    2015-02-01

    Each component of a galaxy plays its own unique role in regulating the galaxy's evolution. In order to understand how galaxies form and evolve, it is therefore crucial to study the distribution and properties of each of the various components, and the links between them, both radially and vertically. The latter is only possible in edge-on systems. We present the HEROES project, which aims to investigate the 3D structure of the interstellar gas, dust, stars and dark matter in a sample of 7 massive early-type spiral galaxies based on a multi-wavelength data set including optical, NIR, FIR and radio data.

  17. Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radic, J.; Bacic, V.; Jukic, D.

    We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.

  18. Hydrogen production using hydrogenase-containing oxygenic photosynthetic organisms

    DOEpatents

    Melis, Anastasios; Zhang, Liping; Benemann, John R.; Forestier, Marc; Ghirardi, Maria; Seibert, Michael

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  19. Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms

    DOEpatents

    Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

    2006-01-24

    A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

  20. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    USDA-ARS?s Scientific Manuscript database

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  1. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    PubMed

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  2. Structure-Function Relationships in the Gas-Sensing Heme-Dependent Transcription Factors RcoM and DNR

    ERIC Educational Resources Information Center

    Bowman, Hannah E.

    2016-01-01

    Transition metals play an important role in many biological processes, however, they are also toxic at high concentrations. Therefore, the uptake and efflux of these metals must be tightly regulated by the cell. Bacteria have evolved a variety of pathways and regulatory systems to monitor the presence and concentration of metals in the cellular…

  3. Arterial Gas Embolism Induced Ageusia (Case Report)

    DTIC Science & Technology

    2011-07-01

    Pulmonary barotraumas are also reported in tbe literature; one case report described delayed onset pul- monary barotrauma in a diver which resolved...be rapidly fatal; it includes shock, pulmonary "chokes", and neurolog ic sequelae resembling cere- brovascular accidents due to nitrogen bubbles...pressures and may cause pneumothoraces. Air may evolve into the mediastinum (mediastinal emphysema ) or the skin (subcutaneous emphysema ). Lastly

  4. An evaluation: The potential of discarded tires as a source of fuel

    NASA Technical Reports Server (NTRS)

    Collins, L. W.; Downs, W. R.; Gibson, E. K.; Moore, G. W.

    1974-01-01

    The destructive distillation of rubber tire samples was studied by thermogravimetry, differential scanning calorimetry, combustion calorimetry, and mass spectroscopy. The decomposition reaction was found to be exothermic and produced a mass loss of 65 percent. The gas evolution curves that were obtained indicate that a variety of organic materials are evolved simultaneously during the decomposition of the rubber polymer.

  5. Witnessing Atmospheric Motions in Cool Evolved Stars with VLTI/Amber

    NASA Astrophysics Data System (ADS)

    Ohnaka, Keiichi

    2018-04-01

    Studies of the mass loss from stars in late evolutionary stages are of utmost importance for improving our understanding of not only stellar evolution but also the chemical enrichment of galaxies. Despite such importance, the mass loss from cool evolved stars is one of the long-standing problems in stellar astrophysics. Milliarcsecond resolution achieved by optical/infrared long-baseline interferometry provides a unique opportunity to spatially resolve this innermost key region. We have recently succeeded not only in imaging the surface of the red supergiant Antares in the 2.3 micron CO lines in unprecedented detail but also in witnessing, for the first time, the complex gas dynamics over the surface and atmosphere of the star. Our 2-D velocity field map of Antares reveals vigorous upwelling and downdrafting motions of large gas clumps in the atmosphere extending out to 1.7 stellar radii. This suggests that the mass loss in red supergiants may be launched in a turbulent, clumpy manner. We will also present preliminary results of the velocity-resolved imaging of an AGB star. Our work opens an entirely new window to observe stars just like in observations of the Sun.

  6. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skidmore, E.

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhancedmore » by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.« less

  7. Mars Phoenix Scout Thermal Evolved Gas Analyzer (TEGA) Database: Thermal Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Archer, D.; Niles, P. B.; Stein, T. C.; Hamara, D.; Boynton, W. V.; Ming, D. W.

    2017-01-01

    The Mars Phoenix Scout Lander mission in 2008 examined the history of water, searched for organics, and evaluated the potential for past/present microbial habitability in a martian arctic ice-rich soil [1]. The Thermal Evolved Gas Analyzer (TEGA) instrument measured the isotopic composition of atmospheric CO2 and detected volatile bearing mineralogy (perchlorate, carbonate, hydrated mineral phases) in the martian soil [2-7]. The TEGA data are archived at the Planetary Data System (PDS) Geosciences Node but are reported in forms that require further processing to be of use to the non-TEGA expert. The soil and blank TEGA thermal data are reported as duty cycle and must be converted to differential power (mW) to allow for enthalpy calculations of exothermic/endothermic transitions. The exothermic/endothermic temperatures are also used to determine what phases (inorganic/organic) are present in the sample. The objectives of this work are to: 1) Describe how interpretable thermal data can be created from TEGA data sets on the PDS and 2) Provide additional thermal data interpretation of two Phoenix soils (Baby Bear, Wicked Witch) and include interpretations from three unreported soils (Rosy Red 1, 2, and Burning Coals).

  8. The Chemical Compositions of the SRD Variable Stars. III. KK Aquilae, AG Aurigae, Z Aurigae, W Leo Minoris, and WW Tauri

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Lambert, David L.; Gonzalez, Guillermo

    2000-12-01

    Chemical compositions are derived from high-resolution spectra for five field SRd variables. These supergiants not previously analyzed are shown to be metal poor: KK Aql with [Fe/H]=-1.2, AG Aur with [Fe/H]=-1.8, Z Aur with [Fe/H]=-1.4, W LMi with [Fe/H]=-1.1, and WW Tau with [Fe/H]=-1.1. Their compositions are, except for two anomalies, identical to within the measurement errors to the compositions of subdwarfs, subgiants, and less evolved giants of the same [Fe/H]. One anomaly is an s-process enrichment for KK Aql, the first such enrichment reported for an SRd variable. The second and more remarkable anomaly is a strong lithium enrichment for W LMi, also a first for field SRd variables. The Li I λ6707 profile is not simply that of a photospheric line but includes strong absorption from redshifted gas, suggesting, perhaps, that lithium enrichment results from accretion of Li-rich gas. This potential clue to lithium enrichment is discussed in light of various proposals for lithium synthesis in evolved stars.

  9. Understanding School Leadership and Management Development in England: Retrospect and Prospect

    ERIC Educational Resources Information Center

    Simkins, Tim

    2012-01-01

    This article explores the ways in which leadership and management development (LMD) in England has been researched and analysed over the past 40 years. The article is in two parts. The first analyses the ways in which patterns of provision have evolved in response to changing conceptions of how the school system should be organized and how,…

  10. Structure and stability of genetic variance-covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three-spined stickleback.

    PubMed

    Siren, J; Ovaskainen, O; Merilä, J

    2017-10-01

    The genetic variance-covariance matrix (G) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G-matrices is limited for two reasons. First, phenotypes are high-dimensional, whereas traditional statistical methods are tuned to estimate and analyse low-dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high-dimensional G-matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half-sib breeding design of three-spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low-temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability-as well as the similarity among G-matrices-may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G-matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G, they also illustrate that by enabling the estimation of large G-matrices, the BSFG method can improve predicted evolutionary responses to selection. © 2017 John Wiley & Sons Ltd.

  11. Natural Gas Monthly

    EIA Publications

    2017-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  12. Oxychlorine and Chloride/Ferrian Saponite Mixtures as a Possible Source of Hydrochloric Acid Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hogancamp, J. V.; Sutter, B.; Archer, D., Jr.; Ming, D. W.; Mahaffy, P. R.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected HCl gas releases from several analyzed Gale Crater sediments, which are attributed to the presence of perchlorates, chlorates, and/or chlorides in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates produced HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced characteristic O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce HCl releases comparable to those detected by the SAM instrument. Perchlorates, chlorates, and chlorides were mixed with Gale Crater analog ferrian saponite to understand evolved HCl detected by SAM. Evolved water from thermally decomposing saponite is hypothesized to react with residual chloride phases from oxychlorine decomposition to produce high temperature (>700°C) HCl. Mixtures of chlorates, perchlorates, or chlorides with ferrian saponite were heated to 1000 °C in a laboratory analog SAM instrument. Results demonstrated that all chlorate and perchlorate mixtures produce HCl releases below 1000 °C when mixed with ferrian saponite. Mixtures of chlorides with ferrian saponite produced no oxygen releases but did produce HCl releases with peaks below 1000 °C. Ferrian saponite/Mg-chlorate mixtures produced two HCl releases (347 and 820 °C) similar to the Cumberland drilled sample. Additionally, sodium chloride mixed with ferrian saponite produced no oxygen releases and an HCl release (767 °C) similar to the Quela drilled sample. The Marimba drilled sample, which also produced no oxychlorine-derived oxygen, produced a high temperature HCl release that may be the result of chloride(s) reacting with evolved water from thermally decomposing ferrian saponite. Results of this work demonstrated that chlorides in the presence of evolved water from thermally decomposing saponite can explain the high temperature evolved HCl detected by SAM. Chlorides may either be native to the sample or be produced by perchlorate/chlorate thermal decomposition in order to yield Cl for high temperature (>700 °C) HCl production. Mg bearing Cl phases tend to produce two HCl releases (347-496 and 820 °C) while Ca and Na bearing phases produced one high temperature (>700 °C) HCl release. HCl release temperatures can be used to indicate the cation-type of the oxychlorine phase or chloride which is critical to understanding past geochemical conditions in Gale Crater.

  13. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  14. Prospecting for marine gas hydrate resources

    USGS Publications Warehouse

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  15. Approach to thermal equilibrium in atomic collisions.

    PubMed

    Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K

    2008-03-14

    The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.

  16. HI Absorption in Merger Remnants

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  17. Analytical methods for toxic gases from thermal degradation of polymers

    NASA Technical Reports Server (NTRS)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  18. Simulations of Neon Pellets for Plasma Disruption Mitigation in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bosviel, Nicolas; Samulyak, Roman; Parks, Paul

    2017-10-01

    Numerical studies of the ablation of neon pellets in tokamaks in the plasma disruption mitigation parameter space have been performed using a time-dependent pellet ablation model based on the front tracking code FronTier-MHD. The main features of the model include the explicit tracking of the solid pellet/ablated gas interface, a self-consistent evolving potential distribution in the ablation cloud, JxB forces, atomic processes, and an improved electrical conductivity model. The equation of state model accounts for atomic processes in the ablation cloud as well as deviations from the ideal gas law in the dense, cold layers of neon gas near the pellet surface. Simulations predict processes in the ablation cloud and pellet ablation rates and address the sensitivity of pellet ablation processes to details of physics models, in particular the equation of state.

  19. Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group

    2017-01-01

    The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.

  20. Air Quality Impacts of Oil and Gas Operations in the Northern Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Helmig, D.; Thompson, C. R.; Jacques, H.; Smith, K. R.; Terrell, R. M.

    2014-12-01

    Exceedences of the US EPA National Ambient Air Quality Standard (NAAQS) for surface ozone have been reported from monitoring sites in the Northern Colorado Front Range (NCFR) for more than fifteen years during summer. Comparison of ozone records from the NCFR clearly show that ozone primarily results from regional photochemical daytime production. Recent trend analyses do not show an improvement of surface ozone despite efforts by the State of Colorado to curb ozone precursor emissions. Our review of atmospheric volatile organic compound (VOC) measurements from historic and recent monitoring shows significant spatial increases of atmospheric VOC towards the oil and gas development area in Weld County, NW of the Denver-Boulder metropolitan region. Secondly, analyses of VOC trends and VOC signatures show an overall increase of oil and gas associated VOC relative to other VOC sources. These analyses suggest that oil and gas emissions are playing and increasing role in ozone production in the NCFR and that reductions of oil and gas emissions would be beneficial for lowering surface ozone and attainment of the ozone NAAQS.

  1. Multi-Function Gas Fired Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Heiba, Ahmad; Vineyard, Edward Allan

    2015-11-01

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less

  2. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    USGS Publications Warehouse

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  3. Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe

    NASA Astrophysics Data System (ADS)

    Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.

    2014-08-01

    A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.

  4. A VLT/FORS2 spectroscopic survey of individual stars in a transforming dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Kacharov, N.; Rejkuba, M.

    2017-03-01

    Understanding the properties of dwarf galaxies is important not only to put them in their proper cosmological context, but also to understand the formation and evolution of the most common type of galaxies. Dwarf galaxies are divided into two main classes, dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs), which differ from each other mainly because the former are gas-rich objects currently forming stars, while the latter are gas-deficient with no on-going star formation. Transition types (dT) are thought to represent dIs in the process of losing their gas, and can therefore shed light into the possible process of dwarf irregulars (dIrrs) becoming gas-deficient, passively evolving galaxies. Here we present preliminary results from our wide-area VLT/FORS2 MXU spectroscopic survey of the Phoenix dT, from which we obtained line-of-sight velocities and metallicities from the nIR Ca II triplet lines for a large sample of individual Red Giant Branch stars.

  5. NEUTRONIC REACTOR OPERATIONAL METHOD AND CORE SYSTEM

    DOEpatents

    Winters, C.E.; Graham, C.B.; Culver, J.S.; Wilson, R.H.

    1960-07-19

    Homogeneous neutronic reactor systems are described wherein an aqueous fuel solution is continuously circulated through a spherical core tank. The pumped fuel solution-is injected tangentially into the hollow spherical interior, thereby maintaining vigorous rotation of the solution within the tank in the form of a vortex; gaseous radiolytic decomposition products concentrate within the axial vortex cavity. The evolved gas is continuously discharged through a gas- outlet port registering with an extremity of the vortex cavity. and the solution stream is discharged through an annular liquid outlet port concentrically encircling the gas outlet by virtue of which the vortex and its cavity are maintained precisely axially aligned with the gas outlet. A primary heat exchanger extracts useful heat from the hot effluent fuel solution before its recirculation into the core tank. Hollow cylinders and other alternative core- tank configurations defining geometric volumes of revolution about a principal axis are also covered. AEC's Homogeneous Reactor Experiment No. 1 is a preferred embodiment.

  6. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea

    PubMed Central

    2017-01-01

    ABSTRACT All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria. Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. PMID:29208747

  7. A pollinators' eye view of a shelter mimicry system.

    PubMed

    Vereecken, Nicolas J; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-06-01

    'Human-red' flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography-mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic ('bee-black') protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.

  8. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  9. Degassing of Cl, F, Li and Be during extrusion and crystallization of the rhyolite dome at Volcán Chaitén, Chile during 2008 and 2009

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Bleick, Heather; Vazquez, Jorge A.; Castro, Jonathan M.; Larson, Peter B.

    2012-01-01

    We investigated the distribution of Cl, F, Li, and Be in pumices, obsidians, and crystallized dome rocks at Chaitén volcano in 2008–2009 in order to explore the behavior of these elements during explosive and effusive volcanic activity. Electron and ion microprobe analyses of matrix and inclusion glasses from pumice, obsidian, and microlite-rich dome rock indicate that Cl and other elements were lost primarily during crystallization of the rhyolitic dome after it had approached the surface. Glass in pumice and microlite-free obsidian has 888 ± 121 ppm Cl, whereas residual glass in evolved microlite-rich dome rock generally retains less Cl (as low as 0.7 Mt Cl, with a potential maximum of 1.8 Mt for the entire 0.8-km3 dome. Elemental variations reflect an integrated bulk distribution ratio for Cl > 1.7 (1.7 times more Cl was degassed or incorporated into crystals than remained in the melt). Because Cl is lost dominantly as the very last H2O is degassed, and Cl is minimally (if at all) partitioned into microlites, the integrated vapor/melt distribution ratio for Cl exceeds 200 (200 times more Cl in the evolved vapor than in the melt). Cl is likely lost as HCl, which is readily partitioned into magmatic vapor at low pressure. Cl loss is accelerated by the change in the composition of the residual melt due to microlite growth. Cl loss also may be affected by open-system gas fluxing. Integrated vapor-melt distribution ratios for Li, F, and Be all exceed 1,000. On degassing, an unknown fraction of these volatiles could be immediately dissolved in rainwater.

  10. Modified RS2101 rocket engine study program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The purpose of the program is to perform design studies and analyses to determine the effects of incorporating a 60:1 expansion area ratio nozzle extension, extended firing time, and modified operating conditions and environments on the MM'71 rocket engine assembly. An injector-to-thrust chamber seal study was conducted to define potential solutions for leakage past this joint. The results and recommendations evolving from the engine thermal analyses, the injector-to-thrust chamber seal studies, and the nozzle extension joint stress analyses are presented.

  11. Analysing the Distribution of Questions in the Gas Law Chapters of Secondary and Introductory College Chemistry Textbooks from the United States

    ERIC Educational Resources Information Center

    Gillette, Gabriel; Sanger, Michael J.

    2014-01-01

    This study analysed the distribution of questions from the gas law chapters of four high school and four college chemistry textbooks based on six variables--Book Type (secondary "versus" introductory college), Cognitive Skill (lower-order "versus" higher-order), Question Format (calculation "versus" multiple-choice…

  12. Gas Release as a Deformation Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less

  13. Regolith Evolved Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.

  14. Cost-effectiveness of natalizumab vs fingolimod for the treatment of relapsing-remitting multiple sclerosis: analyses in Sweden.

    PubMed

    O'Day, Ken; Meyer, Kellie; Stafkey-Mailey, Dana; Watson, Crystal

    2015-04-01

    To assess the cost-effectiveness of natalizumab vs fingolimod over 2 years in relapsing-remitting multiple sclerosis (RRMS) patients and patients with rapidly evolving severe disease in Sweden. A decision analytic model was developed to estimate the incremental cost per relapse avoided of natalizumab and fingolimod from the perspective of the Swedish healthcare system. Modeled 2-year costs in Swedish kronor of treating RRMS patients included drug acquisition costs, administration and monitoring costs, and costs of treating MS relapses. Effectiveness was measured in terms of MS relapses avoided using data from the AFFIRM and FREEDOMS trials for all patients with RRMS and from post-hoc sub-group analyses for patients with rapidly evolving severe disease. Probabilistic sensitivity analyses were conducted to assess uncertainty. The analysis showed that, in all patients with MS, treatment with fingolimod costs less (440,463 Kr vs 444,324 Kr), but treatment with natalizumab results in more relapses avoided (0.74 vs 0.59), resulting in an incremental cost-effectiveness ratio (ICER) of 25,448 Kr per relapse avoided. In patients with rapidly evolving severe disease, natalizumab dominated fingolimod. Results of the sensitivity analysis demonstrate the robustness of the model results. At a willingness-to-pay (WTP) threshold of 500,000 Kr per relapse avoided, natalizumab is cost-effective in >80% of simulations in both patient populations. Limitations include absence of data from direct head-to-head studies comparing natalizumab and fingolimod, use of relapse rate reduction rather than sustained disability progression as the primary model outcome, assumption of 100% adherence to MS treatment, and exclusion of adverse event costs in the model. Natalizumab remains a cost-effective treatment option for patients with MS in Sweden. In the RRMS patient population, the incremental cost per relapse avoided is well below a 500,000 Kr WTP threshold per relapse avoided. In the rapidly evolving severe disease patient population, natalizumab dominates fingolimod.

  15. Pressure-relief and methane production performance of pressure relief gas extraction technology in the longwall mining

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Tu, Shihao; Chen, Min; Zhang, Lei

    2017-02-01

    Pressure relief gas extraction technology (PRGET) has been successfully implemented at many locations as a coal mine methane exploitation and outburst prevention technology. Comprehensive PRGET including gob gas venthole (GGV), crossing seam drilling hole (CSDH), large diameter horizontal long drilling hole (LDHLDH) and buried pipe for extraction (BPE) have been used to extract abundant pressure-relief methane (PRM) during protective coal seam mining; these techniques mitigated dangers associated with coal and gas outbursts in 13-1 coal seam mining in the Huainan coalfield. These extraction technologies can ensure safe protective seam mining and effectively extract coal and gas. This article analyses PRGET production performance and verifies it with the field measurement. The results showed that PRGET drilling to extract PRM from the protected coal seam significantly reduced methane emissions from a longwall ventilation system and produced highly efficient extraction. Material balance analyses indicated a significant decrease in gas content and pressure in the protected coal seam, from 8.78 m3 t-1 and 4.2 MPa to 2.34 m3 t-1 and 0.285 MPa, respectively. The field measurement results of the residual gas content in protected coal seam (13-1 coal seam) indicated the reliability of the material balance analyses and the pressure relief range of PRGET in the protected coal seam is obtained.

  16. Wellsite, laboratory, and mathematical techniques for determining sorbed gas content of coals and gas shales utilizing well cuttings

    USGS Publications Warehouse

    Newell, K.D.

    2007-01-01

    Drill cuttings can be used for desorption analyses but with more uncertainty than desorption analyses done with cores. Drill cuttings are not recommended to take the place of core, but in some circumstances, desorption work with cuttings can provide a timely and economic supplement to that of cores. The mixed lithologic nature of drill cuttings is primarily the source of uncertainty in their analysis for gas content, for it is unclear how to apportion the gas generated from both the coal and the dark-colored shale that is mixed in usually with the coal. In the Western Interior Basin Coal Basin in eastern Kansas (Pennsylvanian-age coals), dark-colored shales with normal (??? 100 API units) gamma-ray levels seem to give off minimal amounts of gas on the order of less than five standard cubic feet per ton (scf/ton). In some cuttings analyses this rule of thumb for gas content of the shale is adequate for inferring the gas content of coals, but shales with high-gamma-ray values (>150 API units) may yield several times this amount of gas. The uncertainty in desorption analysis of drill cuttings can be depicted graphically on a diagram identified as a "lithologic component sensitivity analysis diagram." Comparison of cuttings desorption results from nearby wells on this diagram, can sometimes yield an unique solution for the gas content of both a dark shale and coal mixed in a cuttings sample. A mathematical solution, based on equating the dry, ash-free gas-contents of the admixed coal and dark-colored shale, also yields results that are correlative to data from nearby cores. ?? 2007 International Association for Mathematical Geology.

  17. The Physical Origin of Long Gas Depletion Times in Galaxies

    NASA Astrophysics Data System (ADS)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2017-08-01

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L *-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  18. FORCAST Observations of Galactic Evolved Stars: Measurements of Carbonaceous Dust, Crystalline Silicates, and Fullerenes from SOFIA

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen; Sloan, G. C.; Keller, L. D.; Groenewegen, M. A. T.

    2018-01-01

    We present preliminary results from two projects to observe the mid-infrared spectra of evolved stars in the Milky Way using the FORCAST instrument on SOFIA. In the first project, we observed a set of 31 carbon stars over the course of three cycles (government shutdowns contributed to the delays in the program execution), covering a wavelength range of 5-13.7 μm, which includes prominent dust and gas diagnostics. The sources were selected to sample portions of period and flux phase space which were not covered in existing samples from older telescopes such as the Infrared Space Observatory (ISO) or Infrared Astronomical Satellite (IRAS). In the second project, we searched for fullerene emission (C60) at 18.9 μm in Galactic sources with crystalline silicate emission. Although most evolved stars are either carbon-rich or oxygen- (silicate-) rich, fullerenes, a carbon-rich molecule, have been observed in several oxygen-rich evolved stars whose silicate emission features are crystalline rather than the more usual amorphous types. None of our targets show clear signatures of fullerene emission.Support for this work was provided by NASA through awards SOF 03-0079, SOF 03-0104, and SOF 04-0129 issued by USRA.

  19. Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria.

    PubMed

    Kitashima, Masaharu; Masukawa, Hajime; Sakurai, Hidehiro; Inoue, Kazuhito

    2012-01-01

    Uptake hydrogenase mutant cells of the cyanobacterium Nostoc sp. PCC 7422 photobiologically produced H(2) catalyzed by nitrogenase for several days in H(2)-barrier transparent plastic bags, and accumulated H(2) in the presence of O(2) evolved by photosynthesis. Their H(2) production activity was higher in the sealed flexible bags than in stoppered serum bottles of fixed gas volume.

  20. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  1. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  2. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections. PMID:24244173

  3. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology

    NASA Astrophysics Data System (ADS)

    Gardner, C. L.; Ternan, M.

    This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.

  4. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    PubMed Central

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. Key Points First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition PMID:26690960

  5. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars.

    PubMed

    Freissinet, C; Glavin, D P; Mahaffy, P R; Miller, K E; Eigenbrode, J L; Summons, R E; Brunner, A E; Buch, A; Szopa, C; Archer, P D; Franz, H B; Atreya, S K; Brinckerhoff, W B; Cabane, M; Coll, P; Conrad, P G; Des Marais, D J; Dworkin, J P; Fairén, A G; François, P; Grotzinger, J P; Kashyap, S; Ten Kate, I L; Leshin, L A; Malespin, C A; Martin, M G; Martin-Torres, F J; McAdam, A C; Ming, D W; Navarro-González, R; Pavlov, A A; Prats, B D; Squyres, S W; Steele, A; Stern, J C; Sumner, D Y; Sutter, B; Zorzano, M-P

    2015-03-01

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C 2 to C 4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

  6. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient.

    PubMed

    Huang, Shu-Ping; Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-08-01

    The significance of discontinuous gas-exchange cycles (DGC) in reducing respiratory water loss (RWL) in insects is contentious. Results from single-species studies are equivocal in their support of the classic 'hygric hypothesis' for the evolution of DGC, whereas comparative analyses generally support a link between DGC and water balance. In this study, we investigated DGC prevalence and characteristics and RWL in three grasshopper species (Acrididae, subfamily Pamphaginae) across an aridity gradient in Israel. In order to determine whether DGC contributes to a reduction in RWL, we compared the DGC characteristics and RWL associated with CO2 release (transpiration ratio, i.e. the molar ratio of RWL to CO2 emission rates) among these species. Transpiration ratios of DGC and continuous breathers were also compared intraspecifically. Our data show that DGC characteristics, DGC prevalence and the transpiration ratios correlate well with habitat aridity. The xeric-adapted Tmethis pulchripennis exhibited a significantly shorter burst period and lower transpiration ratio compared with the other two mesic species, Ocneropsis bethlemita and Ocneropsis lividipes. However, DGC resulted in significant water savings compared with continuous exchange in T. pulchripennis only. These unique DGC characteristics for T. pulchripennis were correlated with its significantly higher mass-specific tracheal volume. Our data suggest that the origin of DGC may not be adaptive, but rather that evolved modulation of cycle characteristics confers a fitness advantage under stressful conditions. This modulation may result from morphological and/or physiological modifications. © 2015. Published by The Company of Biologists Ltd.

  7. A review of sup 3 He resources and acquisition for use as fusion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittenberg, L.J.; Camerson, E.N.; Kulcinski, G.L.

    1992-07-01

    This paper reports that a combination of man-made and natural resources on earth could provide sufficient {sup 3}He fuel for the technological development of D-{sup 3}He fusion reactors. Helium exists in natural gas wells; however, at the current rate of natural gas usage, this resource would provide {lt}5 kg/yr of {sup 3}He. The radioactive decay of {sup 3}H produced in fission production reactors could yield 110 kg of {sup 3}He by the year 2000 if it were retained. Apparently, a large amount of {sup 3}He exists within the earth's mantle, but it is inaccessible. A significant quantity of {sup 3}He,more » which could be imported to supply a fusion power industry on earth for hundreds of years, exists on the moon. The solar wind has deposited {gt}1 million tonnes of {sup 3}He in the fine regolith that covers the surface of the moon. The presence of this solar wind gas was confirmed by analyses of the lunar regolith samples brought to earth. A strong correlation is noted between the helium retained and the TiO{sub 2} content of the regolith; consequently, remote-sensing data showing high-titanium-bearing soils in the lunar maria areas have been used to locate potentially rich sites for helium extraction. Surface photographs of Mare Tranquillitatis have shown that nearly 50% of this mare may be minable and capable of supplying {approximately}7100 tonnes of {sup 3}He. A mobile mining vehicle is proposed for use in the excavation of the soil and the release of the helium and other solar wind gases. The evolved gases would be purified by a combination of permeators and cryogenic techniques to provide a rich resource of H{sub 2}, helium, CO{sub 2}, H{sub 2}O, and N{sub 2}, followed by helium isotopic separation systems.« less

  8. Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA.

    PubMed

    Kuijpers, E; Bekker, C; Brouwer, D; le Feber, M; Fransman, W

    2017-05-01

    Exposure assessment for nano-objects, and their aggregates and agglomerates (NOAA), has evolved from explorative research toward more comprehensive exposure assessment, providing data to further develop currently used conservative control banding (CB) tools for risk assessment. This study aims to provide an overview of current knowledge on emission potential of NOAA across the occupational life cycle stages by a systematic review and subsequently use the results in a data analysis. Relevant parameters that influence emission were collected from peer-reviewed literature with a focus on the four source domains (SD) in the source-receptor conceptual framework for NOAA. To make the reviewed exposure data comparable, we applied an approach to normalize for workplace circumstances and measurement location, resulting in comparable "surrogate" emission levels. Finally, descriptive statistics were performed. During the synthesis of nanoparticles (SD1), mechanical reduction and gas phase synthesis resulted in the highest emission compared to wet chemistry and chemical vapor condensation. For the handling and transfer of bulk manufactured nanomaterial powders (SD2) the emission could be differentiated for five activity classes: (1) harvesting; (2) dumping; (3); mixing; (4) cleaning of a reactor; and (5) transferring. Additionally, SD2 was subdivided by the handled amount with cleaning further subdivided by energy level. Harvesting and dumping resulted in the highest emissions. Regarding processes with liquids (SD3b), it was possible to distinguish emissions for spraying (propellant gas, (high) pressure and pump), sonication and brushing/rolling. The highest emissions observed in SD3b were for propellant gas spraying and pressure spraying. The highest emissions for the handling of nano-articles (SD4) were found to nano-sized particles (including NOAA) for grinding. This study provides a valuable overview of emission assessments performed in the workplace during the occupational handling of NOAA. Analyses were made per source domain to derive emission levels which can be used for models to quantitatively predict the exposure.

  9. Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia

    2017-12-01

    Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.

  10. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  11. Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

    NASA Astrophysics Data System (ADS)

    Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun

    2017-12-01

    Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

  12. Coronagraphic imaging of circumstellar material around evolved massive stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Levesque, Emily; Wisniewski, John

    2018-01-01

    While many astronomical subfields (e.g. the solar, exoplanet, and disk communities) have been using coronagraphy to combat contrast ratio problems for years, the use of coronagraphic imaging techniques to probe the circumstellar environments of massive stars has been surprisingly underutilized. While current extreme adaptive optics coronagraphic imaging systems (e.g. GPI on Gemini South, SPHERE at the VLT, and SCExAO at Subaru) were built for the sole purpose of detecting exoplanets, their ability to provide large contrast ratios and small inner working angles means they can detect gas, dust, and companions that are closer to the central star than ever before. In this poster we present pilot studies of evolved massive stars using several coronagraphic imaging systems and summarize potential science gains this technique might provide.

  13. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at <30 mbar while most calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  14. On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.

    2016-01-01

    IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  15. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    PubMed

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  16. HD 100453: An evolutionary link between protoplanetary disks and debris disks

    NASA Astrophysics Data System (ADS)

    Collins, Karen

    2008-12-01

    Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.

  17. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  18. Analysis of waterborne paints by gas chromatography-mass spectrometry with a temperature-programmable pyrolyzer.

    PubMed

    Nakamura, S; Takino, M; Daishima, S

    2001-04-06

    Gas chromatography-mass spectrometry (GC-MS) with a temperature-programmable pyrolyzer was used for the analysis of waterborne paints. Evolved gas analysis (EGA) profiles of the waterborne paints were obtained by this temperature-programmed pyrolysis directly coupled with MS via a deactivated metal capillary tube. The EGA profile suggested the optimal thermal desorption conditions for solvents and additives and the subsequent optimal pyrolysis temperature for the remaining polymeric material. Polymers were identified from pyrograms with the assistance of a new polymer library. The solvents were identified from the electron ionization mass spectra with the corresponding chemical ionization mass spectra. The additive was identified as zinc pyrithione by comparison with authentic standard. Zinc pyrithione cannot be analyzed by GC-MS as it is. However, the thermal decomposition products of zinc pyrithione could be detected. The information on the decomposition temperature and products was useful for the identification of the original compound.

  19. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  20. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  1. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  2. Carbon and Sulfur Isotopic Composition of Rocknest Soil as Determined with the Sample Analysis at Mars(SAM) Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Franz, H. B.; McAdam, C.; Stern, J. C.; Archer, P. D., Jr.; Sutter, B.; Grotzinger, J. P.; Jones, J. H.; Leshin, L. A.; Mahaffy, P. R.; Ming, D. W.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover got its first taste of solid Mars in the form of loose, unconsolidated materials (soil) acquired from an aeolian bedform designated Rocknest. Evolved gas analysis (EGA) revealed the presence of H2O as well as O-, C- and S-bearing phases in these samples. CheMin did not detect crystalline phases containing these gaseous species but did detect the presence of X-ray amorphous materials. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can provide clues to the nature and/or mineralogy of volatile-bearing phases through examination of temperatures at which gases are evolved from solid samples. In addition, the isotopic composition of these gases, particularly when multiple sources contribute to a given EGA curve, may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from Rocknest soil samples as measured with SAM's quadrupole mass spectrometer (QMS).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y., E-mail: semenov@uchicago.edu

    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results inmore » a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L {sub *}-sized galaxy simulation that reproduces the observed Kennicutt–Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.« less

  4. Geochemistry of a naturally occurring massive marine gas hydrate

    USGS Publications Warehouse

    Kvenvolden, K.A.; Claypool, G.E.; Threlkeld, C.N.; Dendy, Sloan E.

    1984-01-01

    During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4??C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ???0.2% ethane, and ???0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 permil(( 0 00), relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift. ?? 1984.

  5. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  6. A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.

  7. Chemical alarm in the termite Termitogeton planus (Rhinotermitidae).

    PubMed

    Dolejšová, Klára; Krasulová, Jana; Kutalová, Kateřina; Hanus, Robert

    2014-12-01

    Effective defense is a common characteristic of insect societies. Indeed, the occurrence of specialized defenders, soldiers, has been the first step toward eusociality in several independent lineages, including termites. Among the multitude of defensive strategies used by termite soldiers, defense by chemicals plays a crucial role. It has evolved with complexity in advanced isopteran lineages, whose soldiers are equipped with a unique defensive organ, the frontal gland. Besides direct defense against predators, competitors, and pathogens, the chemicals emitted by soldiers from the frontal gland are used as signals of alarm. In this study, we investigated the chemical composition of the defensive secretion produced by soldiers of the termite Termitogeton planus (Isoptera: Rhinotermitidae), from West Papua, and the effects of this secretion on the behavior of termite groups. Detailed two-dimensional gas chromatography/mass spectrometry analyses of the soldier defensive secretion revealed the presence of four linear and nine monoterpene hydrocarbons. Soldier head extracts, as well as synthetic mixtures of the monoterpenes found in these extracts, elicited alarm behavior in both soldiers and pseudergates. Our results suggest that the alarm is not triggered by a single monoterpene from the defensive blend, but by a multi-component signal combining quantitatively major and minor compounds.

  8. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process

    PubMed Central

    Shi, Junjun; Guan, Jianyu; Guo, Dawei; Zhang, Jiushun; France, Liam John; Wang, Lefu; Li, Xuehui

    2016-01-01

    Regeneration of the coked catalyst is an important process of fluid catalytic cracking (FCC) in petroleum refining, however, this process will emit environmentally harmful gases such as nitrogen and carbon oxides. Transformation of N and C containing compounds in industrial FCC coke under thermal decomposition was investigated via TPD and TPO to examine the evolved gaseous species and TGA, NMR and XPS to analyse the residual coke fraction. Two distinct regions of gas evolution are observed during TPD for the first time, and they arise from decomposition of aliphatic carbons and aromatic carbons. Three types of N species, pyrrolic N, pyridinic N and quaternary N are identified in the FCC coke, the former one is unstable and tends to be decomposed into pyridinic and quaternary N. Mechanisms of NO, CO and CO2 evolution during TPD are proposed and lattice oxygen is suggested to be an important oxygen resource. Regeneration process indicates that coke-C tends to preferentially oxidise compared with coke-N. Hence, new technology for promoting nitrogen-containing compounds conversion will benefit the in-situ reduction of NO by CO during FCC regeneration. PMID:27270486

  9. Defining Gas Turbine Engine Performance Requirements for the Large Civil TiltRotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2013-01-01

    Defining specific engine requirements is a critical part of identifying technologies and operational models for potential future rotary wing vehicles. NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project has identified the Large Civil TiltRotor (LCTR) as the configuration to best meet technology goals. This notional vehicle concept has evolved with more clearly defined mission and operational requirements to the LCTR-iteration 2 (LCTR2). This paper reports on efforts to further review and refine the LCTR2 analyses to ascertain specific engine requirements and propulsion sizing criteria. The baseline mission and other design or operational requirements are reviewed. Analysis tools are described to help understand their interactions and underlying assumptions. Various design and operational conditions are presented and explained for their contribution to defining operational and engine requirements. These identified engine requirements are discussed to suggest which are most critical to the engine sizing and operation. The most-critical engine requirements are compared to in-house NASA engine simulations to try to ascertain which operational requirements define engine requirements versus points within the available engine operational capability. Finally, results are summarized with suggestions for future efforts to improve analysis capabilities, and better define and refine mission and operational requirements.

  10. Natural gas monthly, July 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-20

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  11. Natural gas monthly, September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-27

    The (NGM) Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  12. Genomic evidence of gene flow during reinforcement in Texas Phlox.

    PubMed

    Roda, Federico; Mendes, Fábio K; Hahn, Matthew W; Hopkins, Robin

    2017-04-01

    Gene flow can impede the evolution of reproductive isolating barriers between species. Reinforcement is the process by which prezygotic reproductive isolation evolves in sympatry due to selection to decrease costly hybridization. It is known that reinforcement can be prevented by too much gene flow, but we still do not know how often have prezygotic barriers evolved in the presence of gene flow or how much gene flow can occur during reinforcement. Flower colour divergence in the native Texas wildflower, Phlox drummondii, is one of the best-studied cases of reinforcement. Here we use genomic analyses to infer gene flow between P. drummondii and a closely related sympatric species, Phlox cuspidata. We de novo assemble transcriptomes of four Phlox species to determine the phylogenetic relationships between these species and find extensive discordance among gene tree topologies across genes. We find evidence of introgression between sympatric P. drummondii and P. cuspidata using the D-statistic, and use phylogenetic analyses to infer the predominant direction of introgression. We investigate geographic variation in gene flow by comparing the relative divergence of genes displaying discordant gene trees between an allopatric and sympatric sample. These analyses support the hypothesis that sympatric P. drummondii has experienced gene flow with P. cuspidata. We find that gene flow between these species is asymmetrical, which could explain why reinforcement caused divergence in only one of the sympatric species. Given the previous research in this system, we suggest strong selection can explain how reinforcement successfully evolved in this system despite gene flow in sympatry. © 2017 John Wiley & Sons Ltd.

  13. Opportunistic data locality for end user data analysis

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Heidecker, C.; Kuehn, E.; Quast, G.; Giffels, M.; Schnepf, M.; Heiss, A.; Petzold, A.

    2017-10-01

    With the increasing data volume of LHC Run2, user analyses are evolving towards increasing data throughput. This evolution translates to higher requirements for efficiency and scalability of the underlying analysis infrastructure. We approach this issue with a new middleware to optimise data access: a layer of coordinated caches transparently provides data locality for high-throughput analyses. We demonstrated the feasibility of this approach with a prototype used for analyses of the CMS working groups at KIT. In this paper, we present our experience both with the approach in general, and our prototype in specific.

  14. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  15. Strategic Control Algorithm Development : Volume 2A. Technical Report.

    DOT National Transportation Integrated Search

    1974-08-01

    The technical report presents a detailed description of the strategic control functional objectives, followed by a presentation of the basic strategic control algorithm and how it evolved. Contained in this discussion are results of analyses that con...

  16. Strategic Control Algorithm Development : Volume 2B. Technical Report (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    The technical report presents a detailed description of the strategic control functional objectives, followed by a presentation of the basic strategic control algorithm and how it evolved. Contained in this discussion are the results of analyses that...

  17. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: A key review

    NASA Astrophysics Data System (ADS)

    Şöhret, Yasin; Ekici, Selcuk; Altuntaş, Önder; Hepbasli, Arif; Karakoç, T. Hikmet

    2016-05-01

    It is known that aircraft gas turbine engines operate according to thermodynamic principles. Exergy is considered a very useful tool for assessing machines working on the basis of thermodynamics. In the current study, exergy-based assessment methodologies are initially explained in detail. A literature overview is then presented. According to the literature overview, turbofans may be described as the most investigated type of aircraft gas turbine engines. The combustion chamber is found to be the most irreversible component, and the gas turbine component needs less exergetic improvement compared to all other components of an aircraft gas turbine engine. Finally, the need for analyses of exergy, exergo-economic, exergo-environmental and exergo-sustainability for aircraft gas turbine engines is emphasized. A lack of agreement on exergy analysis paradigms and assumptions is noted by the authors. Exergy analyses of aircraft gas turbine engines, fed with conventional fuel as well as alternative fuel using advanced exergy analysis methodology to understand the interaction among components, are suggested to those interested in thermal engineering, aerospace engineering and environmental sciences.

  18. Development of Filtered Rayleigh Scattering for Accurate Measurement of Gas Velocity

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1995-01-01

    The overall goals of this research were to develop new diagnostic tools capable of capturing unsteady and/or time-evolving, high-speed flow phenomena. The program centers around the development of Filtered Rayleigh Scattering (FRS) for velocity, temperature, and density measurement, and the construction of narrow linewidth laser sources which will be capable of producing an order MHz repetition rate 'burst' of high power pulses.

  19. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  20. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  1. Optical Spectrum of the Compact Planetary Nebula IC 5117

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.

  2. Hazard assessment of substances produced from the accidental heating of chemical compounds.

    PubMed

    Lunghi, A; Gigante, L; Cardillo, P; Stefanoni, V; Pulga, G; Rota, R

    2004-12-10

    Accidental events concerning process industries can affect not only the staff working in, but also the environment and people living next to the factory. For this reason a regulation is imposed by the European Community to prevent accidents that could represent a risk for the population and the environment. In particular, Directive 96/82/CE, the so-called 'Seveso II directive', requests a risk analysis involving also the hazardous materials generated in accidental events. Therefore, it is necessary to develop simple and economic procedure to foresee the hazardous materials that can be produced in the case of major accidents, among which the accidental heating of a chemical due to a fire or a runaway reaction is one of the most frequent. The procedure proposed in this work is based on evolved gas analysis methodology that consists in coupling two instruments: a thermogravimetric analyzer or a flash pyrolyzer, that are employed to simulate accident conditions, and a FTIR spectrometer that can be used to detect the evolved gas composition. More than 40 materials have been examined in various accident scenarios and the obtained data have been statistically analyzed in order to identify meaningful correlations between the presence of a chemical group in the molecule of a chemical and the presence of a given hazardous species in the fume produced.

  3. Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Smith, Randall K.; Foster, Adam

    The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White and Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density, and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White and Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We findmore » that, while certain general results of the White and Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak, which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White and Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.« less

  4. Abundances of Volatile - Bearing Species from Evolved Gas Analysis of Samples from the Rocknest Aeolian Bedform in Gale Crater

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.; Franc, H. B.; Sutter, B.; McAdam, A.; Ming, D. W.; Morris, R. V.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. SAM detected the evolution of H2O, CO2, O2, and SO2, indicative of the presence of multiple volatile bearing species (Fig 1). The Rocknest bedform is a windblown deposit selected as representative of both the windblown material in Gale crater as well as the globally-distributed martian dust. Four samples of Rocknest material were analyzed by SAM, all from the fifth scoop taken at this location. The material delivered to SAM passed through a 150 m sieve and is assumed to have been well mixed during the sample acquisition/preparation/handoff process. SAM heated the Rocknest samples to approx.835 C at a ramp rate of 35 C/min with a He carrier gas flow rate of apprx.1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar [1]. Evolved gases were detected by a quadrupole mass spectrometer (QMS). This abstract presents the molar abundances of H2O, CO2, O2, and SO2 as well as their concentration in rocknest samples using an estimated sample mass.

  5. An experimental evolution study confirms that discontinuous gas exchange does not contribute to body water conservation in locusts.

    PubMed

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2016-12-01

    The adaptive nature of discontinuous gas exchange (DGE) in insects is contentious. The classic 'hygric hypothesis', which posits that DGE serves to reduce respiratory water loss (RWL), is still the best supported. We thus focused on the hygric hypothesis in this first-ever experimental evolution study of any of the competing adaptive hypotheses. We compared populations of the migratory locust (Locusta migratoria) that underwent 10 consecutive generations of selection for desiccation resistance with control populations. Selected locusts survived 36% longer under desiccation stress but DGE prevalence did not differ between these and control populations (approx. 75%). Evolved changes in DGE properties in the selected locusts included longer cycle and interburst durations. However, in contrast with predictions of the hygric hypothesis, these changes were not associated with reduced RWL rates. Other responses observed in the selected locusts were higher body water content when hydrated and lower total evaporative water loss rates. Hence, our data suggest that DGE cycle properties in selected locusts are a consequence of an evolved increased ability to store water, and thus an improved capacity to buffer accumulated CO 2 , rather than an adaptive response to desiccation. We conclude that DGE is unlikely to be an evolutionary response to dehydration challenge in locusts. © 2016 The Author(s).

  6. ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226

    NASA Astrophysics Data System (ADS)

    Talia, M.; Pozzi, F.; Vallini, L.; Cimatti, A.; Cassata, P.; Fraternali, F.; Brusa, M.; Daddi, E.; Delvecchio, I.; Ibar, E.; Liuzzo, E.; Vignali, C.; Massardi, M.; Zamorani, G.; Gruppioni, C.; Renzini, A.; Mignoli, M.; Pozzetti, L.; Rodighiero, G.

    2018-05-01

    We present ALMA observations at 107.291 GHz (band 3) and 214.532 GHz (band 6) of GMASS 0953, a star-forming galaxy at z = 2.226 hosting an obscured active galactic nucleus (AGN) that has been proposed as a progenitor of compact quiescent galaxies (QGs). We measure for the first time the size of the dust and molecular gas emission of GMASS 0953 that we find to be extremely compact (˜1 kpc). This result, coupled with a very high interstellar medium (ISM) density (n ˜ 105.5 cm-3), a low gas mass fraction (˜0.2), and a short gas depletion time-scale (˜150 Myr), implies that GMASS 0953 is experiencing an episode of intense star formation in its central region that will rapidly exhaust its gas reservoirs, likely aided by AGN-induced feedback, confirming its fate as a compact QG. Kinematic analysis of the CO(6-5) line shows evidence of rapidly rotating gas (Vrot = 320^{+92}_{-53} km s-1), as observed also in a handful of similar sources at the same redshift. On-going quenching mechanisms could either destroy the rotation or leave it intact leading the galaxy to evolve into a rotating QG.

  7. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    NASA Astrophysics Data System (ADS)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-06-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  8. The Evolutionary Origins of Hierarchy

    PubMed Central

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  9. The Evolutionary Origins of Hierarchy.

    PubMed

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  10. Prediction of Bubble Diameter at Detachment from a Wall Orifice in Liquid Cross Flow Under Reduced and Normal Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kamotani, Y.

    2003-01-01

    Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.

  11. Natural gas monthly, April 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.

  12. Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia

    NASA Astrophysics Data System (ADS)

    Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.

    2018-02-01

    In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.

  13. Natural gas monthly, June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-24

    The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.

  14. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  15. 32 CFR 651.52 - Aids to information gathering.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dissemination of analyses and information as they evolve. ... 32 National Defense 4 2013-07-01 2013-07-01 false Aids to information gathering. 651.52 Section...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Public Involvement and the Scoping...

  16. 32 CFR 651.52 - Aids to information gathering.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dissemination of analyses and information as they evolve. ... 32 National Defense 4 2011-07-01 2011-07-01 false Aids to information gathering. 651.52 Section...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Public Involvement and the Scoping...

  17. A high-resolution (0.1° × 0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Jacob, Daniel J.; Maasakkers, Joannes D.; Sulprizio, Melissa P.; Zavala-Araiza, Daniel; Hamburg, Steven P.

    2017-06-01

    Canada and Mexico have large but uncertain methane emissions from the oil/gas industry. Inverse analyses of atmospheric methane observations can improve emission estimates but require accurate source patterns as prior information. In order to serve this need, we develop a 0.1° × 0.1° gridded inventory of oil/gas emissions in Canada for 2013 and Mexico for 2010 by disaggregating national emission inventories using best available data for production, processing, transmission, and distribution. Results show large differences with the EDGAR v4.2 gridded global inventory used in past inverse analyses. Canadian emissions are concentrated in Alberta (gas production and processing) and Mexican emissions are concentrated along the east coast (oil production).

  18. Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; González, J. A.

    2018-04-01

    We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore thismore » possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.« less

  20. Apparatus and methods for regeneration of precipitating solvent

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

    2015-08-25

    A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

  1. How will greenhouse gas observations meet changing requirements, laws, and demands?

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Andrews, A. E.; Miller, J. B.; Montzka, S. A.

    2010-12-01

    Recent efforts to develop a global greenhouse gas information system (GHGIS) have been driven by an anticipated need to support future national emission reduction policies or international treaties with observations. Such an effort would be similar to that done in support of the Montreal Protocol on Substances that Deplete Ozone, but more complex. However, greenhouse gas emissions are much more difficult to manage and may not be controlled by international agreement. The Kyoto Protocol has been fraught with political and practical difficulties, not the least of which is the absence of an independent observation and analysis requirement. Nevertheless, no unifying agreement was reached at the much heralded 2009 Conference of Parties (COP-15) in Copenhagen. Thus, it is quite possible (likely?) that greenhouse gas emissions may be reduced owing to other, uncoordinated policies that have their own merits, e.g., energy efficiency, alternative energy development, air quality improvement, forest development, agricultural practices, etc. If this is the future, then what observations and observation system design are needed and to what end? This presentation will discuss those needs in light of critical observations, analytical approaches, and evolving, disparate policies.

  2. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  3. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-03

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.

  4. Evolution of a Quaternary peralkaline volcano: Mayor Island, New Zealand

    USGS Publications Warehouse

    Houghton, Bruce F.; Weaver, S.D.; Wilson, C.J.N.; Lanphere, M.A.

    1992-01-01

    Mayor Island is a Holocene pantelleritic volcano showing a wide range of dispersive power and eruptive intensity despite a very limited range in magma composition of only 2% SiO2. The primary controls on this range appear to have been the magmatic gas content on eruption and a varying involvement of basaltic magma, rather than major-element chemistry of the rhyolites. The ca. 130 ka subaerial history of the volcano contains portions of three geochemical cycles with abrupt changes in trace-element chemistry following episodes of caldera collapse. The uniform major-element chemistry of the magma may relate to a fine balance between rates of eruption and supply and the higher density of the more evolved (Ferich) magmas which could be tapped only after caldera-forming events had removed significant volumes of less evolved but lighter magma. ?? 1992.

  5. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations

    PubMed Central

    Perry, Mark E.; Hansen, Candice J.; Waite, J. Hunter; Porco, Carolyn C.; Spencer, John R.; Howett, Carly J. A.

    2017-01-01

    Abstract During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn—Geysers—Enceladus—Gas dynamics—Icy satellites. Astrobiology 17, 926–940. PMID:28872900

  6. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  7. Massive Black Hole Mergers: Can we see what LISA will hear?

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    Coalescing massive black hole binaries are formed when galaxies merge. The final stages of this coalescence produce strong gravitational wave signals that can be detected by the space-borne LISA. When the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  8. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  9. High-velocity interstellar gas in the line of sight to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, J.; Fesen, R. A.

    1986-01-01

    The large shell of interstellar gas (IG) discovered toward HD 50896 by Heckathorn and Fesen (1984) is characterized on the basis of high-dispersion IUE SWP and LWR spectra of 19 objects located within 4 deg of HD 50896 (but outside the optical ring nebula S308) at distances 0.6-2.9 kpc (compared to 1.5 kpc for HD 50896). The IG is found to have two components (at velocities -80 and -125 km/s), diameter 90 pc or greater, and distance 1.0 + or - 0.2 kpc, demonstrating that it is not related to HD 50896 and suggesting that it is a highly evolved supernova remnant associated with cluster Cr 121.

  10. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  11. Discussion of flight experiments with an entry research vehicle

    NASA Technical Reports Server (NTRS)

    Potter, J. L.

    1985-01-01

    The focus of interest is the maneuvering flight of advanced entry vehicles operating at altitudes above 50 km and at velocities of 5 to 8 km/s. Information resulting in more accurate aerodynamic analysis is sought and measurement techniques that appear to be applicable are identified. Measurements discussed include: shock layer or boundary layer profiles of velocity, temperature, species mass fractions, and other gas properties associated with aerodynamic heating; surface energy transfer process; nonequilibrium flow processes and pressure distribution; separated, vortic leeside flow of nonequilibrium fluid; boundary layer transition on highly swept configurations; and shock and surface slip and gas/surface interaction. Further study should focus on evolving measurement techniques, installation requirements, and on identification of the portions of flights where successful results seem probable.

  12. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  13. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  14. Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work

    NASA Astrophysics Data System (ADS)

    Flores-Fajardo, N.; Morisset, C.; Stasinska, G.; Binette, L.

    2011-10-01

    The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical HII regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of [NII]/Hα, [SII]/Hα with galactic height.

  15. Center for Thin Film Studies

    DTIC Science & Technology

    1988-10-31

    techniques, and to investigate the simultaneous use of ion bombardment and substrate cooling for production of low-loss, stable ZnS material. 7 0.14 q(a) N...films indicate that even implanted argon is firmly embedded and shows no tendency to evolve. When the ions are reactive (e.g., oxygen or nitrogen ...oxygen ions can result in very good oxide layers. Nitrogen is another compound-forming gas which lacks sufficient reactivity to have been a useful

  16. Planetary Nebula NGC 7293 also Known as the Helix Nebula

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902

  17. Degradation Studies of a Trimethylolpropane Triheptanoate Lubricant Basestock

    DTIC Science & Technology

    1977-12-01

    primary dibasic acids : azelaic , adipic, glutaric, and sebacic. From this and subsequent investigations, a dibasic acid ester evolved which has been...Rotating Cylinder Deposition Rig-Parts List 13 2 Analysis for Parent Alcohols in (1-76-5 25 3 Analysis for Parent Acids in 0-76-5 27 4 Gas...formulations: (1) dibasic acid esters formed via esterification of dibasic fatty acids and monohydric alcohols, and (2) neopentyl polyol esters of monobasic

  18. Analysis of cured carbon-phenolic decomposition products to investigate the thermal decomposition of nozzle materials

    NASA Technical Reports Server (NTRS)

    Thompson, James M.; Daniel, Janice D.

    1989-01-01

    The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).

  19. Molecularly Designed Ultrafine/Nanostructured Materials

    DTIC Science & Technology

    1994-04-08

    Ti. UdIOVic. R R, Cananaeh. /iXn. S. Kawi, T. Mure, and B1 C Gates STUDIIES OF- NANOSTRUCTURED M50 TYPE STEEL USING X - RAY AB3SORPTION SPFECTROSCOPY...hydrogenation of titanium or zirconium sponges and related systems and as a powerful activator for heterogeneous hydrogenation catalysts. X - ray ... X - ray diffraction). Quantitave measurements of the gas evolved during the reduction (1 mol H2 per mol Ti), protonolysis and cross experiments using K

  20. Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks

    NASA Astrophysics Data System (ADS)

    Chen, Q.-S.; Wegrzyn, J.; Prasad, V.

    2004-10-01

    Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boil-off gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

  1. PPAK Wide-field Integral Field Spectroscopy of NGC 628 - I. The largest spectroscopic mosaic on a single galaxy

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Rosales-Ortega, F. F.; Kennicutt, R. C.; Johnson, B. D.; Diaz, A. I.; Pasquali, A.; Hao, C. N.

    2011-01-01

    We present a wide-field Integral Field Spectroscopy (IFS) survey on the nearby face-on Sbc galaxy NGC 628, comprising 11094 individual spectra, covering a nearly circular field-of-view of ˜6 arcmin in diameter, with a sampling of ˜2.7 arcsec per spectrum in the optical wavelength range (3700-7000 Å). This galaxy is part of the PPAK IFS Nearby Galaxies Survey (PINGS). To our knowledge, this is the widest spectroscopic survey ever made in a single nearby galaxy. A detailed flux calibration was applied, granting a spectrophotometric accuracy of ˜0.2 mag. The spectroscopic data were analysed both as a single integrated spectrum that characterizes the global properties of the galaxy and using each individual spectrum to determine the spatial variation of the stellar and ionized gas components. The spatial distribution of the luminosity-weighted ages and metallicities of the stellar populations was analysed. Using typical strong emission-line ratios we derived the integrated and 2D spatial distribution of the ionized gas, the dust content, star formation rate (SFR) and oxygen abundance. The age of the stellar populations shows a negative gradient from the inner (older) to the outer (younger) regions. We found an inversion of this gradient in the central ˜1 kpc region, where a somewhat younger stellar population is present within a ring at this radius. This structure is associated with a circumnuclear star-forming region at ˜500 pc, also found in similar spiral galaxies. From the study of the integrated and spatially resolved ionized gas, we found a moderate SFR of ˜2.4 M⊙ yr-1. The oxygen abundance shows a clear gradient of higher metallicity values from the inner part to the outer part of the galaxy, with a mean value of 12 + log(O/H) ˜ 8.7. At some specific regions of the galaxy, the spatially resolved distribution of the physical properties shows some level of structure, suggesting real point-to-point variations within an individual H II region. Our results are consistent with an inside-out growth scheme, with stronger star formation at the outer regions, and with evolved stellar populations in the inner ones. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  2. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  3. Tensions inherent in the evolving role of the infection preventionist.

    PubMed

    Conway, Laurie J; Raveis, Victoria H; Pogorzelska-Maziarz, Monika; Uchida, May; Stone, Patricia W; Larson, Elaine L

    2013-11-01

    The role of infection preventionists (IPs) is expanding in response to demands for quality and transparency in health care. Practice analyses and survey research have demonstrated that IPs spend a majority of their time on surveillance and are increasingly responsible for prevention activities and management; however, deeper qualitative aspects of the IP role have rarely been explored. We conducted a qualitative content analysis of in-depth interviews with 19 IPs at hospitals throughout the United States to describe the current IP role, specifically the ways that IPs effect improvements and the facilitators and barriers they face. The narratives document that the IP role is evolving in response to recent changes in the health care landscape and reveal that this progression is associated with friction and uncertainty. Tensions inherent in the evolving role of the IP emerged from the interviews as 4 broad themes: (1) expanding responsibilities outstrip resources, (2) shifting role boundaries create uncertainty, (3) evolving mechanisms of influence involve trade-offs, and (4) the stress of constant change is compounded by chronic recurring challenges. Advances in implementation science, data standardization, and training in leadership skills are needed to support IPs in their evolving role. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  4. Inferring the evolutionary stages of the internal structures of NGC 7538 S and IRS1 from chemistry

    NASA Astrophysics Data System (ADS)

    Feng, S.; Beuther, H.; Semenov, D.; Henning, Th.; Linz, H.; Mills, E. A. C.; Teague, R.

    2016-09-01

    Context. Radiative feedback of young (proto)stars and gas dynamics including gravitational collapse and outflows are important in high-mass star-forming regions (HMSFRs), for the reason that they may leave footprints on the gas density and temperature distributions, the velocity profile, and the chemical abundances. Aims: We unambiguously diagnose the detailed physical mechanisms and the evolutionary status of HMSFRs. Methods: We performed 0.4'' (~1000 AU) resolution observations at 1.37 mm towards two HMSFRs, NGC 7538 S and IRS1, using the Plateau de Bure Interferometre (PdBI). The observations covered abundant molecular lines, including tracers of gas column density, hot molecular cores, shocks, and complex organic molecules. We present a joint analysis of the 1.37 mm continuum emission and the line intensity of 15 molecular species (including 22 isotopologues). Assuming local thermal equilibrium (LTE), we derived molecular column densities and molecular abundances for each internal gas substructure that is spatially resolved. These derived quantities are compared with a suite of 1D gas-grain models. Results: NGC 7538 S is resolved into at least three dense gas condensations. Despite the comparable continuum intensity of these condensations, their differing molecular line emission is suggestive of an overall chemical evolutionary trend from the northeast to the southwest. Line emission from MM1 is consistent with a chemically evolved hot molecular core (HMC), whereas MM3 remains a prestellar candidate that only exhibits emission of lower-excitation lines. The condensation MM2, located between MM1 and MM3, shows an intermediate chemical evolutionary status. Since these three condensations are embedded within the same parent gas core, their differing chemical properties are most likely due to the different warm-up histories, rather than the different dynamic timescales. Despite remaining spatially unresolved, in IRS1 we detect abundant complex organic molecules (e.g. NH2CHO, CH3OH, HCOOCH3, CH3OCH3), indicating that IRS1 is the most chemically evolved HMC presented here. We observe a continuum that is dominated by absorption features with at least three strong emission lines, potentially from CH3OH. The CH3OH lines which are purely in emission have higher excitation than the ones being purely in absorption. Potential reasons for this difference are discussed. Conclusions: This is the first comprehensive comparison of observations of the two high-mass cores NGC 7538 S and IRS1 and a chemical model. We have found that different chemical evolutionary stages can coexist in the same natal gas core. Our achievement illustrates the strength of chemical analysis for understanding HMSFRs.

  5. 32 CFR 651.52 - Aids to information gathering.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dissemination of analyses and information as they evolve. ... 32 National Defense 4 2010-07-01 2010-07-01 true Aids to information gathering. 651.52 Section 651...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Public Involvement and the Scoping...

  6. 32 CFR 651.52 - Aids to information gathering.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dissemination of analyses and information as they evolve. ... 32 National Defense 4 2012-07-01 2011-07-01 true Aids to information gathering. 651.52 Section 651...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Public Involvement and the Scoping...

  7. 32 CFR 651.52 - Aids to information gathering.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dissemination of analyses and information as they evolve. ... 32 National Defense 4 2014-07-01 2013-07-01 true Aids to information gathering. 651.52 Section 651...) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Public Involvement and the Scoping...

  8. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  9. The Epoch of Disk Settling: Z Approximately Equal to 1 to Now

    NASA Technical Reports Server (NTRS)

    Kassin, Susan A.; Weiner, Benjamin J.; Faber, S. M.; Gardner, Jonathan P.; Willmer, N. A.; Coil, Alison L.; Cooper, Michael C.; Devriendt, Julien; Dutton, Aaron A.; Guhathakurta, Puragra; hide

    2012-01-01

    We present evidence from a sample of 544 galaxies from the DEEP2 Survey for evolution of the internal kinematics of blue galaxies over 0.2 < z < 1.2. DEEP2 provides a large sample of high resolution galaxy spectra and dual-band Hubble imaging from which we measure emission-line kinematics and galaxy inclinations, respectively. Our large sample allows us to overcome scatter intrinsic to galaxy properties, in order to examine trends. At a fixed stellar mass, galaxies systematically decrease in disturbed motions and increase in rotation velocity and potential well depth with time. The most massive galaxies are the most well-ordered at all times, with higher rotation velocities and less disturbed motions compared to less massive galaxies. We quantify disturbed motions with an integrated gas velocity dispersion (sigma(sub g)), which is unlike the typical pressure-supported velocity dispersion measured for early type galaxies and galaxy bulges. Due to finite slit width and seeing, sigma(sub g) integrates over unresolved velocity gradients which can correspond to non-ordered gas kinematics such as small-scale velocity gradients, gas motions due to star-formation, or super-imposed clumps along the line-of-sight. We compile surveys of galaxy kinematics over 1.2 < z < 3.8 and do not find any trends with redshift, likely because these studies are biased toward the most highly star-forming systems. In summary, over the last approx 8 billion years since z = 1.2, blue galaxies evolve from disturbed to ordered systems as they settle to become the rotation-dominated disk galaxies observed in the Universe today, with the most massive galaxies always being the most evolved at any time.

  10. APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishin, Evgeni; Perets, Hagai B.

    2016-04-01

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded inmore » a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.« less

  11. Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe

    2017-09-01

    In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.

  12. Natural gas monthly, August 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  13. Effects of Gas Pressure on the Failure Characteristics of Coal

    NASA Astrophysics Data System (ADS)

    Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi

    2017-07-01

    Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.

  14. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    PubMed

    Nozaki, Hisayoshi; Yang, Yi; Maruyama, Shinichiro; Suzaki, Toshinobu

    2012-01-01

    Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.

  15. Natural gas monthly, September 1990. [Contains Glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-30

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. 7 figs., 33 tabs.

  16. Test 6, Test 7, and Gas Standard Analysis Results

    NASA Technical Reports Server (NTRS)

    Perez, Horacio, III

    2007-01-01

    This viewgraph presentation shows results of analyses on odor, toxic off gassing and gas standards. The topics include: 1) Statistical Analysis Definitions; 2) Odor Analysis Results NASA Standard 6001 Test 6; 3) Toxic Off gassing Analysis Results NASA Standard 6001 Test 7; and 4) Gas Standard Results NASA Standard 6001 Test 7;

  17. Hydrocarbon gases associated with permafrost in the Mackenzie Delta, Northwest Territories, Canada

    USGS Publications Warehouse

    Collett, T.S.; Dallimore, S.R.

    1999-01-01

    Molecular and isotopic analyses of core gas samples from 3 permafrost research core holes (92GSCTAGLU, 92GSCKUMAK, 92GSCUNIPKAT; sample core depths ranging from 0.36 to 413.82 m) in the Mackenzie Delta of the Northwest Territories of Canada reveal the presence of hydrocarbon gases from both microbial and thermogenic sources. Analyses of most headspace and blended gas samples from the ice-bonded permafrost portion of the core holes yielded C1/(C2 + C3) hydrocarbon gas ratios and CH4-C isotopic compositions (??13C CH4) indicative of microbially sourced CH4 gas. However, near the base of ice-bonded permafrost and into the underlying non-frozen stratigraphic section, an increase in ethane (C2) concentrations, decreases in C1/(C2 + C3) hydrocarbon gas ratios, and CH4-C isotopic (??13C CH4) data indicate the presence of hydrocarbon gases derived from a thermogenic source. The thermogenic gas below permafrost in the Mackenzie Delta likely migrated from deeper hydrocarbon accumulations and/or directly from thermally mature hydrocarbon source rocks.

  18. Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples

    USGS Publications Warehouse

    Schraer, S.M.; Shaw, D.R.; Boyette, M.; Coupe, R.H.; Thurman, E.M.

    2000-01-01

    Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-l,3,5-triazin-2-yl]amino]-2-methylpropanenitrile ) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.

  19. A transcriptome approach to ecdysozoan phylogeny.

    PubMed

    Borner, Janus; Rehm, Peter; Schill, Ralph O; Ebersberger, Ingo; Burmester, Thorsten

    2014-11-01

    The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fluid Inclusion Gas Analysis

    DOE Data Explorer

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  1. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., as appropriate, to measure gas volumetric flow rate. (3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight. You may also use as... monoxide content of exhaust gas in ANSI/ASME PTC 19.10-1981, “Flue and Exhaust Gas Analyses [Part 10...

  2. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  3. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  4. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    NASA Astrophysics Data System (ADS)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  5. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    USGS Publications Warehouse

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  6. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity.

    PubMed

    Gazquez, Ayelén; Vilas, Juan Manuel; Colman Lerner, Jorge Esteban; Maiale, Santiago Javier; Calzadilla, Pablo Ignacio; Menéndez, Ana Bernardina; Rodríguez, Andrés Alberto

    2018-06-01

    The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  8. Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus.

    PubMed

    Lambertz, Markus

    2016-02-01

    Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry. © 2016 New York Academy of Sciences.

  9. Applying Data Mining Techniques to Chemical Analyses of Pre-drill Groundwater Samples within the Marcellus Formation Shale Play in Bradford County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Wen, T.; Niu, X.; Gonzales, M. S.; Li, Z.; Brantley, S.

    2017-12-01

    Groundwater samples are collected for chemical analyses by shale gas industry consultants in the vicinity of proposed gas wells in Pennsylvania. These data sets are archived so that the chemistry of water from homeowner wells can be compared to chemistry after gas-well drilling. Improved public awareness of groundwater quality issues will contribute to designing strategies for both water resource management and hydrocarbon exploration. We have received water analyses for 11,000 groundwater samples from PA Department of Environmental Protection (PA DEP) in the Marcellus Shale footprint in Bradford County, PA for the years ranging from 2010 to 2016. The PA DEP has investigated these analyses to determine whether gas well drilling or other activities affected water quality. We are currently investigating these analyses to look for patterns in chemistry throughout the study area (related or unrelated to gas drilling activities) and to look for evidence of analytes that may be present at concentrations higher than the advised standards for drinking water. Our preliminary results reveal that dissolved methane concentrations tend to be higher along fault lines in Bradford County [1]. Lead (Pb), arsenic (As), and barium (Ba) are sometimes present at levels above the EPA maximum contaminant level (MCL). Iron (Fe) and manganese (Mn) more frequently violate the EPA standard. We find that concentrations of some chemical analytes (e.g., Ba and Mn) are dependent on bedrock formations (i.e., Catskill vs. Lock Haven) while concentrations of other analytes (e.g., Pb) are not statistically significantly distinct between different bedrock formations. Our investigations are also focused on looking for correlations that might explain water quality patterns with respect to human activities such as gas drilling. However, percentages of water samples failing EPA MCL with respect to Pb, As, and Ba have decreased from previous USGS and PSU studies in the 1990s and 2000s. Public access to pre-drill datasets such as the one we are investigating will allow better understanding of the controls on ground water chemistry, i.e., natural and anthropogenic impacts. [1] Li et al. (2016) Journal of Contaminant Hydrology 195, 23-30.

  10. Analysis of wine volatile profile by purge-and-trap-gas chromatography-mass spectrometry. Application to the analysis of red and white wines from different Spanish regions.

    PubMed

    Aznar, Margarita; Arroyo, Teresa

    2007-09-21

    The purge-and-trap extraction method, coupled to a gas chromatograph with mass spectrometry detection, has been applied to the determination of 26 aromatic volatiles in wine. The method was optimized, validated and applied to the analyses of 40 red and white wines from 7 different Spanish regions. Principal components analyses of data showed the correlation between wines of similar origin.

  11. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  12. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    DOEpatents

    Haas, Jeffrey S.; Bushman, John F.; Howard, Douglas E.; Wong, James L.; Eckels, Joel D.

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  13. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria.

    PubMed

    Groenewald, Berlizé; Hetz, Stefan K; Chown, Steven L; Terblanche, John S

    2012-07-01

    Gas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, V(CO2) and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO(2) continued to be released. Third, strong pumping actions do not necessarily lead to CO(2) release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.

  14. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE PAGES

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...

    2018-03-05

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  15. Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production

    NASA Astrophysics Data System (ADS)

    Gromakov, E. I.; Gazizov, A. T.; Lukin, V. P.; Chimrov, A. V.

    2017-01-01

    The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies.

  16. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  17. Tuneable diode laser gas analyser for methane measurements on a large scale solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Lengden, Michael; Cunningham, Robert; Johnstone, Walter

    2011-10-01

    A new in-line, real time gas analyser is described that uses tuneable diode laser spectroscopy (TDLS) for the measurement of methane in solid oxide fuel cells. The sensor has been tested on an operating solid oxide fuel cell (SOFC) in order to prove the fast response and accuracy of the technology as compared to a gas chromatograph. The advantages of using a TDLS system for process control in a large-scale, distributed power SOFC unit are described. In future work, the addition of new laser sources and wavelength modulation will allow the simultaneous measurement of methane, water vapour, carbon-dioxide and carbon-monoxide concentrations.

  18. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  19. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  20. Star Formation-Driven Winds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  1. The formation of co-orbital planets and their resulting transit signatures

    NASA Astrophysics Data System (ADS)

    Granados Contreras, Agueda Paula; Boley, Aaron

    2018-04-01

    Systems with Tightly-packed Inner Planets (STIPs) are metastable, exhibiting sudden transitions to an unstable state that can potentially lead to planet consolidation. When these systems are embedded in a gaseous disc, planet-disc interactions can significantly reduce the frequency of instabilities, and if they do occur, disc torques alter the dynamical outcomes. We ran a suite of N-body simulations of synthetic 6-planet STIPs using an independent implementation of IAS15 that includes a prescription for gaseous tidal damping. The algorithm is based on the results of disc simulations that self-consistently evolve gas and planets. Even for very compact configurations, the STIPS are resistant to instability when gas is present. However, instability can still occur, and in some cases, the combination of system instability and gaseous damping leads to the formation of co-orbiting planets that are stable even when gas damping is removed. While rare, such systems should be detectable in transit surveys, although the dynamics of the system can make the transit signature difficult to identify.

  2. A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.

    PubMed

    Lee, I; Sikora, R; Shaw, M J

    1997-01-01

    Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.

  3. The Viking biological investigation - Preliminary results

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Oyama, V. I.; Berdahl, B. J.; Horowitz, N. H.; Hobby, G. L.; Levin, G. V.; Straat, P. A.; Lederberg, J.; Rich, A.; Hubbard, J. S.

    1976-01-01

    A preliminary progress report is presented for the Viking biological investigation through its first month. The carbon assimilation, gas exchange, and labeled release experiments are described in detail, and the chronology of the experiments is outlined. For the first experiment, it is found that a small amount of gas was converted into organic material in one sample and that heat treatment of a duplicate sample prevented such conversion. In the second experiment, a substantial amount of O2 was detected along with significant increases in CO2 and small changes in N2. In the third experiment, a significant amount of radioactive gas was evolved from one sample, but not from a duplicate heat-treated sample. Possible biological and nonbiological interpretations are considered for these results. It is concluded that while the experiments provide clear evidence for the occurrence of chemical reactions and while the results do not violate any prima facie criteria for biological processes, a definitive answer cannot yet be given to the question of whether life exists on Mars.

  4. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  5. Stellar and gaseous disc structures in cosmological galaxy equilibrium models

    NASA Astrophysics Data System (ADS)

    Rathaus, Ben; Sternberg, Amiel

    2016-05-01

    We present `radially resolved equilibrium models' for the growth of stellar and gaseous discs in cosmologically accreting massive haloes. Our focus is on objects that evolve to redshifts z ˜ 2. We solve the time-dependent equations that govern the radially dependent star formation rates, inflows and outflows from and to the inter- and circumgalactic medium, and inward radial gas flows within the discs. The stellar and gaseous discs reach equilibrium configurations on dynamical time-scales much shorter than variations in the cosmological dark matter halo growth and baryonic accretions rates. We show analytically that mass and global angular momentum conservation naturally give rise to exponential gas and stellar discs over many radial length-scales. As expected, the gaseous discs are more extended as set by the condition Toomre Q < 1 for star formation. The discs rapidly become baryon dominated. For massive, 5 × 1012 M⊙ haloes at redshift z = 2, we reproduced the typical observed star formation rates of ˜100 M⊙ yr-1, stellar masses ˜9 × 1010 M⊙, gas contents ˜1011 M⊙, half-mass sizes of 4.5 and 5.8 kpc for the stars and gas, and characteristic surface densities of 500 and 400 M⊙ pc-2 for the stars and gas.

  6. Computation of three-dimensional multiphase flow dynamics by Fully-Coupled Immersed Flow (FCIF) solver

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming

    2017-12-01

    This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

  7. HPHT reservoir evolution: a case study from Jade and Judy fields, Central Graben, UK North Sea

    NASA Astrophysics Data System (ADS)

    di Primio, Rolando; Neumann, Volkmar

    2008-09-01

    3D basin modelling of a study area in Quadrant 30, UK North Sea was performed in order to elucidate the burial, thermal, pressure and hydrocarbon generation, migration and accumulation history in the Jurassic and Triassic high pressure high temperature sequences. Calibration data, including reservoir temperatures, pressures, petroleum compositional data, vitrinite reflectance profiles and published fluid inclusion data were used to constrain model predictions. The comparison of different pressure generating processes indicated that only when gas generation is taken into account as a pressure generating mechanism, both the predicted present day as well as palaeo-pressure evolution matches the available calibration data. Compositional modelling of hydrocarbon generation, migration and accumulation also reproduced present and palaeo bulk fluid properties such as the reservoir fluid gas to oil ratios. The reconstruction of the filling histories of both reservoirs indicates that both were first charged around 100 Ma ago and contained initially a two-phase system in which gas dominated volumetrically. Upon burial reservoir fluid composition evolved to higher GORs and became undersaturated as a function of increasing pore pressure up to the present day situation. Our results indicate that gas compositions must be taken into account when calculating the volumetric effect of gas generation on overpressure.

  8. The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Daddi, E.; Magdis, G.; Bournaud, F.; Sargent, M.; Martig, M.; Jin, S.; Finoguenov, A.; Béthermin, M.; Hwang, H. S.; Renzini, A.; Wilson, G. W.; Aretxaga, I.; Yun, M.; Strazzullo, V.; Valentino, F.

    2018-03-01

    Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of 5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5-10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

  9. GREEN BANK TELESCOPE OBSERVATIONS OF THE NH{sub 3} (3, 3) AND (6, 6) TRANSITIONS TOWARD SAGITTARIUS A MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, Young Chol; Liu, Hauyu Baobab; Ho, Paul T. P.

    2013-08-10

    Ammonia (3, 3) and (6, 6) transitions have been observed using the Green Bank Telescope toward the Sgr A region. The gas is mainly concentrated in 50 km s{sup -1} and 20 km s{sup -1} clouds located in a plane inclined to the galactic plane. These 'main' clouds appear to be virialized and influenced by the expansion of the supernova remnant Sgr A East. The observed emission shows very complicated features in the morphology and velocity structure. Gaussian multi-component fittings of the observed spectra revealed that various 'streaming' gas components exist all over the observed region. These components include thosemore » previously known as 'streamers' and 'ridges', but most of these components appear not to be directly connected to the major gas condensations (the 50 km s{sup -1} and 20 km s{sup -1} clouds). They are apparently located out of the galactic plane, and they may have a different origin than the major gas condensations. Some of the streaming components are expected to be sources that feed the circumnuclear disk of our Galactic center directly and episodically. They may also evolve differently than major gas condensations under the influence of the activities of the Galactic center.« less

  10. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increasemore » or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.« less

  11. A theory of viscoplasticity accounting for internal damage

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Robinson, D. N.

    1988-01-01

    A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.

  12. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    USDA-ARS?s Scientific Manuscript database

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  13. Natural gas monthly, October 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-23

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary of the terms used in this report is provided to assist readers in understanding the data presented in this publication. 6 figs., 30 tabs.

  14. Lectures in Complex Systems, (1992). Volume 5

    DTIC Science & Technology

    1993-05-01

    Lattice Gas Methods for Partial Differential Equations, 1989 V P. W. Anderson, K. Arrow, The Economy as an Evolving Complex System, D. Pines 1988 VI C...to Improve EEG Classification and to Explore GA Parametrization Cathleen Barczys, Laura Bloom, and Leslie Kay 569 Symbiosis in Society and Monopoly in...Appeal of Evolution 1.2 Elements of Genetic Algorithms 1.3 A Simple GA 1.4 Overview of Some Applications of Genetic Algorithms 1.5 A Brief Example

  15. Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.

    PubMed

    Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B

    2015-12-01

    Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  17. Unconventional gas development and its effect on forested ecosystems in the Northern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Brittingham, Margaret; Mortensen, David; Barlow, Kathryn; Langlois, Lillie

    2017-04-01

    Worldwide unconventional shale-gas development has the potential to cause substantial landscape disturbance. The northeastern U.S.A. Appalachian Mountains across the states of Pennsylvania, West Virginia, Ohio, and Kentucky, are experiencing rapid landscape change as unconventional gas development occurs. We highlight several years of our research from this region in order to demonstrate the unique effect unconventional development has had on forested ecosystems. Infrastructure development has had a wide-reaching and varied effect on forested ecosystems and their services, which has resulted in temporary disturbances and long-lasting ones altering habitats and their viability. Corridor disturbances, such as pipelines, are the most spatially extensive disturbance and have substantially fragmented forest cover. Core forest disturbance, especially, in upper watershed positions, has resulted in disproportionate disturbances to forested ecosystems and their wildlife, and suggests a need for adaptive land management strategies to minimize and mitigate the effects of gas development. Soil and water resources are most affected by surface disturbances; however, soil protection and restoration strategies are evolving as the gas play changes economically. Dynamic soil properties related to soil organic matter and water availability respond uniquely to unconventional gas development and new, flexible restoration strategies are required to support long-term ecosystem stability. While the focus of management and research to date has been on acute disturbances to forested ecosystems, unconventional gas development is clearly a greater chronic, long-term disturbance factor in the Appalachian Mountains. Effectively managing ecosystems where unconventional gas development is occurring is a complicated interplay between public, private and corporate interests.

  18. Coal Gasification - section in Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th Edition, 2-vol. set, July 2007, ISBN 978-0-470-04748-4, pp. 580-587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2007-07-01

    Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less

  19. 12CO(J = 1 \\to 0) On-the-fly Mapping Survey of the Virgo Cluster Spirals. II. Molecular Gas Properties in Different Density Environments

    NASA Astrophysics Data System (ADS)

    Chung, Eun Jung; Yun, Min S.; Verheijen, Marc A. W.; Chung, Aeree

    2017-07-01

    This study investigated the properties of the molecular gas content and star formation activity of 17 Virgo spirals, 21 Ursa Major (UMa) spirals, 13 Pisces spiral galaxies, and a comparison sample of 11 field spiral galaxies with a spatially resolved gas and stellar distribution. The H I-deficient galaxies with a defH I > 0.4 have a similar range of CO luminosity normalized by the K-band luminosity (L CO/L K) like the field spirals, although their CO content can be smaller by up to a factor of 2. The CO, H I, and stellar disk diameters are closely related to each other for both cluster and field galaxies, and the relative diameters of the CO and H I disks grow monotonically and smoothly as the H I-to-stellar disk diameter ratio decreases. Cluster galaxies have a molecular gas consumption time up to 10 times shorter than that of the field comparison sample, suggesting a significant change in the molecular gas content and star formation activity among all the cluster galaxies, even when they do not show any sign of H I stripping. The strongly H I-stripped Virgo cluster galaxies show only a modestly reduced total gas consumption time, indicating that the star formation activity and gas consumption are a highly local (rather than global) phenomenon. Our finding is that the depletion of cold gas by ram-pressure stripping and/or starvation caused by preprocessing in each cluster environment makes galaxies evolve passively.

  20. Chemicapacitors as a versatile platform for miniature gas and vapor sensors

    NASA Astrophysics Data System (ADS)

    Blue, Robert; Uttamchandani, Deepak

    2017-02-01

    Recent years have seen the rapid growth in the need for sensors throughout all areas of society including environmental sensing, health-care, public safety and manufacturing quality control. To meet this diverse need, sensors have to evolve from specialized and bespoke systems to miniaturized, low-power, low-cost (almost disposable) ubiquitous platforms. A technology that has been developed which gives a route to meet these challenges is the chemicapacitor sensor. To date the commercialization of these sensors has largely been restricted to humidity sensing, but in this review we examine the progress over recent years to expand this sensing technology to a wide range of gases and vapors. From sensors interrogated with laboratory instrumentation, chemicapacitor sensors have evolved into miniaturized units integrated with low power readout electronics that can selectively detect target molecules to ppm and sub-ppm levels within vapor mixtures.

  1. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Minitti, M. P.; Budarz, J. M.; Kirrander, A.; Robinson, J. S.; Ratner, D.; Lane, T. J.; Zhu, D.; Glownia, J. M.; Kozina, M.; Lemke, H. T.; Sikorski, M.; Feng, Y.; Nelson, S.; Saita, K.; Stankus, B.; Northey, T.; Hastings, J. B.; Weber, P. M.

    2015-06-01

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  2. Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction.

    PubMed

    Minitti, M P; Budarz, J M; Kirrander, A; Robinson, J S; Ratner, D; Lane, T J; Zhu, D; Glownia, J M; Kozina, M; Lemke, H T; Sikorski, M; Feng, Y; Nelson, S; Saita, K; Stankus, B; Northey, T; Hastings, J B; Weber, P M

    2015-06-26

    Structural rearrangements within single molecules occur on ultrafast time scales. Many aspects of molecular dynamics, such as the energy flow through excited states, have been studied using spectroscopic techniques, yet the goal to watch molecules evolve their geometrical structure in real time remains challenging. By mapping nuclear motions using femtosecond x-ray pulses, we have created real-space representations of the evolving dynamics during a well-known chemical reaction and show a series of time-sorted structural snapshots produced by ultrafast time-resolved hard x-ray scattering. A computational analysis optimally matches the series of scattering patterns produced by the x rays to a multitude of potential reaction paths. In so doing, we have made a critical step toward the goal of viewing chemical reactions on femtosecond time scales, opening a new direction in studies of ultrafast chemical reactions in the gas phase.

  3. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    PubMed

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 75 FR 13204 - Notice of Petition for Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... different railroad territory type configurations. Consequently, ETMS and the PSP has evolved over time as... configuration types. The revised PSP provides descriptions of: The ETMS itself, ETMS safety process and analyses... written information or comments pertinent to FRA's consideration of the above petition for approval of a...

  5. Gender Aspects of Human Security

    ERIC Educational Resources Information Center

    Moussa, Ghada

    2008-01-01

    The chapter deals with the gender dimensions in human security through focusing on the relationship between gender and human security, first manifested in international declarations and conventions, and subsequently evolving in world women conferences. It aims at analysing the various gender aspects in its relation to different human security…

  6. Exploring product supply across age classes and forest types

    Treesearch

    Robert C. Abt; Karen J. Lee; Gerardo Pacheco

    1995-01-01

    Timber supply modeling has evolved from examining inventory sustainability based on growth/drain relationships to sophisticated inventory and supply models. These analyses have consistently recognized regional, ownership (public/private), and species group (hardwood/softwood) differences. Recognition of product differences is fundamental to market analysis which...

  7. Comparison of geochemical data obtained using four brine sampling methods at the SECARB Phase III Anthropogenic Test CO2 injection site, Citronelle Oil Field, Alabama

    USGS Publications Warehouse

    Conaway, Christopher; Thordsen, James J.; Manning, Michael A.; Cook, Paul J.; Trautz, Robert C.; Thomas, Burt; Kharaka, Yousif K.

    2016-01-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a characterization well in the Citronelle Oil Field, Alabama, as part of the Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test, which is an integrated carbon capture and storage project. In this study, formation water and gas samples were obtained from well D-9-8 #2 at Citronelle using gas lift, electric submersible pump, U-tube, and a downhole vacuum sampler (VS) and subjected to both field and laboratory analyses. Field chemical analyses included electrical conductivity, dissolved sulfide concentration, alkalinity, and pH; laboratory analyses included major, minor and trace elements, dissolved carbon, volatile fatty acids, free and dissolved gas species. The formation water obtained from this well is a Na–Ca–Cl-type brine with a salinity of about 200,000 mg/L total dissolved solids. Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity. There was little gas in samples, and gas composition results were strongly influenced by sampling methods. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the VS and U-tube system performing most favorably in this aspect.

  8. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  9. The Viking gas exchange experiment results from Chryse and Utopia surface samples

    NASA Technical Reports Server (NTRS)

    Oyama, V. I.; Berdahl, B. J.

    1977-01-01

    Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by gamma Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, not greater than 0.15%; Ar, 1.5% and CO2, 96.2%.

  10. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  11. An experimental study on premixed CNG/H2/CO2 mixture flames

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  12. Modeling Flows Around Merging Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.

  13. Herschel Shines Light on the Episodic Evolutionary Sequence of Protostars

    NASA Astrophysics Data System (ADS)

    Green, Joel D.; DIGIT; FOOSH; COPS Teams

    2014-01-01

    New far-infrared and submillimeter spectroscopic capabilities, along with moderate spatial and spectral resolution, provide the opportunity to study the diversity of shocks, accretion processes, and compositions of the envelopes of developing protostellar objects in nearby molecular clouds. We present the "COPS" (CO in Protostars) sample; a statistical analysis of the full sample of 30 Class 0/I protostars from the "DIGIT" Key project using Herschel-PACS/SPIRE 50-700 micron spectroscopy. We consider the sample as a whole in characteristic spectral lines, using a standardized data reduction procedure for all targets, and analyze the differences in the continuum and gas over the full sample, presenting an overview of trends. We compare the sources in evolutionary state, envelope mass, and gas properties to more evolved sources from the"FOOSH'' (FUor) samples.

  14. A Process to Reduce DC Ingot Butt Curl and Swell

    NASA Astrophysics Data System (ADS)

    Yu, Ho

    1980-11-01

    A simple and effective process to reduce DC ingot butt curl and swell has been developed in the Ingot Casting Division of Alcoa Technical Center.1 In the process, carbon dioxide gas is dissolved under high pressure into the ingot cooling water upstream of the mold during the first several inches of the ingot cast. As the cooling water exits from the mold, the dissolved gas evolves as micron-size bubbles, forming a temporary effective insulation layer on the ingot surface. This reduces thermal stress in the ingot butt. An insulation pad covering about 60% of the bottom block is used in conjunction with the carbon dioxide injection when maximum butt swell reduction is desired. The process, implemented in four Alcoa ingot plants, has proven extremely successful.

  15. Search for life on Mars: Evaluation of techniques

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1995-01-01

    An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, a-proton backscatter, g-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voorhees, D.R.; Rossmassler, R.L.; Zimmer, G.

    The tritium analytical system at TFTR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer (QMS) and beta scintillator originally configured at Monsanto Mound Research Laboratory. The system was commissioned and tested in 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and effluent gases from the tokamak. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussionmore » of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere. 7 refs., 3 figs.« less

  17. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  18. Deep-sea geohazards in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  19. Variations in Metallicity and Gas Content in Spiral Galaxies: Accidents of Infall

    NASA Astrophysics Data System (ADS)

    Shields, Gregory A.; Robertson, P.; Dave, R.; Blanc, G. A.; Wright, A.

    2013-01-01

    Oxygen abundances are elevated in hydrogen deficient spirals in the Virgo and Pegasus clusters (Robertson et al. 2012, ApJ 748:48, and references therein). We confirm the relationship between O/H and H I deficiency "DEF" for an additional set of cluster spirals. In addition, we find that field spirals show a similar increase in O/H with DEF. Thus, the relationship is not uniquely the result of environmental processes in clusters. Cosmological simulations of galaxy formation predict a qualitatively similar trend of O/H with DEF for field spirals. This reflects excursions of gas content and metallicity above and below the mean mass-metallicity relationship as galaxies evolve. These excursions result from the stochastic effects of mergers and merger-free periods during the evolution.

  20. Hydrogen production by a thermophilic blue-green alga Mastigocladus laminosus

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Yokoyama, H.; Miyamoto, K.; Okazaki, M.; Komemushi, S.

    Light-driven hydrogen evolution by a thermophilic blue-green alga, Mastigocladus laminosus, was demonstrated and characterized under nitrogen-starved conditions. Air-grown cultures of this alga evolved hydrogen under Ar/CO2 at rates up to 2.2 ml/mg chl/hr. The optimum temperature and pH for the hydrogen evolution were 44-49 C and pH 7.0-7.5, respectively. Evolution in light was depressed by N2 gas and inhibited by salicylaldoxime or 2,4-dinitrophenol, indicating that nitrogenase was mainly responsible for the hydrogen evolution. The evolution rate was improved by adding carbon monoxide and acetylene to the gas phase of Ar/CO2. In addition, photobiological production of hydrogen (biophotolysis) by various blue-green algae is briefly reviewed and discussed.

Top