Policy-Based Middleware for QoS Management and Signaling in the Evolved Packet System
NASA Astrophysics Data System (ADS)
Good, Richard; Gouveia, Fabricio; Magedanz, Thomas; Ventura, Neco
The 3GPP are currently finalizing their Evolved Packet System (EPS) with the Evolved Packet Core (EPC) central to this framework. The EPC is a simplified, flat, all IP-based architecture that supports mobility between heterogeneous access networks and incorporates an evolved QoS concept based on the 3GPP Policy Control and Charging (PCC) framework. The IP Multimedia Subsystem (IMS) is an IP service element within the EPS, introduced for the rapid provisioning of innovative multimedia services. The evolved PCC framework extends the scope of operation and defines new interactions - in particular the S9 reference point is introduced to facilitate inter-domain PCC communication. This paper proposes an enhancement to the IMS/PCC framework that uses SIP routing information to discover signaling and media paths. This mechanism uses standardized IMS/PCC operations and allows applications to effectively issue resource requests from their home domain enabling QoS-connectivity across multiple domains. Because the mechanism operates at the service control layer it does not require any significant transport layer modifications or the sharing of potentially sensitive internal topology information. The evolved PCC architecture and inter-domain route discovery mechanisms were implemented in an evaluation testbed and performed favorably without adversely effecting end user experience.
A robust low-rate coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.; Arikan, E. (Editor)
1991-01-01
Due to the rapidly evolving field of image processing and networking, video information promises to be an important part of telecommunication systems. Although up to now video transmission has been transported mainly over circuit-switched networks, it is likely that packet-switched networks will dominate the communication world in the near future. Asynchronous transfer mode (ATM) techniques in broadband-ISDN can provide a flexible, independent and high performance environment for video communication. For this paper, the network simulator was used only as a channel in this simulation. Mixture blocking coding with progressive transmission (MBCPT) has been investigated for use over packet networks and has been found to provide high compression rate with good visual performance, robustness to packet loss, tractable integration with network mechanics and simplicity in parallel implementation.
NASA Astrophysics Data System (ADS)
Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru
This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.
Anderson localization and Mott insulator phase in the time domain
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radic, J.; Bacic, V.; Jukic, D.
We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.
Packet Capture Solutions: PcapDB Benchmark for High-Bandwidth Capture, Storage, and Searching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinfadt, Shannon Irene; Ferrell, Paul Steven
PcapDB stands alone when looking at the overall field of competitors, from the cost-effective COTS hardware, to the efficient utilization of disk space that enables a longer packet history. A scalable, 100GbE-enabled system that indexes every packet and indexes flow data without complicated load-balancing requirements. The Transport Layer search and indexing approach led to patent-pending flow indexing technology, providing a specialized database system specifically optimized around providing fast flow searches. While there are a plethora of options in network packet capture, there are very few that are able to effectively manage capture rates of more than 10 Gb/s, distributed capturemore » and querying, and a responsive user interface. By far, the primary competitor in the market place is Endace and DeepSee; in addition to meeting the technical requirements we set out in this document, they provide technical support and a fully 'appliance like' system. In terms of cost, however, our experience has been that the yearly maintenance charges alone outstrip the entire hardware cost of solutions like PcapDB. Investment in cyber security research and development is a large part of what has enabled us to build the base of knowlegable workers needed to defend government resources in the rapidly evolving cyber security landscape. We believe projects like Bro, WireCap, and Farm do more than just fill temporary gaps in our capabilities. They give allow us to build the firm foundation needed to tackle the next generation of cyber challenges. PcapDB was built with loftier ambitions than simply solving the packet capture of a single lab site, but instead to provide a robust, scaleable packet capture solution to the DOE complex and beyond.« less
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
Analysis of QoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes
Skorin-Kapov, Lea; Matijasevic, Maja
2010-01-01
E-Health services comprise a broad range of healthcare services delivered by using information and communication technology. In order to support existing as well as emerging e-Health services over converged next generation network (NGN) architectures, there is a need for network QoS control mechanisms that meet the often stringent requirements of such services. In this paper, we evaluate the QoS support for e-Health services in the context of the Evolved Packet System (EPS), specified by the Third Generation Partnership Project (3GPP) as a multi-access all-IP NGN. We classify heterogeneous e-Health services based on context and network QoS requirements and propose a mapping to existing 3GPP QoS Class Identifiers (QCIs) that serve as a basis for the class-based QoS concept of the EPS. The proposed mapping aims to provide network operators with guidelines for meeting heterogeneous e-Health service requirements. As an example, we present the QoS requirements for a prototype e-Health service supporting tele-consultation between a patient and a doctor and illustrate the use of the proposed mapping to QCIs in standardized QoS control procedures. PMID:20976301
Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.
2018-02-01
The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.
Interactive Particle Visualization
NASA Astrophysics Data System (ADS)
Gribble, Christiaan P.
Particle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. This chapter discusses two approaches to interactive particle visualization that satisfy these goals: one targeting desktop systems equipped with programmable graphics hardware, and the other targeting moderately sized multicore systems using packet-based ray tracing.
Quantum-shutter approach to tunneling time scales with wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge
2005-07-15
The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less
Network speech systems technology program
NASA Astrophysics Data System (ADS)
Weinstein, C. J.
1981-09-01
This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.
Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction
NASA Astrophysics Data System (ADS)
Rosaler, Joshua
2018-03-01
This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.
Packet flow monitoring tool and method
Thiede, David R [Richland, WA
2009-07-14
A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Vlijm, R.; Ganahl, M.; Fioretto, D.; Brockmann, M.; Haque, M.; Evertz, H. G.; Caux, J.-S.
2015-12-01
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows for the study of scattering displacements from spin-block states, showing similar scattering displacement features.
2006-08-25
interleaving schemes defined in 802.11a standard, although only 6 Mbps data rate with BPSK and 1/2 Convolutional coding and puncturing is used in our...16-QAM/64-QAM Convolutional Code K = 7 (64 states) K = 7 (64 states) Coding Rates 1/2, 2/3, 3/4 1/2, 2/3, 3/4 Channel Spacing (MHz) 20 10 Signal...Since 3G systems need to be backward compatible with 2G systems, they are a combination of existing and evolved equipments with data rate up to 2 Mbps
Sampled-Data Consensus of Linear Multi-agent Systems With Packet Losses.
Zhang, Wenbing; Tang, Yang; Huang, Tingwen; Kurths, Jurgen
In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.In this paper, the consensus problem is studied for a class of multi-agent systems with sampled data and packet losses, where random and deterministic packet losses are considered, respectively. For random packet losses, a Bernoulli-distributed white sequence is used to describe packet dropouts among agents in a stochastic way. For deterministic packet losses, a switched system with stable and unstable subsystems is employed to model packet dropouts in a deterministic way. The purpose of this paper is to derive consensus criteria, such that linear multi-agent systems with sampled-data and packet losses can reach consensus. By means of the Lyapunov function approach and the decomposition method, the design problem of a distributed controller is solved in terms of convex optimization. The interplay among the allowable bound of the sampling interval, the probability of random packet losses, and the rate of deterministic packet losses are explicitly derived to characterize consensus conditions. The obtained criteria are closely related to the maximum eigenvalue of the Laplacian matrix versus the second minimum eigenvalue of the Laplacian matrix, which reveals the intrinsic effect of communication topologies on consensus performance. Finally, simulations are given to show the effectiveness of the proposed results.
Speech transport for packet telephony and voice over IP
NASA Astrophysics Data System (ADS)
Baker, Maurice R.
1999-11-01
Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.
Integrated Model for Performance Analysis of All-Optical Multihop Packet Switches
NASA Astrophysics Data System (ADS)
Jeong, Han-You; Seo, Seung-Woo
2000-09-01
The overall performance of an all-optical packet switching system is usually determined by two criteria, i.e., switching latency and packet loss rate. In some real-time applications, however, in which packets arriving later than a timeout period are discarded as loss, the packet loss rate becomes the most dominant criterion for system performance. Here we focus on evaluating the performance of all-optical packet switches in terms of the packet loss rate, which normally arises from the insufficient hardware or the degradation of an optical signal. Considering both aspects, we propose what we believe is a new analysis model for the packet loss rate that reflects the complicated interactions between physical impairments and system-level parameters. On the basis of the estimation model for signal quality degradation in a multihop path we construct an equivalent analysis model of a switching network for evaluating an average bit error rate. With the model constructed we then propose an integrated model for estimating the packet loss rate in three architectural examples of multihop packet switches, each of which is based on a different switching concept. We also derive the bounds on the packet loss rate induced by bit errors. Finally, it is verified through simulation studies that our analysis model accurately predicts system performance.
Jasemian, Yousef; Arendt-Nielsen, Lars
2005-01-01
A generic, realtime wireless telemedicine system has been developed that uses the Bluetooth protocol and the general packet radio service for mobile phones. The system was tested on 10 healthy volunteers, by continuous monitoring of their electrocardiograms (ECGs). Under realistic conditions, the system had 96.5% uptime, a data throughput of 3.3 kbit/s, a mean packet error rate of 8.5x10(-3) packet/s and a mean packet loss rate of 8.2x10(-3) packet/s. During 24 h testing, the total average downtime was 66 min and 90% of the periods of downtime were of only 1-3 min duration. Less than 10% of the ECGs were of unacceptable quality. Thus, the generic telemedicine system showed high reliability and performance, and the design may provide a foundation for realtime monitoring in clinical practice, for example in cardiology.
Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations
NASA Astrophysics Data System (ADS)
Hau, Jan-Niklas; Müller, Björn
2018-01-01
We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.
Ultra-bright pulsed electron beam with low longitudinal emittance
Zolotorev, Max
2010-07-13
A high-brightness pulsed electron source, which has the potential for many useful applications in electron microscopy, inverse photo-emission, low energy electron scattering experiments, and electron holography has been described. The source makes use of Cs atoms in an atomic beam. The source is cycled beginning with a laser pulse that excites a single Cs atom on average to a band of high-lying Rydberg nP states. The resulting valence electron Rydberg wave packet evolves in a nearly classical Kepler orbit. When the electron reaches apogee, an electric field pulse is applied that ionizes the atom and accelerates the electron away from its parent ion. The collection of electron wave packets thus generated in a series of cycles can occupy a phase volume near the quantum limit and it can possess very high brightness. Each wave packet can exhibit a considerable degree of coherence.
A Practical Terrestrial Packet Radio Network.
1983-11-01
12 Howard Frank, Israel Gitman and Richard Van Slyke , "Packet Radio System--Network Considerations," AFIPS Conference Proceedings, Anaheim, 1975...p, 1396. 33 Howard Frank, Israel Gitman and Richard Van Slyke, "Packet Radio System--Network Considerations," AFIPS...44, 1975 NCC, Anaheim, pp. 233-242. J 149 I : Frank, Howard, Israel Gitman and Richard Van Slyke, "Packet Radio System — Network
I/O routing in a multidimensional torus network
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
2017-02-07
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.
I/O routing in a multidimensional torus network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Eisley, Noel A.; Heidelberger, Philip
A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destinationmore » address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.« less
Future developments in aeronautical satellite communications
NASA Technical Reports Server (NTRS)
Wood, Peter
1990-01-01
Very shortly aeronautical satellite communications will be introduced on a world wide basis. By the end of the year, voice communications (both to the cabin and cockpit) and packet data communications will be available to both airlines and executive aircraft. During the decade following the introduction of the system, there will be many enhancements and developments which will increase the range of applications, expand the potential number of users, and reduce costs. A number of ways in which the system is expected to evolve over this period are presented. Among the issues which are covered are the impact of spot beam satellites, spectrum and power conservation techniques, and the expanding range of user services.
Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno
Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less
NASA Astrophysics Data System (ADS)
Yuan, T.; Heale, C. J.; Snively, J. B.
2016-12-01
Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Experience with the EURECA Packet Telemetry and Packet Telecommand system
NASA Technical Reports Server (NTRS)
Sorensen, Erik Mose; Ferri, Paolo
1994-01-01
The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.
MIRAGE: The data acquisition, analysis, and display system
NASA Technical Reports Server (NTRS)
Rosser, Robert S.; Rahman, Hasan H.
1993-01-01
Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.
On-Line Fringe Tracking and Prediction at IOTA
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert; Lau, Sonie (Technical Monitor)
1999-01-01
The Infrared/Optical Telescope Array (IOTA) is a multi-aperture Michelson interferometer located on Mt. Hopkins near Tucson, Arizona. To enable viewing of fainter targets, an on-line fringe tracking system is presently under development at NASA Ames Research Center. The system has been developed off-line using actual data from IOTA, and is presently undergoing on-line implementation at IOTA. The system has two parts: (1) a fringe tracking system that identifies the center of a fringe packet by fitting a parametric model to the data; and (2) a fringe packet motion prediction system that uses characteristics of past fringe packets to predict fringe packet motion. Combined, this information will be used to optimize on-line the scanning trajectory, resulting in improved visibility of faint targets. Fringe packet identification is highly accurate and robust (99% of the 4000 fringe packets were identified correctly, the remaining 1% were either out of the scan range or too noisy to be seen) and is performed in 30-90 milliseconds on a Pentium II-based computer. Fringe packet prediction, currently performed using an adaptive linear predictor, delivers a 10% improvement over the baseline of predicting no motion.
Kent, Alexander Dale [Los Alamos, NM
2008-09-02
Methods and systems in a data/computer network for authenticating identifying data transmitted from a client to a server through use of a gateway interface system which are communicately coupled to each other are disclosed. An authentication packet transmitted from a client to a server of the data network is intercepted by the interface, wherein the authentication packet is encrypted with a one-time password for transmission from the client to the server. The one-time password associated with the authentication packet can be verified utilizing a one-time password token system. The authentication packet can then be modified for acceptance by the server, wherein the response packet generated by the server is thereafter intercepted, verified and modified for transmission back to the client in a similar but reverse process.
Research and development of a NYNEX switched multi-megabit data service prototype system
NASA Astrophysics Data System (ADS)
Maman, K. H.; Haines, Robert; Chatterjee, Samir
1991-02-01
Switched Multi-megabit Data Service (SMDS) is a proposed high-speed packet-switched service which will support broadband applications such as Local Area Network (LAN) interconnections across a metropolitan area and beyond. This service is designed to take advantage of evolving Metropolitan Area Network (MAN) standards and technology which will provide customers with 45-mbps and 1 . 5-mbps access to high-speed public data communications networks. This paper will briefly discuss SMDS and review its architecture including the Subscriber Network Interface (SNI) and the SMDS Interface Protocol (SIP). It will review the fundamental features of SMDS such as address screening addressing scheme and access classes. Then it will describe the SMDS prototype system developed in-house by NYNEX Science Technology.
Dispatching packets on a global combining network of a parallel computer
Almasi, Gheorghe [Ardsley, NY; Archer, Charles J [Rochester, MN
2011-07-19
Methods, apparatus, and products are disclosed for dispatching packets on a global combining network of a parallel computer comprising a plurality of nodes connected for data communications using the network capable of performing collective operations and point to point operations that include: receiving, by an origin system messaging module on an origin node from an origin application messaging module on the origin node, a storage identifier and an operation identifier, the storage identifier specifying storage containing an application message for transmission to a target node, and the operation identifier specifying a message passing operation; packetizing, by the origin system messaging module, the application message into network packets for transmission to the target node, each network packet specifying the operation identifier and an operation type for the message passing operation specified by the operation identifier; and transmitting, by the origin system messaging module, the network packets to the target node.
Packet loss mitigation for biomedical signals in healthcare telemetry.
Garudadri, Harinath; Baheti, Pawan K
2009-01-01
In this work, we propose an effective application layer solution for packet loss mitigation in the context of Body Sensor Networks (BSN) and healthcare telemetry. Packet losses occur due to many reasons including excessive path loss, interference from other wireless systems, handoffs, congestion, system loading, etc. A call for action is in order, as packet losses can have extremely adverse impact on many healthcare applications relying on BAN and WAN technologies. Our approach for packet loss mitigation is based on Compressed Sensing (CS), an emerging signal processing concept, wherein significantly fewer sensor measurements than that suggested by Shannon/Nyquist sampling theorem can be used to recover signals with arbitrarily fine resolution. We present simulation results demonstrating graceful degradation of performance with increasing packet loss rate. We also compare the proposed approach with retransmissions. The CS based packet loss mitigation approach was found to maintain up to 99% beat-detection accuracy at packet loss rates of 20%, with a constant latency of less than 2.5 seconds.
Advanced optical components for next-generation photonic networks
NASA Astrophysics Data System (ADS)
Yoo, S. J. B.
2003-08-01
Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies and their role in the Next Generation Photonic Networks.
Framework based on stochastic L-Systems for modeling IP traffic with multifractal behavior
NASA Astrophysics Data System (ADS)
Salvador, Paulo S.; Nogueira, Antonio; Valadas, Rui
2003-08-01
In a previous work we have introduced a multifractal traffic model based on so-called stochastic L-Systems, which were introduced by biologist A. Lindenmayer as a method to model plant growth. L-Systems are string rewriting techniques, characterized by an alphabet, an axiom (initial string) and a set of production rules. In this paper, we propose a novel traffic model, and an associated parameter fitting procedure, which describes jointly the packet arrival and the packet size processes. The packet arrival process is modeled through a L-System, where the alphabet elements are packet arrival rates. The packet size process is modeled through a set of discrete distributions (of packet sizes), one for each arrival rate. In this way the model is able to capture correlations between arrivals and sizes. We applied the model to measured traffic data: the well-known pOct Bellcore, a trace of aggregate WAN traffic and two traces of specific applications (Kazaa and Operation Flashing Point). We assess the multifractality of these traces using Linear Multiscale Diagrams. The suitability of the traffic model is evaluated by comparing the empirical and fitted probability mass and autocovariance functions; we also compare the packet loss ratio and average packet delay obtained with the measured traces and with traces generated from the fitted model. Our results show that our L-System based traffic model can achieve very good fitting performance in terms of first and second order statistics and queuing behavior.
Yousef, Jasemian; Lars, A N
2005-06-22
This paper validates the integration of a generic real-time wireless telemedicine system utilising Global System for Mobile Communications (GSM), BLUETOOTH protocol and General Packet Radio Service (GPRS) for cellular network in clinical practice. In the first experiment, the system was tested on 24 pacemaker patients at Aalborg Hospital (Denmark), in order to see if the pacemaker implant would be affected by the system. I the second experiment, the system was tested on 15 non risky arrhythmia heart patients, in order to evaluate and validate the system application in clinical practice, for patient monitoring. Electrocardiograms were selected as the continuously monitored parameter in the present study. The results showed that the system had no negative effects on the pacemaker implants. The experiment results showed, that in a realistic environment for the patients, the system had 96.1 % up-time, 3.2 (kbps) throughput, 10(-3) (packet/s) Packet Error Rate and 10(-3) (packet/s) Packet Lost Rate. During 24 hours test the network did not respond for 57 minutes, from which 83.1 % was in the range of 0-3 minutes, 15.4 % was in the range of 3-5 minutes, and only 0.7 % of the down-time was > or = 5 and < or = 6 minutes. By a subjective evaluation, it was demonstrated that the system is applicable and the patients as well as the healthcare personals were highly confident with the system. Moreover, the patients had high degree of mobility and freedom, employing the system. In conclusion, this generic telemedicine system showed a high reliability, quality and performance, and the design can provide a basic principle for real-time wireless remote monitoring systems used in clinical practice.
Spacelab Program: Conversion of Spacelab to packet data format. Flight system study
NASA Technical Reports Server (NTRS)
1981-01-01
A study of packetization of the Spacelab data handling system, including the alternate approaches considered and the supporting rationale, is described. It is concluded that it is well within today's state of the art in microelectronics to implement either a full or hybrid packet data system on board the Spacelab. Of the two, the hybrid system is preferred because of the significant cost saving.
Analysis of the packet formation process in packet-switched networks
NASA Astrophysics Data System (ADS)
Meditch, J. S.
Two new queueing system models for the packet formation process in packet-switched telecommunication networks are developed, and their applications in process stability, performance analysis, and optimization studies are illustrated. The first, an M/M/1 queueing system characterization of the process, is a highly aggregated model which is useful for preliminary studies. The second, a marked extension of an earlier M/G/1 model, permits one to investigate stability, performance characteristics, and design of the packet formation process in terms of the details of processor architecture, and hardware and software implementations with processor structure and as many parameters as desired as variables. The two new models together with the earlier M/G/1 characterization span the spectrum of modeling complexity for the packet formation process from basic to advanced.
Wave-variable framework for networked robotic systems with time delays and packet losses
NASA Astrophysics Data System (ADS)
Puah, Seng-Ming; Liu, Yen-Chen
2017-05-01
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.
NASA Technical Reports Server (NTRS)
Easley, Wesley C.; Carter, Donald; Mcluer, David G.
1994-01-01
An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.
Packet telemetry and packet telecommand - The new generation of spacecraft data handling techniques
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1983-01-01
Because of rising costs and reduced reliability of spacecraft and ground network hardware and software customization, standardization Packet Telemetry and Packet Telecommand concepts are emerging as viable alternatives. Autonomous packets of data, within each concept, which are created within ground and space application processes through the use of formatting techniques, are switched end-to-end through the space data network to their destination application processes through the use of standard transfer protocols. This process may result in facilitating a high degree of automation and interoperability because of completely mission-independent-designed intermediate data networks. The adoption of an international guideline for future space telemetry formatting of the Packet Telemetry concept, and the advancement of the NASA-ESA Working Group's Packet Telecommand concept to a level of maturity parallel to the of Packet Telemetry are the goals of the Consultative Committee for Space Data Systems. Both the Packet Telemetry and Packet Telecommand concepts are reviewed.
An optical disk archive for a data base management system
NASA Technical Reports Server (NTRS)
Thomas, Douglas T.
1985-01-01
An overview is given of a data base management system that can catalog and archive data at rates up to 50M bits/sec. Emphasis is on the laser disk system that is used for the archive. All key components in the system (3 Vax 11/780s, a SEL 32/2750, a high speed communication interface, and the optical disk) are interfaced to a 100M bits/sec 16-port fiber optic bus to achieve the high data rates. The basic data unit is an autonomous data packet. Each packet contains a primary and secondary header and can be up to a million bits in length. The data packets are recorded on the optical disk at the same time the packet headers are being used by the relational data base management software ORACLE to create a directory independent of the packet recording process. The user then interfaces to the VAX that contains the directory for a quick-look scan or retrieval of the packet(s). The total system functions are distributed between the VAX and the SEL. The optical disk unit records the data with an argon laser at 100M bits/sec from its buffer, which is interfaced to the fiber optic bus. The same laser is used in the read cycle by reducing the laser power. Additional information is given in the form of outlines, charts, and diagrams.
NASA Technical Reports Server (NTRS)
Hooke, A. J.
1979-01-01
A set of standard telemetry protocols for downlink data flow facilitating the end-to-end transport of instrument data from the spacecraft to the user in real time is proposed. The direct switching of data by autonomous message 'packets' that are assembled by the source instrument on the spacecraft is discussed. The data system consists thus of a format on a message rather than word basis, and such packet telemetry would include standardized protocol headers. Standards are being developed within the NASA End-to-End Data System (NEEDS) program for the source packet and transport frame protocols. The source packet protocol contains identification of both the sequence number of the packet as it is generated by the source and the total length of the packet, while the transport frame protocol includes a sequence count defining the serial number of the frame as it is generated by the spacecraft data system, and a field specifying any 'options' selected in the format of the frame itself.
NASA Astrophysics Data System (ADS)
Moayedi, Maryam; Foo, Yung Kuan; Chai Soh, Yeng
2011-03-01
The minimum-variance filtering problem in networked control systems, where both random measurement transmission delays and packet dropouts may occur, is investigated in this article. Instead of following the many existing results that solve the problem by using probabilistic approaches based on the probabilities of the uncertainties occurring between the sensor and the filter, we propose a non-probabilistic approach by time-stamping the measurement packets. Both single-measurement and multiple measurement packets are studied. We also consider the case of burst arrivals, where more than one packet may arrive between the receiver's previous and current sampling times; the scenario where the control input is non-zero and subject to delays and packet dropouts is examined as well. It is shown that, in such a situation, the optimal state estimate would generally be dependent on the possible control input. Simulations are presented to demonstrate the performance of the various proposed filters.
Packet utilisation definitions for the ESA XMM mission
NASA Technical Reports Server (NTRS)
Nye, H. R.
1994-01-01
XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service.
Sliding Mode Control for Discrete-Time Systems With Markovian Packet Dropouts.
Song, Heran; Chen, Shih-Chi; Yam, Yeung
2017-11-01
This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1983-03-01
This Semi-Annual Technical Report covers research covering the period from October 1, 1982 to March 31, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a treatment of single- and multi-hop packet radio systems. In particular, the main body consists of a Ph.D. dissertation, Analysis of Throughput and Delay for Single- and Multi-Hop Packet Radio Networks. The work presents a new approach to evaluating the performance of multi-hop packet radio networks, namely, a study of the times between successful transmissions. Also studied is the behavior of packets in a multi-hop system when a fixed transmission radius is specified and this radius is then optimized for throughput. A Markov chain model is also introduced and solved numerically to evaluate transmission and flow control strategies in these systems.
Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…
A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.
Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R
2018-05-01
This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Prediction of transmission distortion for wireless video communication: analysis.
Chen, Zhifeng; Wu, Dapeng
2012-03-01
Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.
Standard services for the capture, processing, and distribution of packetized telemetry data
NASA Technical Reports Server (NTRS)
Stallings, William H.
1989-01-01
Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.
NASA Astrophysics Data System (ADS)
Sui, Xin; Yang, Yongqing; Xu, Xianyun; Zhang, Shuai; Zhang, Lingzhong
2018-02-01
This paper investigates the consensus of multi-agent systems with probabilistic time-varying delays and packet losses via sampled-data control. On the one hand, a Bernoulli-distributed white sequence is employed to model random packet losses among agents. On the other hand, a switched system is used to describe packet dropouts in a deterministic way. Based on the special property of the Laplacian matrix, the consensus problem can be converted into a stabilization problem of a switched system with lower dimensions. Some mean square consensus criteria are derived in terms of constructing an appropriate Lyapunov function and using linear matrix inequalities (LMIs). Finally, two numerical examples are given to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Arvind, Pratul
2012-11-01
The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.
Development of optical packet and circuit integrated ring network testbed.
Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya
2011-12-12
We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America
New hybrid frequency reuse method for packet loss minimization in LTE network.
Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H
2015-11-01
This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.
Dispersionless wave packets in Dirac materials
NASA Astrophysics Data System (ADS)
Jakubský, Vít; Tušek, Matěj
2017-03-01
We show that a wide class of quantum systems with translational invariance can host dispersionless, soliton-like, wave packets. We focus on the setting where the effective, two-dimensional Hamiltonian acquires the form of the Dirac operator. The proposed framework for construction of the dispersionless wave packets is illustrated on silicene-like systems with topologically nontrivial effective mass. Our analytical predictions are accompanied by a numerical analysis and possible experimental realizations are discussed.
NASA Astrophysics Data System (ADS)
Bao, Xiurong; Zhao, Qingchun; Yin, Hongxi; Qin, Jie
2018-05-01
In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
Support for non-locking parallel reception of packets belonging to a single memory reception FIFO
Chen, Dong [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Salapura, Valentina [Yorktown Heights, NY; Senger, Robert M [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugawara, Yutaka [Yorktown Heights, NY
2011-01-27
A method and apparatus for distributed parallel messaging in a parallel computing system. A plurality of DMA engine units are configured in a multiprocessor system to operate in parallel, one DMA engine unit for transferring a current packet received at a network reception queue to a memory location in a memory FIFO (rmFIFO) region of a memory. A control unit implements logic to determine whether any prior received packet destined for that rmFIFO is still in a process of being stored in the associated memory by another DMA engine unit of the plurality, and prevent the one DMA engine unit from indicating completion of storing the current received packet in the reception memory FIFO (rmFIFO) until all prior received packets destined for that rmFIFO are completely stored by the other DMA engine units. Thus, there is provided non-locking support so that multiple packets destined for a single rmFIFO are transferred and stored in parallel to predetermined locations in a memory.
NASA Astrophysics Data System (ADS)
Argha, Ahmadreza; Li, Li; W. Su, Steven
2017-04-01
This paper develops a novel stabilising sliding mode for systems involving uncertainties as well as measurement data packet dropouts. In contrast to the existing literature that designs the switching function by using unavailable system states, a novel linear sliding function is constructed by employing only the available communicated system states for the systems involving measurement packet losses. This also equips us with the possibility to build a novel switching component for discrete-time sliding mode control (DSMC) by using only available system states. Finally, using a numerical example, we evaluate the performance of the designed DSMC for networked systems.
US Topo Maps 2014: Program updates and research
Fishburn, Kristin A.
2014-01-01
The U. S. Geological Survey (USGS) US Topo map program is now in year two of its second three-year update cycle. Since the program was launched in 2009, the product and the production system tools and processes have undergone enhancements that have made the US Topo maps a popular success story. Research and development continues with structural and content product enhancements, streamlined and more fully automated workflows, and the evaluation of a GIS-friendly US Topo GIS Packet. In addition, change detection methodologies are under evaluation to further streamline product maintenance and minimize resource expenditures for production in the future. The US Topo map program will continue to evolve in the years to come, providing traditional map users and Geographic Information System (GIS) analysts alike with a convenient, freely available product incorporating nationally consistent data that are quality assured to high standards.
Quasi-soliton scattering in quantum spin chains
NASA Astrophysics Data System (ADS)
Fioretto, Davide; Vljim, Rogier; Ganahl, Martin; Brockmann, Michael; Haque, Masud; Evertz, Hans-Gerd; Caux, Jean-Sébastien
The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time evolution fits on the displacements. The TEBD algorithm allows for the study of scattering displacements from spin-block states, showing similar displacement scattering features.
Chen, Dong; Eisley, Noel A.; Steinmacher-Burow, Burkhard; Heidelberger, Philip
2013-01-29
A computer implemented method and a system for routing data packets in a multi-dimensional computer network. The method comprises routing a data packet among nodes along one dimension towards a root node, each node having input and output communication links, said root node not having any outgoing uplinks, and determining at each node if the data packet has reached a predefined coordinate for the dimension or an edge of the subrectangle for the dimension, and if the data packet has reached the predefined coordinate for the dimension or the edge of the subrectangle for the dimension, determining if the data packet has reached the root node, and if the data packet has not reached the root node, routing the data packet among nodes along another dimension towards the root node.
Distributed parallel messaging for multiprocessor systems
Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka
2013-06-04
A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.
The self-calibration method for multiple systems at the CHARA Array
NASA Astrophysics Data System (ADS)
O'Brien, David
The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry
Noh, Yun Hong; Jeong, Do Un
2014-07-15
In this paper, a packet generator using a pattern matching algorithm for real-time abnormal heartbeat detection is proposed. The packet generator creates a very small data packet which conveys sufficient crucial information for health condition analysis. The data packet envelopes real time ECG signals and transmits them to a smartphone via Bluetooth. An Android application was developed specifically to decode the packet and extract ECG information for health condition analysis. Several graphical presentations are displayed and shown on the smartphone. We evaluate the performance of abnormal heartbeat detection accuracy using the MIT/BIH Arrhythmia Database and real time experiments. The experimental result confirm our finding that abnormal heart beat detection is practically possible. We also performed data compression ratio and signal restoration performance evaluations to establish the usefulness of the proposed packet generator and the results were excellent.
NASA Astrophysics Data System (ADS)
Tseng, Kuo-Kun; Lo, Jiao; Liu, Yiming; Chang, Shih-Hao; Merabti, Madjid; Ng, Felix, C. K.; Wu, C. H.
2017-10-01
The rapid development of the internet has brought huge benefits and social impacts; however, internet security has also become a great problem for users, since traditional approaches to packet classification cannot achieve satisfactory detection performance due to their low accuracy and efficiency. In this paper, a new stateful packet inspection method is introduced, which can be embedded in the network gateway and used by a streaming application detection system. This new detection method leverages the inexact automaton approach, using part of the header field and part of the application layer data of a packet. Based on this approach, an advanced detection system is proposed for streaming applications. The workflow of the system involves two stages: the training stage and the detection stage. In the training stage, the system initially captures characteristic patterns from a set of application packet flows. After this training is completed, the detection stage allows the user to detect the target application by capturing new application flows. This new detection approach is also evaluated using experimental analysis; the results of this analysis show that this new approach not only simplifies the management of the state detection system, but also improves the accuracy of data flow detection, making it feasible for real-world network applications.
Performance Evaluation of Multihop Packet Radio Networks by Simulation
1987-03-01
Multihop Packet Radio Networks," Proc. IEEE, Vol. 75, No. 1, January 1987. [15] 1. Gitman , "On the Capacity of Slotted ALOHA Networks and Some Design...Networks in the Presence of Noise," Proc. Infocom, Washington D. C., April 1985 [40] H. Frank, I. Gitman and R. Van Slyke, " Packet Radio System
SpaceWire Protocol ID: What Does It Mean To You?
NASA Technical Reports Server (NTRS)
Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parks, Steve
2006-01-01
Spacewire is becoming a popular solution for satellite high-speed data buses because it is a simple standard that provides great flexibility for a wide range of system requirements. It is simple in packet format and protocol, allowing users to easily tailor their implementation for their specific application. Some of the attractive aspects of Spacewire that make it easy to implement also make it hard for future reuse. Protocol reuse is difficult because Spacewire does not have a defined mechanism to communicate with the higher layers of the protocol stack. This has forced users of Spacewire to define unique packet formats and define how these packets are to be processed. Each mission writes their own Interface Control Document (ICD) and tailors Spacewire for their specific requirements making reuse difficult. Part of the reason for this habit may be because engineers typically optimize designs for their own requirements in the absence of a standard. This is an inefficient use of project resources and costs more to develop missions. A new packet format for Spacewire has been defined as a solution for this problem. This new packet format is a compliment to the Spacewire standard that will support protocol development upon Spacewire. The new packet definition does not replace the current packet structure, i.e., does not make the standard obsolete, but merely extends the standard for those who want to develop protocols over Spacewire. The Spacewire packet is defined with the first part being the Destination Address, which may be one or more bytes. This is followed by the packet cargo, which is user defined. The cargo is truncated with an End-Of-Packet (EOP) marker. This packet structure offers low packet overhead and allows the user to define how the contents are to be formatted. It also provides for many different addressing schemes, which provide flexibility in the system. This packet flexibility is typically an attractive part of the Spacewire. The new extended packet format adds one new field to the packet that greatly enhances the capability of Spacewire. This new field called the Protocol Identifier (ID) is used to identify the packet contents and the associated processing for the packet. This feature along with the restriction in the packet format that uses the Protocol ID, allows a deterministic method of decoding packets that was not before possible. The first part of the packet is still the Destination Address, which still conforms to the original standard but with one restriction. The restriction is that the first byte seen at the destination by the user needs to be a logical address, independent of the addressing scheme used. The second field is defined as the Protocol ID, which is usually one byte in length. The packet cargo (user defined) follows the Protocol ID. After the packet cargo is the EOP, which defines the end of packet. The value of the Protocol ID is assigned by the Spacewire working group and the protocol description published for others to use. The development of Protocols for Spacewire is currently the area of greatest activity by the Spacewire working group. The first protocol definition by the working group has been completed and is now in the process of formal standardization. There are many other protocols in development for missions that have not yet received formal Protocol ID assignment, but even if the protocols are not formally assigned a value, this effort will provide synergism for future developments.
Wireless Avionics Packet to Support Fault Tolerance for Flight Applications
NASA Technical Reports Server (NTRS)
Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad
2009-01-01
In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit.
Symplectic semiclassical wave packet dynamics II: non-Gaussian states
NASA Astrophysics Data System (ADS)
Ohsawa, Tomoki
2018-05-01
We generalize our earlier work on the symplectic/Hamiltonian formulation of the dynamics of the Gaussian wave packet to non-Gaussian semiclassical wave packets. We find the symplectic forms and asymptotic expansions of the Hamiltonians associated with these semiclassical wave packets, and obtain Hamiltonian systems governing their dynamics. Numerical experiments demonstrate that the dynamics give a very good approximation to the short-time dynamics of the expectation values computed by a method based on Egorov’s theorem or the initial value representation.
Auto Mechanics I. Learning Activity Packets (LAPs). Section C--Engine.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains five learning activity packets (LAPs) that outline the study activities for the "engine" instructional area for an Auto Mechanics I course. The five LAPs cover the following topics: basic engine principles, cooling system, engine lubrication system, exhaust system, and fuel system. Each LAP contains a cover sheet…
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
A self-interfering clock as a “which path” witness
NASA Astrophysics Data System (ADS)
Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron
2015-09-01
In Einstein’s general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global—all clocks “tick” uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets “tick” at different rates, to simulate a gravitational time lag, the clock time along each path yields “which path” information, degrading the pattern’s visibility. In contrast, in standard interferometry, time cannot yield “which path” information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world.
A self-interfering clock as a "which path" witness.
Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron
2015-09-11
In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. Copyright © 2015, American Association for the Advancement of Science.
Reddy, Ch Sridhar; Prasad, M Durga
2016-04-28
An effective time dependent approach based on a method that is similar to the Gaussian wave packet propagation (GWP) technique of Heller is developed for the computation of vibrationally resolved electronic spectra at finite temperatures in the harmonic, Franck-Condon/Hertzberg-Teller approximations. Since the vibrational thermal density matrix of the ground electronic surface and the time evolution operator on that surface commute, it is possible to write the spectrum generating correlation function as a trace of the time evolved doorway state. In the stated approximations, the doorway state is a superposition of the harmonic oscillator zero and one quantum eigenfunctions and thus can be propagated by the GWP. The algorithm has an O(N(3)) dependence on the number of vibrational modes. An application to pyrene absorption spectrum at two temperatures is presented as a proof of the concept.
A Gaussian wave packet phase-space representation of quantum canonical statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2015-07-28
We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.
Experimental evaluation of the impact of packet capturing tools for web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee
Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less
A scheme for synchronizing clocks connected by a packet communication network
NASA Astrophysics Data System (ADS)
dos Santos, R. V.; Monteiro, L. H. A.
2012-07-01
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values.
Ingestion of Laundry Detergent Packets in Children.
Shah, Lindsey Wilson
2016-08-01
Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). ©2016 American Association of Critical-Care Nurses.
NASA Technical Reports Server (NTRS)
Stehle, Roy H.; Ogier, Richard G.
1993-01-01
Alternatives for realizing a packet-based network switch for use on a frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary communication satellite were investigated. Each of the eight downlink beams supports eight directed dwells. The design needed to accommodate multicast packets with very low probability of loss due to contention. Three switch architectures were designed and analyzed. An output-queued, shared bus system yielded a functionally simple system, utilizing a first-in, first-out (FIFO) memory per downlink dwell, but at the expense of a large total memory requirement. A shared memory architecture offered the most efficiency in memory requirements, requiring about half the memory of the shared bus design. The processing requirement for the shared-memory system adds system complexity that may offset the benefits of the smaller memory. An alternative design using a shared memory buffer per downlink beam decreases circuit complexity through a distributed design, and requires at most 1000 packets of memory more than the completely shared memory design. Modifications to the basic packet switch designs were proposed to accommodate circuit-switched traffic, which must be served on a periodic basis with minimal delay. Methods for dynamically controlling the downlink dwell lengths were developed and analyzed. These methods adapt quickly to changing traffic demands, and do not add significant complexity or cost to the satellite and ground station designs. Methods for reducing the memory requirement by not requiring the satellite to store full packets were also proposed and analyzed. In addition, optimal packet and dwell lengths were computed as functions of memory size for the three switch architectures.
Learning Activity Packets for Auto Mechanics II. Section B--Electrical Systems.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
Six learning activity packets (LAPs) are provided for the instructional area of electrical systems in the auto mechanics II program. They accompany an instructor's guide available separately. The LAPs outline the study activities and performance tasks for these six units: (1) basic electrical theory, (2) battery service, (3) starting system, (4)…
High-performance dynamic quantum clustering on graphics processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittek, Peter, E-mail: peterwittek@acm.org
2013-01-15
Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up tomore » two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.« less
Graphics processing unit-assisted lossless decompression
Loughry, Thomas A.
2016-04-12
Systems and methods for decompressing compressed data that has been compressed by way of a lossless compression algorithm are described herein. In a general embodiment, a graphics processing unit (GPU) is programmed to receive compressed data packets and decompress such packets in parallel. The compressed data packets are compressed representations of an image, and the lossless compression algorithm is a Rice compression algorithm.
Abel, Francois [Rueschlikon, CH; Iliadis, Ilias [Rueschlikon, CH; Minkenberg, Cyriel J. A. [Adliswil, CH
2009-02-03
A method for allocating pending requests for data packet transmission at a number of inputs to a number of outputs of a switching system in successive time slots, including a matching method including the steps of providing a first request information in a first time slot indicating data packets at the inputs requesting transmission to the outputs of the switching system, performing a first step in the first time slot depending on the first request information to obtain a first matching information, providing a last request information in a last time slot successive to the first time slot, performing a last step in the last time slot depending on the last request information and depending on the first matching information to obtain a final matching information, and assigning the pending data packets at the number of inputs to the number of outputs based on the final matching information.
Two-point coherence of wave packets in turbulent jets
NASA Astrophysics Data System (ADS)
Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.
2017-02-01
An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-23
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Nodes vary a choice of routing policy for routing data in the network in a semi-random manner, so that similarly situated packets are not always routed along the same path. Semi-random variation of the routing policy tends to avoid certain local hot spots of network activity, which might otherwise arise using more consistent routing determinations. Preferably, the originating node chooses a routing policy for a packet, and all intermediate nodes in the path route the packet according to that policy. Policies may be rotated on a round-robin basis, selected by generating a random number, or otherwise varied.
End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change
NASA Astrophysics Data System (ADS)
Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro
This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.
Capture and playback synchronization in video conferencing
NASA Astrophysics Data System (ADS)
Shae, Zon-Yin; Chang, Pao-Chi; Chen, Mon-Song
1995-03-01
Packet-switching based video conferencing has emerged as one of the most important multimedia applications. Lip synchronization can be disrupted in the packet network as the result of the network properties: packet delay jitters at the capture end, network delay jitters, packet loss, packet arrived out of sequence, local clock mismatch, and video playback overlay with the graphic system. The synchronization problem become more demanding as the real time and multiparty requirement of the video conferencing application. Some of the above mentioned problem can be solved in the more advanced network architecture as ATM having promised. This paper will present some of the solutions to the problems that can be useful at the end station terminals in the massively deployed packet switching network today. The playback scheme in the end station will consist of two units: compression domain buffer management unit and the pixel domain buffer management unit. The pixel domain buffer management unit is responsible for removing the annoying frame shearing effect in the display. The compression domain buffer management unit is responsible for parsing the incoming packets for identifying the complete data blocks in the compressed data stream which can be decoded independently. The compression domain buffer management unit is also responsible for concealing the effects of clock mismatch, lip synchronization, and packet loss, out of sequence, and network jitters. This scheme can also be applied to the multiparty teleconferencing environment. Some of the schemes presented in this paper have been implemented in the Multiparty Multimedia Teleconferencing (MMT) system prototype at the IBM watson research center.
The ESA standard for telemetry and telecommand packet utilisation: PUS
NASA Technical Reports Server (NTRS)
Kaufeler, Jean-Francois
1994-01-01
ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).
NASA Technical Reports Server (NTRS)
Shyy, Dong-Jye; Redman, Wayne
1993-01-01
For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.
Furukawa, Hiroshi
2017-01-01
Round Robin based Intermittent Periodic Transmit (RR-IPT) has been proposed which achieves highly efficient multi-hop relays in multi-hop wireless backhaul networks (MWBN) where relay nodes are 2-dimensionally deployed. This paper newly investigates multi-channel packet scheduling and forwarding scheme for RR-IPT. Downlink traffic is forwarded by RR-IPT via one of the channels, while uplink traffic and part of downlink are accommodated in the other channel. By comparing IPT and carrier sense multiple access with collision avoidance (CSMA/CA) for uplink/downlink packet forwarding channel, IPT is more effective in reducing packet loss rate whereas CSMA/CA is better in terms of system throughput and packet delay improvement. PMID:29137164
A packet switched communications system for GRO
NASA Astrophysics Data System (ADS)
Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph
1993-11-01
This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.
Experimental Packet Radio System Design Plan
1974-03-13
specific design parameters (packet format, data rates, modulation type, spread factor, etc.) for the initial system configuration. c. Prototype...are described along with size, weight and power estimates, and projections of per- formance parameters . d. Measurement and Test. The plan...are presented covering the communications link, system parameters , and various levels of network operation and performance. This plan is a snapshot
Interface Supports Lightweight Subsystem Routing for Flight Applications
NASA Technical Reports Server (NTRS)
Lux, James P.; Block, Gary L.; Ahmad, Mohammad; Whitaker, William D.; Dillon, James W.
2010-01-01
A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.
Auto Mechanics I. Learning Activity Packets (LAPs). Section D--Suspension.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This document contains six learning activity packets (LAPs) that outline the study activities for the "suspension" instructional area for an Auto Mechanics I course. The six LAPs cover the following topics: wheel bearings, tires and wheels, wheel balancing, suspension system, steering system, and wheel alignment. Each LAP contains a…
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Harmonic wavelet packet transform for on-line system health diagnosis
NASA Astrophysics Data System (ADS)
Yan, Ruqiang; Gao, Robert X.
2004-07-01
This paper presents a new approach to on-line health diagnosis of mechanical systems, based on the wavelet packet transform. Specifically, signals acquired from vibration sensors are decomposed into sub-bands by means of the discrete harmonic wavelet packet transform (DHWPT). Based on the Fisher linear discriminant criterion, features in the selected sub-bands are then used as inputs to three classifiers (Nearest Neighbor rule-based and two Neural Network-based), for system health condition assessment. Experimental results have confirmed that, comparing to the conventional approach where statistical parameters from raw signals are used, the presented approach enabled higher signal-to-noise ratio for more effective and intelligent use of the sensory information, thus leading to more accurate system health diagnosis.
Multi-protocol header generation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, David A.; Ignatowski, Michael; Jayasena, Nuwan
A communication device includes a data source that generates data for transmission over a bus, and a data encoder that receives and encodes outgoing data. An encoder system receives outgoing data from a data source and stores the outgoing data in a first queue. An encoder encodes outgoing data with a header type that is based upon a header type indication from a controller and stores the encoded data that may be a packet or a data word with at least one layered header in a second queue for transmission. The device is configured to receive at a payload extractor,more » a packet protocol change command from the controller and to remove the encoded data and to re-encode the data to create a re-encoded data packet and placing the re-encoded data packet in the second queue for transmission.« less
NASA Astrophysics Data System (ADS)
Jia, Chaoqing; Hu, Jun; Chen, Dongyan; Liu, Yurong; Alsaadi, Fuad E.
2018-07-01
In this paper, we discuss the event-triggered resilient filtering problem for a class of time-varying systems subject to stochastic uncertainties and successive packet dropouts. The event-triggered mechanism is employed with hope to reduce the communication burden and save network resources. The stochastic uncertainties are considered to describe the modelling errors and the phenomenon of successive packet dropouts is characterized by a random variable obeying the Bernoulli distribution. The aim of the paper is to provide a resilient event-based filtering approach for addressed time-varying systems such that, for all stochastic uncertainties, successive packet dropouts and filter gain perturbation, an optimized upper bound of the filtering error covariance is obtained by designing the filter gain. Finally, simulations are provided to demonstrate the effectiveness of the proposed robust optimal filtering strategy.
Increasingly minimal bias routing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataineh, Abdulla; Court, Thomas; Roweth, Duncan
2017-02-21
A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).
Transfer of a wave packet in double-well potential
NASA Astrophysics Data System (ADS)
Yang, Hai-Feng; Hu, Yao-Hua; Tan, Yong-Gang
2018-04-01
Energy potentials with double-well structures are typical in atoms and molecules systems. A manipulation scheme using Half Cycles Pulses (HCPs) is proposed to transfer a Gaussian wave packet between the two wells. On the basis of quantum mechanical simulations, the time evolution and the energy distribution of the wave packet are evaluated. The effect of time parameters, amplitude, and number of HCPs on spatial and energy distribution of the final state and transfer efficiency are investigated. After a carefully tailored HCPs sequence is applied to the initial wave packet localized in one well, the final state is a wave packet localized in the other well and populated at the lower energy levels with narrower distribution. The present scheme could be used to control molecular reactions and to prepare atoms with large dipole moments.
Fast WEP-Key Recovery Attack Using Only Encrypted IP Packets
NASA Astrophysics Data System (ADS)
Teramura, Ryoichi; Asakura, Yasuo; Ohigashi, Toshihiro; Kuwakado, Hidenori; Morii, Masakatu
Conventional efficient key recovery attacks against Wired Equivalent Privacy (WEP) require specific initialization vectors or specific packets. Since it takes much time to collect the packets sufficiently, any active attack should be performed. An Intrusion Detection System (IDS), however, will be able to prevent the attack. Since the attack logs are stored at the servers, it is possible to prevent such an attack. This paper proposes an algorithm for recovering a 104-bit WEP key from any IP packets in a realistic environment. This attack needs about 36, 500 packets with a success probability 0.5, and the complexity of our attack is equivalent to about 220 computations of the RC4 key setups. Since our attack is passive, it is difficult for both WEP users and administrators to detect our attack.
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
Monitoring and Indentification Packet in Wireless With Deep Packet Inspection Method
NASA Astrophysics Data System (ADS)
Fali Oklilas, Ahmad; Tasmi
2017-04-01
Layer 2 and Layer 3 are used to make a process of network monitoring, but with the development of applications on the network such as the p2p file sharing, VoIP, encrypted, and many applications that already use the same port, it would require a system that can classify network traffics, not only based on port number classification. This paper reports the implementation of the deep packet inspection method to analyse data packets based on the packet header and payload to be used in packet data classification. If each application can be grouped based on the application layer, then we can determine the pattern of internet users and also to perform network management of computer science department. In this study, a prototype wireless network and applications SSO were developed to detect the active user. The focus is on the ability of open DPI and nDPI in detecting the payload of an application and the results are elaborated in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voorhees, L.D.; McCord, R.A.; Durfee, R.C.
1993-02-01
The OREIS site workstation information packet was developed to accompany the OREIS site workstations, which are being delivered to the Environmental Restoration programs at the five DOE-OR sites. The packet is written specifically for the Site ER program staff at each of the five Sites who have been designated the OREIS contact by their ER program manager, and is not intended for general distribution. The packet provides an overview of the components of OREIS, points to more detailed information provided in the accompanying vendor and OREIS developed manuals, and includes information on training opportunities and user support.
PcapDB: Search Optimized Packet Capture, Version 0.1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Steinfadt, Shannon
PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less
Dark soliton past a finite-size obstacle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilas, Nicolas; Pavloff, Nicolas
2005-09-15
We consider the collision of a dark soliton with an obstacle in a quasi-one-dimensional Bose condensate. We show that in many respects the soliton behaves as an effective classical particle of mass twice the mass of a bare particle, evolving in an effective potential which is a convolution of the actual potential describing the obstacle. Radiative effects beyond this approximation are also taken into account. The emitted waves are shown to form two counterpropagating wave packets, both moving at the speed of sound. We determine, at leading order, the total amount of radiation emitted during the collision and compute themore » acceleration of the soliton due to the collisional process. It is found that the radiative process is quenched when the velocity of the soliton reaches the velocity of sound in the system.« less
A Fully Implemented 12 × 12 Data Vortex Optical Packet Switching Interconnection Network
NASA Astrophysics Data System (ADS)
Shacham, Assaf; Small, Benjamin A.; Liboiron-Ladouceur, Odile; Bergman, Keren
2005-10-01
A fully functional optical packet switching (OPS) interconnection network based on the data vortex architecture is presented. The photonic switching fabric uniquely capitalizes on the enormous bandwidth advantage of wavelength division multiplexing (WDM) wavelength parallelism while delivering minimal packet transit latency. Utilizing semiconductor optical amplifier (SOA)-based switching nodes and conventional fiber-optic technology, the 12-port system exhibits a capacity of nearly 1 Tb/s. Optical packets containing an eight-wavelength WDM payload with 10 Gb/s per wavelength are routed successfully to all 12 ports while maintaining a bit error rate (BER) of 10-12 or better. Median port-to-port latencies of 110 ns are achieved with a distributed deflection routing network that resolves packet contention on-the-fly without the use of optical buffers and maintains the entire payload path in the optical domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vubangsi, M.; Tchoffo, M.; Fai, L. C.
The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .
Packet communications in satellites with multiple-beam antennas and signal processing
NASA Technical Reports Server (NTRS)
Davies, R.; Chethik, F.; Penick, M.
1980-01-01
A communication satellite with a multiple-beam antenna and onboard signal processing is considered for use in a 'message-switched' data relay system. The signal processor may incorporate demodulation, routing, storage, and remodulation of the data. A system user model is established and key functional elements for the signal processing are identified. With the throughput and delay requirements as the controlled variables, the hardware complexity, operational discipline, occupied bandwidth, and overall user end-to-end cost are estimated for (1) random-access packet switching; and (2) reservation-access packet switching. Other aspects of this network (eg, the adaptability to channel switched traffic requirements) are examined. For the given requirements and constraints, the reservation system appears to be the most attractive protocol.
Enhanced Data Authentication System v. 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Maikael A.; Tolsch, Brandon Jeffrey; Schwartz, Steven Robert
EDAS is a system, comprised on hardware and software, that plugs in to an existing data stream, and branches all data for transmission to a secondary observer computer. The EDAS Junction box, which inserts into the data stream, has Java software that forms these data into packets, digitally signs, encrypts, and sends these packets to a safeguards inspector computer. Further, there is a second Java program running on the secondary observer computer that receives data from the EDAS Junction Box to decrypt, authenticate, and store incoming packets. Also, there is a stand-alone Java program that is used to configure themore » EDAS Junction Box.« less
Resonance-assisted decay of nondispersive wave packets.
Wimberger, Sandro; Schlagheck, Peter; Eltschka, Christopher; Buchleitner, Andreas
2006-07-28
We present a quantitative semiclassical theory for the decay of nondispersive electronic wave packets in driven, ionizing Rydberg systems. Statistically robust quantities are extracted combining resonance-assisted tunneling with subsequent transport across chaotic phase space and a final ionization step.
An iteration algorithm for optimal network flows
NASA Astrophysics Data System (ADS)
Woong, C. J.
1983-09-01
A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.
Francini, Andrea
2013-05-14
An advance is made over the prior art in accordance with the principles of the present invention that is directed to a new approach for a system and method for a buffer management scheme called Periodic Early Discard (PED). The invention builds on the observation that, in presence of TCP traffic, the length of a queue can be stabilized by selection of an appropriate frequency for packet dropping. For any combination of number of TCP connections and distribution of the respective RTT values, there exists an ideal packet drop frequency that prevents the queue from over-flowing or under-flowing. While the value of the ideal packet drop frequency may quickly change over time and is sensitive to the series of TCP connections affected by past packet losses, and most of all is impossible to compute inline, it is possible to approximate it with a margin of error that allows keeping the queue occupancy within a pre-defined range for extended periods of time. The PED scheme aims at tracking the (unknown) ideal packet drop frequency, adjusting the approximated value based on the evolution of the queue occupancy, with corrections of the approximated packet drop frequency that occur at a timescale that is comparable to the aggregate time constant of the set of TCP connections that traverse the queue.
NASA Johnson Space Center Life Sciences Data System
NASA Technical Reports Server (NTRS)
Rahman, Hasan; Cardenas, Jeffery
1994-01-01
The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.
Information Switching Processor (ISP) contention analysis and control
NASA Technical Reports Server (NTRS)
Inukai, Thomas
1995-01-01
In designing a satellite system with on-board processing, the selection of a switching architecture is often critical. The on-board switching function can be implemented by circuit switching or packet switching. Destination-directed packet switching has several attractive features, such as self-routing without on-board switch reconfiguration, no switch control memory requirement, efficient bandwidth utilization for packet switched traffic, and accommodation of circuit switched traffic. Destination-directed packet switching, however, has two potential concerns: (1) contention and (2) congestion. And this report specifically deals with the first problem. It includes a description and analysis of various self-routing switch structures, the nature of contention problems, and contention and resolution techniques.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Hartmann, Carsten
2018-07-01
WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.
Nozaki, Kengo; Lacraz, Amedee; Shinya, Akihiko; Matsuo, Shinji; Sato, Tomonari; Takeda, Koji; Kuramochi, Eiichi; Notomi, Masaya
2015-11-16
An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
NASA Technical Reports Server (NTRS)
Abramson, N.
1974-01-01
The Aloha system was studied and developed and extended to advanced forms of computer communications networks. Theoretical and simulation studies of Aloha type radio channels for use in packet switched communications networks were performed. Improved versions of the Aloha communications techniques and their extensions were tested experimentally. A packet radio repeater suitable for use with the Aloha system operational network was developed. General studies of the organization of multiprocessor systems centered on the development of the BCC 500 computer were concluded.
NASA Astrophysics Data System (ADS)
Song, Yan; Fang, Xiaosheng; Diao, Qingda
2016-03-01
In this paper, we discuss the mixed H2/H∞ distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection
Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms. PMID:26437335
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
Lee, Chun-Liang; Lin, Yi-Shan; Chen, Yaw-Chung
2015-01-01
The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs) are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs) have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA) that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.
System and method for forward error correction
NASA Technical Reports Server (NTRS)
Cole, Robert M. (Inventor); Bishop, James E. (Inventor)
2006-01-01
A system and method are provided for transferring a packet across a data link. The packet may include a stream of data symbols which is delimited by one or more framing symbols. Corruptions of the framing symbol which result in valid data symbols may be mapped to invalid symbols. If it is desired to transfer one of the valid data symbols that has been mapped to an invalid symbol, the data symbol may be replaced with an unused symbol. At the receiving end, these unused symbols are replaced with the corresponding valid data symbols. The data stream of the packet may be encoded with forward error correction information to detect and correct errors in the data stream.
System and method for transferring data on a data link
NASA Technical Reports Server (NTRS)
Cole, Robert M. (Inventor); Bishop, James E. (Inventor)
2007-01-01
A system and method are provided for transferring a packet across a data link. The packet may include a stream of data symbols which is delimited by one or more framing symbols. Corruptions of the framing symbol which result in valid data symbols may be mapped to invalid symbols. If it is desired to transfer one of the valid data symbols that has been mapped to an invalid symbol, the data symbol may be replaced with an unused symbol. At the receiving end, these unused symbols are replaced with the corresponding valid data symbols. The data stream of the packet may be encoded with forward error correction information to detect and correct errors in the data stream.
State-Based Network Intrusion Detection Systems for SCADA Protocols: A Proof of Concept
NASA Astrophysics Data System (ADS)
Carcano, Andrea; Fovino, Igor Nai; Masera, Marcelo; Trombetta, Alberto
We present a novel Intrusion Detection System able to detect complex attacks to SCADA systems. By complex attack, we mean a set of commands (carried in Modbus packets) that, while licit when considered in isolation on a single-packet basis, interfere with the correct behavior of the system. The proposed IDS detects such attacks thanks to an internal representation of the controlled SCADA system and a corresponding rule language, powerful enough to express the system's critical states. Furthermore, we detail the implementation and provide experimental comparative results.
Rural Electric Youth Tour Packet.
ERIC Educational Resources Information Center
National Rural Electric Cooperative Association, Washington, DC.
This packet of materials provides information about tours for rural secondary students in Washington, D.C., sponsored jointly by the National Rural Electric Cooperative Association (NRECA), state rural electric cooperatives, and statewide associations of rural electric systems. Since 1958 this program has selected high school students to visit…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sameer
Disclosed is a mechanism on receiving processors in a parallel computing system for providing order to data packets received from a broadcast call and to distinguish data packets received at nodes from several incoming asynchronous broadcast messages where header space is limited. In the present invention, processors at lower leafs of a tree do not need to obtain a broadcast message by directly accessing the data in a root processor's buffer. Instead, each subsequent intermediate node's rank id information is squeezed into the software header of packet headers. In turn, the entire broadcast message is not transferred from the rootmore » processor to each processor in a communicator but instead is replicated on several intermediate nodes which then replicated the message to nodes in lower leafs. Hence, the intermediate compute nodes become "virtual root compute nodes" for the purpose of replicating the broadcast message to lower levels of a tree.« less
Paul, Rimi; Sengupta, Anindita
2017-11-01
A new controller based on discrete wavelet packet transform (DWPT) for liquid level system (LLS) has been presented here. This controller generates control signal using node coefficients of the error signal which interprets many implicit phenomena such as process dynamics, measurement noise and effect of external disturbances. Through simulation results on LLS problem, this controller is shown to perform faster than both the discrete wavelet transform based controller and conventional proportional integral controller. Also, it is more efficient in terms of its ability to provide better noise rejection. To overcome the wind up phenomenon by considering the saturation due to presence of actuator, anti-wind up technique is applied to the conventional PI controller and compared to the wavelet packet transform based controller. In this case also, packet controller is found better than the other ones. This similar work has been extended for analogous first order RC plant as well as second order plant also. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Source-Adaptation-Based Wireless Video Transport: A Cross-Layer Approach
NASA Astrophysics Data System (ADS)
Qu, Qi; Pei, Yong; Modestino, James W.; Tian, Xusheng
2006-12-01
Real-time packet video transmission over wireless networks is expected to experience bursty packet losses that can cause substantial degradation to the transmitted video quality. In wireless networks, channel state information is hard to obtain in a reliable and timely manner due to the rapid change of wireless environments. However, the source motion information is always available and can be obtained easily and accurately from video sequences. Therefore, in this paper, we propose a novel cross-layer framework that exploits only the motion information inherent in video sequences and efficiently combines a packetization scheme, a cross-layer forward error correction (FEC)-based unequal error protection (UEP) scheme, an intracoding rate selection scheme as well as a novel intraframe interleaving scheme. Our objective and subjective results demonstrate that the proposed approach is very effective in dealing with the bursty packet losses occurring on wireless networks without incurring any additional implementation complexity or delay. Thus, the simplicity of our proposed system has important implications for the implementation of a practical real-time video transmission system.
Process and methodology of developing Cassini G and C Telemetry Dictionary
NASA Technical Reports Server (NTRS)
Kan, Edwin P.
1994-01-01
While the Cassini spacecraft telemetry design had taken on the new approach of 'packetized telemetry', the AACS (Attitude and Articulation Subsystem) had further extended into the design of 'mini-packets' in its telemetry system. Such telemetry packet and mini-packet design produced the AACS Telemetry Dictionary; iterations of the latter in turn provided changes to the former. The ultimate goals were to achieve maximum telemetry packing density, optimize the 'freshness' of more time-critical data, and to effect flexibility, i.e., multiple AACS data collection schemes, without needing to change the overall spacecraft telemetry mode. This paper describes such a systematic process and methodology, evidenced by various design products related to, or as part of, the AACS Telemetry Dictionary.
A Technique for Presenting a Deceptive Dynamic Network Topology
2013-03-01
Comment RIP Routing Information Protocol SNOS Systemic Network Obfuscation System SSH Secure Shell TCP Transmission Control Protocol TTL time to live...because it sacrifices elements available in Transmission Control Protocol ( TCP ) such as ordered delivery of packets, delivery confirmation and duplication...avoidance [4]. Of note, some traceroute implementations use TCP packets since they are able to pass through firewalls which are typically configured
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Classical electromagnetic fields from quantum sources in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill
2017-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime
NASA Astrophysics Data System (ADS)
Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.
2018-04-01
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.
Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M
2018-04-13
We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.
Experimentation and evaluation of advanced integrated system concepts
NASA Astrophysics Data System (ADS)
Ross, M.; Garrigus, K.; Gottschalck, J.; Rinearson, L.; Longee, E.
1980-09-01
This final report examines the implementation of a time-phased test bed for experimentation and evaluation of advanced system concepts relative to the future Defense Switched Network (DSN). After identifying issues pertinent to the DSN, a set of experiments which address these issues are developed. Experiments are ordered based on their immediacy and relative importance to DSN development. The set of experiments thus defined allows requirements for a time phased implementation of a test bed to be identified, and several generic test bed architectures which meet these requirements are examined. Specific architecture implementations are costed and cost/schedule profiles are generated as a function of experimental capability. The final recommended system consists of two separate test beds: a circuit switch test bed, configured around an off-the-shelf commercial switch, and directed toward the examination of nearer term and transitional issues raised by the evolving DSN; and a packet/hybrid test bed, featuring a discrete buildup of new hardware and software modules, and directed toward examination of the more advanced integrated voice and data telecommunications issues and concepts.
Teleeducation and telepathology for open and distance education.
Szymas, J
2000-01-01
Our experience in creating and using telepathology system and multimedia database for education is described. This program packet currently works in the Department of Pathology of University Medical School in Poznan. It is used for self-education, tests, services and for the examinations in pathology, i.e., for dental students and for medical students in terms of self-education and individual examination services. The system is implemented on microcomputers compatible with IBM PC and works in the network system Netware 5.1. Some modules are available through the Internet. The program packet described here accomplishes the TELEMIC system for telepathology, ASSISTANT, which is the administrator for the databases, and EXAMINATOR, which is the executive program. The realization of multi-user module allows students to work on several working areas, on random be chosen different sets of problems contemporary. The possibility to work in the exercise mode will image files and questions is an attractive way for self-education. The standard format of the notation files enables to elaborate the results by commercial statistic packets in order to estimate the scale of answers and to find correlation between the obtained results. The method of multi-criterion grading excludes unlimited mutual compensation of the criteria, differentiates the importance of particular courses and introduces the quality criteria. The packet is part of the integrated management information system of the department of pathology. Applications for other telepathological systems are presented.
Implementation issues in source coding
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Yun-Chung; Hadenfeldt, A. C.
1989-01-01
An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1987-07-01
Theoretical analysis of integrated local area network model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up during video and voice calls during periods of little movement in the images and periods of silence in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamicaly controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real-time multimedia workstation EDDY, which integrates video, voice, and data traffic flows. Protocols supporting variable-bandwidth, fixed-quality packetized video transport are described in detail.
NASA Astrophysics Data System (ADS)
Lazar, Aurel A.; White, John S.
1986-11-01
Theoretical analysis of an ILAN model of MAGNET, an integrated network testbed developed at Columbia University, shows that the bandwidth freed up by video and voice calls during periods of little movement in the images and silence periods in the speech signals could be utilized efficiently for graphics and data transmission. Based on these investigations, an architecture supporting adaptive protocols that are dynamically controlled by the requirements of a fluctuating load and changing user environment has been advanced. To further analyze the behavior of the network, a real-time packetized video system has been implemented. This system is embedded in the real time multimedia workstation EDDY that integrates video, voice and data traffic flows. Protocols supporting variable bandwidth, constant quality packetized video transport are descibed in detail.
Delocalization of charge and current in a chiral quasiparticle wave packet
NASA Astrophysics Data System (ADS)
Sarkar, Subhajit
2018-03-01
A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.
Cui, Laizhong; Lu, Nan; Chen, Fu
2014-01-01
Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968
Congestion control for a fair packet delivery in WSN: from a complex system perspective.
Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael
2014-01-01
In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.
Hardware Realization of an Ethernet Packet Analyzer Search Engine
2000-06-30
specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The
Solar Energy Education Packet for Elementary & Secondary Students.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Introduction to Classification of Living Things.
ERIC Educational Resources Information Center
Stettler, Donald
This monograph contains an autoinstructional packet developed for secondary school biology students. The instructions present a lesson on classification using slides and packets of pictures as the media for displaying the animals and plants to be classified. A brief historical account leads into the study of the modern classification system. No…
Hardware packet pacing using a DMA in a parallel computer
Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos
2013-08-13
Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.
7 CFR 1770.15 - Supplementary accounts required of all borrowers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...
7 CFR 1770.15 - Supplementary accounts required of all borrowers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...
7 CFR 1770.15 - Supplementary accounts required of all borrowers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Switching—Circuit. 2212.2 2212.2 Digital Electronic Switching—Packet. 2230.11 Central Office Transmission... Retirement Work in Progress. Current Liabilities 2232.1 2232.1 Circuit Equipment—Electronic. 2232.2 2232.2... Expense—Circuit. 6212.2 6212.2 Digital Electronic Switching Expense—Packet. 6230.11 Radio Systems Expense...
The architecture of a network level intrusion detection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heady, R.; Luger, G.; Maccabe, A.
1990-08-15
This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses.
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-22
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.
Laser control of electronic transitions of wave packet by using quadratically chirped pulses
NASA Astrophysics Data System (ADS)
Zou, Shiyang; Kondorskiy, Alexey; Mil'nikov, Gennady; Nakamura, Hiroki
2005-02-01
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H2O) as examples.
Evolution of Nonlinear Internal Waves in China Seas
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
A Bernoulli Gaussian Watermark for Detecting Integrity Attacks in Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weerakkody, Sean; Ozel, Omur; Sinopoli, Bruno
We examine the merit of Bernoulli packet drops in actively detecting integrity attacks on control systems. The aim is to detect an adversary who delivers fake sensor measurements to a system operator in order to conceal their effect on the plant. Physical watermarks, or noisy additive Gaussian inputs, have been previously used to detect several classes of integrity attacks in control systems. In this paper, we consider the analysis and design of Gaussian physical watermarks in the presence of packet drops at the control input. On one hand, this enables analysis in a more general network setting. On the othermore » hand, we observe that in certain cases, Bernoulli packet drops can improve detection performance relative to a purely Gaussian watermark. This motivates the joint design of a Bernoulli-Gaussian watermark which incorporates both an additive Gaussian input and a Bernoulli drop process. We characterize the effect of such a watermark on system performance as well as attack detectability in two separate design scenarios. Here, we consider a correlation detector for attack recognition. We then propose efficiently solvable optimization problems to intelligently select parameters of the Gaussian input and the Bernoulli drop process while addressing security and performance trade-offs. Finally, we provide numerical results which illustrate that a watermark with packet drops can indeed outperform a Gaussian watermark.« less
NASA Astrophysics Data System (ADS)
Geng, Xinli; Xu, Hao; Qin, Xiaowei
2016-10-01
During the last several years, the amount of wireless network traffic data increased fast and relative technologies evolved rapidly. In order to improve the performance and Quality of Experience (QoE) of wireless network services, the analysis of field network data and existing delivery mechanisms comes to be a promising research topic. In order to achieve this goal, a smartphone based platform named Monitor and Diagnosis of Mobile Applications (MDMA) was developed to collect field data. Based on this tool, the web browsing service of High Speed Downlink Packet Access (HSDPA) network was tested. The top 200 popular websites in China were selected and loaded on smartphone for thousands times automatically. Communication packets between the smartphone and the cell station were captured for various scenarios (e.g. residential area, urban roads, bus station etc.) in the selected city. A cross-layer database was constructed to support the off-line analysis. Based on the results of client-side experiments and analysis, the usability of proposed portable tool was verified. The preliminary findings and results for existing web browsing service were also presented.
Detecting Anomalies in Process Control Networks
NASA Astrophysics Data System (ADS)
Rrushi, Julian; Kang, Kyoung-Don
This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.
Stability Analysis of Multi-Sensor Kalman Filtering over Lossy Networks
Gao, Shouwan; Chen, Pengpeng; Huang, Dan; Niu, Qiang
2016-01-01
This paper studies the remote Kalman filtering problem for a distributed system setting with multiple sensors that are located at different physical locations. Each sensor encapsulates its own measurement data into one single packet and transmits the packet to the remote filter via a lossy distinct channel. For each communication channel, a time-homogeneous Markov chain is used to model the normal operating condition of packet delivery and losses. Based on the Markov model, a necessary and sufficient condition is obtained, which can guarantee the stability of the mean estimation error covariance. Especially, the stability condition is explicitly expressed as a simple inequality whose parameters are the spectral radius of the system state matrix and transition probabilities of the Markov chains. In contrast to the existing related results, our method imposes less restrictive conditions on systems. Finally, the results are illustrated by simulation examples. PMID:27104541
SURGNET: An Integrated Surgical Data Transmission System for Telesurgery.
Natarajan, Sriram; Ganz, Aura
2009-01-01
Remote surgery information requires quick and reliable transmission between the surgeon and the patient site. However, the networks that interconnect the surgeon and patient sites are usually time varying and lossy which can cause packet loss and delay jitter. In this paper we propose SURGNET, a telesurgery system for which we developed the architecture, algorithms and implemented it on a testbed. The algorithms include adaptive packet prediction and buffer time adjustment techniques which reduce the negative effects caused by the lossy and time varying networks. To evaluate the proposed SURGNET system, at the therapist site, we implemented a therapist panel which controls the force feedback device movements and provides image analysis functionality. At the patient site we controlled a virtual reality applet built in Matlab. The varying network conditions were emulated using NISTNet emulator. Our results show that even for severe packet loss and variable delay jitter, the proposed integrated synchronization techniques significantly improve SURGNET performance.
The TELEPAC Project: A Service Delivery Model for the Severely Handicapped in Rural Areas.
ERIC Educational Resources Information Center
Hofmeister, Alan M.; Atkinson, Charles M.
Described is Project TELEPAC, a telecommunications-based system which provides instructional packets to parents of severely handicapped children in rural areas of Utah. In addition to the parent involvement packets which outline teaching methods, correction procedures and behavior management practices for arithmetic, language arts, self help and…
Solar Energy Education Packet for Elementary & Secondary Students. Revised Edition.
ERIC Educational Resources Information Center
Center for Renewable Resources, Washington, DC.
The arrangement of this packet is essentially evolutionary, with a conscious effort to alternate reading assignments, activities and experiments. It begins with solar energy facts and terminology as background to introduce the reader to basic concepts. It progresses into a discussion of passive solar systems. This is followed by several projects…
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.
Pal, Harinder; Vyas, Manan; Tomsovic, Steven
2016-01-01
The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.
PAD_AUDIT -- PAD Auditing Package
NASA Astrophysics Data System (ADS)
Clayton, C. A.
The PAD (Packet Assembler Disassembler) utility is the part of the VAX/VMS Coloured Book Software (CBS) which allows a user to log onto remote computers from a local VAX. Unfortunately, logging into a computer via either the Packet SwitchStream (PSS) or the International Packet SwitchStream (IPSS) costs real money. Some users either do not appreciate this or do not care and have been known to clock up rather large quarterly bills. This software package allows a system manager to determine who has used PAD to call where and (most importantly) how much it has cost. The system manager can then take appropriate action - either charging the individuals, warning them to use the facility with more care or even denying access to a greedy user to one or more sites.
Puerto, G; Ortega, B; Manzanedo, M D; Martínez, A; Pastor, D; Capmany, J; Kovacs, G
2006-10-30
This paper describes both the experimental and theoretical investigations on the cascadability of all-optical routers in optical label swapping networks incorporating a multistage wavelength conversion with 2R regeneration. A full description of a novel experimental setup allows the packet by packet measurement up to 16 hops with 10 Gb/s payload showing 1 dB penalty with 10(-12) bit error rate. Similarly, the simulations on the system allow a prediction on the cascadability of the router up to 64 hops.
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Huang, Cheng-Fu
2015-04-01
From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.
Uiberacker, Christoph; Jakubetz, Werner
2004-06-22
We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T
Currently, the problem at hand is in distributing identical copies of OEP and filter software to a large number of farm nodes. One of the common methods used to transfer these softwares is through unicast. Unicast protocol faces the problem of repetitiously sending the same data over the network. Since the sending rate is limited, this process poses to be a bottleneck. Therefore, one possible solution to this problem lies in creating a reliable multicast protocol. A specific type of multicast protocol is the Bulk Multicast Protocol [4]. This system consists of one sender distributing data to many receivers. Themore » sender delivers data at a given rate of data packets. In response to that, the receiver replies to the sender with a status packet which contains information about the packet loss in terms of Negative Acknowledgment. The probability of the status packet sent back to the sender is+, where N is the number of receivers. The protocol is designed to have approximately 1 status packet for each data packet sent. In this project, we were able to show that the time taken for the complete transfer of a file to multiple receivers was about 12 times faster with multicast than by the use of unicast. The implementation of this experimental protocol shows remarkable improvement in mass data transfer to a large number of farm machines.« less
On-board closed-loop congestion control for satellite based packet switching networks
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Ivancic, William D.; Kim, Heechul
1993-01-01
NASA LeRC is currently investigating a satellite architecture that incorporates on-board packet switching capability. Because of the statistical nature of packet switching, arrival traffic may fluctuate and thus it is necessary to integrate congestion control mechanism as part of the on-board processing unit. This study focuses on the closed-loop reactive control. We investigate the impact of the long propagation delay on the performance and propose a scheme to overcome the problem. The scheme uses a global feedback signal to regulate the packet arrival rate of ground stations. In this scheme, the satellite continuously broadcasts the status of its output buffer and the ground stations respond by selectively discarding packets or by tagging the excessive packets as low-priority. The two schemes are evaluated by theoretical queuing analysis and simulation. The former is used to analyze the simplified model and to determine the basic trends and bounds, and the later is used to assess the performance of a more realistic system and to evaluate the effectiveness of more sophisticated control schemes. The results show that the long propagation delay makes the closed-loop congestion control less responsive. The broadcasted information can only be used to extract statistical information. The discarding scheme needs carefully-chosen status information and reduction function, and normally requires a significant amount of ground discarding to reduce the on-board packet loss probability. The tagging scheme is more effective since it tolerates more uncertainties and allows a larger margin of error in status information. It can protect the high-priority packets from excessive loss and fully utilize the downlink bandwidth at the same time.
Design and Implementation of the MARG Human Body Motion Tracking System
2004-10-01
7803-8463-6/041$20.00 ©:!004 IEEE 625 OPTOTRAK from Northern Digital Inc. is a typical example of a marker-based system [I 0]. Another is the...technique called tunneling is :used to overcome this problem. Tunneling is a software solution that runs on the end point routers/computers and allows...multicast packets to traverse the network by putting them into unicast packets. MUTUP overcomes the tunneling problem using shared memory in the
Bandwidth and Detection of Packet Length Covert Channels
2011-03-01
Shared Resource Matrix ( SRM ): Develop a matrix of all resources on one side and on the other all the processes. Then, determine which process uses which...system calls. This method is similar to that of the SRM . Covert channels have also been created by modulating packet timing, data and headers of net- work...analysis, noninterference analysis, SRM method, and the covert flow tree method [4]. These methods can be used during the design phase of a system. Less
Kong, Bingxin; Liu, Siqi; Yin, Jie; Li, Shengru; Zhu, Zuqing
2018-05-28
Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to improve the quality-of-service (QoS) of their Big Data applications. However, for achieving guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual datacenter (vDC) network, in which it can manage and manipulate the network connections freely. To address this requirement, we design and implement a network slicing and orchestration (NSO) system that can create and expand vDCs across optical/packet domains on-demand. Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures of the system's data, control and management planes, and present the operation procedures for creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed NSO system is then realized in a small-scale network testbed that includes four optical/packet domains, and we conduct experiments in it to demonstrate the whole operations of the data, control and management planes. Our experimental results verify that application-driven on-demand vDC expansion across optical/packet domains can be achieved for M/R optimization, and after being provisioned with a vDC, the SP using the NSO system can fully control the vDC network and further optimize the M/R jobs in it with network orchestration.
Next generation communications satellites: Multiple access and network studies
NASA Technical Reports Server (NTRS)
Stern, T. E.; Schwartz, M.; Meadows, H. E.; Ahmadi, H. K.; Gadre, J. G.; Gopal, I. S.; Matsmo, K.
1980-01-01
Following an overview of issues involved in the choice of promising system architectures for efficient communication with multiple small inexpensive Earth stations serving hetergeneous user populations, performance evaluation via analysis and simulation for six SS/TDMA (satellite-switched/time-division multiple access) system architectures is discussed. These configurations are chosen to exemplify the essential alternatives available in system design. Although the performance evaluation analyses are of fairly general applicability, whenever possible they are considered in the context of NASA's 30/20 GHz studies. Packet switched systems are considered, with the assumption that only a part of transponder capacit is devoted to packets, the integration of circuit and packet switched traffic being reserved for further study. Three types of station access are distinguished: fixed (FA), demand (DA), and random access (RA). Similarly, switching in the satellite can be assigned on a fixed (FS) or demand (DS) basis, or replaced by a buffered store-and-forward system (SF) onboard the satellite. Since not all access/switching combinations are practical, six systems are analyzed in detail: three FS SYSTEMS, FA/FS, DA/ES, RA/FS; one DS system, DA/DS; and two SF systems, FA/SF, DA/SF. Results are presented primarily in terms of delay-throughput characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heady, R.; Luger, G.F.; Maccabe, A.B.
1991-05-15
This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.
Practical End-to-End Performance Testing Tool for High Speed 3G-Based Networks
NASA Astrophysics Data System (ADS)
Shinbo, Hiroyuki; Tagami, Atsushi; Ano, Shigehiro; Hasegawa, Toru; Suzuki, Kenji
High speed IP communication is a killer application for 3rd generation (3G) mobile systems. Thus 3G network operators should perform extensive tests to check whether expected end-to-end performances are provided to customers under various environments. An important objective of such tests is to check whether network nodes fulfill requirements to durations of processing packets because a long duration of such processing causes performance degradation. This requires testers (persons who do tests) to precisely know how long a packet is hold by various network nodes. Without any tool's help, this task is time-consuming and error prone. Thus we propose a multi-point packet header analysis tool which extracts and records packet headers with synchronized timestamps at multiple observation points. Such recorded packet headers enable testers to calculate such holding durations. The notable feature of this tool is that it is implemented on off-the shelf hardware platforms, i.e., lap-top personal computers. The key challenges of the implementation are precise clock synchronization without any special hardware and a sophisticated header extraction algorithm without any drop.
Inferring the background traffic arrival process in the Internet.
Hága, Péter; Csabai, István; Vattay, Gábor
2009-12-01
Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.
Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks
NASA Astrophysics Data System (ADS)
Vadrevu, Sree Krishna Chaitanya
Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will preempt IP services routed over them, and thus it is important to ensure IP topology survivability to successfully re-route preempted IP services. Integer-linear-program (ILP) and heuristic solutions have been developed and network cost reduction up to 60% has been observed. In ESnet, we study loaning packet links to support circuit services. Mixed-line-rate (MLR) networks supporting 10/40/100 Gbps on the same fiber are becoming increasingly popular. Services that accept degradation in bandwidth, latency, jitter, etc. under failure scenarios for lower cost are known as degraded services. We study degradation in bandwidth for lower cost under failure scenarios, a concept called partial protection, in the context of MLR networks. We notice partial protection enables significant cost savings compared to full protection. To cope with traffic growth, network operators need to deploy equipment at periodic time intervals, and this is known as the multi-period planning and upgrade problem. We study three important multi-period planning approaches, namely incremental planning, all-period planning, and two-period planning with mixed line rates. Our approaches predict the network equipment that needs to be deployed optimally at which nodes and at which time periods in the network to meet QoS requirements.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Information Processing Techniques Program. Volume I. Packet Speech Systems Technology
1980-09-30
Itindsign has litt-rn vt-tntit-r aliti sill dI- ditiibuted trrni cparat- tintr aisa ithnnin ITtc-i A. Packet Vttice Terminal As Iprt- iouisik rtrtteti tin...September 1980. FO1M 1473 EDITION OF I NOV 65 IS OBSOLETEDD I JAN 73 UNCLA.SSI F[IF ) SECURITY CLASSIFICATION OF THIS PAGE (Ibmn Data fntew-d)
Is Disgust the Driver behind the Selection of Images for UK Tobacco Packets?
ERIC Educational Resources Information Center
Humphris, Gerry; Williams, Brian
2014-01-01
Objective: The use of pictorial warning labels on tobacco packets has gained almost universal international acceptance. In a public consultation exercise in 2006, the Department of Health in England, through a web-based answering system, asked people's preferences of 42 images, asking which images might be effective to encourage tobacco cessation…
SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon Rueff; Lyle Roybal; Denis Vollmer
2013-01-01
There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on howmore » to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.« less
Artificial magnetic-field quenches in synthetic dimensions
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2018-02-01
Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and final fluxes. Finally, we show that edge states in a thick ribbon are robust under the quench only when the same gap supports an edge state for the final Hamiltonian.
Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric
We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.
Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola
2014-02-10
We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.
The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughtrie, David J.; Tew, David P.
2014-05-21
We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less
Multi-mission space science data processing systems - Past, present, and future
NASA Technical Reports Server (NTRS)
Stallings, William H.
1990-01-01
Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.
A Realization of Theoretical Maximum Performance in IPSec on Gigabit Ethernet
NASA Astrophysics Data System (ADS)
Onuki, Atsushi; Takeuchi, Kiyofumi; Inada, Toru; Tokiniwa, Yasuhisa; Ushirozawa, Shinobu
This paper describes “IPSec(IP Security) VPN system" and how it attains a theoretical maximum performance on Gigabit Ethernet. The Conventional System is implemented by software. However, the system has several bottlenecks which must be overcome to realize a theoretical maximum performance on Gigabit Ethernet. Thus, we newly propose IPSec VPN System with the FPGA(Field Programmable Gate Array) based hardware architecture, which transmits a packet by the pipe-lined flow processing and has 6 parallel structure of encryption and authentication engines. We show that our system attains the theoretical maximum performance in the short packet which is difficult to realize until now.
Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan
2015-04-24
A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.
NASA Technical Reports Server (NTRS)
Chang, Chen J. (Inventor); Liaghati, Jr., Amir L. (Inventor); Liaghati, Mahsa L. (Inventor)
2018-01-01
Methods and apparatus are provided for telemetry processing using a telemetry processor. The telemetry processor can include a plurality of communications interfaces, a computer processor, and data storage. The telemetry processor can buffer sensor data by: receiving a frame of sensor data using a first communications interface and clock data using a second communications interface, receiving an end of frame signal using a third communications interface, and storing the received frame of sensor data in the data storage. After buffering the sensor data, the telemetry processor can generate an encapsulated data packet including a single encapsulated data packet header, the buffered sensor data, and identifiers identifying telemetry devices that provided the sensor data. A format of the encapsulated data packet can comply with a Consultative Committee for Space Data Systems (CCSDS) standard. The telemetry processor can send the encapsulated data packet using a fourth and a fifth communications interfaces.
Zone routing in a torus network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Heidelberger, Philip; Kumar, Sameer
A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet tomore » one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.« less
Digital transceiver implementation for wavelet packet modulation
NASA Astrophysics Data System (ADS)
Lindsey, Alan R.; Dill, Jeffrey C.
1998-03-01
Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuevas, F.A.; Curilef, S., E-mail: scurilef@ucn.cl; Plastino, A.R., E-mail: arplastino@ugr.es
The spread of a wave-packet (or its deformation) is a very important topic in quantum mechanics. Understanding this phenomenon is relevant in connection with the study of diverse physical systems. In this paper we apply various 'spreading measures' to characterize the evolution of an initially localized wave-packet in a tight-binding lattice, with special emphasis on information-theoretical measures. We investigate the behavior of both the probability distribution associated with the wave packet and the concomitant probability current. Complexity measures based upon Renyi entropies appear to be particularly good descriptors of the details of the delocalization process. - Highlights: > Spread ofmore » highly localized wave-packet in the tight-binding lattice. > Entropic and information-theoretical characterization is used to understand the delocalization. > The behavior of both the probability distribution and the concomitant probability current is investigated. > Renyi entropies appear to be good descriptors of the details of the delocalization process.« less
Towards Formal Implementation of PUS Standard
NASA Astrophysics Data System (ADS)
Ilić, D.
2009-05-01
As an effort to promote the reuse of on-board and ground systems ESA developed a standard for packet telemetry and telecommand - PUS. It defines a set of standard service models with the corresponding structures of the associated telemetry and telecommand packets. Various missions then can choose to implement those standard PUS services that best conform to their specific requirements. In this paper we propose a formal development (based on the Event-B method) of reusable service patterns, which can be instantiated for concrete application. Our formal models allow us to formally express and verify specific service properties including various telecommand and telemetry packet structure validation.
Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.
Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya
2013-12-30
We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.
NASA Technical Reports Server (NTRS)
Grunes, Mitchell R.; Choi, Junho
1995-01-01
We are in the preliminary stages of creating an operational system for losslessly compressing packet data streams. The end goal is to reduce costs. Real world constraints include transmission in the presence of error, tradeoffs between the costs of compression and the costs of transmission and storage, and imperfect knowledge of the data streams to be transmitted. The overall method is to bring together packets of similar type, split the data into bit fields, and test a large number of compression algorithms. Preliminary results are very encouraging, typically offering compression factors substantially higher than those obtained with simpler generic byte stream compressors, such as Unix Compress and HA 0.98.
Packet Fragmentation and Reassembly in Molecular Communication.
Furubayashi, Taro; Nakano, Tadashi; Eckford, Andrew; Okaie, Yutaka; Yomo, Tetsuya
2016-04-01
This paper describes packet fragmentation and reassembly to achieve reliable molecular communication among bionanomachines. In the molecular communication described in this paper, a sender bionanomachine performs packet fragmentation, dividing a large molecular message into smaller pieces and embedding into smaller molecular packets, so that molecular packets have higher diffusivity to reach the receiver bionanomachine. The receiver bionanomachine then performs packet reassembly to retrieve the original molecular message from a set of molecular packets that it receives. To examine the effect of packet fragmentation and reassembly, we develop analytical models and conduct numerical experiments. Numerical results show that packet fragmentation and reassembly can improve the message delivery performance. Numerical results also indicate that packet fragmentation and reassembly may degrade the performance in the presence of drift in the environment.
A novel lost packets recovery scheme based on visual secret sharing
NASA Astrophysics Data System (ADS)
Lu, Kun; Shan, Hong; Li, Zhi; Niu, Zhao
2017-08-01
In this paper, a novel lost packets recovery scheme which encrypts the effective parts of an original packet into two shadow packets based on (2, 2)-threshold XOR-based visual Secret Sharing (VSS) is proposed. The two shadow packets used as watermarks would be embedded into two normal data packets with digital watermarking embedding technology and then sent from one sensor node to another. Each shadow packet would reveal no information of the original packet, which can improve the security of original packet delivery greatly. The two shadow packets which can be extracted from the received two normal data packets delivered from a sensor node can recover the original packet lossless based on XOR-based VSS. The Performance analysis present that the proposed scheme provides essential services as long as possible in the presence of selective forwarding attack. The proposed scheme would not increase the amount of additional traffic, namely, lower energy consumption, which is suitable for Wireless Sensor Network (WSN).
Energy and Information Transfer Via Coherent Exciton Wave Packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria which were then evaluated using first-principles, excited state analyses. It was found that efficient exciton transfer is indeed possible. When coupled to the previous quantum dot functionalizations, the notion that quantum dot materials could support partially coherent exciton wave packets was determined to be quite reasonable.
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks
Claver, Jose M.; Ezpeleta, Santiago
2017-01-01
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments. PMID:28684666
Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.
Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago
2017-07-06
Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.
Lahav, N
1975-08-05
The formation of packets of parallel oriented platelets and separating distances of several angstrom units in montmorillonite-water systems produces an intrinsic inhomogeneity with respect to the proton donating power of internal and external zones. Stable packets can be induced by both inorganic and organic molecules or ions, in suspensions or in drying-out systems. The coexistence of zones with different proton donating power was demonstrated by the pH-sensitive color reaction of benzidine, where stable packets of montmorillonite platelets were formed by the use of either paraquat or diquat. The close proximity of the two types of zones, which can be of the order of several angstroms, produces the conditions which were defined by Katchalsky as essential for the polymerization of amino acids. Since these enviromental conditions are quite common in nature, both at present and in prebiotic times, it is proposed that the inhomogeneity of clay-water systems with respect to proton donating power should be taken into account in both theoretical and experimental efforts to demonstrate the catalytic activity of clays in prebiotic synthesis.
Satellite networks in the ISDN era
NASA Astrophysics Data System (ADS)
Amadesi, P.; Haines, P.; Patacchini, A.
1986-12-01
The development of an integrated service digital network (ISDN) capable of supporting a wide range of services using a small set of standard multipurpose user-network interfaces is examined. The ISDN environment is expected to consist of functional elements such as, circuit switching, packet switching, and common channel signaling. The use of satellites or fiber optics in the ISDN is evaluated. The relation between satellites and the ISDN in the short-, medium-, and long-terms is analyzed. The recommendations of the consultative committee, CCIR, concerning the definition of the hypothetical reference digital path and the required quality and availability for ISDN applications, and the proposed plans of Eutelsat and Intelsat for satellite systems compatible with an ISDN are discussed. The application of business satellite networks and packet satellite networks to an ISDN is studied. The long-term objectives for an ISDN is a wideband system that accommodates digital transmission on circuit and packet switched bases.
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.
Kang, Min-Joo; Kang, Je-Won
2016-01-01
A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security
Kang, Min-Joo
2016-01-01
A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802
Performance analysis of Aloha networks with power capture and near/far effect
NASA Astrophysics Data System (ADS)
McCartin, Joseph T.
1989-06-01
An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.
The EURECA telecommanding chain: Experience with packet telecommand and telemetry systems
NASA Technical Reports Server (NTRS)
Mueller, C.; Bater, R.; Sorensen, E. M.
1993-01-01
The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st July 1992 by the Space Shuttle Atlantis. EURECA is characterized by several new on-board features, most notable Packet Telemetry and a partial implementation of Packet Telecommanding using an early version of the Command Operation Procedure (COP-1) protocol. EURECA has also very low contact time with its Ground Station, with a consequent high number of out-of-visibility onboard operations. This paper concentrates on the implementation and operational experience with the COP-1 Protocol and the effect the short ground contact time has on the design of the Commanding System. Another interesting feature is that the COP-1 is implemented at the control center rather than at the ground station. The COP-1 protocol also successfully supported the mission during the launch where commands were sent via NASCOM and the Shuttle.
Automated Synthesis of Long Communication Delays for Testing
NASA Technical Reports Server (NTRS)
Seibert, Marc; McKim, James
2005-01-01
Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.
Method and Apparatus for Processing UDP Data Packets
NASA Technical Reports Server (NTRS)
Murphy, Brandon M. (Inventor)
2017-01-01
A method and apparatus for processing a plurality of data packets. A data packet is received. A determination is made as to whether a portion of the data packet follows a selected digital recorder standard protocol based on a header of the data packet. Raw data in the data packet is converted into human-readable information in response to a determination that the portion of the data packet follows the selected digital recorder standard protocol.
ERIC Educational Resources Information Center
Dow, Jaye
This learning packet was developed for grade 5 to teach about the geology of a park. Sections include: (1) Introduction, which introduces the North Carolina State Park System, Hanging Rock State Park, the park's activity packet, and the geology of the park; (2) Summary, a brief summary of the activity outlines including major concepts and…
NASA Astrophysics Data System (ADS)
Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.
2018-04-01
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Huang, Jiayu; Liu, Shu; Zhang, Dong H; Krems, Roman V
2018-04-06
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
NASA Astrophysics Data System (ADS)
Suemoto, Tohru; Tomimoto, Shinichi; Matsuoka, Taira
Recent developments in femtosecond dynamics of the photoexcited state in quasi-one-dimensional platinum complexes [Pt(en)2][Pt(en)2X2] (ClO4)4 with X = Cl, Br and I are reviewed. The experimental results of time-resolved luminescence spectroscopy based on up-conversion technique are presented and analyzed in terms of a theory of wave-packet motion. An attempt to make a movie of wave-packet motion is mentioned. In Sec. 1, a brief introduction to the dynamics of the excited states in quasi-one-dimensional platinum complexes is given. It is stressed that this system can be a good model system for investigating the photo-induced structural phase transition. In order to describe a one-dimensional chain consisting of metal ions and halogen ions, the extended Peierls-Hubbard model is introduced in Sec. 2. The theoretical model of the relaxation dynamics in the excited states with a strong electron-lattice coupling is given in Sec. 3. The model is based on the interaction mode, which is appropriate for understanding the vibrational relaxation of localized centers in solids. Experimental backgrounds with some historical survey are given in Sec. 4. The recent experimental results of time-resolved luminescence for Pt-Cl, Pt-Br and Pt-I systems are presented in Secs. 5 to 8. The main result contains the direct observation of the wave-packet oscillation in the self-trapped excitons. The relaxation process observed in experiments has been successfully interpreted in terms of the model based on the interaction mode and the dynamical aspects are compared with the transient absorption measurements. The lifetime of the STE is shorter in Pt-X with heavier halogen ions. This behavior is discussed in relation with the non-radiative process leading to lattice rearrangements. In Secs. 9 and 10, visualization of the wave-packet form is presented. The basic behavior of the wave-packet is well understood in terms of a harmonic oscillator model. A non-exponential decay profiles are revealed from the center of gravity motion of the wave-packets. The exciton localization process is also discussed in the last section.
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
NASA Astrophysics Data System (ADS)
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Random access with adaptive packet aggregation in LTE/LTE-A.
Zhou, Kaijie; Nikaein, Navid
While random access presents a promising solution for efficient uplink channel access, the preamble collision rate can significantly increase when massive number of devices simultaneously access the channel. To address this issue and improve the reliability of the random access, an adaptive packet aggregation method is proposed. With the proposed method, a device does not trigger a random access for every single packet. Instead, it starts a random access when the number of aggregated packets reaches a given threshold. This method reduces the packet collision rate at the expense of an extra latency, which is used to accumulate multiple packets into a single transmission unit. Therefore, the tradeoff between packet loss rate and channel access latency has to be carefully selected. We use semi-Markov model to derive the packet loss rate and channel access latency as functions of packet aggregation number. Hence, the optimal amount of aggregated packets can be found, which keeps the loss rate below the desired value while minimizing the access latency. We also apply for the idea of packet aggregation for power saving, where a device aggregates as many packets as possible until the latency constraint is reached. Simulations are carried out to evaluate our methods. We find that the packet loss rate and/or power consumption are significantly reduced with the proposed method.
Error recovery to enable error-free message transfer between nodes of a computer network
Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.
2016-01-26
An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.
NASA Astrophysics Data System (ADS)
de Brito, P. E.; Nazareno, H. N.
2012-09-01
The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
NASA Astrophysics Data System (ADS)
Wu, Liang T.
2004-04-01
The concept of Next Generation Network (NGN) was conceived around 1998 as an integrated solution to combine the quality and features of the PSTN with the low cost and routing flexibility of the Internet to provide a single infrastructure for the future public network. This carrier grade Internet solution calls for the creation of a consolidated, packet transport and switching infrastructure and the development of a flexible, open, software switch (softswitch) to handle voice telephony as well as multimedia services. Almost all the telecom equipment manufacturers as well as some Internet equipment vendors immediately subscribed to this vision and joined the race to create convergent products for the NGN market.
In-Space Networking on NASA's SCAN Testbed
NASA Technical Reports Server (NTRS)
Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.
2016-01-01
The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.
Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-05-01
The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.
OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators
NASA Astrophysics Data System (ADS)
Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno
2005-06-01
The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.
Takei, Yuichiro; Katsuta, Hiroki; Takizawa, Kenichi; Ikegami, Tetsushi; Hamaguchi, Kiyoshi
2012-01-01
This paper presents an experimental evaluation of communication during human walking motion, using the medium access control (MAC) evaluation system for a prototype ultra-wideband (UWB) based wireless body area network for suitable MAC parameter settings for data transmission. Its physical layer and MAC specifications are based on the draft standard in IEEE802.15.6. This paper studies the effects of the number of retransmissions and the number of commands of GTS (guaranteed time slot) request packets in the CAP (contention access period) during human walking motion by varying the number of sensor nodes or the number of CFP (contention free period) slots in the superframe. The experiments were performed in an anechoic chamber. The number of packets received is decreased by packet loss caused by human walking motion in the case where 2 slots are set for CFP, regardless of the number of nodes, and this materially decreases the total number of packets received. The number of retransmissions and the GTS request commands increase according to increases in the number of nodes, largely reflecting the effects of the number of CFP slots in the case where 4 nodes are attached. In the cases where 2 or 3 nodes are attached and 4 slots are set for CFP, the packet transmission rate is more than 95%. In the case where 4 nodes are attached and 6 slots are set for CFP, the packet transmission rate is reduced to 88% at best.
The effects of dissipation on topological mechanical systems
NASA Astrophysics Data System (ADS)
Xiong, Ye; Wang, Tianxiang; Tong, Peiqing
2016-09-01
We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.
Autosophy: an alternative vision for satellite communication, compression, and archiving
NASA Astrophysics Data System (ADS)
Holtz, Klaus; Holtz, Eric; Kalienky, Diana
2006-08-01
Satellite communication and archiving systems are now designed according to an outdated Shannon information theory where all data is transmitted in meaningless bit streams. Video bit rates, for example, are determined by screen size, color resolution, and scanning rates. The video "content" is irrelevant so that totally random images require the same bit rates as blank images. An alternative system design, based on the newer Autosophy information theory, is now evolving, which transmits data "contend" or "meaning" in a universally compatible 64bit format. This would allow mixing all multimedia transmissions in the Internet's packet stream. The new systems design uses self-assembling data structures, which grow like data crystals or data trees in electronic memories, for both communication and archiving. The advantages for satellite communication and archiving may include: very high lossless image and video compression, unbreakable encryption, resistance to transmission errors, universally compatible data formats, self-organizing error-proof mass memories, immunity to the Internet's Quality of Service problems, and error-proof secure communication protocols. Legacy data transmission formats can be converted by simple software patches or integrated chipsets to be forwarded through any media - satellites, radio, Internet, cable - without needing to be reformatted. This may result in orders of magnitude improvements for all communication and archiving systems.
ERIC Educational Resources Information Center
Dow, Jaye
This learning packet, one in a series of eight, was developed by the Hanging Roek State Park in North Carolina for grade 5 to teach about the geology of the park. Loose-leaf pages are presented in nine sections that contain: (1) introductions to the North Carolina State Park System, the Hanging Rock State Park, the park's activity packet, and to…
ERIC Educational Resources Information Center
Wahab, Phoebe
This learning packet, one in a series of eight, was developed by the Carolina Beach State Park in North Carolina for the middle grades to teach about carnivorous plants. Loose-leaf pages are presented in 10 sections that contain: (1) introductions to the North Carolina State Park System, the Carolina Beach State Park, the park's activity packet,…
NASA Astrophysics Data System (ADS)
Balakin, A. A.; Mironov, V. A.; Skobelev, S. A.
2017-01-01
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the "kaleidoscopic" picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com
The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wavemore » packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.« less
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
NASA Technical Reports Server (NTRS)
DeMartino, Salvatore; DeSiena, Silvio
1996-01-01
We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary JO; Quintana, Jorge A.; Soni, Nitin J.
1994-01-01
The NASA Lewis Research Center is developing a multichannel communication signal processing satellite (MCSPS) system which will provide low data rate, direct to user, commercial communications services. The focus of current space segment developments is a flexible, high-throughput, fault tolerant onboard information switching processor. This information switching processor (ISP) is a destination-directed packet switch which performs both space and time switching to route user information among numerous user ground terminals. Through both industry study contracts and in-house investigations, several packet switching architectures were examined. A contention-free approach, the shared memory per beam architecture, was selected for implementation. The shared memory per beam architecture, fault tolerance insertion, implementation, and demonstration plans are described.
Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions
NASA Astrophysics Data System (ADS)
Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-04-01
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N
2018-04-20
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark
1993-01-01
A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.
Apply network coding for H.264/SVC multicasting
NASA Astrophysics Data System (ADS)
Wang, Hui; Kuo, C.-C. Jay
2008-08-01
In a packet erasure network environment, video streaming benefits from error control in two ways to achieve graceful degradation. The first approach is application-level (or the link-level) forward error-correction (FEC) to provide erasure protection. The second error control approach is error concealment at the decoder end to compensate lost packets. A large amount of research work has been done in the above two areas. More recently, network coding (NC) techniques have been proposed for efficient data multicast over networks. It was shown in our previous work that multicast video streaming benefits from NC for its throughput improvement. An algebraic model is given to analyze the performance in this work. By exploiting the linear combination of video packets along nodes in a network and the SVC video format, the system achieves path diversity automatically and enables efficient video delivery to heterogeneous receivers in packet erasure channels. The application of network coding can protect video packets against the erasure network environment. However, the rank defficiency problem of random linear network coding makes the error concealment inefficiently. It is shown by computer simulation that the proposed NC video multicast scheme enables heterogenous receiving according to their capacity constraints. But it needs special designing to improve the video transmission performance when applying network coding.
A multi-ring optical packet and circuit integrated network with optical buffering.
Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya
2012-12-17
We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.
Mariella, Jr., Raymond P.
2018-03-06
An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.
Threatened and Endangered Species: Tour Packet.
ERIC Educational Resources Information Center
Coats, Victoria; Samia, Cory
This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruban, V. P., E-mail: ruban@itp.ac.ru
2015-05-15
The nonlinear dynamics of an obliquely oriented wave packet on a sea surface is analyzed analytically and numerically for various initial parameters of the packet in relation to the problem of the so-called rogue waves. Within the Gaussian variational ansatz applied to the corresponding (1+2)-dimensional hyperbolic nonlinear Schrödinger equation (NLSE), a simplified Lagrangian system of differential equations is derived that describes the evolution of the coefficients of the real and imaginary quadratic forms appearing in the Gaussian. This model provides a semi-quantitative description of the process of nonlinear spatiotemporal focusing, which is one of the most probable mechanisms of roguemore » wave formation in random wave fields. The system of equations is integrated in quadratures, which allows one to better understand the qualitative differences between linear and nonlinear focusing regimes of a wave packet. Predictions of the Gaussian model are compared with the results of direct numerical simulation of fully nonlinear long-crested waves.« less
Photonic integrated circuit optical buffer for packet-switched networks.
Burmeister, Emily F; Mack, John P; Poulsen, Henrik N; Masanović, Milan L; Stamenić, Biljana; Blumenthal, Daniel J; Bowers, John E
2009-04-13
A chip-scale optical buffer performs autonomous contention resolution for 40-byte packets with 99% packet recovery. The buffer consists of a fast, InP-based 2 x 2 optical switch and a silica-on-silicon low loss delay loop. The buffer is demonstrated in recirculating operation, but may be reconfigured in feed-forward operation for longer packet lengths. The recirculating buffer provides packet storage in integer multiples of the delay length of 12.86 ns up to 64.3 ns with 98% packet recovery. The buffer is used to resolve contention between two 40 Gb/s packet streams using multiple photonic chip optical buffers.
The effects of dissipation on topological mechanical systems
Xiong, Ye; Wang, Tianxiang; Tong, Peiqing
2016-01-01
We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law. PMID:27605247
Pheromone routing protocol on a scale-free network.
Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song
2009-12-01
This paper proposes a routing strategy for network systems based on the local information of "pheromone." The overall traffic capacity of a network system can be evaluated by the critical packet generating rate R(c). Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.
Pheromone routing protocol on a scale-free network
NASA Astrophysics Data System (ADS)
Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song
2009-12-01
This paper proposes a routing strategy for network systems based on the local information of “pheromone.” The overall traffic capacity of a network system can be evaluated by the critical packet generating rate Rc . Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo
2010-03-01
In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.
Full Duplex, Spread Spectrum Radio System
NASA Technical Reports Server (NTRS)
Harvey, Bruce A.
2000-01-01
The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.
Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. C.; Feng, W. C.; Belford, Geneva G.
2001-01-01
Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less
Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N
2013-01-14
Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.
Event-driven charge-coupled device design and applications therefor
NASA Technical Reports Server (NTRS)
Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)
2005-01-01
An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.
Information Processing Techniques Program. Volume 1. Packet Speech Systems Technology
1980-03-31
DMA transfer is enabled from the 2652 serial I/O device to the buffer memory. This enables automatic recep- tion of an incoming packet without (’PU...conference speaker. Producing multiple copies at the source wastes network bandwidth and is likely to cause local overload conditions for a large... wasted . If the setup fails because ST can fird no route with sufficient capacity, the phone will have rung and possibly been answered 18 but the call will
Performance of Wireless Networks in Highly Reflective Rooms with Variable Absorption
2014-09-01
methods used to take these measurements , and an analysis of the results. 1. Packet Internet Groper Packet Internet Groper (PING) is a utility that can...such as 802.15 Bluetooth and ZigBee [4]. The handsets used in many of these systems, especially 802.11- based devices, have complex ...phase shifts of the original signal due to differences in time of arrivals for the various multiple paths. The signal power fluctuates around a mean
2015-09-01
Extremely Lightweight Intrusion Detection (ELIDe) algorithm on an Android -based mobile device. Our results show that the hashing and inner product...approximately 2.5 megabits per second (assuming a normal distribution of packet sizes) with no significant packet loss. 15. SUBJECT TERMS ELIDe, Android , pcap...system (OS). To run ELIDe, the current version was ported for use on Android .4 2.1 Mobile Device After ELIDe was ported to the Android mobile
Geometrical aspects in optical wave-packet dynamics.
Onoda, Masaru; Murakami, Shuichi; Nagaosa, Naoto
2006-12-01
We construct a semiclassical theory for propagation of an optical wave packet in a nonconducting medium with a periodic structure of dielectric permittivity and magnetic permeability, i.e., a nonconducting photonic crystal. We employ a quantum-mechanical formalism in order to clarify its link to those of electronic systems. It involves the geometrical phase, i.e., Berry's phase, in a natural way, and describes an interplay between orbital motion and internal rotation. Based on the above theory, we discuss the geometrical aspects of the optical Hall effect. We also consider a reduction of the theory to a system without periodic structure and apply it to the transverse shift of an optical beam at an interface reflection or refraction. For a generic incident beam with an arbitrary polarization, an identical result for the transverse shift of each reflected or transmitted beam is given by the following different approaches: (i) analytic evaluation of wave-packet dynamics, (ii) total angular momentum (TAM) conservation for individual photons, and (iii) numerical simulation of wave-packet dynamics. It is consistent with a result by classical electrodynamics. This means that the TAM conservation for individual photons is already taken into account in wave optics, i.e., classical electrodynamics. Finally, we show an application of our theory to a two-dimensional photonic crystal, and propose an optimal design for the enhancement of the optical Hall effect in photonic crystals.
Enhancing the cyber-security of smart grids with applications to synchrophasor data
NASA Astrophysics Data System (ADS)
Pal, Seemita
In the power grids, Supervisory Control and Data Acquisition (SCADA) systems are used as part of the Energy Management System (EMS) for enabling grid monitoring, control and protection. In recent times, with the ongoing installation of thousands of Phasor Measurement Units (PMUs), system operators are becoming increasingly reliant on PMU-generated synchrophasor measurements for executing wide-area monitoring and real-time control. The availability of PMU data facilitates dynamic state estimation of the system, thus improving the efficiency and resiliency of the grid. Since the SCADA and PMU data are used to make critical control decisions including actuation of physical systems, the timely availability and integrity of this networked data is of paramount importance. Absence or wrong control actions can potentially lead to disruption of operations, monetary loss, damage to equipments or surroundings or even blackout. This has posed new challenges to information security especially in this age of ever-increasing cyber-attacks. In this thesis, potential cyber-attacks on smart grids are presented and effective and implementable schemes are proposed for detecting them. The focus is mainly on three kinds of cyber-attacks and their detection: (i) gray-hole attacks on synchrophasor systems, (ii) PMU data manipulation attacks and (iii) data integrity attacks on SCADA systems. In the case of gray-hole attacks, also known as packet-drop attacks, the adversary may arbitrarily drop PMU data packets as they traverse the network, resulting in unavailability of time-sensitive data for the various critical power system applications. The fundamental challenge is to distinguish packets dropped by the adversary from those that occur naturally due to network congestion.The proposed gray-hole attack detection technique is based on exploiting the inherent timing information in the GPS time-stamped PMU data packets and using the temporal trends of the latencies to classify the cause of packet-drops and finally detect attacks, if any. In the case of PMU data manipulation attacks, the attacker may modify the data in the PMU packets in order to bias the system states and influence the control center into taking wrong decisions. The proposed detection technique is based on evaluating the equivalent impedances of the transmission lines and classifying the observed anomalies to determine the presence of attack and its location. The scheme for detecting data integrity attacks on SCADA systems is based on utilizing synchrophasor measurements from available PMUs in the grid. The proposed method uses a difference measure, developed in this thesis, to determine the relative divergence and mis-correlation between the datasets. Based on the estimated difference measure, tampered and genuine data can be distinguished. The proposed detection mechanisms have demonstrated high accuracy in real-time detection of attacks of various magnitudes, simulated on real PMU data obtained from the NY grid. By performing alarm clustering, the occurrence of false alarms has been reduced to almost zero. The solutions are computationally inexpensive, low on cost, do not add any overhead, and do not require any feedback from the network.
Coherent Amplification of Ultrafast Molecular Dynamics in an Optical Oscillator
NASA Astrophysics Data System (ADS)
Aharonovich, Igal; Pe'er, Avi
2016-02-01
Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this "ultrafast" coherent feedback to optimize an optical field in time, and show that, when an optical oscillator based on a molecular gain medium is synchronously pumped by ultrashort pulses, a temporally coherent multimode field can develop that optimally dumps a general, dynamically evolving vibrational wave packet, into a single vibrational target state. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan
2011-09-01
In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.
Priority arbitration mechanism
Garmire, Derrick L [Kingston, NY; Herring, Jay R [Poughkeepsie, NY; Stunkel, Craig B [Bethel, CT
2007-03-06
A method is provided for selecting a data source for transmission on one of several logical (virtual) lanes embodied in a single physical connection. Lanes are assigned to either a high priority class or to a low priority class. One of six conditions is employed to determine when re-arbitration of lane priorities is desired. When this occurs a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent after a lower priority transmission has been interrupted. Alternatively, a next source for transmission is selected based on a the specification of the maximum number of high priority packets that can be sent while a lower priority packet is waiting. If initialized correctly, the arbiter keeps all of the packets of a high priority packet contiguous, while allowing lower priority packets to be interrupted by the higher priority packets, but not to the point of starvation of the lower priority packets.
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Wiese, U.-J.
2009-12-01
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
Interconnecting network for switching data packets and method for switching data packets
Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian
2010-05-25
The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).
A Cellular Neural Networks Based DiffServ Switch for Satellite Communication Systems
NASA Astrophysics Data System (ADS)
Tarchi, Daniele; Fantacci, Romano; Gubellini, Roberto; Pecorella, Tommaso
2003-07-01
Recent developments of Internet services and advanced compression methods has revived interest on IP based multimedia satellite communication systems. However a main problem arising here is to guarantee specific Quality of Service (QoS) constraints in order to have good performance for each traffic class.Among various QoS approach used in Internet, recently the DiffServ technique has became the most promising so- lution, mainly for its simplicity with respect to different alternatives. Moreover, in satellite communication systems, DiffServ policy computational capabilities are placed at the edge points (end-to-end philosophy); this is very important for a network constituted by one satellite link because it allows to reduce the implementation complexity of the satellite on-board equipments.The satellite switch under consideration makes use of the Multiple Input Queuing approach. Packets arrived at a switch input are stored in a shared buffer but they are logically ordered in individual queues, one for each possible output link. According to the DiffServ policy, within a same logical queue, packets are reordered in individual sub-queues according to the priority. A suitable implementation of the DiffServ policy based on a Cellular Neural Network (CNN) is proposed in the paper in order to achieve QoS requirements.The CNNs are a set of linear and nonlinear circuits connected among them that allow parallel and asynchronous computation. CNNs are a class of neural networks similar to Hopfield Neural Networks (HNN), but more flexible and suitable for solving the output contention problem, inherent of switching systems, for VLSI implementation.In this paper a CNN has been designed in order to maximize a cost functional, related to the on-board switch through- put and QoS constraints. The initial state for each neural cell is obtained looking at the presence of at least one packet from a certain input logical queue to a specific output line. The input value for each neural cell is a function of priority and length of each input logical queue. The versatility of neural network make feasible to take the best decision for the packet to be delivered to each output satellite beam, in order to meet specific QoS constraints. Numerical results for CNN approach highlights that Neural network convergence within a time slot is guaranteed, and an optimal, or at least near-optimal, solution in terms of cost function is achieved.The proposed system is based on the IETF (Internet Engineering Task Force) recommendations; this means that traffic entering the switching fabric could be marked as Expedited Forward (EF) or Assured Forward (AF), otherwise handled as Best Effort (BE). Two Assured Forward classes with different emission priority have been implemented, taking into account time spent inside the logical queue and its length. Expedited Forward traffic is typical of services to be delivered with the maximum priority, as streaming or interactive services. The packets, belonging to services that need a certain level of priority with low packet loss, are marked as Assured Forward. Best Effort traffic is related to e-mail or file transfer, or other that have not particular QoS requirements. The CNN used to solve conflict situations act as an arbiter for all the output links. Differently from other Multiple Input Queuing approach, where one arbiter for each output line is present, in proposed approach there exist only one arbiter that make the best decision. The selected rule has been defined in order to give priority to packets, according to opportunely defined functionals characteristic of each traffic class, under the constraint that no more than one packet can be delivered to the same output line. The functionals depend on queue length and time spent inside the queue by front packet.The performance of the proposed DiffServ switch has been derived in terms of delay and jitter; buffer occupancy has been analyzed for different configuration, such as a unique common buffer, one buffer for each input line, one buffer for each input line and each priority class.The obtained results highlight an high flexibility of satellite switch with CNN, taking into account that functional used to calculate priority of each queue could be easily changed, without any complexity gain nor change in CNN structure, in order to consider different traffic characteristic. Numerical results show that proposed algorithm outperform the switches based on Multiple Input Queuing, that use strictly priority methods, in terms of delay and jitter. Different buffer size have been also considered in order to analyze packet loss for CNN switch algorithm, comparing different configuration described above.The good behavior of the proposed DiffServ switch has been verified in the case of traffic with pareto distribution for packet length and a geometrical distribution for packet interarrival time, highlighting good performance in terms of delay and jitter. Numerical results also demonstrate the stability of this method for heavy load traffic; in particular maximum permitted load is higher for higher priority classes.
A Reliable Wireless Control System for Tomato Hydroponics
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-01-01
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105
A Reliable Wireless Control System for Tomato Hydroponics.
Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi
2016-05-05
Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.
Holography and hydrodynamics in small systems
NASA Astrophysics Data System (ADS)
Chesler, Paul M.
2016-12-01
Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
Self-Learning Power Control in Wireless Sensor Networks.
Chincoli, Michele; Liotta, Antonio
2018-01-27
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay.
Self-Learning Power Control in Wireless Sensor Networks
Liotta, Antonio
2018-01-01
Current trends in interconnecting myriad smart objects to monetize on Internet of Things applications have led to high-density communications in wireless sensor networks. This aggravates the already over-congested unlicensed radio bands, calling for new mechanisms to improve spectrum management and energy efficiency, such as transmission power control. Existing protocols are based on simplistic heuristics that often approach interference problems (i.e., packet loss, delay and energy waste) by increasing power, leading to detrimental results. The scope of this work is to investigate how machine learning may be used to bring wireless nodes to the lowest possible transmission power level and, in turn, to respect the quality requirements of the overall network. Lowering transmission power has benefits in terms of both energy consumption and interference. We propose a protocol of transmission power control through a reinforcement learning process that we have set in a multi-agent system. The agents are independent learners using the same exploration strategy and reward structure, leading to an overall cooperative network. The simulation results show that the system converges to an equilibrium where each node transmits at the minimum power while respecting high packet reception ratio constraints. Consequently, the system benefits from low energy consumption and packet delay. PMID:29382072
Measurements on wireless transmission of ECG signals
NASA Astrophysics Data System (ADS)
Gabrielli, A.; Lax, I.
2016-12-01
The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.
An implementation of the SNR high speed network communication protocol (Receiver part)
NASA Astrophysics Data System (ADS)
Wan, Wen-Jyh
1995-03-01
This thesis work is to implement the receiver pan of the SNR high speed network transport protocol. The approach was to use the Systems of Communicating Machines (SCM) as the formal definition of the protocol. Programs were developed on top of the Unix system using C programming language. The Unix system features that were adopted for this implementation were multitasking, signals, shared memory, semaphores, sockets, timers and process control. The problems encountered, and solved, were signal loss, shared memory conflicts, process synchronization, scheduling, data alignment and errors in the SCM specification itself. The result was a correctly functioning program which implemented the SNR protocol. The system was tested using different connection modes, lost packets, duplicate packets and large data transfers. The contributions of this thesis are: (1) implementation of the receiver part of the SNR high speed transport protocol; (2) testing and integration with the transmitter part of the SNR transport protocol on an FDDI data link layered network; (3) demonstration of the functions of the SNR transport protocol such as connection management, sequenced delivery, flow control and error recovery using selective repeat methods of retransmission; and (4) modifications to the SNR transport protocol specification such as corrections for incorrect predicate conditions, defining of additional packet types formats, solutions for signal lost and processes contention problems etc.
Zhang, Xian-Ming; Han, Qing-Long
2016-12-01
This paper is concerned with decentralized event-triggered dissipative control for systems with the entries of the system outputs having different physical properties. Depending on these different physical properties, the entries of the system outputs are grouped into multiple nodes. A number of sensors are used to sample the signals from different nodes. A decentralized event-triggering scheme is introduced to select those necessary sampled-data packets to be transmitted so that communication resources can be saved significantly while preserving the prescribed closed-loop performance. First, in order to organize the decentralized data packets transmitted from the sensor nodes, a data packet processor (DPP) is used to generate a new signal to be held by the zero-order-hold once the signal stored by the DPP is updated at some time instant. Second, under the mechanism of the DPP, the resulting closed-loop system is modeled as a linear system with an interval time-varying delay. A sufficient condition is derived such that the closed-loop system is asymptotically stable and strictly (Q 0 ,S 0 ,R 0 ) -dissipative, where Q 0 ,S 0 , and R 0 are real matrices of appropriate dimensions with Q 0 and R 0 symmetric. Third, suitable output-based controllers can be designed based on solutions to a set of a linear matrix inequality. Finally, two examples are given to demonstrate the effectiveness of the proposed method.
CCSDS telemetry systems experience at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carper, Richard D.; Stallings, William H., III
1990-01-01
NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.
Estimation of network path segment delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Kathleen Marie
A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less
Kim, So Young; Joo, Taiha
2015-08-06
Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.
Cherenkov Radiation Control via Self-accelerating Wave-packets.
Hu, Yi; Li, Zhili; Wetzel, Benjamin; Morandotti, Roberto; Chen, Zhigang; Xu, Jingjun
2017-08-18
Cherenkov radiation is a ubiquitous phenomenon in nature. It describes electromagnetic radiation from a charged particle moving in a medium with a uniform velocity larger than the phase velocity of light in the same medium. Such a picture is typically adopted in the investigation of traditional Cherenkov radiation as well as its counterparts in different branches of physics, including nonlinear optics, spintronics and plasmonics. In these cases, the radiation emitted spreads along a "cone", making it impractical for most applications. Here, we employ a self-accelerating optical pump wave-packet to demonstrate controlled shaping of one type of generalized Cherenkov radiation - dispersive waves in optical fibers. We show that, by tuning the parameters of the wave-packet, the emitted waves can be judiciously compressed and focused at desired locations, paving the way to such control in any physical system.
Sky Event Reporting Metadata (VOEvent) Version 2.0
NASA Technical Reports Server (NTRS)
Seaman, Rob; Williams, Roy; Allan, Alasdair; Barthelmy, Scott; Bloom, Joshua S.; Brewer, John M.; Denny, Robert B.; Fitzpatrick, Mike; Graham, Matthew; Gray, Norman;
2011-01-01
VOEvent [20] defines the content and meaning of a standard information packet for representing, transmitting, publishing and archiving information about a transient celestial event, with the implication that timely follow-up is of interest. The objective is to motivate the observation of targets-of-opportunity, to drive robotic telescopes, to trigger archive searches, and to alert the community. VOEvent is focused on the reporting of photon events, but events mediated by disparate phenomena such as neutrinos, gravitational waves, and solar or atmospheric particle bursts may also be reported. Structured data is used, rather than natural language, so that automated systems can effectively interpret VOEvent packets. Each packet may contain zero or more of the "who, what, where, when & how" of a detected event, but in addition, may contain a hypothesis (a "why") regarding the nature of the underlying physical cause of the event.
106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11
2017-07-01
11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... approved. ANDA applicants do not have to repeat the extensive clinical testing otherwise necessary to gain... mEq/packet and 20 mEq/packet, is the subject of NDA 19-647, held by Nova-K LLC, and initially...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Hanson, Paige; Ardi, Calvin
2016-11-04
A system for processing network packet capture streams, extracting metadata and generating flow records (via Argus). The system can be used by network security operators and analysts to enable forensic investigations for network security events.
Dolphin "packet" use during long-range echolocation tasks.
Finneran, James J
2013-03-01
When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude.
Observation of Wave Packet Distortion during a Negative-Group-Velocity Transmission
Ye, Dexin; Salamin, Yannick; Huangfu, Jiangtao; Qiao, Shan; Zheng, Guoan; Ran, Lixin
2015-01-01
In Physics, causality is a fundamental postulation arising from the second law of thermodynamics. It states that, the cause of an event precedes its effect. In the context of Electromagnetics, the relativistic causality limits the upper bound of the velocity of information, which is carried by electromagnetic wave packets, to the speed of light in free space (c). In anomalously dispersive media (ADM), it has been shown that, wave packets appear to propagate with a superluminal or even negative group velocity. However, Sommerfeld and Brillouin pointed out that the “front” of such wave packets, known as the initial point of the Sommerfeld precursor, always travels at c. In this work, we investigate the negative-group-velocity transmission of half-sine wave packets. We experimentally observe the wave front and the distortion of modulated wave packets propagating with a negative group velocity in a passive artificial ADM in microwave regime. Different from previous literature on the propagation of superluminal Gaussian packets, strongly distorted sinusoidal packets with non-superluminal wave fronts were observed. This result agrees with Brillouin's assertion, i.e., the severe distortion of seemingly superluminal wave packets makes the definition of group velocity physically meaningless in the anomalously dispersive region. PMID:25631746
Liu, Zhigang; Han, Zhiwei; Zhang, Yang; Zhang, Qiaoge
2014-11-01
Multiwavelets possess better properties than traditional wavelets. Multiwavelet packet transformation has more high-frequency information. Spectral entropy can be applied as an analysis index to the complexity or uncertainty of a signal. This paper tries to define four multiwavelet packet entropies to extract the features of different transmission line faults, and uses a radial basis function (RBF) neural network to recognize and classify 10 fault types of power transmission lines. First, the preprocessing and postprocessing problems of multiwavelets are presented. Shannon entropy and Tsallis entropy are introduced, and their difference is discussed. Second, multiwavelet packet energy entropy, time entropy, Shannon singular entropy, and Tsallis singular entropy are defined as the feature extraction methods of transmission line fault signals. Third, the plan of transmission line fault recognition using multiwavelet packet entropies and an RBF neural network is proposed. Finally, the experimental results show that the plan with the four multiwavelet packet energy entropies defined in this paper achieves better performance in fault recognition. The performance with SA4 (symmetric antisymmetric) multiwavelet packet Tsallis singular entropy is the best among the combinations of different multiwavelet packets and the four multiwavelet packet entropies.
Aeroacoustic directivity via wave-packet analysis of mean or base flows
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollet, J.
2006-07-01
This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-criticalmore » networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)« less
Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.
2006-11-21
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Deep Packet/Flow Analysis using GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Qian; Wu, Wenji; DeMar, Phil
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less
Trade Related Reading Packets for Disabled Readers.
ERIC Educational Resources Information Center
Davis, Beverly; Woodruff, Nancy S.
Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…
Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-29
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-01
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Trajectory-based understanding of the quantum-classical transition for barrier scattering
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2018-06-01
The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.
Use of CCSDS Packets Over SpaceWire to Control Hardware
NASA Technical Reports Server (NTRS)
Haddad, Omar; Blau, Michael; Haghani, Noosha; Yuknis, William; Albaijes, Dennis
2012-01-01
For the Lunar Reconnaissance Orbiter, the Command and Data Handling subsystem consisted of several electronic hardware assemblies that were connected with SpaceWire serial links. Electronic hardware would be commanded/controlled and telemetry data was obtained using the SpaceWire links. Prior art focused on parallel data buses and other types of serial buses, which were not compatible with the SpaceWire and the core flight executive (CFE) software bus. This innovation applies to anything that utilizes both SpaceWire networks and the CFE software. The CCSDS (Consultative Committee for Space Data Systems) packet contains predetermined values in its payload fields that electronic hardware attached at the terminus of the SpaceWire node would decode, interpret, and execute. The hardware s interpretation of the packet data would enable the hardware to change its state/configuration (command) or generate status (telemetry). The primary purpose is to provide an interface that is compatible with the hardware and the CFE software bus. By specifying the format of the CCSDS packet, it is possible to specify how the resulting hardware is to be built (in terms of digital logic) that results in a hardware design that can be controlled by the CFE software bus in the final application
NASA Astrophysics Data System (ADS)
Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun
2014-05-01
In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarek Haddadin; Stephen Andrew Laraway; Arslan Majid
This paper proposes and presents the design and implementation of an underlay communication channel (UCC) for 5G cognitive mesh networks. The UCC builds its waveform based on filter bank multicarrier spread spectrum (FB-MCSS) signaling. The use of this novel spread spectrum signaling allows the device-to-device (D2D) user equipments (UEs) to communicate at a level well below noise temperature and hence, minimize taxation on macro-cell/small-cell base stations and their UEs in 5G wireless systems. Moreover, the use of filter banks allows us to avoid those portions of the spectrum that are in use by macro-cell and small-cell users. Hence, both D2D-to-cellularmore » and cellular-to-D2D interference will be very close to none. We propose a specific packet for UCC and develop algorithms for packet detection, timing acquisition and tracking, as well as channel estimation and equalization. We also present the detail of an implementation of the proposed transceiver on a software radio platform and compare our experimental results with those from a theoretical analysis of our packet detection algorithm.« less
SDN architecture for optical packet and circuit integrated networks
NASA Astrophysics Data System (ADS)
Furukawa, Hideaki; Miyazawa, Takaya
2016-02-01
We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.
Retrieval of charge mobility from apparent charge packet movements in LDPE thin films
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2017-03-01
The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.
Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang
2012-01-16
By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.
Greedy data transportation scheme with hard packet deadlines for wireless ad hoc networks.
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services.
Greedy Data Transportation Scheme with Hard Packet Deadlines for Wireless Ad Hoc Networks
Lee, HyungJune
2014-01-01
We present a greedy data transportation scheme with hard packet deadlines in ad hoc sensor networks of stationary nodes and multiple mobile nodes with scheduled trajectory path and arrival time. In the proposed routing strategy, each stationary ad hoc node en route decides whether to relay a shortest-path stationary node toward destination or a passing-by mobile node that will carry closer to destination. We aim to utilize mobile nodes to minimize the total routing cost as far as the selected route can satisfy the end-to-end packet deadline. We evaluate our proposed routing algorithm in terms of routing cost, packet delivery ratio, packet delivery time, and usability of mobile nodes based on network level simulations. Simulation results show that our proposed algorithm fully exploits the remaining time till packet deadline to turn into networking benefits of reducing the overall routing cost and improving packet delivery performance. Also, we demonstrate that the routing scheme guarantees packet delivery with hard deadlines, contributing to QoS improvement in various network services. PMID:25258736
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
Infrared laser driven double proton transfer. An optimal control theory study
NASA Astrophysics Data System (ADS)
Abdel-Latif, Mahmoud K.; Kühn, Oliver
2010-02-01
Laser control of ultrafast double proton transfer is investigated for a two-dimensional model system describing stepwise and concerted transfer pathways. The pulse design has been done by employing optimal control theory in combination with the multiconfiguration time-dependent Hartree wave packet propagation. The obtained laser fields correspond to multiple pump-dump pulse sequences. Special emphasis is paid to the relative importance of stepwise and concerted transfer pathways for the driven wave packet and its dependence on the parameters of the model Hamiltonian as well as on the propagation time. While stepwise transfer is dominating in all cases considered, for high barrier systems concerted transfer proceeding via tunneling can make a contribution.
Method, systems, and computer program products for implementing function-parallel network firewall
Fulp, Errin W [Winston-Salem, NC; Farley, Ryan J [Winston-Salem, NC
2011-10-11
Methods, systems, and computer program products for providing function-parallel firewalls are disclosed. According to one aspect, a function-parallel firewall includes a first firewall node for filtering received packets using a first portion of a rule set including a plurality of rules. The first portion includes less than all of the rules in the rule set. At least one second firewall node filters packets using a second portion of the rule set. The second portion includes at least one rule in the rule set that is not present in the first portion. The first and second portions together include all of the rules in the rule set.
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Design and implementation considerations of a MSAT packet data network
NASA Technical Reports Server (NTRS)
Karam, Fouad G.; Hearn, Terry; Rohr, Doug; Guibord, Arthur F.
1993-01-01
The Mobile Data System, which is intended to provide for packet switched data services is currently under development. The system is based on a star network topology consisting of a centralized Data Hub (DH) serving a large number of mobile terminals. Through the Data Hub, end-to-end connections can be established between terrestrial users on public or private data networks and mobile users. The MDS network will be capable of offering a variety of services some of which are based on the standard X.25 network interface protocol, and others optimized for short messages and broadcast messages. A description of these services and the trade-offs in the DH design are presented.
Chung, Yun Won; Kwon, Jae Kyun; Park, Suwon
2014-01-01
One of the key technologies to support mobility of mobile station (MS) in mobile communication systems is location management which consists of location update and paging. In this paper, an improved movement-based location management scheme with two movement thresholds is proposed, considering bursty data traffic characteristics of packet-switched (PS) services. The analytical modeling for location update and paging signaling loads of the proposed scheme is developed thoroughly and the performance of the proposed scheme is compared with that of the conventional scheme. We show that the proposed scheme outperforms the conventional scheme in terms of total signaling load with an appropriate selection of movement thresholds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared Verba; Michael Milvich
2008-05-01
Current Intrusion Detection System (IDS) technology is not suited to be widely deployed inside a Supervisory, Control and Data Acquisition (SCADA) environment. Anomaly- and signature-based IDS technologies have developed methods to cover information technology-based networks activity and protocols effectively. However, these IDS technologies do not include the fine protocol granularity required to ensure network security inside an environment with weak protocols lacking authentication and encryption. By implementing a more specific and more intelligent packet inspection mechanism, tailored traffic flow analysis, and unique packet tampering detection, IDS technology developed specifically for SCADA environments can be deployed with confidence in detecting maliciousmore » activity.« less
APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study
NASA Astrophysics Data System (ADS)
Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak
2017-04-01
In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.
End-to-end communication test on variable length packet structures utilizing AOS testbed
NASA Technical Reports Server (NTRS)
Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu
1994-01-01
This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.
NASA Astrophysics Data System (ADS)
García Plaza, E.; Núñez López, P. J.
2018-01-01
The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.
Chaining direct memory access data transfer operations for compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.
2010-09-28
Methods, systems, and products are disclosed for chaining DMA data transfer operations for compute nodes in a parallel computer that include: receiving, by an origin DMA engine on an origin node in an origin injection FIFO buffer for the origin DMA engine, a RGET data descriptor specifying a DMA transfer operation data descriptor on the origin node and a second RGET data descriptor on the origin node, the second RGET data descriptor specifying a target RGET data descriptor on the target node, the target RGET data descriptor specifying an additional DMA transfer operation data descriptor on the origin node; creating, by the origin DMA engine, an RGET packet in dependence upon the RGET data descriptor, the RGET packet containing the DMA transfer operation data descriptor and the second RGET data descriptor; and transferring, by the origin DMA engine to a target DMA engine on the target node, the RGET packet.
NASA Astrophysics Data System (ADS)
Yoon, Jong Rak; Park, Kyu-Chil; Park, Jihyun
2015-07-01
Transmitted signals are markedly affected by sea surface and bottom boundaries in shallow water. The time variant reflection signals from such boundaries characterize the channel as a frequency-selective fading channel and cause intersymbol interference (ISI) in underwater acoustic communication. A channel-estimate-based equalizer is usually adopted to compensate for the reflected signals under this kind of acoustic channel. In this study, we apply two approaches for packet and continuous data transmission of the quadrature phase shift keying (QPSK) system. One is the use of a two-dimensional (2D) rotation matrix in a non-frequency-selective channel. The other is the use of two equalizers of types — the feed forward equalizer (FFE) and decision-directed equalizer (DDE) — with a normalized least mean square (NLMS) algorithm in a frequency-selective channel. The percentage improvement of packet transmission is notably better than that of continuous transmission.
Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren
2018-04-16
Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.
The queueing perspective of asynchronous network coding in two-way relay network
NASA Astrophysics Data System (ADS)
Liang, Yaping; Chang, Qing; Li, Xianxu
2018-04-01
Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.
Intermittent large amplitude internal waves observed in Port Susan, Puget Sound
NASA Astrophysics Data System (ADS)
Harris, J. C.; Decker, L.
2017-07-01
A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.
The ARPANET after twenty years
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
The ARPANET began operations in 1969 with four nodes as an experiment in resource sharing among computers. It has evolved into a worldwide research network of over 60,000 nodes, influencing the design of other networks in business, education, and government. It demonstrated the speed and reliability of packet-switching networks. Its protocols have served as the models for international standards. And yet the significance of the ARPANET lies not in its technology, but in the profound alterations networking has produced in human practices. Network designers must now turn their attention to the discourses of scientific technology, business, education, and government that are being mixed together in the milieux of networking, and in particular the conflicts and misunderstandings that arise from the different world views of these discourses.
1980-02-01
Reserch Projects Agency I t&* ISO~p~A d m* ab~b ~I 41 b~bmso 544,A UNCLASSIFIED S@MYT SLAMIICAIGH OF TNNI PAOE tpvm Gamb.______________ RI...Wi do m,.we a#& N m WUNP SMei r -- This Quarterly Technical Report describes work on the development of and experimentation with packet broadcast by...interval by either segmenting or aggregating the stream packets such that they match the system interval. Since this approach is simple with respect
Children's Literature with a Science Emphasis: Twenty Teacher-Developed K-8 Activity Packets.
ERIC Educational Resources Information Center
Butler, Malcolm B.
This document features 10 science activity packets developed for elementary students by science teachers in a graduate seminar. The activity packets were designed to cover existing commercial children's books on specific content areas. The 10 activity packets are: (1) "Bringing the Rain to Kapiti Plain," which explains the water cycle;…
[KIND Worksheet Packet: Wild Animals (Junior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
[KIND Worksheet Packet: Wild Animals (Senior).
ERIC Educational Resources Information Center
National Association for Humane and Environmental Education, East Haddam, CT.
This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense)…
Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.
ERIC Educational Resources Information Center
Foster, Brian; And Others
The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…
Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…
106-17 Telemetry Standards Chapter 7 Packet Telemetry Downlink
2017-07-31
Acronyms IP Internet Protocol IPv4 Internet Protocol, Version 4 IPv6 Internet Protocol, Version 6 LLP low-latency PTDP MAC media access control...o 4’b0101: PT Internet Protocol (IP) Packet o 4’b0110: PT Chapter 24 TmNSMessage Packet o 4’b0111 – 4’b1111: Reserved • Fragment (bits 17 – 16...packet is defined as a free -running 12-bit counter. The PT test counter packet shall consist of one 12-bit word and shall be encoded as one 24-bit
The Effect of Background Traffic Packet Size to VoIP Speech Quality
NASA Astrophysics Data System (ADS)
Triyason, Tuul; Kanthamanon, Prasert; Warasup, Kittipong; Yamsaengsung, Siam; Supattatham, Montri
VoIP is gaining acceptance into the corporate world especially, in small and medium sized business that want to save cost for gaining advantage over their competitors. The good voice quality is one of challenging task in deployment plan because VoIP voice quality was affected by packet loss and jitter delay. In this paper, we study the effect of background traffic packet size to voice quality. The background traffic was generated by Bricks software and the speech quality was assessed by MOS. The obtained result shows an interesting relationship between the voice quality and the number of TCP packets and their size. With the same amount of data smaller packets affect the voice's quality more than the larger packet.
On-board processing satellite network architecture and control study
NASA Technical Reports Server (NTRS)
Campanella, S. Joseph; Pontano, B.; Chalmers, H.
1987-01-01
For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.
Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages
NASA Astrophysics Data System (ADS)
Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio
Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.
48 CFR 3452.239-70 - Internet protocol version 6 (IPv6).
Code of Federal Regulations, 2011 CFR
2011-10-01
... utilizing system packets that are formatted in accordance with commercial standards of Internet protocol (IP... of IPv4 products. (b) Specifically, any new IP product or system developed, acquired, or produced...
NASA Astrophysics Data System (ADS)
Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru
In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.
Optimization of OSPF Routing in IP Networks
NASA Astrophysics Data System (ADS)
Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan
The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs)
Bandwidth characteristics of multimedia data traffic on a local area network
NASA Technical Reports Server (NTRS)
Chuang, Shery L.; Doubek, Sharon; Haines, Richard F.
1993-01-01
Limited spacecraft communication links call for users to investigate the potential use of video compression and multimedia technologies to optimize bandwidth allocations. The objective was to determine the transmission characteristics of multimedia data - motion video, text or bitmap graphics, and files transmitted independently and simultaneously over an ethernet local area network. Commercial desktop video teleconferencing hardware and software and Intel's proprietary Digital Video Interactive (DVI) video compression algorithm were used, and typical task scenarios were selected. The transmission time, packet size, number of packets, and network utilization of the data were recorded. Each data type - compressed motion video, text and/or bitmapped graphics, and a compressed image file - was first transmitted independently and its characteristics recorded. The results showed that an average bandwidth of 7.4 kilobits per second (kbps) was used to transmit graphics; an average bandwidth of 86.8 kbps was used to transmit an 18.9-kilobyte (kB) image file; a bandwidth of 728.9 kbps was used to transmit compressed motion video at 15 frames per second (fps); and a bandwidth of 75.9 kbps was used to transmit compressed motion video at 1.5 fps. Average packet sizes were 933 bytes for graphics, 498.5 bytes for the image file, 345.8 bytes for motion video at 15 fps, and 341.9 bytes for motion video at 1.5 fps. Simultaneous transmission of multimedia data types was also characterized. The multimedia packets used transmission bandwidths of 341.4 kbps and 105.8kbps. Bandwidth utilization varied according to the frame rate (frames per second) setting for the transmission of motion video. Packet size did not vary significantly between the data types. When these characteristics are applied to Space Station Freedom (SSF), the packet sizes fall within the maximum specified by the Consultative Committee for Space Data Systems (CCSDS). The uplink of imagery to SSF may be performed at minimal frame rates and/or within seconds of delay, depending on the user's allocated bandwidth. Further research to identify the acceptable delay interval and its impact on human performance is required. Additional studies in network performance using various video compression algorithms and integrated multimedia techniques are needed to determine the optimal design approach for utilizing SSF's data communications system.
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is seventh in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet, one explaining the differences between periodic and merit pay increases and between flat amount and…
ERIC Educational Resources Information Center
Herschbach, Dennis R.; And Others
This student booklet is fifth in an illustrated series of eleven learning activity packets for use in teaching job hunting and application procedures and the management of wages to secondary students. Two units are included in this packet: the first describing the various ways of being paid: salary (including overtime and compensatory time),…
Precise Interval Timer for Software Defined Radio
NASA Technical Reports Server (NTRS)
Pozhidaev, Aleksey (Inventor)
2014-01-01
A precise digital fractional interval timer for software defined radios which vary their waveform on a packet-by-packet basis. The timer allows for variable length in the preamble of the RF packet and allows to adjust boundaries of the TDMA (Time Division Multiple Access) Slots of the receiver of an SDR based on the reception of the RF packet of interest.
NASA Astrophysics Data System (ADS)
Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas
2017-09-01
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cina, Jeffrey A., E-mail: cina@uoregon.edu; Kovac, Philip A.; Jumper, Chanelle C.
We rebuild the theory of ultrafast transient-absorption/transmission spectroscopy starting from the optical response of an individual molecule to incident femtosecond pump and probe pulses. The resulting description makes use of pulse propagators and free molecular evolution operators to arrive at compact expressions for the several contributions to a transient-absorption signal. In this alternative description, which is physically equivalent to the conventional response-function formalism, these signal contributions are conveniently expressed as quantum mechanical overlaps between nuclear wave packets that have undergone different sequences of pulse-driven optical transitions and time-evolution on different electronic potential-energy surfaces. Using this setup in application to amore » simple, multimode model of the light-harvesting chromophores of PC577, we develop wave-packet pictures of certain generic features of ultrafast transient-absorption signals related to the probed-frequency dependence of vibrational quantum beats. These include a Stokes-shifting node at the time-evolving peak emission frequency, antiphasing between vibrational oscillations on opposite sides (i.e., to the red or blue) of this node, and spectral fingering due to vibrational overtones and combinations. Our calculations make a vibrationally abrupt approximation for the incident pump and probe pulses, but properly account for temporal pulse overlap and signal turn-on, rather than neglecting pulse overlap or assuming delta-function excitations, as are sometimes done.« less
Scattering of accelerated wave packets
NASA Astrophysics Data System (ADS)
Longhi, S.; Horsley, S. A. R.; Della Valle, G.
2018-03-01
Wave-packet scattering from a stationary potential is significantly modified when the wave packet is subject to an external time-dependent force during the interaction. In the semiclassical limit, wave-packet motion is simply described by Newtonian equations, and the external force can, for example, cancel the potential force, making a potential barrier transparent. Here we consider wave-packet scattering from reflectionless potentials, where in general the potential becomes reflective when probed by an accelerated wave packet. In the particular case of the recently introduced class of complex Kramers-Kronig potentials we show that a broad class of time-dependent forces can be applied without inducing any scattering, while there is a breakdown of the reflectionless property when there is a broadband distribution of initial particle momentum, involving both positive and negative components.
Detecting illegal intra-corporeal cocaine containers: Which factors influence their density?
Platon, Alexandra; Herrera, Bruno; Becker, Minerva; Perneger, Thomas; Getaz, Laurent; Wolff, Hans; Lock, Eric; Rutschmann, Olivier; Poletti, Pierre-Alexandre
2018-05-30
To determine parameters related to hyperdensity (>40 HU) of intra-corporeal cocaine packets on low-dose CT (LDCT); hyperdensity increases detectability on abdominal radiographs. LDCT showing drug packets (n = 46) were analyzed for mean radiological density and packets volume. Following expulsion, packets weight and cocaine concentration were measured. Hypercompaction was defined as >0.9 g/cm 3 . Packets were hyperdense in 33 cases (72%). Mean compaction was 1.0 g/cm 3 , mean density 118.5 HU and mean cocaine concentration 44.2%. On multivariate analysis, only high compaction remained significantly related to hyperdensity (p = 0.001). Compaction >0.9 g/cm 3 is the only parameter significantly associated with hyperdense packets. Copyright © 2018 Elsevier Inc. All rights reserved.
Combining multi-layered bitmap files using network specific hardware
DuBois, David H [Los Alamos, NM; DuBois, Andrew J [Santa Fe, NM; Davenport, Carolyn Connor [Los Alamos, NM
2012-02-28
Images and video can be produced by compositing or alpha blending a group of image layers or video layers. Increasing resolution or the number of layers results in increased computational demands. As such, the available computational resources limit the images and videos that can be produced. A computational architecture in which the image layers are packetized and streamed through processors can be easily scaled so to handle many image layers and high resolutions. The image layers are packetized to produce packet streams. The packets in the streams are received, placed in queues, and processed. For alpha blending, ingress queues receive the packetized image layers which are then z sorted and sent to egress queues. The egress queue packets are alpha blended to produce an output image or video.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
The exact thermal rotational spectrum of a two-dimensional rigid rotor is obtained using Gaussian wave packet dynamics. The spectrum is obtained by propagating, without approximation, infinite sets of Gaussian wave packets. These sets are constructed so that collectively they have the correct periodicity, and indeed, are coherent states appropriate to this problem. Also, simple, almost classical, approximations to full wave packet dynamics are shown to give results which are either exact or very nearly exact. Advantages of the use of Gaussian wave packet dynamics over conventional linear response theory are discussed.
40-Gbps optical backbone network deep packet inspection based on FPGA
NASA Astrophysics Data System (ADS)
Zuo, Yuan; Huang, Zhiping; Su, Shaojing
2014-11-01
In the era of information, the big data, which contains huge information, brings about some problems, such as high speed transmission, storage and real-time analysis and process. As the important media for data transmission, the Internet is the significant part for big data processing research. With the large-scale usage of the Internet, the data streaming of network is increasing rapidly. The speed level in the main fiber optic communication of the present has reached 40Gbps, even 100Gbps, therefore data on the optical backbone network shows some features of massive data. Generally, data services are provided via IP packets on the optical backbone network, which is constituted with SDH (Synchronous Digital Hierarchy). Hence this method that IP packets are directly mapped into SDH payload is named POS (Packet over SDH) technology. Aiming at the problems of real time process of high speed massive data, this paper designs a process system platform based on ATCA for 40Gbps POS signal data stream recognition and packet content capture, which employs the FPGA as the CPU. This platform offers pre-processing of clustering algorithms, service traffic identification and data mining for the following big data storage and analysis with high efficiency. Also, the operational procedure is proposed in this paper. Four channels of 10Gbps POS signal decomposed by the analysis module, which chooses FPGA as the kernel, are inputted to the flow classification module and the pattern matching component based on TCAM. Based on the properties of the length of payload and net flows, buffer management is added to the platform to keep the key flow information. According to data stream analysis, DPI (deep packet inspection) and flow balance distribute, the signal is transmitted to the backend machine through the giga Ethernet ports on back board. Practice shows that the proposed platform is superior to the traditional applications based on ASIC and NP.
Large Fluctuations for Spatial Diffusion of Cold Atoms
NASA Astrophysics Data System (ADS)
Aghion, Erez; Kessler, David A.; Barkai, Eli
2017-06-01
We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.
Combined guaranteed throughput and best effort network-on-chip
Chen, Gregory K.; Anders, Mark A.; Kaul, Himanshu; Krishnamurthy, Ram K.; Stillmaker, Aaron T.
2018-05-22
A first packet-switched reservation request is received. Data associated with the first packet-switched reservation request is communicated through a first circuit-switched channel according to a best effort communication scheme. A second packet-switched reservation request is received. Data associated with the second packet-switched reservation request is communicated through a second circuit-switched channel according to a guaranteed throughput communication scheme.
Williams, Jessica R; Caceda-Castro, Lizbeth E; Dusablon, Tracy; Stipa, Melissa
2016-06-01
Printed educational materials (PEMs) are one of the most common dissemination strategies for communicating information about evidence-based practices (EBPs) to healthcare professionals and organizations; however, evidence is conflicting regarding the conditions and circumstances in which PEMs are effective in achieving desired outcomes. The effectiveness of PEMs is largely dependent on the manner in which they are developed. This article reports on the findings from a comprehensive review of the literature regarding best practices for creating PEMs for health professionals and illustrates how these practices were used to design, develop, and evaluate an informational packet to disseminate information about motivational interviewing. The informational packet was disseminated to 92 community health organizations not currently implementing motivational interviewing. Evaluation surveys were completed by 212 healthcare directors and providers to examine quality and perceived helpfulness of the packets, intention to use information from the packet, and sharing of the packet with others. Associations between these and individual and organizational characteristics were also assessed. Overall, the packet was perceived as appropriate and helpful in making a decision to implement motivational interviewing. For example, 84.9% of participants stated that the content was 'about right'. Three-quarters (75.9%) of participants reported plans to use the information in the packet and almost half (46.7%) reported talking about the packet with others in the organizations. Higher levels of baseline interest in motivational interviewing adoption were significantly related to packet use and wanting to utilize additional resources presented in the packet. Positive attitudes toward EBPs were also significantly related to the desire to obtain resources in the packet. Perceptions of the packet did not differ by type of community health organization (i.e., community health center, community behavioral health organization) or whether the individual was a director or provider. Results indicated that PEMs can be a useful tool to disseminate EBP information to healthcare professionals particularly if they have a prior interest in the EBP and have general attitudes supportive of EBPs. Recommendations for the improvement of future PEMs are discussed.
NASA Astrophysics Data System (ADS)
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-04-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.
Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun; Ma, Chunli
2009-11-01
In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.
Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul
2010-11-16
A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.
Recovery time in quantum dynamics of wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru
2017-01-15
A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of themore » system is established. The recovery time is the longest for the maximal excitation level.« less
Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondorskiy, Alexey D., E-mail: kondor@sci.lebedev.ru; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
2015-09-21
We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaborationmore » of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.« less
Effects of inter-packet spacing on the delivery of multimedia content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapadia, A. C.; Feng, A. C.; Feng, W. C.
2001-01-01
Streaming multimedia content with UDP has become increasingly popular over distributed systems such as the Internet. However, because UDP does not possess any congestion-control mechanism and most best-effort trafic is served by the congestion-controlled TCP, UDP flows steal bandwidth from TCP to the point that TCP flows can starve for network resources. Furthermore, such applications may cause the Internet infrastructure to eventually suffer from congestion collapse because UDP trafic does not self-regulate itself. To address this problem, next-generation Internet routers will implement active queue-management schemes to punish malicious traffic, e.g., non-adaptive UDP flows, and to the improve the performance ofmore » congestion-controlled traffic, e.g., TCP flows. The arrival of such routers will cripple the performance of today's UDP-based multimedia applications. So, in this paper, we introduce the notion of inter-packet spacing with control feedback to enable these UDP-based applications to perform well in the next-generation Internet while being adaptive and self-regulating. When compared with traditional UDP-based multimedia streaming, we illustrate that our counterintuitive, interpacket-spacing scheme with control feedback can reduce packet loss by 90% without adversely affecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, rate-adjusting congestion control.« less
A Genetic Algorithm for the Generation of Packetization Masks for Robust Image Communication
Zapata-Quiñones, Katherine; Duran-Faundez, Cristian; Gutiérrez, Gilberto; Lecuire, Vincent; Arredondo-Flores, Christopher; Jara-Lipán, Hugo
2017-01-01
Image interleaving has proven to be an effective solution to provide the robustness of image communication systems when resource limitations make reliable protocols unsuitable (e.g., in wireless camera sensor networks); however, the search for optimal interleaving patterns is scarcely tackled in the literature. In 2008, Rombaut et al. presented an interesting approach introducing a packetization mask generator based in Simulated Annealing (SA), including a cost function, which allows assessing the suitability of a packetization pattern, avoiding extensive simulations. In this work, we present a complementary study about the non-trivial problem of generating optimal packetization patterns. We propose a genetic algorithm, as an alternative to the cited work, adopting the mentioned cost function, then comparing it to the SA approach and a torus automorphism interleaver. In addition, we engage the validation of the cost function and provide results attempting to conclude about its implication in the quality of reconstructed images. Several scenarios based on visual sensor networks applications were tested in a computer application. Results in terms of the selected cost function and image quality metric PSNR show that our algorithm presents similar results to the other approaches. Finally, we discuss the obtained results and comment about open research challenges. PMID:28452934
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
Strong quantum scarring by local impurities
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-01-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. PMID:27892510
Strong quantum scarring by local impurities
NASA Astrophysics Data System (ADS)
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-11-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
Strong quantum scarring by local impurities.
Luukko, Perttu J J; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J; Räsänen, Esa
2016-11-28
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
Environment Resource Packets Get Wide Use
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Announces the availability of the resource packet entitled "Noise Pollution," the third in the series prepared by the University of Maryland, and the main topics which will be covered in the remaining three packets. (CC)
PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang
2016-11-01
In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Spatial control of recollision wave packets with attosecond precision.
Kitzler, Markus; Lezius, Matthias
2005-12-16
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-08-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-06-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-05-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-04-01
Call for Papers: Convergence The Journal of Optical Networking (JON) invites submissions to a special issue on Convergence. Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to: Architecture, design and performance of optical wide-area-network (WAN), metro, and access networks Integration strategies for multiservice transport platforms Access methods that bridge traditional and emerging services Network signaling and control methodologies All-optical packet routing and switching techniques
Enabling Secure High-Performance Wireless Ad Hoc Networking
2003-05-29
destinations, consuming energy and available bandwidth. An attacker may similarly create a routing black hole, in which all packets are dropped: by sending...of the vertex cut, for example by forwarding only routing packets and not data packets, such that the nodes waste energy forwarding packets to the...with limited resources, including network bandwidth and the CPU processing capacity, memory, and battery power ( energy ) of each individual node in the
Space-Time Processing for Tactical Mobile Ad Hoc Networks
2008-08-01
vision for multiple concurrent communication settings, i.e., a many-to-many framework where multi-packet transmissions (MPTs) and multi-packet...modelling framework of capacity-delay tradeoffs We have introduced the first unified modeling framework for the computation of fundamental limits o We...dalities in wireless n twor i-packet modelling framework to account for the use of m lti-packet reception (MPR) f ad hoc networks with MPT under
Design of an All-Optical Network Based on LCoS Technologies
NASA Astrophysics Data System (ADS)
Cheng, Yuh-Jiuh; Shiau, Yhi
2016-06-01
In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.
On the stability of lumps and wave collapse in water waves.
Akylas, T R; Cho, Yeunwoo
2008-08-13
In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.
Key technologies and concepts for beyond-3G networks
NASA Astrophysics Data System (ADS)
Pehkonen, Kari; Uskela, Sami; Kalliojarvi, Kari; Oksanen, Lauri; Rikkinen, Kari
2001-10-01
Standardization of 3rd Generation (3G) mobile communication systems has produced the first specification releases and the commercial deployment of the 3G systems has started. Whereas 1G and 2G focused on efficiently providing voice services, in 3G a lot of attention has been devoted to solutions that support both Circuit Switched (CS) and Packet Switched (PS) communication. That has called for very flexible air interface and network solutions. 3G will continue to evolve and there are already on-going standardization activities that will, for example, boost the peak data rates up to 5-10 Mbps and improve spectral efficiency by 2-4 times. In the future, 3G evolution will be going towards 10/100 Mbps peak data rates in wide/local are coverage, respectively. This will take place partly because of technical improvements of 3G radio interface solutions, but also due to network evolution which will allow the integration other radio access methods like radio LANs into the 3G system. In longer term the 3G network evolution will be going towards ALL-IP networks. As 3G evolution seems to be going towards 10 Mbps/100 Mbps peak data rates and ALL-IP networks any beyond 3G air interface or network solution should be clearly better in order to justify its technical and commercial feasibility. Given the long evolution time of 3G and integration of other radio access schemes with 3G radio we may not even see a new, complete beyond 3G system being developed. Maybe we will just witness the emergence of a new, more advanced radio access solution which will then be connected to the evolving 3G network. As 3G evolution will continue for several years to come the research targets for any beyond 3G solutions must be set very high. When it comes to air interface, we should aim at 100 Mbps peak data rates for wide area access with high mobility, and at 1 Gbps for local area access with low mobility. Regarding possible commercial launches of any beyond 3G systems or solutions they could then take place around year 2010 or even later.
The impact of neighboring infection on the computer virus spread in packets on scale-free networks
NASA Astrophysics Data System (ADS)
Lazfi, S.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.
2017-12-01
In this paper, we introduce the effect of neighbors on the infection of packets by computer virus in the SI and SIR models using the minimal traffic routing protocol. We have applied this model to the Barabasi-Albert network to determine how intrasite and extrasite infection rates affect virus propagation through the traffic flow of information packets in both the free-flow and the congested phases. The numerical results show that when we change the intrasite infection rate λ1 while keeping constant the extrasite infection rate λ2, we get normal behavior in the congested phase: in the network, the proportion of infected packets increases to reach a peak and then decreases resulting in a simultaneous increase of the recovered packets. In contrast, when the intrasite infection rate λ1 is kept fixed, an increase of the extrasite infection rate results in two regimes: The first one is characterized by an increase of the proportion of infected packets until reaching some peak value and then decreases smoothly. The second regime is characterized by an increase of infected packets to some stationary value.
TCP Packet Trace Analysis. M.S. Thesis
NASA Technical Reports Server (NTRS)
Shepard, Timothy J.
1991-01-01
Examination of a trace of packets collected from the network is often the only method available for diagnosing protocol performance problems in computer networks. This thesis explores the use of packet traces to diagnose performance problems of the transport protocol TCP. Unfortunately, manual examination of these traces can be so tedious that effective analysis is not possible. The primary contribution of this thesis is a graphical method of displaying the packet trace which greatly reduce, the tediousness of examining a packet trace. The graphical method is demonstrated by the examination of some packet traces of typical TCP connections. The performance of two different implementations of TCP sending data across a particular network path is compared. Traces many thousands of packets long are used to demonstrate how effectively the graphical method simplifies examination of long complicated traces. In the comparison of the two TCP implementations, the burstiness of the TCP transmitter appeared to be related to the achieved throughput. A method of quantifying this burstiness is presented and its possible relevance to understanding the performance of TCP is discussed.
Control of dephasing in rotationally hot molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartram, David; Ivanov, Misha
We consider a rotationally hot diatomic molecule as an example of an open quantum system, where molecular vibrational wave packets are subject to dephasing due to rovibrational coupling. We report analytical and numerical results addressing whether the dephasing rate can be controlled by adjustment of the initial wave packet phases. It appears that over long time scales, phase-only control is not possible, but for earlier time scales the possibility of phase-only control of dephasing remains. In addition, we point out that the time dependence of the dephasing process depends significantly upon the degeneracy of the rotational environment states.
The coupled three-dimensional wave packet approach to reactive scattering
NASA Astrophysics Data System (ADS)
Marković, Nikola; Billing, Gert D.
1994-01-01
A recently developed scheme for time-dependent reactive scattering calculations using three-dimensional wave packets is applied to the D+H2 system. The present method is an extension of a previously published semiclassical formulation of the scattering problem and is based on the use of hyperspherical coordinates. The convergence requirements are investigated by detailed calculations for total angular momentum J equal to zero and the general applicability of the method is demonstrated by solving the J=1 problem. The inclusion of the geometric phase is also discussed and its effect on the reaction probability is demonstrated.
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
FPGA-Based Laboratory Assignments for NoC-Based Manycore Systems
ERIC Educational Resources Information Center
Ttofis, C.; Theocharides, T.; Michael, M. K.
2012-01-01
Manycore systems have emerged as being one of the dominant architectural trends in next-generation computer systems. These highly parallel systems are expected to be interconnected via packet-based networks-on-chip (NoC). The complexity of such systems poses novel and exciting challenges in academia, as teaching their design requires the students…
Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Tsurutani, B. T.
1989-01-01
Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.
Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying
2015-05-28
Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.
Theory for low-frequency modulated Langmuir wave packets
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1992-01-01
Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.
NASA Astrophysics Data System (ADS)
Uemura, Satoshi; Fukumoto, Norihiro; Yamada, Hideaki; Nakamura, Hajime
A feature of services provided in a Next Generation Network (NGN) is that the end-to-end quality is guaranteed. This is quite a challenging issue, given the considerable fluctuation in network conditions within a Fixed Mobile Convergence (FMC) network. Therefore, a novel approach, whereby a network node and a mobile terminal such as a cellular phone cooperate with each other to control service quality is essential. In order to achieve such cooperation, the mobile terminal needs to become more intelligent so it can estimate the service quality, including the user's perceptual quality, and notify the measurement result to the network node. Subsequently, the network node implements some kind of service control function, such as a resource and admission control function, based on the notification from the mobile terminal. In this paper, the role of the mobile terminal in such collaborative system is focused on. As a part of a QoS/QoE measurement system, we describe an objective speech quality assessment with payload discrimination of lost packets to measure the user's perceptual quality of VoIP. The proposed assessment is so simple that it can be implemented on a cellular phone. We therefore did this as part of the QoS/QoE measurement system. By using the implemented system, we can measure the user's perceptual quality of VoIP as well as the network QoS metrics, in terms of criteria such as packet loss rate, jitter and burstiness in real time.
Quantum-classical correspondence for the inverted oscillator
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Ryeol Choi, Jeong
2017-11-01
While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)
Bell, Kirsten; Dennis, Simone; Robinson, Jude; Moore, Roland
2015-10-01
Throughout the twentieth century, packaging was a carefully cultivated element of the appeal of the cigarette. However, the tobacco industry's control over cigarette packaging has been steadily eroded through legislation that aims to rebrand the packet from a desirable to a dangerous commodity-epitomized in Australia's introduction of plain packaging in 2012. Evident in both the enactment of cigarette packaging legislation and industry efforts to overturn it is the assumption that packets do things-i.e. that they have a critical role to play in either promoting or discouraging the habit. Drawing on 175 ethnographic interviews conducted with people smoking in public spaces in Vancouver, Canada; Canberra, Australia; Liverpool, England; and San Francisco, USA, we produce a 'thick description' of smokers' engagements with cigarette packets. We illustrate that despite the very different types of cigarette packaging legislation in place in the four countries, there are marked similarities in the ways smokers engage with their packets. In particular, they are not treated as a purely visual sign; instead, a primary means through which one's own cigarette packet is apprehended is by touch rather than by sight. Smokers perceive cigarette packets largely through the operations of their hands-through their 'handiness'. Thus, our study findings problematize the assumption that how smokers engage with packets when asked to do so on a purely intellectual or aesthetic level reflects how they engage with packets as they are enfolded into their everyday lives. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sky Event Reporting Metadata Version 2.0
NASA Astrophysics Data System (ADS)
Seaman, Rob; Williams, Roy; Allan, Alasdair; Barthelmy, Scott; Bloom, Joshua; Brewer, John; Denny, Robert; Fitzpatrick, Mike; Graham, Matthew; Gray, Norman; Hessman, Frederic; Marka, Szabolcs; Rots, Arnold; Vestrand, Tom; Wozniak, Przemyslaw; Seaman, Rob; Williams, Roy
2011-07-01
VOEvent defines the content and meaning of a standard information packet for representing, transmitting, publishing and archiving information about a transient celestial event, with the implication that timely follow-up is of interest. The objective is to motivate the observation of targets-of-opportunity, to drive robotic telescopes, to trigger archive searches, and to alert the community. VOEvent is focused on the reporting of photon events, but events mediated by disparate phenomena such as neutrinos, gravitational waves, and solar or atmospheric particle bursts may also be reported. Structured data is used, rather than natural language, so that automated systems can effectively interpret VOEvent packets. Each packet may contain zero or more of the "who, what, where, when & how" of a detected event, but in addition, may contain a hypothesis (a "why") regarding the nature of the underlying physical cause of the event. Citations to previous VOEvents may be used to place each event in its correct context. Proper curation is encouraged throughout each event's life cycle from discovery through successive follow-ups. VOEvent packets gain persistent identifiers and are typically stored in databases reached via registries. VOEvent packets may therefore reference other packets in various ways. Packets are encouraged to be small and to be processed quickly. This standard does not define a transport layer or the design of clients, repositories, publishers or brokers; it does not cover policy issues such as who can publish, who can build a registry of events, who can subscribe to a particular registry, nor the intellectual property issues.Status of this documentThis document has been produced by the VO Event Working Group.It has been reviewed by IVOA Members and other interested parties, and has been endorsed by the IVOA Executive Committee as an IVOA Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. IVOA's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability inside the Astronomical Community.URL: http://www.ivoa.net/Documents/REC/VOE/REC-VOEvent-2.0-20110719.*Filename: 1097___REC-VOEvent-2.0.pdfAvailable formats:PDF,DOCmaintained by ::ivoa document coordinator::
Life and Understanding: The Origins of “Understanding” in Self-Organizing Nervous Systems
Yufik, Yan M.; Friston, Karl
2016-01-01
This article is motivated by a formulation of biotic self-organization in Friston (2013), where the emergence of “life” in coupled material entities (e.g., macromolecules) was predicated on bounded subsets that maintain a degree of statistical independence from the rest of the network. Boundary elements in such systems constitute a Markov blanket; separating the internal states of a system from its surrounding states. In this article, we ask whether Markov blankets operate in the nervous system and underlie the development of intelligence, enabling a progression from the ability to sense the environment to the ability to understand it. Markov blankets have been previously hypothesized to form in neuronal networks as a result of phase transitions that cause network subsets to fold into bounded assemblies, or packets (Yufik and Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as flexible but stable biophysical structures capable of withstanding entropic erosion. In other words, structures that maintain their integrity under changing conditions. In this treatment, neuronal packets give rise to perception of “objects”; i.e., quasi-stable (stimulus bound) feature groupings that are conserved over multiple presentations (e.g., the experience of perceiving “apple” can be interrupted and resumed many times). Monitoring the variations in such groups enables the apprehension of behavior; i.e., attributing to objects the ability to undergo changes without loss of self-identity. Ultimately, “understanding” involves self-directed composition and manipulation of the ensuing “mental models” that are constituted by neuronal packets, whose dynamics capture relationships among objects: that is, dependencies in the behavior of objects under varying conditions. For example, movement is known to involve rotation of population vectors in the motor cortex (Georgopoulos et al., 1988, 1993). The neuronal packet hypothesis associates “understanding” with the ability to detect and generate coordinated rotation of population vectors—in neuronal packets—in associative cortex and other regions in the brain. The ability to coordinate vector representations in this way is assumed to have developed in conjunction with the ability to postpone overt motor expression of implicit movement, thus creating a mechanism for prediction and behavioral optimization via mental modeling that is unique to higher species. This article advances the notion that Markov blankets—necessary for the emergence of life—have been subsequently exploited by evolution and thus ground the ways that living organisms adapt to their environment, culminating in their ability to understand it. PMID:28018185
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.
1991-01-01
We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.
1992-01-01
A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
Shen, Yiwen; Hattink, Maarten; Samadi, Payman; ...
2018-04-13
Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yiwen; Hattink, Maarten; Samadi, Payman
Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. Here, we present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly networkmore » testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 microsecond control plane latency for data-center and high performance computing platforms.« less
Current-induced instability of domain walls in cylindrical nanowires
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans
2018-01-01
We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.
NASA Astrophysics Data System (ADS)
Salman Arafath, Mohammed; Rahman Khan, Khaleel Ur; Sunitha, K. V. N.
2018-01-01
Nowadays due to most of the telecommunication standard development organizations focusing on using device-to-device communication so that they can provide proximity-based services and add-on services on top of the available cellular infrastructure. An Oppnets and wireless sensor network play a prominent role here. Routing in these networks plays a significant role in fields such as traffic management, packet delivery etc. Routing is a prodigious research area with diverse unresolved issues. This paper firstly focuses on the importance of Opportunistic routing and its concept then focus is shifted to prime aspect i.e. on packet reception ratio which is one of the highest QoS Awareness parameters. This paper discusses the two important functions of routing in wireless sensor networks (WSN) namely route selection using least routing time algorithm (LRTA) and data forwarding using clustering technique. Finally, the simulation result reveals that LRTA performs relatively better than the existing system in terms of average packet reception ratio and connectivity.
The Pacor 2 expert system: A case-based reasoning approach to troubleshooting
NASA Technical Reports Server (NTRS)
Sary, Charisse
1994-01-01
The Packet Processor 2 (Pacor 2) Data Capture Facility (DCF) acquires, captures, and performs level-zero processing of packet telemetry for spaceflight missions that adhere to communication services recommendations established by the Consultative Committee for Space Data Systems (CCSDS). A major goal of this project is to reduce life-cycle costs. One way to achieve this goal is to increase automation. Through automation, using expert systems, and other technologies, staffing requirements will remain static, which will enable the same number of analysts to support more missions. Analysts provide packet telemetry data evaluation and analysis services for all data received. Data that passes this evaluation is forwarded to the Data Distribution Facility (DDF) and released to scientists. Through troubleshooting, data that fails this evaluation is dumped and analyzed to determine if its quality can be improved before it is released. This paper describes a proof-of-concept prototype that troubleshoots data quality problems. The Pacor 2 expert system prototype uses the case-based reasoning (CBR) approach to development, an alternative to a rule-based approach. Because Pacor 2 is not operational, the prototype has been developed using cases that describe existing troubleshooting experience from currently operating missions. Through CBR, this experience will be available to analysts when Pacor 2 becomes operational. As Pacor 2 unique experience is gained, analysts will update the case base. In essence, analysts are training the system as they learn. Once the system has learned the cases most likely to recur, it can serve as an aide to inexperienced analysts, a refresher to experienced analysts for infrequently occurring problems, or a training tool for new analysts. The Expert System Development Methodology (ESDM) is being used to guide development.
The GOES-R Rebroadcast (GRB) Data Stream Simulator
NASA Astrophysics Data System (ADS)
Dittberner, G. J.; Gibbons, K.; Czopkiewicz, E.; Miller, C.; Brown-Bergtold, B.; Haman, B.; Marley, S.
2013-12-01
GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. Five GRB Simulators were developed as portable systems that output a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data are used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all software and hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. The GRB Simulator provides GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data are sent in the same two output streams used in the operational system: one for Left Hand Circular Polarization (LHCP) and one for Right Hand Circular Polarization (RHCP). Use of circular polarization in the operational system allows the transmitting antenna to multiplex the two digital streams into the same signal, thereby doubling the available bandwidth. The GRB Simulator is designed to be used at sites that receive the GRB downlink.
Event-Driven Simulation and Analysis of an Underwater Acoustic Local Area Network
2010-06-01
Successful number of data packets % b. PSUP = Successful number of Utility packets % c. PSB = Successful number of byte Tx. % d. PSPRT = Number of sub...g. PFU = Number of failed utilities Tx failures with time log of failure % h. PTO = Number of Time-outs 55 function [PSDP,PSUP, PSB ,PSPRT,PFP,PFSP...transmitted PSB = 0 ; % Number of Bytes transmitted PSPRT = 0; % Number of sub-packets retransmitted PFP = 0; % Number of failed packets event PFSP
Fast packet switch architectures for broadband integrated services digital networks
NASA Technical Reports Server (NTRS)
Tobagi, Fouad A.
1990-01-01
Background information on networking and switching is provided, and the various architectures that have been considered for fast packet switches are described. The focus is solely on switches designed to be implemented electronically. A set of definitions and a brief description of the functionality required of fast packet switches are given. Three basic types of packet switches are identified: the shared-memory, shared-medium, and space-division types. Each of these is described, and examples are given.
Identification of Low-Latency Obfuscated Traffic Using Multi-Attribute Analysis
2017-03-01
the distribution of common Tor packet sizes. Herrmann et al. also contend that the remaining variations in observed packet sizes are caused by OS...specific fragmentation and that Tor’s variation in packet size provides an additional level of protection as the false positive rate (FPR) using packet...three pre-filter variations , the observed FPR for non-Tor ranged from 94.4 percent to 7.2 percent, and the observed FNR for Tor ranged from 61.3
Pincavage, Amber T; Lee, Wei Wei; Venable, Laura Ruth; Prochaska, Megan; Staisiunas, Daina D; Beiting, Kimberly J; Czerweic, M K; Oyler, Julie; Vinci, Lisa M; Arora, Vineet M
2015-02-01
Few patient-centered interventions exist to improve year-end residency clinic handoffs. Our purpose was to assess the impact of a patient-centered transition packet and comic on clinic handoff outcomes. The study was conducted at an academic medicine residency clinic. Participants were patients undergoing resident clinic handoff 2011-2013 PROGRAM DESCRIPTION: Two months before the 2012 handoff, patients received a "transition packet" incorporating patient-identified solutions (i.e., a new primary care provider (PCP) welcome letter with photo, certificate of recognition, and visit preparation tool). In 2013, a comic was incorporated to stress the importance of follow-up. Patients were interviewed by phone with response rates of 32 % in 2011, 43 % in 2012 and 36 % in 2013. Most patients who were interviewed were aware of the handoff post-packet (95 %). With the comic, more patients recalled receiving the packet (44 % 2012 vs. 64 % 2013, p< 0.001) and correctly identified their new PCP (77 % 2012 vs. 98 % 2013, p< 0.001). Among patients recalling the packet, most (70 % 2012; 65 % 2013) agreed it helped them establish rapport. Both years, fewer patients missed their first new PCP visit (43 % in 2011, 31 % in 2012 and 26 % in 2013, p< 0.001). A patient-centered transition packet helped prepare patients for clinic handoffs. The comic was associated with increased packet recall and improved follow-up rates.
Cell genealogies in a plant meristem deduced with the aid of a 'bootstrap' L-system.
Lück, J; Barlow, P W; Lück, H B
1994-01-01
The primary root meristem of maize (Zea mays L.) contains longitudinal files of cells arranged in groups of familial descent (sisters, cousins, etc.). These groups, or packets, show ordered sequences of cell division which are transverse with respect to the apico-basal axis of the root. The sequences have been analysed in three zones of the meristem during the course of the first four cell generations following germination. In this period, the number of cells in the packets increases from one to 16. Theoretically, there are 48 possible division pathways that lead to the eight-cell stage, and nearly 2 x 10(6) that lead to the 16-cell stage. However, analysis shows that only a few of all the possible pathways are used in any particular zone of the root. This restriction of pathways results from inherited sequences of asymmetric cell divisions which lead to sister cells of unequal length. All possible division pathways can be generated by deterministic 'bootstrap' L-systems which assign different lifespans to sister cells of successive generations and hence specify their subsequent sequence of divisions. These systems simulate propagating patterns of cell divisions which agree with those actually found within the growing packets that comprise the root meristem. The patterns of division are specific to cells originating in various regions of the meristem of the germinating root. The importance of such systems is that they simulate patterns of cellular proliferation where there is ancestral dependency. They can therefore be applied in other growing and proliferating systems where this is suspected.
Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
2016-02-09
We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.
Power Product Equipment Technician: Equipment Systems. Teacher Edition. Student Edition.
ERIC Educational Resources Information Center
Hilley, Robert
This packet contains teacher and student editions on the topic of equipment systems, intended for the preparation of power product equipment technicians. This publication contains seven units: (1) principles of power transmission; (2) mechanical drive systems; (3) principles of fluid power; (4) hydraulic and pneumatic drive systems; (5) wheel and…
A decision support system for telemedicine through the mobile telecommunications platform.
Eren, Ali; Subasi, Abdulhamit; Coskun, Osman
2008-02-01
In this paper we have discussed the application of artificial intelligence in telemedicine using mobile device. The main goal of our research is to develop methods and systems to collect, analyze, distribute and use medical diagnostics information from multiple knowledge sources and areas of expertise. Physicians may collect and analyze information obtained from experts worldwide with the help of a medical decision support system. In this information retrieval system, modern communication tools such as computers and mobile phones can be used efficiently. In this work we propose a medical decision support system using the general packet radio service (GPRS). GPRS, a data extension of the mobile telephony standard Global system for mobile communications (GSM) is emerging as the first true packet-switched architecture to allow mobile subscribers to benefit from high-speed transmission rates and run JAVA based applications from their mobile terminals. An academic prototype of a medical decision support system using mobile device was implemented. The results reveal that the system could find acceptance from the medical community and it could be an effective means of providing quality health care in developing countries.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
Acoustic emission detection for mass fractions of materials based on wavelet packet technology.
Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing
2015-07-01
Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Zhongying; Li, Juhao; Tian, Yu; Ge, Dawei; Zhu, Paikun; Chen, Yuanxiang; Chen, Zhangyuan; He, Yongqi
2017-03-01
In recent years, optical label switching (OLS) gains lots of attentions due to its intrinsic advantages to implement protocol, bit-rate, granularity and data format transparency packet switching. In this paper, we propose a novel scheme to realize flexible-rate optical packet switching for OLS networks. At the transmitter node, flexible-rate packet is generated by parallel modulating different combinations of optical carriers generated from the optical multi-carrier generator (OMCG), among which the low-speed optical label occupies one carrier. At the switching node, label is extracted and re-generated in label processing unit (LPU). The payloads are switched based on routing information and new label is added after switching. At the receiver node, another OMCG serves as local oscillators (LOs) for optical payloads coherent detection. The proposed scheme offers good flexibility for dynamic optical packet switching by adjusting the payload bandwidth and could also effectively reduce the number of lasers, modulators and receivers for packet generation/detection. We present proof-of-concept demonstrations of flexible-rate packet generation/detection and label swapping in 12.5 GHz grid. The influence of crosstalk for cascaded label swapping is also investigated.
A novel EPON architecture for supporting direct communication between ONUs
NASA Astrophysics Data System (ADS)
Wang, Liqian; Chen, Xue; Wang, Zhen
2008-11-01
In the traditional EPON network, optical signal from one ONU can not reach other ONUs. So ONUs can not directly transmit packets to other ONUs .The packets must be transferred by the OLT and it consumes both upstream bandwidth and downstream bandwidth. The bandwidth utilization is low and becomes lower when there are more packets among ONUs. When the EPON network carries P2P (Peer-to-Peer) applications and VPN applications, there would be a great lot of packets among ONUs and the traditional EPON network meets the problem of low bandwidth utilization. In the worst situation the bandwidth utilization of traditional EPON only is 50 percent. This paper proposed a novel EPON architecture and a novel medium access control protocol to realize direct packets transmission between ONUs. In the proposed EPON we adopt a novel circled architecture in the splitter. Due to the circled-splitter, optical signals from an ONU can reach the other ONUs and packets could be directly transmitted between two ONUs. The traffic between two ONUs only consumes upstream bandwidth and the bandwidth cost is reduced by 50 percent. Moreover, this kind of directly transmission reduces the packet's latency.
2015-08-01
Experimental environment 5 Table 1 Hardware specifications Name Manufacture Model CPU Memory Hard Drive IP Address Bilbo Dell PowerEdge R610 Intel...10 we replayed the same hour of network traffic from the CDX 20093 that we used in our theoretical2 exploration to show the impact of our packet... replay the traffic at arbitrary speeds. Table 3 lists the speed multiplier that we used and the packet loss we observed. Table 3 Network packet loss
Crossbar Switches For Optical Data-Communication Networks
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.
Glider Observations of Internal Tide Packets on the Australian Northwest Shelf
NASA Astrophysics Data System (ADS)
Book, J. W.; Steinberg, C. R.; Brinkman, R. M.; Jones, N. L.; Lowe, R.; Ivey, G. N.; Pattiaratchi, C. B.; Rice, A. E.
2016-02-01
The rapid profiling capabilities (less than 10 minutes per profile in 100 m of water excluding surfacing times) of autonomous gliders were utilized to study the structure of non-linear internal tide packets on the Australian Northwest Shelf. A total of five gliders were deployed on the shelf from 11 February - 21 April 2012 with more than 2900 glider CTD profiles collected during the final three weeks of this time period when the internal tide activity was intense. In general the internal tide packets showed high degrees of non-linearity, for example in one case a glider observed a 62 m rise of the 28° isotherm over 2.25 hours in a shelf location of 90 meters water depth. In addition to the glider measurements, moored strings of CTD sensors were used to measure the internal tide packets at fixed positions and the results show that the wave packets vary significantly with respect to their structure and arrival times from one tidal period to the next. This fact complicates interpretation of the glider data as wave packet spatial evolution is non-stationary and cannot be simply recovered from repeat glider visits to the same location. Furthermore, the packets were found to move at speeds near or greater (e.g., 0.55 m/s) than the speed that the gliders were moving. Despite these challenges, the gliders offer the only resource that can measure the spatial structure of the wave packets beyond the scope of our limited mooring positions. Therefore, we have implemented methods such as time-augmented empirical orthogonal functions to combine these glider measurements with the fixed mooring measurements in order to better understand the spatial and temporal patterns of the wave packet evolution over the slope and shelf of this region.
Alibardi, L; Thompson, M B
2003-04-01
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.
Hoenicke, Dirk
2014-12-02
Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.
Statistics of Gaussian packets on metric and decorated graphs.
Chernyshev, V L; Shafarevich, A I
2014-01-28
We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.
Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond
2009-02-01
Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Six swine were studied that underwent 6-7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3-4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean+/-SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2+/-2.5 min. Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above prestimulation levels.
Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond
2009-01-01
Background Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Methods and Results Six swine were studied that underwent 6–7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3–4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean±SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2±2.5 min. Conclusions Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above pre-arrest levels. PMID:19655042
NASA Technical Reports Server (NTRS)
Treiman, Allan H.; Fuks, Kelly H.; Murchie, Scott
1995-01-01
A packet of relatively resistant layers, totaling approx. 400 m thickness, is present at the tops of the chasma walls throughout Valles Marineris. The packet consists of an upper dark layer (approx. 50 m thick), a central bright layer (approx. 250 m thick), and a lower dark layer (approx. 100 m thick). The packet appears continuous and of nearly constant thickness and depth below ground surface over the whole Valles system (4000 km E-W, 800 km N-S), independent of elevation (3-10 km) and age of plateau surface (Noachian through upper Hesperian). The packet continues undisturbed beneath the boundary between surface units of Noachian and Hesperian ages, and continues undisturbed beneath impact craters transected by chasma walls. These attributes are not consistent with layer formation by volcanic or sedimentary deposition, and are consistent with layer formation in situ, i.e., by diagenesis, during or after upper Hesperian time. Diagenesis seems to require the action of aqueous solutions in the near subsurface, which are not now stable in the Valles Marineris area. To permit the stability of aqueous solutions, Mars must have had a fairly dense atmosphere, greater than or equal to 1 bar CO2, when the layers formed. Obliquity variations appear to be incapable of producing such a massive atmosphere so late in Mars' history.
ERIC Educational Resources Information Center
Astronomical Society of the Pacific, San Francisco, CA.
One of a series of information packets, the document provides clear, specific information about the controversial subject of astrology. The packet includes six articles explaining the dozens of careful scientific tests which have concluded that there is no scientific evidence supporting astrology. The packet includes an interview with astronomer…
Notes from beyond the Cognitive Domain.
ERIC Educational Resources Information Center
Brand, Alice, Comp.; Graves, Dick, Comp.
This packet summarizes the ideas, concepts, suggestions, and speculations growing out of a think tank which explored the uncharted region beyond cognitive learning. The packet shows that participants were divided into groups to discuss teaching, research, bibliographic information, theoretical ideas, and professional issues. The packet contains:…
Multi-Media Instructional Packets.
ERIC Educational Resources Information Center
Brophy, John W.
This is a collection of multi-media packets for each of the following business subjects: (1) Introduction to Business; (2) Principles of Marketing; (3) Principles of Advertising; (4) Principles of Retailing/Merchandising; and (5) Principles of Salesmanship. Each packet includes information regarding: (1) most relevant textbooks; (2) Suggested…
Thermal averages in a quantum point contact with a single coherent wave packet.
Heller, E J; Aidala, K E; LeRoy, B J; Bleszynski, A C; Kalben, A; Westervelt, R M; Maranowski, K D; Gossard, A C
2005-07-01
A novel formal equivalence between thermal averages of coherent properties (e.g., conductance) and time averages of a single wave packet arises for Fermi gases and certain geometries. In the case of one open channel in a quantum point contact (QPC), only one wave packet history, with the wave packet width equal to the thermal length, completely determines the thermally averaged conductance. The formal equivalence moreover allows very simple physical interpretations of interference features surviving under thermal averaging. Simply put, pieces of the thermal wave packet returning to the QPC along independent paths must arrive at the same time in order to interfere. Remarkably, one immediate result of this approach is that higher temperature leads to narrower wave packets and therefore better resolution of events in the time domain. In effect, experiments at 4.2 K are performing time-gated experiments at better than a gigahertz. Experiments involving thermally averaged ballistic conductance in 2DEGS are presented as an application of this picture.
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-07-09
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.
Kim, Daehee; Kim, Dongwan; An, Sunshin
2016-01-01
Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
Wei, Jiahong; Liu, Chong; Ren, Tongqun; Liu, Haixia; Zhou, Wenjing
2017-01-01
The rail fastening system is an important part of a high-speed railway track. It is always critical to the operational safety and comfort of railway vehicles. Therefore, the condition detection of the rail fastening system, looseness or absence, is an important task in railway maintenance. However, the vision-based method cannot identify the severity of rail fastener looseness. In this paper, the condition of rail fastening system is monitored based on an automatic and remote-sensing measurement system. Meanwhile, wavelet packet analysis is used to analyze the acceleration signals, based on which two damage indices are developed to locate the damage position and evaluate the severity of rail fasteners looseness, respectively. To verify the effectiveness of the proposed method, an experiment is performed on a high-speed railway experimental platform. The experimental results show that the proposed method is effective to assess the condition of the rail fastening system. The monitoring system significantly reduces the inspection time and increases the efficiency of maintenance management. PMID:28208732
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.
Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M
2018-05-11
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.
2018-01-01
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633
NASA Technical Reports Server (NTRS)
1982-01-01
New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.
ERIC Educational Resources Information Center
Little, Mildred J.; Smith, Carole F.
Designed to be used in conjunction with the book "Canoeing", published by the American Red Cross in 1977, the teaching packet provides assistance in organizing and teaching a basic canoeing class. The packet lists 20 class objectives and details essential and recommended equipment and safety precautions. The packet contains a 15-day unit…
78 FR 10263 - Proposed Collection; Comment Request for ADA Accommodations Request Packet
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... DEPARTMENT OF THE TREASURY Internal Revenue Service Proposed Collection; Comment Request for ADA... the ADA Accommodations Packet. DATES: Written comments should be received on or before April 15, 2013...: ADA Accommodations Request Packet. OMB Number: 1545-2027. Abstract: Information is collected so that...
Aircraft Environmental Systems Mechanic. Part 2.
ERIC Educational Resources Information Center
Chanute AFB Technical Training Center, IL.
This packet contains learning modules designed for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Learning modules consist of some or all of the following materials: objectives, instructions, equipment, procedures, information sheets, handouts, workbooks, self-tests with answers, review…
Access to Corporate Information Systems: Datafiles, Classified Documents, and Information Resources.
ERIC Educational Resources Information Center
Baumgartner, Kurt O.; And Others
1988-01-01
Three articles discuss aspects of corporate information systems: (1) "Packet Switching Networks: Worldwide Access to Corporate Datafiles" (Kurt O. Baumgartner); "Classified Documents in the Corporate Library" (Patricia M. Shores); and "From Library to Information Center: Case Studies in the Evolution of Corporate…
Scholze, Stefan; Schiefer, Stefan; Partzsch, Johannes; Hartmann, Stephan; Mayr, Christian Georg; Höppner, Sebastian; Eisenreich, Holger; Henker, Stephan; Vogginger, Bernhard; Schüffny, Rene
2011-01-01
State-of-the-art large-scale neuromorphic systems require sophisticated spike event communication between units of the neural network. We present a high-speed communication infrastructure for a waferscale neuromorphic system, based on application-specific neuromorphic communication ICs in an field programmable gate arrays (FPGA)-maintained environment. The ICs implement configurable axonal delays, as required for certain types of dynamic processing or for emulating spike-based learning among distant cortical areas. Measurements are presented which show the efficacy of these delays in influencing behavior of neuromorphic benchmarks. The specialized, dedicated address-event-representation communication in most current systems requires separate, low-bandwidth configuration channels. In contrast, the configuration of the waferscale neuromorphic system is also handled by the digital packet-based pulse channel, which transmits configuration data at the full bandwidth otherwise used for pulse transmission. The overall so-called pulse communication subgroup (ICs and FPGA) delivers a factor 25–50 more event transmission rate than other current neuromorphic communication infrastructures. PMID:22016720
Providing the full DDF link protection for bus-connected SIEPON based system architecture
NASA Astrophysics Data System (ADS)
Hwang, I.-Shyan; Pakpahan, Andrew Fernando; Liem, Andrew Tanny; Nikoukar, AliAkbar
2016-09-01
Currently a massive amount of traffic per second is delivered through EPON systems, one of the prominent access network technologies for delivering the next generation network. Therefore, it is vital to keep the EPON optical distribution network (ODN) working by providing the necessity protection mechanism in the deployed devices; otherwise, when failures occur it will cause a great loss for both network operators and business customers. In this paper, we propose a bus-connected architecture to protect and recover distribution drop fiber (DDF) link faults or transceiver failures at ONU(s) in SIEPON system. The proposed architecture provides a cost-effective architecture, which delivers the high fault-tolerance in handling multiple DDF faults, while also providing flexibility in choosing the backup ONU assignments. Simulation results show that the proposed architecture provides the reliability and maintains quality of service (QoS) performance in terms of mean packet delay, system throughput, packet loss and EF jitter when DDF link failures occur.
Rail-CR : railroad cognitive radio.
DOT National Transportation Integrated Search
2012-12-01
Robust, reliable, and interoperable wireless communication devices or technologies are vital to the success of positive train control (PTC) systems. Accordingly, the railway industry has started adopting software-defined radios (SDRs) for packet-data...
Advertising and the Economy: A Teaching Package.
ERIC Educational Resources Information Center
Proctor and Gamble Co., Cincinnati, OH.
This teaching packet is designed to enrich lessons and motivate students, and is based on real-life marketing problems. The packet includes a booklet containing background for instructors on advertising's crucial economic role and its history in the United States, eight reproducible lessons, and teaching tips for each lesson. The packet also…
Continuing Development of California State Packet Radio Project.
ERIC Educational Resources Information Center
Brownrigg, Edwin
1992-01-01
Provides background on the California State Library Packet Radio project, which will use packet radios to deploy a wireless, high-speed, wide-area network of 600 nodes, including 100 libraries, in the San Francisco Bay Area. Project goals and objectives, plan of operation, equipment, and evaluation plans are summarized. (MES)
Vocational and Industrial Arts Packets.
ERIC Educational Resources Information Center
Maine Audubon Society, Falmouth.
This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…
ERIC Educational Resources Information Center
Peace Corps, Manila (Philippines).
The materials in this packet were designed for the rapid Cebuano language training of Peace Corps volunteers, focusing on daily communication needs in this context. The packet contains: lists of common phrases, expressions, and vocabulary on a variety of topics related to Peace Corps work; a list of core competencies for specific topics…
Learn about Seabirds. Teaching Packet, Grades 4-6.
ERIC Educational Resources Information Center
Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.
This teaching packet is designed to teach Alaskan students in grades 4-6 about Alaska's seabird populations, the worldwide significance of seabirds, and the environmental conditions to which seabirds are sensitive. The packet includes a curriculum guide (containing a teacher's background story and 12 teaching activities), a separately published…
Personal Skills. Facilitator's Skill Packets 1-7. Social Skills Training.
ERIC Educational Resources Information Center
Model Classrooms, Bellevue, WA.
This document contains the following seven facilitators' skill packets on personal skills: (1) personal hygiene; (2) personal appearance; (3) locker hygiene; (4) dorm cleanliness; (5) punctuality and attendance; (6) responding to supervision; and (7) teamwork. Each packet contains the following sections: definition of personal skills; objective;…
Student Activity Packet for the California State Capitol Museum.
ERIC Educational Resources Information Center
2001
This packet contains materials to help fourth and fifth grade teachers provide their students with background information for field trips to the California State Capitol Museum (Sacramento). The working museum focuses on the theme areas of California history, the state government/legislative process, and state symbols. The packet presents teacher…
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
NASA Astrophysics Data System (ADS)
Yu, Jie; Wang, Sen-Ming; Yuan, Kai-Jun; Cong, Shu-Lin
2006-09-01
The method of time-dependent quantum wave packet dynamics is used to calculate the femtosecond pump-probe photoelectron spectra and study the wave packet dynamic processes of the double-minimum potential state 61Σ+ of NaK in intense laser fields. The evolutions of the wave packet and the photoelectron energy spectra with time and internuclear distance are described in detail. The wave packet dynamic information of the 61Σ+ state can be extracted from the photoelectron energy spectra.
Coherent wave packet dynamics in a double-well potential in cavity
NASA Astrophysics Data System (ADS)
Zheng, Li; Li, Gang; Ding, Ming-Song; Wang, Yong-Liang; Zhang, Yun-Cui
2018-02-01
We investigate the coherent wave packet dynamics of a two-level atom trapped in a symmetric double-well potential in a near-resonance cavity. Prepared on one side of the double-well potential, the atom wave packet oscillates between the left and right wells, while recoil induced by the emitted photon from the atom entangles the atomic internal and external degrees of freedom. The collapse and revival of the tunneling occurs. Adjusting the width of the wave packets, one can modify the tunneling frequency and suppress the tunneling.
Securing internet by eliminating DDOS attacks
NASA Astrophysics Data System (ADS)
Niranchana, R.; Gayathri Devi, N.; Santhi, H.; Gayathri, P.
2017-11-01
The major threat caused to the authorised usage of Internet is Distributed Denial of Service attack. The mechanisms used to prevent the DDoS attacks are said to overcome the attack’s ability in spoofing the IP packets source addresses. By utilising Internet Protocol spoofing, the attackers cause a consequential load over the networks destination for policing attack packets. To overcome the IP Spoofing level on the Internet, We propose an Inter domain Packet Filter (IPF) architecture. The proposed scheme is not based on global routing information. The packets with reliable source addresses are not rejected, the IPF frame work works in such a manner. The spoofing capability of attackers is confined by IPF, and also the filter identifies the source of an attack packet by minimal number of candidate network.
NASA Astrophysics Data System (ADS)
Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi
This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.
Wireless network interface energy consumption implications of popular streaming formats
NASA Astrophysics Data System (ADS)
Chandra, Surendar
2001-12-01
With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao
2017-12-01
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
NASA Technical Reports Server (NTRS)
Greene, E. P.
1976-01-01
The requirements for mission-operations data management will accelerate sharply when the Space Transportation System (i.e., Space Shuttle) becomes the primary vehicle for research from space. These demands can be satisfied most effectively by providing a higher-level source encoding function within the spaceborne vehicle. An Instrument Telemetry Packet (ITP) concept is described which represents an alternative to the conventional multiplexed telemetry frame approach for acquiring spaceborne instrument data. By providing excellent data-integrity protection at the source and a variable instrument bandwidth capability, this ITP concept represents a significant improvement over present data acquisition procedures. Realignments in the ground telemetry processing functions are described which are intended to take advantage of the ITP concept and to make the data management system more responsive to the scientific investigators.
Wu, Jie; Zhou, Zhu-Jun; Zhan, Xi-Sheng; Yan, Huai-Cheng; Ge, Ming-Feng
2017-05-01
This paper investigates the optimal modified tracking performance of multi-input multi-output (MIMO) networked control systems (NCSs) with packet dropouts and bandwidth constraints. Some explicit expressions are obtained by using co-prime factorization and the spectral decomposition technique. The obtained results show that the optimal modified tracking performance is related to the intrinsic properties of a given plant such as non-minimum phase (NMP) zeros, unstable poles, and their directions. Furthermore, the modified factor, packet dropouts probability and bandwidth also impact the optimal modified tracking performance of the NCSs. The optimal modified tracking performance with channel input power constraint is obtained by searching through all stabilizing two-parameter compensator. Finally, some typical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Advanced teleprocessing systems
NASA Astrophysics Data System (ADS)
Kleinrock, L.; Gerla, M.
1982-09-01
This Annual Technical Report covers research covering the period from October 1, 1981 to September 30, 1982. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains abstracts of publications which summarize research results in these areas followed by the main body of the report which is devoted to a study of channel access protocols that are executed by the nodes of a network to schedule their transmissions on multi-access broadcast channel. In particular the main body consists of a Ph.D. dissertation, Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks. This work discusses some new channel access protocols useful for mobile radio networks. Included is an analysis of slotted ALOHA and some tight bounds on the performance of all possible protocols in a mobile environment.
Patients’ Heart Monitoring System Based on Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Sollu, T. S.; Alamsyah; Bachtiar, M.; Sooai, A. G.
2018-04-01
Wireless sensor network (WSN) has been utilized to support the health field such as monitoring the patient’s heartbeat. Heart health monitoring is essential in maintaining health, especially in the elderly. Such an arrangement is needed to understand the patient’s heart characteristics. The increasing number of patients certainly will enhance the burdens of doctors or nurses in dealing with the condition of the patients. Therefore, required a solution that could help doctors or nurses in monitoring the progress of patients’ health at a real time. This research proposes a design and application of a patient heart monitoring system based on WSN. This system with using electrocardiograph (ECG) mounted on the patients’ body and sent to the server through the ZigBee. The results indicated that the retrieval of data for 15 seconds in male patients, with the age of 25 years was 17 times rate or equal to 68 bpm. For 884 data packets sent for 15 minutes using ZigBee produce a data as much as 4488 bytes, throughput of 2.39 Kbps, and 0.24486 seconds of average delay. The measurement of the communication coverage based on the open space conditions within 15 seconds through ZigBee resulting throughput value of 4.19 Kbps, packet loss of 0 %, and 6.667 seconds of average delay. While, the measurement of communication range based on closed space condition through ZigBee resulting throughput of 4.27 Kbps, packet loss of 0 %, and 6.55 seconds of average delay.
The Last Millimeter: Interfacing the New Public Radio Satellite System. Info. Packets No. 14.
ERIC Educational Resources Information Center
Pizzi, Skip
Public radio is about to achieve a new technological level as the new Public Radio Satellite System (PRSS) is deployed. The network will dramatically improve the capacity and quality of its interconnection system, but proper interfacing at member stations will be required to realize the full benefits of the new system. The new system uses digital…
Aircraft Environmental Systems Mechanic. Part 1.
ERIC Educational Resources Information Center
Chanute AFB Technical Training Center, IL.
This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…
Teller Training Module: Off-Line Banking System. High-Technology Training Module.
ERIC Educational Resources Information Center
Lund, Candyce J.
This teller training module on offline banking systems is intended to be part of a postsecondary financial applications course. The module contains the following sections: module objective; specific objective; content--electronic audit machine key functions, practice packet--sample bank transactions and practicing procedures, and…
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Martin, Timothy M; Wysocki, Beata J; Beyersdorf, Jared P; Wysocki, Tadeusz A; Pannier, Angela K
2014-08-01
Gene delivery systems transport exogenous genetic information to cells or biological systems with the potential to directly alter endogenous gene expression and behavior with applications in functional genomics, tissue engineering, medical devices, and gene therapy. Nonviral systems offer advantages over viral systems because of their low immunogenicity, inexpensive synthesis, and easy modification but suffer from lower transfection levels. The representation of gene transfer using models offers perspective and interpretation of complex cellular mechanisms,including nonviral gene delivery where exact mechanisms are unknown. Here, we introduce a novel telecommunications model of the nonviral gene delivery process in which the delivery of the gene to a cell is synonymous with delivery of a packet of information to a destination computer within a packet-switched computer network. Such a model uses nodes and layers to simplify the complexity of modeling the transfection process and to overcome several challenges of existing models. These challenges include a limited scope and limited time frame, which often does not incorporate biological effects known to affect transfection. The telecommunication model was constructed in MATLAB to model lipoplex delivery of the gene encoding the green fluorescent protein to HeLa cells. Mitosis and toxicity events were included in the model resulting in simulation outputs of nuclear internalization and transfection efficiency that correlated with experimental data. A priori predictions based on model sensitivity analysis suggest that increasing endosomal escape and decreasing lysosomal degradation, protein degradation, and GFP-induced toxicity can improve transfection efficiency by three-fold. Application of the telecommunications model to nonviral gene delivery offers insight into the development of new gene delivery systems with therapeutically relevant transfection levels.
A concept to standardize raw biosignal transmission for brain-computer interfaces.
Breitwieser, Christian; Neuper, Christa; Müller-Putz, Gernot R
2011-01-01
With this concept we introduced the attempt of a standardized interface called TiA to transmit raw biosignals. TiA is able to deal with multirate and block-oriented data transmission. Data is distinguished by different signal types (e.g., EEG, EOG, NIRS, …), whereby those signals can be acquired at the same time from different acquisition devices. TiA is built as a client-server model. Multiple clients can connect to one server. Information is exchanged via a control- and a separated data connection. Control commands and meta information are transmitted over the control connection. Raw biosignal data is delivered using the data connection in a unidirectional way. For this purpose a standardized handshaking protocol and raw data packet have been developed. Thus, an abstraction layer between hardware devices and data processing was evolved facilitating standardization.
An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition
NASA Astrophysics Data System (ADS)
Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni
2010-08-01
This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).
ERIC Educational Resources Information Center
James, Sally
Four packets comprise the electricity component of an enrichment program for gifted elementary students. Provided in the introductory packet are sample pre- and posttests for the unit. Remaining packets present vocabulary lists, student worksheets on beginning circuitry, and suggestions for student projects (such as making a battery, constructing…
Environmental Microbiology Modules. Final Report.
ERIC Educational Resources Information Center
Walke, Raymond H.; Walke, Jayne G.
This publication is the result of a project to develop microbiology instructional materials for vocational college students. These materials are a series of self-paced modules. Each module includes a pre-test, an introduction and historical packet, an organizational packet to set the framework for in-depth study, one or more in-depth packets, a…
Guide to Alternative Mortgage Instruments. Teachers Instructional Packet, TIP No. 4, Spring 1985.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Texas Real Estate Research Center.
Part of a series of classroom aids designed for real estate instructors, this instructional packet was developed to help real estate students understand the various alternative mortgage instruments, including their major advantages and disadvantages. First, an evaluation form for the packet is presented. Next, a summary presentation on four basic…
Forests and Flowers. A Spring Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on plants and…
Energy Conservation Activity Packet, Grade 3.
ERIC Educational Resources Information Center
Bakke, Ruth
This activity packet for grade 3 is one of a series developed in response to the concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade three. The packet is divided into two parts and provides the teacher with background information, concepts and…
Signs of Fall. A Fall Activity Packet for Pre-School.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Nature's Hitchhikers. A Fall Activity Packet for Second Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
...- Demutualization Trading Permits, Tier Appointment and Bandwidth Packets June 25, 2010. Pursuant to Section 19(b)(1...-demutualization Trading Permits, tier appointment and bandwidth packets. The text of the proposed rule change is..., tier appointment and bandwidth packets. These post-demutualization Trading Permits, tier appointment...
Temperature, Pulse, and Respiration. Instructor's Packet. Learning Activity Package.
ERIC Educational Resources Information Center
Runge, Lillian
This instructor's packet accompanies the learning activity package (LAP) on temperature, pulse, and respiration. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, an additional resources list, and student completion cards to…
Dance Theatre of Harlem--Theater Activity Packet.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
Intended to complement the New York City communication arts curriculum, this packet introduces young students, guided by the classroom teacher, to a dress rehearsal performance of the Dance Theatre of Harlem ballet company. The packet is one of a series in the "Early Stages" program, a joint effort of the Mayor's Office of Film, Theater…
Energy Around Us. A Fall Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…
Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.
ERIC Educational Resources Information Center
Texas Univ., Austin. Extension Instruction and Materials Center.
The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…
Tropical Animal Tour Packet. Metro.
ERIC Educational Resources Information Center
Metro Washington Park Zoo, Portland, OR. Educational Services Div.
This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…
Michigan Natural History. A Spring Activity Packet for Fourth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…
Reading the Rocks. A Fall Activity Packet for Fifth Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on various geological…
Understanding and Minimizing Staff Burnout. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…
Spring Birds. A Spring Activity Packet for First Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…
Animal Homes and Habitats. A Fall Activity Packet for Third Grade.
ERIC Educational Resources Information Center
Jackson Community Coll., MI. Dahlem Environmental Education Center.
This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on animal populations and…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
MPNACK: an optical switching scheme enabling the buffer-less reliable transmission
NASA Astrophysics Data System (ADS)
Yu, Xiaoshan; Gu, Huaxi; Wang, Kun; Xu, Meng; Guo, Yantao
2016-01-01
Optical data center networks are becoming an increasingly promising solution to solve the bottlenecks faced by electrical networks, such as low transmission bandwidth, high wiring complexity, and unaffordable power consumption. However, the optical circuit switching (OCS) network is not flexible enough to carry the traffic burst while the optical packet switching (OPS) network cannot solve the packet contention in an efficient way. To this end, an improved switching strategy named OPS with multi-hop Negative Acknowledgement (MPNACK) is proposed. This scheme uses a feedback mechanism, rather than the buffering structure, to handle the optical packet contention. The collided packet is treated as a NACK packet and sent back to the source server. When the sender receives this NACK packet, it knows a collision happens in the transmission path and a retransmission procedure is triggered. Overall, the OPS-NACK scheme enables a reliable transmission in the buffer-less optical network. Furthermore, with this scheme, the expensive and energy-hungry elements, optical or electrical buffers, can be removed from the optical interconnects, thus a more scalable and cost-efficient network can be constructed for cloud computing data centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeibel, J. G.; Jones, R. R.
2003-08-01
Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less
Unified study of Quality of Service (QoS) in OPS/OBS networks
NASA Astrophysics Data System (ADS)
Hailu, Dawit Hadush; Lema, Gebrehiwet Gebrekrstos; Yekun, Ephrem Admasu; Kebede, Samrawit Haylu
2017-07-01
With the growth of Internet traffic, an inevitable use of optical networks provide a large bandwidth, fast data transmission rates and Quality of Service (QoS) support. Currently, Optical Burst Switched (OBS)/Optical Packet Switched (OPS) networks are under study as future solutions for addressing the increase demand of Internet traffic. However, due to their high blocking probability in the intermediate nodes they have been delayed in the industries. Packet loss in OBS/OPS networks is mainly occur due to contention. Hence, the contribution of this study is to analyze the file loss ratio (FLR), packet overhead and number of disjoint paths, and processing delay over Coded Packet Transport (CPT) scheme for OBS/OPS network using simulation. The simulations show that CPT scheme reduces the FLR in OBS/OPS network for the evaluated scenarios since the data packets are chopped off into blocks of the data packet for transmission over a network. Simulation results for secrecy and survivability are verified with the help of the analytical model to define the operational range of CPT scheme.
NASA Astrophysics Data System (ADS)
Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.
2018-05-01
We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.
Optimal control theory with continuously distributed target states: An application to NaK
NASA Astrophysics Data System (ADS)
Kaiser, Andreas; May, Volkhard
2006-01-01
Laser pulse control of molecular dynamics is studied theoretically by using optimal control theory. The control theory is extended to target states which are distributed in time as well as in a space of parameters which are responsible for a change of individual molecular properties. This generalized treatment of a control task is first applied to wave packet formation in randomly oriented diatomic systems. Concentrating on an ensemble of NaK molecules which are not aligned the control yield decreases drastically when compared with an aligned ensemble. Second, we demonstrate for NaK the maximization of the probe pulse transient absorption in a pump-probe scheme with an optimized pump pulse. These computations suggest an overall optical control scheme, whereby a flexible technique is suggested to form particular wave packets in the excited state potential energy surface. In particular, it is shown that considerable wave packet localization at the turning points of the first-excited Σ-state potential energy surfaces of NaK may be achieved. The dependency of the control yield on the probe pulse parameters is also discussed.
SEQUENCING of TSUNAMI WAVES: Why the first wave is not always the largest?
NASA Astrophysics Data System (ADS)
Synolakis, C.; Okal, E.
2016-12-01
We discuss what contributes to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r 30 /h2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0 , the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard
Sequencing of tsunami waves: why the first wave is not always the largest
NASA Astrophysics Data System (ADS)
Okal, Emile A.; Synolakis, Costas E.
2016-02-01
This paper examines the factors contributing to the `sequencing' of tsunami waves in the far field, that is, to the distribution of the maximum sea surface amplitude inside the dominant wave packet constituting the primary arrival at a distant harbour. Based on simple models of sources for which analytical solutions are available, we show that, as range is increased, the wave pattern evolves from a regime of maximum amplitude in the first oscillation to one of delayed maximum, where the largest amplitude takes place during a subsequent oscillation. In the case of the simple, instantaneous uplift of a circular disk at the surface of an ocean of constant depth, the critical distance for transition between those patterns scales as r_0^3 / h^2 where r0 is the radius of the disk and h the depth of the ocean. This behaviour is explained from simple arguments based on a model where sequencing results from frequency dispersion in the primary wave packet, as the width of its spectrum around its dominant period T0 becomes dispersed in time in an amount comparable to T0, the latter being controlled by a combination of source size and ocean depth. The general concepts in this model are confirmed in the case of more realistic sources for tsunami excitation by a finite-time deformation of the ocean floor, as well as in real-life simulations of tsunamis excited by large subduction events, for which we find that the influence of fault width on the distribution of sequencing is more important than that of fault length. Finally, simulation of the major events of Chile (2010) and Japan (2011) at large arrays of virtual gauges in the Pacific Basin correctly predicts the majority of the sequencing patterns observed on DART buoys during these events. By providing insight into the evolution with time of wave amplitudes inside primary wave packets for far field tsunamis generated by large earthquakes, our results stress the importance, for civil defense authorities, of issuing warning and evacuation orders of sufficient duration to avoid the hazard inherent in premature calls for all-clear.
Napolitano, Jr., Leonard M.
1995-01-01
The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.
NASA Technical Reports Server (NTRS)
Reimers, J. R.; Heller, E. J.
1985-01-01
Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.
Data transmission system and method
NASA Technical Reports Server (NTRS)
Bruck, Jehoshua (Inventor); Langberg, Michael (Inventor); Sprintson, Alexander (Inventor)
2010-01-01
A method of transmitting data packets, where randomness is added to the schedule. Universal broadcast schedules using encoding and randomization techniques are also discussed, together with optimal randomized schedules and an approximation algorithm for finding near-optimal schedules.
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-02-01
Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
NASA Astrophysics Data System (ADS)
Darcie, Thomas E.; Doverspike, Robert; Zirngibl, Martin; Korotky, Steven K.
2005-03-01
Call for Papers: Convergence Convergence has become a popular theme in telecommunications, one that has broad implications across all segments of the industry. Continual evolution of technology and applications continues to erase lines between traditionally separate lines of business, with dramatic consequences for vendors, service providers, and consumers. Spectacular advances in all layers of optical networking-leading to abundant, dynamic, cost-effective, and reliable wide-area and local-area connections-have been essential drivers of this evolution. As services and networks continue to evolve towards some notion of convergence, the continued role of optical networks must be explored. One vision of convergence renders all information in a common packet (especially IP) format. This vision is driven by the proliferation of data services. For example, time-division multiplexed (TDM) voice becomes VoIP. Analog cable-television signals become MPEG bits streamed to digital set-top boxes. T1 or OC-N private lines migrate to Ethernet virtual private networks (VPNs). All these packets coexist peacefully within a single packet-routing methodology built on an optical transport layer that combines the flexibility and cost of data networks with telecom-grade reliability. While this vision is appealing in its simplicity and shared widely, specifics of implementation raise many challenges and differences of opinion. For example, many seek to expand the role of Ethernet in these transport networks, while massive efforts are underway to make traditional TDM networks more data friendly within an evolved but backward-compatible SDH/SONET (synchronous digital hierarchy and synchronous optical network) multiplexing hierarchy. From this common underlying theme follow many specific instantiations. Examples include the convergence at the physical, logical, and operational levels of voice and data, video and data, private-line and virtual private-line, fixed and mobile, and local and long-haul services. These trends have many consequences for consumers, vendors, and carriers. Faced with large volumes of low-margin data traffic mixed with traditional voice services, the need for capital conservation and operational efficiency drives carriers away from today's separate overlay networks for each service and towards "converged" platforms. For example, cable operators require transport of multiple services over both hybrid fiber coax (HFC) and DWDM transport technologies. Local carriers seek an economical architecture to deliver integrated services on optically enabled broadband-access networks. Services over wireless-access networks must coexist with those from wired networks. In each case, convergence of networks and services inspires an important set of questions and challenges, driven by the need for low cost, operational efficiency, service performance requirements, and optical transport technology options. This Feature Issue explores the various interpretations and implications of network convergence pertinent to optical networking. How does convergence affect the evolution of optical transport-layer and control approaches? Are the implied directions consistent with research vision for optical networks? Substantial challenges remain. Papers are solicited across the broad spectrum of interests. These include, but are not limited to:
Distributed synchronization control of complex networks with communication constraints.
Xu, Zhenhua; Zhang, Dan; Song, Hongbo
2016-11-01
This paper is concerned with the distributed synchronization control of complex networks with communication constraints. In this work, the controllers communicate with each other through the wireless network, acting as a controller network. Due to the constrained transmission power, techniques such as the packet size reduction and transmission rate reduction schemes are proposed which could help reduce communication load of the controller network. The packet dropout problem is also considered in the controller design since it is often encountered in networked control systems. We show that the closed-loop system can be modeled as a switched system with uncertainties and random variables. By resorting to the switched system approach and some stochastic system analysis method, a new sufficient condition is firstly proposed such that the exponential synchronization is guaranteed in the mean-square sense. The controller gains are determined by using the well-known cone complementarity linearization (CCL) algorithm. Finally, a simulation study is performed, which demonstrates the effectiveness of the proposed design algorithm. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
In the Public Interest: Law, Government, and Media. Maryland Women's History Resource Packet--1986.
ERIC Educational Resources Information Center
Maryland State Commission for Women, Baltimore.
Designed to be used for National Women's History Week (March 2-8), this 1986 Maryland women's history resource packet centers around Maryland women who have made significant volunteer and career contributions in the areas of government, law, and the public interest media. The packet begins with suggested student activity lists and activity sheets…