Wild populations of the killifish Fundulus heteroclitus resident in heavily contaminated North American Atlantic coast estuaries have recently and independently evolved dramatic, heritable, and adaptive pollution tolerance. We compared physiological and transcriptome responses t...
The Emergence of Physiology and Form: Natural Selection Revisited
Torday, John S.
2016-01-01
Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726
Evolutionary stasis and lability in thermal physiology in a group of tropical lizards.
Muñoz, Martha M; Stimola, Maureen A; Algar, Adam C; Conover, Asa; Rodriguez, Anthony J; Landestoy, Miguel A; Bakken, George S; Losos, Jonathan B
2014-03-07
Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming.
Evolutionary stasis and lability in thermal physiology in a group of tropical lizards
Muñoz, Martha M.; Stimola, Maureen A.; Algar, Adam C.; Conover, Asa; Rodriguez, Anthony J.; Landestoy, Miguel A.; Bakken, George S.; Losos, Jonathan B.
2014-01-01
Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming. PMID:24430845
ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE
Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...
ERIC Educational Resources Information Center
Kaisarevic, Sonja N.; Andric, Silvana A.; Kostic, Tatjana S.
2017-01-01
In response to the Bologna Declaration and contemporary trends in Animal Physiology education, the Animal Physiology course at the Faculty of Sciences, University of Novi Sad, Serbia, has evolved over a 12-year period (2001-2012): from a classical two-semester course toward a one-semester course utilizing computer simulations of animal…
Sex differences in physiological reactivity to acute psychosocial stress in adolescence.
Ordaz, Sarah; Luna, Beatriz
2012-08-01
Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sex differences in physiological reactivity to acute psychosocial stress in adolescence
Ordaz, Sarah; Luna, Beatriz
2012-01-01
Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210
Genomic signatures of evolutionary transitions from solitary to group living
USDA-ARS?s Scientific Manuscript database
Eusociality has evolved rarely, but repeatedly, in vertebrates and invertebrates, and resulted inconvergent morphological, physiological, and behavioural innovations. It is unknown whether similar evolutionary processes are responsible for the repeated origins and further elaborations of eusociality...
Megan M. Friggens; Marcus V. Warwell; Jeanne C. Chambers; Stanley G. Kitchen
2012-01-01
Experimental research and species distribution modeling predict large changes in the distributions of species and vegetation types in the Interior West due to climate change. Speciesâ responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. Because...
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage.
Janssens, Lizanne; Stoks, Robby
2014-01-01
Prey organisms evolved a multitude of plastic responses to avoid being eaten by predators. Besides the evolution of plastic morphological responses to escape predation, prey also evolved a set of physiological stress responses to avoid dying because of chronic predator stress per se due to disruption of cellular homeostasis. As physiological stress theory predicts increased energy consumption and the inhibition of essential nonemergency body functions, we tested whether chronic predation risk may increase oxidative damage thereby generating negative effects on escape performance. Specifically, we evaluated whether predation risk reduces escape swimming speed in damselfly larvae and whether this operates through stress-associated increases in oxidative damage. Counterintuitively and in contrast with many empirical studies, chronic predation risk decreased escape performance. This is however entirely consistent with the expectation of it being a long-term cost of responding to predation risk (e.g. by increasing respiration or upregulating the stress protein levels). The decreased swimming speed could be explained by an increased oxidative damage to proteins, thereby providing one of the poorly studied ecological links between oxidative damage and whole-animal performance. This likely widespread, understudied cost of chronic predation risk may provide an important pathway of non-consumptive predator effects on prey population dynamics. Moreover, it could play an evolutionary role by acting as a selective force causing prey organisms to adjust the magnitude of the physiological stress response and should be considered when evaluating life history trade-offs thought to be mediated by oxidative damage. PMID:24968142
Functional genomics of physiological plasticity and local adaptation in killifish.
Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.
Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish
Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.
2011-01-01
Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107
Daskalakis, Nikolaos P.; Cohen, Hagit; Nievergelt, Caroline M.; Baker, Dewleen G.; Buxbaum, Joseph D.; Russo, Scott J.; Yehuda, Rachel
2016-01-01
Although biological systems have evolved to promote stress-resilience, there is variation in stress-responses. Understanding the biological basis of such individual differences has implications for understanding Posttraumatic Stress Disorder (PTSD) etiology, which is a maladaptive response to trauma occurring only in a subset of vulnerable individuals. PTSD involves failure to reinstate physiological homeostasis after traumatic events and is due to either intrinsic or trauma-related alterations in physiological systems across the body. Master homeostatic regulators that circulate and operate throughout the organism, such as stress hormones (e.g., glucocorticoids) and immune mediators (e.g., cytokines), are at the crossroads of peripheral and central susceptibility pathways and represent promising functional biomarkers of stress-response and target for novel therapeutics. PMID:27481726
Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa
2015-01-01
In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037
Landmark lecture on cardiac intensive care and anaesthesia: continuum and conundrums.
Laussen, Peter C
2017-12-01
Cardiac anesthesia and critical care provide an important continuum of care for patients with congenital heart disease. Clinicians in both areas work in complex environments in which the interactions between humans and technology is critical. Understanding our contributions to outcomes (modifiable risk) and our ability to perceive and predict an evolving clinical state (low failure-to-predict rate) are important performance metrics. Improved methods for capturing continuous physiologic signals will allow for new and interactive approaches to data visualization, and for sophisticated and iterative data modeling that will help define a patient's phenotype and response to treatment (precision physiology).
2006-11-01
exponent H=(β+1)/2 and from the fractal dimension D=2- H. The algorithms used to estimate the Hurst exponent directly are usually quite simple and...yields a curve of the type D(τ)=cτH, where c is an opportune constant and H is the Hurst exponent [Scafetta and Grigolini, 2002]. 1 Report Documentation...memory of past events. It is largely expected that the Hurst exponent , which measures the strength of this memory, evolves as a response
Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Osores, Sebastián; Lardies, Marco A
2017-08-01
Intertidal organisms have evolved physiological mechanisms that enable them to maintain performance and survive during periods of severe environmental stress with temperatures close to their tolerance limits. The level of these adaptive responses in thermal physiology can vary among populations of broadly distributed species depending on their particular environmental context and genetic backgrounds. Here we examined thermal performances and reaction norms for metabolic rate (MR) and heart rate (HR) of seven populations of the porcelanid crab Petrolisthes violaceus from markedly different thermal environments across the latitudinal gradient of ~3000km. Physiological responses of this intertidal crab under common-garden conditions suggest the absence of local thermal adaptation along the geographic gradient (i.e., lack of latitudinal compensation). Moreover, thermal physiological sensitivities and performances in response to increased temperatures evidenced the existence of some level of: i) metabolic rate control or depression during warm temperature exposures; and ii) homeostasis/canalization (i.e., absence or low levels of plasticity) in physiological traits that may reflect some sort of buffering mechanism in most of the populations. Nevertheless, our results indicate that elevated temperatures can reduce cardiac function but not metabolic rate in high latitude crabs. The lack of congruence between HR and MR supports the idea that energy metabolism in marine invertebrates cannot be inferred from HR and different conclusions regarding geographic differentiation in energy metabolism can be obtained from both physiological traits. Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations of marine ectotherms. Copyright © 2017 Elsevier Ltd. All rights reserved.
The evolution of water balance in Glossina (Diptera: Glossinidae): correlations with climate.
Kleynhans, Elsje; Terblanche, John S
2009-02-23
The water balance of tsetse flies (Diptera: Glossinidae) has significant implications for understanding biogeography and climate change responses in these African disease vectors. Although moisture is important for tsetse population dynamics, evolutionary responses of Glossina water balance to climate have been relatively poorly explored and earlier studies may have been confounded by several factors. Here, using a physiological and GIS climate database, we investigate potential interspecific relationships between traits of water balance and climate. We do so in conventional and phylogenetically independent approaches for both adults and pupae. Results showed that water loss rates (WLR) were significantly positively related to precipitation in pupae even after phylogenetic adjustment. Adults showed no physiology-climate correlations. Ancestral trait reconstruction suggests that a reduction in WLR and increased size probably evolved from an intermediate ancestral state and may have facilitated survival in xeric environments. The results of this study therefore suggest an important role for water balance physiology of pupae in determining interspecific variation and lend support to conclusions reached by early studies of tsetse physiology.
Kordonowy, Lauren; Lombardo, Kaelina D; Green, Hannah L; Dawson, Molly D; Bolton, Evice A; LaCourse, Sarah; MacManes, Matthew D
2017-03-01
Characterizing traits critical for adaptation to a given environment is an important first step in understanding how phenotypes evolve. How animals adapt to the extreme heat and aridity commonplace to deserts is an exceptionally interesting example of these processes, and has been the focus of study for decades. In contrast to those studies, where experiments are conducted on either wild animals or captive animals held in non-desert conditions, the study described here leverages a unique environmental chamber that replicates desert conditions for captive Peromyscus eremicus (cactus mouse). Here, we establish baseline values for daily water intake and for serum electrolytes, as well as the response of these variables to acute experimental dehydration. In brief, P eremicus daily water intake is very low. Its serum electrolytes are distinct from many previously studied animals, and its response to acute dehydration is profound, though not suggestive of renal impairment, which is atypical of mammals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Löw, Andreas; Lang, Peter J.; Smith, J. Carson; Bradley, Margaret M.
2013-01-01
This research examined the psychophysiology of emotional arousal anticipatory to potentially aversive and highly pleasant outcomes. Human brain reactions (event-related potentials) and body reactions (heart rate, skin conductance, the probe startle reflex) were assessed along motivational gradients determined by apparent distance from sites of potential punishment or reward. A predator-prey survival context was simulated using cues that signaled possible money rewards or possible losses; the cues appeared to loom progressively closer to the viewer, until a final step when a rapid key response could ensure reward or avoid a punishing loss. The observed anticipatory response patterns of heightened vigilance and physiological mobilization are consistent with the view that the physiology of emotion is founded on action dispositions that evolved in mammals to facilitate survival by dealing with threats or capturing life-sustaining rewards. PMID:18947351
Compassion: An Evolutionary Analysis and Empirical Review
Goetz, Jennifer L.; Keltner, Dacher; Simon-Thomas, Emiliana
2010-01-01
What is compassion? And how did it evolve? In this review, we integrate three evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering, distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization, and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. PMID:20438142
Diversity in the origins of proteostasis networks- a driver for protein function in evolution
Powers, Evan T.; Balch, William E.
2013-01-01
Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216
Campylobacter in poultry: filling an ecological niche.
Lee, Margie D; Newell, Diane G
2006-03-01
Epidemiological studies indicate that Campylobacter species may be responsible for the majority of cases of sporadic gastroenteritis in humans. These studies also suggest that poultry may be one of the most common sources of the bacteria for humans. Campylobacter and related genera in the family Campylobacteraceae are oral and intestinal commensals of vertebrates and some nonvertebrates, a characteristic that complicates rational approaches to controlling Campylobacter contamination of poultry. This review will discuss the phylogeny, genomics, and physiology of campylobacters with the intention of revealing how these organisms have evolved to fill their intestinal ecological niche in poultry and how their physiology must be understood in order to enact effective control strategies.
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN
2015-01-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001
Gouvêa, Devin Y.; Aprison, Erin Z.; Ruvinsky, Ilya
2015-01-01
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments. PMID:26713620
The Surgically Induced Stress Response
Finnerty, Celeste C.; Mabvuure, Nigel Tapiwa; Ali, Arham; Kozar, Rosemary A.; Herndon, David N.
2013-01-01
The stress response to surgery, critical illness, trauma, and burns encompasses derangements of metabolic and physiological processes which induce perturbations in the inflammatory, acute phase, hormonal, and genomic responses. Hypermetabolism and hypercatabolism result, leading to muscle wasting, impaired immune function and wound healing, organ failure, and death. The surgery-induced stress response is largely similar to that triggered by traumatic injuries; the duration of the stress response, however, varies according to the severity of injury (surgical or traumatic). This spectrum of injuries and insults ranges from small lacerations to severe insults such as large poly-traumatic and burn injuries. Although the stress response to acute trauma evolved to improve chances of survival following injury, in modern surgical practice the stress response can be detrimental. PMID:24009246
Compassion: an evolutionary analysis and empirical review.
Goetz, Jennifer L; Keltner, Dacher; Simon-Thomas, Emiliana
2010-05-01
What is compassion? And how did it evolve? In this review, we integrate 3 evolutionary arguments that converge on the hypothesis that compassion evolved as a distinct affective experience whose primary function is to facilitate cooperation and protection of the weak and those who suffer. Our empirical review reveals compassion to have distinct appraisal processes attuned to undeserved suffering; distinct signaling behavior related to caregiving patterns of touch, posture, and vocalization; and a phenomenological experience and physiological response that orients the individual to social approach. This response profile of compassion differs from those of distress, sadness, and love, suggesting that compassion is indeed a distinct emotion. We conclude by considering how compassion shapes moral judgment and action, how it varies across different cultures, and how it may engage specific patterns of neural activation, as well as emerging directions of research. (c) 2010 APA, all rights reserved.
Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms
Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu
2015-01-01
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718
Meng, Xiang; Firczuk, Helena; Pietroni, Paola; Westbrook, Richard; Dacheux, Estelle; Mendes, Pedro; McCarthy, John E.G.
2017-01-01
Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component–complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point. PMID:27928055
Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update
Kumar, Smita; Verma, Saurabh; Trivedi, Prabodh K.
2017-01-01
Plants require several essential mineral nutrients for their growth and development. These nutrients are required to maintain physiological processes and structural integrity in plants. The root architecture has evolved to absorb nutrients from soil and transport them to other parts of the plant. Nutrient deficiency affects several physiological and biological processes in plants and leads to reduction in crop productivity and yield. To compensate this adversity, plants have developed adaptive mechanisms to enhance the acquisition, conservation, and mobilization of these nutrients under deficient or adverse conditions. In addition, plants have evolved an intricate nexus of complex signaling cascades, which help in nutrient sensing and uptake as well as to maintain nutrient homeostasis. In recent years, small non-coding RNAs such as micro RNAs (miRNAs) and endogenous small interfering RNAs have emerged as important component in regulating plant stress responses. A set of these small RNAs (sRNAs) have been implicated in regulating various processes involved in nutrient uptake, assimilation, and deficiency. In response to phosphorus (P) and sulphur (S) deficiencies, role of sRNAs, miR395 and miR399, have been identified to be instrumental; however, many more miRNAs might be involved in regulating the plant response to these nutrient stresses. These sRNAs modulate expression of target genes in response to P and S deficiencies and regulate their uptake and utilization for proper growth and development of the plant. This review summarizes the current understanding of uptake, sensing, and signaling of P and S and highlights the regulatory role of sRNAs in adaptive responses to these nutrient stresses in plants. PMID:28344582
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, Jonathan; Yamamoto, Masayuki, E-mail: masi@mail.tains.tohoku.ac.j
Organisms have evolved sophisticated and redundant mechanisms to manage oxidative and electrophilic challenges that arise from internal metabolism or xenobiotic challenge for survival. NF-E2-related factor 2 (Nrf2) is a transcription factor that has evolved over millennia from primitive origins, with homologues traceable back to invertebrate Caenorhabditis and Drosophila species. The ancestry of Nrf2 clearly has deep-seated roots in hematopoiesis, yet has diversified into a transcription factor that can mediate a multitude of antioxidant signaling and detoxification genes. In higher organisms, a more sophisticated means of tightly regulating Nrf2 activity was introduced via the cysteine-rich kelch-like ECH-associated protein 1 (Keap1), thusmore » suggesting a need to modulate Nrf2 activity. This is evidenced in Keap1{sup -/-} mice, which succumb to juvenile mortality due to hyperkeratosis of the gastrointestinal tract. Although Nrf2 activation protects against acute toxicity and prevents or attenuates several disease states, constitutive activation in some tumors leads to poor clinical outcomes, suggesting Nrf2 has evolved in response to a multitude of selective pressures. The purpose of this review is to examine the origins of Nrf2, while highlighting the versatility and protective abilities elicited upon activation. Various model systems in which Nrf2 is normally beneficial but in which exaggerated pharmacology exacerbates a physiological or pathological condition will be addressed. Although Darwinian principles have selected Nrf2 activity for maximal beneficial effect based on environmental and oxidative challenge, both sub- or super-physiological effects have been noted to be detrimental. The functions of Nrf2 thus suggest a hormetic factor that has evolved empirically over time.« less
Dunlop, Erin S.; McLaughlin, Robert L.; Adams, Jean V.; Jones, Michael L.; Birceanu, Oana; Christie, Mark R.; Criger, Lori A.; Hinderer, Julia L.M.; Hollingworth, Robert M.; Johnson, Nicholas; Lantz, Stephen R.; Li, Weiming; Miller, James R.; Morrison, Bruce J.; Mota-Sanchez, David; Muir, Andrew M.; Sepulveda, Maria S.; Steeves, Todd B.; Walter, Lisa; Westman, Erin; Wirgin, Isaac; Wilkie, Michael P.
2018-01-01
Rapid evolution of pest, pathogen and wildlife populations can have undesirable effects; for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (1) reviewing sea lamprey life history and control; (2) identifying physiological and behavioural resistance strategies; (3) estimating the strength of selection from TFM; (4) assessing the timeline for evolution; and (5) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82-90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.
The TRPM2 channel: A thermo-sensitive metabolic sensor.
Kashio, Makiko; Tominaga, Makoto
2017-09-03
Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.
Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico
2015-06-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. © 2015 American Society of Plant Biologists. All Rights Reserved.
Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P
2015-01-01
Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.
Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.
Seibel, Brad A
2011-01-15
The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.
Gazquez, Ayelén; Vilas, Juan Manuel; Colman Lerner, Jorge Esteban; Maiale, Santiago Javier; Calzadilla, Pablo Ignacio; Menéndez, Ana Bernardina; Rodríguez, Andrés Alberto
2018-06-01
The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Computational fluid dynamics tools can be used to predict the progression of coronary artery disease
NASA Astrophysics Data System (ADS)
Coşkun, A. Ümit; Chen, Caixia; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Atherosclerosis is focal and individual plaques evolve in an independent manner. The endothelium regulates arterial behavior by responding to its local shear stress. In vitro studies indicate that low endothelial shear stress (ESS) upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic ESS is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High ESS promotes platelet aggregation. ESS and vascular wall morphology along the course of human coronary arteries can now be characterized in vivo, and may predict the focal areas in which atherosclerosis progression occurs. Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic factors likely responsible for progression of coronary disease in man. These new diagnostic modalities allow for identification of plaque progression. Accurate identification of arterial segments at high-risk for progression may permit pre-emptive intervention strategies to avoid adverse coronary events.
Leakey, Andrew D. B.; Lau, Jennifer A.
2012-01-01
Variation in atmospheric [CO2] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO2] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO2] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO2] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO2]. Evolutionary responses to elevated [CO2] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO2] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO2]. This lack of evidence for strong evolutionary effects of elevated [CO2] is surprising, given the large effects of elevated [CO2] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO2] and (ii) benefit maximally from future, greater [CO2]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C4 photosynthesis into C3 leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO2]. PMID:22232771
Leakey, Andrew D B; Lau, Jennifer A
2012-02-19
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)].
The XIIIth International Physiological Congress in Boston in 1929: American Physiology Comes of Age
ERIC Educational Resources Information Center
Rall, Jack A.
2016-01-01
In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological…
HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Nayyar, Harsh
2016-01-01
Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems—biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions. PMID:27446183
Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN
Khaling, Eliezer; Lassueur, Steve
2016-01-01
Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847
Ton, Riccardo; Martin, Thomas E.
2017-01-01
The relative importance of intrinsic constraints imposed by evolved physiological trade-offs versus the proximate effects of temperature for interspecific variation in embryonic development time remains unclear. Understanding this distinction is important because slow development due to evolved trade-offs can yield phenotypic benefits, whereas slow development from low temperature can yield costs. We experimentally increased embryonic temperature in free-living tropical and north temperate songbird species to test these alternatives. Warmer temperatures consistently shortened development time without costs to embryo mass or metabolism. However, proximate effects of temperature played an increasingly stronger role than intrinsic constraints for development time among species with colder natural incubation temperatures. Long development times of tropical birds have been thought to primarily reflect evolved physiological trade-offs that facilitate their greater longevity. In contrast, our results indicate a much stronger role of temperature in embryonic development time than currently thought.
Drought coping strategies in cotton: increased crop per drop.
Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong
2017-03-01
The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J
2016-03-01
High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Systemic nature of drought-tolerance in common bean.
Montero-Tavera, Víctor; Ruiz-Medrano, Roberto; Xoconostle-Cázares, Beatriz
2008-09-01
The response to drought at the physiological and molecular levels was studied in two common bean varieties with contrasting susceptibility to drought stress. A number of genes were found to be upregulated in the tolerant variety Pinto Villa relative to the susceptible cultivar, Carioca. The products of these genes fell in different functional categories. Further analyses of selected genes, consisting of their spatial differential expression and in situ mRNA accumulation patterns displayed interesting profiles. The drought-tolerant variety displayed a more developed root vasculature in drought conditions, when compared to the susceptible tropical bean Carioca. The in situ localization of three selected genes indicated the accumulation of their corresponding mRNAs in companion cells, sieve tubes and in developing phloem, suggesting that these, and/or the encoded proteins could constitute phloem-mobile signals. Indeed, a number of transcripts that are induced in response to water deficit accumulate in the phloem in other plant species, suggesting a general phenomenon. Moreover, the analysis of drought stress in plant varieties with contrasting tolerance to such stimulus will help to determine the role of differential expression of specific genes in response to such phenomenon, as well as other biochemical, morphological and physiological features in both cultivars.Drought-tolerant plants likely evolved a system that would allow them to maintain its vascular tissue integrity under stress. A functional phloem would then still function in the transmission of long-range signals, important for the systemic adaptation to the stress. It is expected that plants showing increased tolerance to abiotic stress, such as drought, are able to better protect their conductive tissues. This general strategy might help such plants evolve under stress conditions and colonize successfully new habitats.
Biomechanics, Exercise Physiology, and the 75th Anniversary of RQES
ERIC Educational Resources Information Center
Hamill, Joseph; Haymes, Emily M.
2005-01-01
The purpose of this paper is to review the biomechanics and exercise physiology studies published in the Research Quarterly for Exercise and Sport (RQES) over the past 75 years. Studies in biomechanics, a relatively new subdiscipline that evolved from kinesiology, first appeared in the journal about 40 years ago. Exercise physiology studies have…
Physiological limits to endurance exercise performance: influence of sex
2017-01-01
Abstract This brief review summarizes factors associated with elite endurance performance, trends in distance running training, and participation by men and more recently women. It is framed in the context of key ideas about the physiological determinants of endurance performance but also touches on some historical and sociological factors relevant to the overall topic. Historical trends that served to increase women's participation in elite endurance events are also discussed as is the role of increased volume and intensity of training. The rapid improvement in women's world record marathon times in the 1970s and 80s are emblematic of these trends and represent a combination of increased training volume and intensity and more competitive opportunities. This occurred as bans on participation by women in endurance events were lifted. For men these same trends evolved over a much longer time frame. The main physiological factor responsible for 10–12% slower times in women compared to men at the elite level are also considered and probably centre aroundV˙O2 max . PMID:28028816
CNG and HCN channels: two peas, one pod.
Craven, Kimberley B; Zagotta, William N
2006-01-01
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Antibiotics induce redox-related physiological alterations as part of their lethality
Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.
2014-01-01
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433
Ortega-García, Stephanie; Guevara, Lázaro; Arroyo-Cabrales, Joaquín; Lindig-Cisneros, Roberto; Martínez-Meyer, Enrique; Vega, Ernesto; Schondube, Jorge E
2017-09-01
The thermal niche of a species is one of the main determinants of its ecology and biogeography. In this study, we determined the thermal niche of 23 species of Neotropical nectar-feeding bats of the subfamily Glossophaginae (Chiroptera, Phyllostomidae). We calculated their thermal niches using temperature data obtained from collection records, by generating a distribution curve of the maximum and minimum temperatures per locality, and using the inflection points of the temperature distributions to estimate the species optimal (STZ) and suboptimal (SRZ) zones of the thermal niche. Additionally, by mapping the values of the STZ and SRZ on a phylogeny of the group, we generated a hypothesis of the evolution of the thermal niches of this clade of nectar-feeding bats. Finally, we used the characteristics of their thermal niches to predict the responses of these organisms to climate change. We found a large variation in the width and limits of the thermal niches of nectar-feeding bats. Additionally, while the upper limits of the thermal niches varied little among species, their lower limits differ wildly. The ancestral reconstruction of the thermal niche indicated that this group of Neotropical bats evolved under cooler temperatures. The two clades inside the Glossophaginae differ in the evolution of their thermal niches, with most members of the clade Choeronycterines evolving "colder" thermal niches, while the majority of the species in the clade Glossophagines evolving "warmer" thermal niches. By comparing thermal niches with climate change models, we found that all species could be affected by an increase of 1°C in temperature at the end of this century. This suggests that even nocturnal species could suffer important physiological costs from global warming. Our study highlights the value of scientific collections to obtain ecologically significant physiological data for a large number of species.
Petschenka, Georg; Agrawal, Anurag A
2015-11-07
Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. © 2015 The Author(s).
Petschenka, Georg; Agrawal, Anurag A.
2015-01-01
Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium–potassium pump (Na+/K+-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na+/K+-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na+/K+-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na+/K+-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na+/K+-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na+/K+-ATPase, but had systematically reduced effects on Na+/K+-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na+/K+-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. PMID:26538594
Moore, Marianne S; Field, Kenneth A; Behr, Melissa J; Turner, Gregory G; Furze, Morgan E; Stern, Daniel W F; Allegra, Paul R; Bouboulis, Sarah A; Musante, Chelsey D; Vodzak, Megan E; Biron, Matthew E; Meierhofer, Melissa B; Frick, Winifred F; Foster, Jeffrey T; Howell, Daryl; Kath, Joseph A; Kurta, Allen; Nordquist, Gerda; Johnson, Joseph S; Lilley, Thomas M; Barrett, Benjamin W; Reeder, DeeAnn M
2018-01-01
The devastating bat fungal disease, white-nose syndrome (WNS), does not appear to affect all species equally. To experimentally determine susceptibility differences between species, we exposed hibernating naïve little brown myotis (Myotis lucifugus) and big brown bats (Eptesicus fuscus) to the fungus that causes WNS, Pseudogymnoascus destructans (Pd). After hibernating under identical conditions, Pd lesions were significantly more prevalent and more severe in little brown myotis. This species difference in pathology correlates with susceptibility to WNS in the wild and suggests that survival is related to different host physiological responses. We observed another fungal infection, associated with neutrophilic inflammation, that was equally present in all bats. This suggests that both species are capable of generating a response to cold tolerant fungi and that Pd may have evolved mechanisms for evading host responses that are effective in at least some bat species. These host-pathogen interactions are likely mediated not just by host physiological responses, but also by host behavior. Pd-exposed big brown bats, the less affected species, spent more time in torpor than did control animals, while little brown myotis did not exhibit this change. This differential thermoregulatory response to Pd infection by big brown bat hosts may allow for a more effective (or less pathological) immune response to tissue invasion.
Velotta, Jonathan P.; McCormick, Stephen; Jones, Andrew W.; Schultz, Eric T.
2018-01-01
Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.
The mammalian Cretaceous cochlear revolution.
Manley, Geoffrey A
2017-09-01
The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture. Copyright © 2016 Elsevier B.V. All rights reserved.
Common functional targets of adaptive micro- and macro-evolutionary divergence in killifish.
Whitehead, Andrew; Zhang, Shujun; Roach, Jennifer L; Galvez, Fernando
2013-07-01
Environmental salinity presents a key barrier to dispersal for most aquatic organisms, and adaptation to alternate osmotic environments likely enables species diversification. Little is known of the functional basis for derived tolerance to environmental salinity. We integrate comparative physiology and functional genomics to explore the mechanistic underpinnings of evolved variation in osmotic plasticity within and among two species of killifish; Fundulus majalis harbours the ancestral mainly salt-tolerant phenotype, whereas Fundulus heteroclitus harbours a derived physiology that retains extreme salt tolerance but with expanded osmotic plasticity towards the freshwater end of the osmotic continuum. Common-garden comparative hypo-osmotic challenge experiments show that F. heteroclitus is capable of remodelling gill epithelia more quickly and at more extreme osmotic challenge than F. majalis. We detect an unusual pattern of baseline transcriptome divergence, where neutral evolutionary processes appear to govern expression divergence within species, but patterns of divergence for these genes between species do not follow neutral expectations. During acclimation, genome expression profiling identifies mechanisms of acclimation-associated response that are conserved within the genus including regulation of paracellular permeability. In contrast, several responses vary among species including those putatively associated with cell volume regulation, and these same mechanisms are targets for adaptive physiological divergence along osmotic gradients within F. heteroclitus. As such, the genomic and physiological mechanisms that are associated with adaptive fine-tuning within species also contribute to macro-evolutionary divergence as species diversify across osmotic niches. © 2013 John Wiley & Sons Ltd.
Rondanini, Deborah P; del Pilar Vilariño, Maria; Roberts, Marcos E; Polosa, Marina A; Botto, Javier F
2014-12-01
Early shade signals promote the shade avoidance syndrome (SAS) which causes, among others, petiole and shoot elongation and upward leaf position. In spite of its relevance, these photomorphogenic responses have not been deeply studied in rapeseed (Brassica napus). In contrast to other crops like maize and wheat, rapeseed has a complex developmental phenotypic pattern as it evolves from an initial rosette to the main stem elongation and an indeterminate growth of floral raceme. In this work, we analyzed (1) morphological and physiological responses at individual level due to low red/far-red (R/FR) ratio during plant development, and (2) changes in biomass allocation, grain yield and composition at crop level in response to high R/FR ratio and low irradiance in two modern spring rapeseed genotypes. We carried out pot and field experiments modifying R/FR ratios and irradiance at vegetative or reproductive stages. In pot experiments, low R/FR ratio increased the petiole and lamina length, upward leaf position and also accelerated leaf senescence. Furthermore, low R/FR ratio reduced main floral raceme and increased floral branching with higher remobilization of soluble carbohydrates from the stems. In field experiments, low irradiance during post-flowering reduced grain yield, harvest index and grain oil content, and high R/FR ratio reaching the crop partially alleviated such effects. We conclude that photomorphogenic signals are integrated early during the vegetative growth, and irradiance has stronger effects than R/FR signals at rapeseed crop level. © 2014 Scandinavian Plant Physiology Society.
Autonomic nervous system correlates in movement observation and motor imagery
Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.
2013-01-01
The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623
Kanai, Tamotsu; Matsuoka, Ryoji; Beppu, Haruki; Nakajima, Akihito; Okada, Yoshihiro; Atomi, Haruyuki; Imanaka, Tadayuki
2011-01-01
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S0) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S0 reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales. PMID:21515783
Bedulina, Daria; Meyer, Michael F.; Gurkov, Anton; Kondratjeva, Ekaterina; Baduev, Boris; Gusdorf, Roman
2017-01-01
Acute temperature fluctuations are common in surface waters, and aquatic organisms may manifest physiological responses to punctuated temperature spikes long before behavioral responses. Ectotherms, especially cryophilic stenotherms such as those endemic to Lake Baikal (Siberia), may demonstrate specialized physiological responses to acute temperature increases because their proteomes have evolved to function most efficiently at lower temperatures (e.g., <10 °C). Therefore, our study questioned the nature and degree of variation in physiological response to acute thermal stress in two congenerous, endemic Baikal amphipod species, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus. We hypothesized that because interspecific and intersexual thermosensitivity varies significantly among ectotherms, there would be divergent intersexual and interspecific strategies to withstand acute thermal stress, manifested in different protein compositions and concentrations. We exposed individuals to the species’ respective LT50 for one hour followed by a three-hour recovery period. We then performed 1D-PAGE, Western blotting, 2D-PAGE, and Mass Spectrometry techniques and assessed relative intersexual and interspecific changes in proteomic composition and heat shock protein 70 level. Our results demonstrate that females tend to be more sensitive to an acute thermal stimulus than males, most likely because females allocate significant energy to reproduction and less to heat shock response, evidenced by females’ significantly lower LT50time. Lower level of Hsp70 was found in females of the thermosensitive E. verrucosus compared to males of this species. No intersexual differences were found in Hsp70 level in thermotolerant E. cyaneus. Higher levels of hemocyanin subunits and arginine kinase were found in E. cyaneus females after heat shock and recovery compared to males, which was not found for E. verrucosus, suggesting interspecific mechanisms for E. cyaneus’s higher thermotolerance. These differing responses between species and sexes of Baikal amphipods may reflect more general strategies for maintaining homeostatic conditions during acute thermal stress. As mean surface water temperatures increase worldwide, the net efficiency and efficacy of these strategies could give rise to long term changes in physiology, behavior, and interactions with other species, potentially precipitating population and community level alterations. PMID:28243524
Competitive inhibition can linearize dose-response and generate a linear rectifier
Savir, Yonatan; Tu, Benjamin P.; Springer, Michael
2015-01-01
Summary Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier—that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated. PMID:26495436
Competitive inhibition can linearize dose-response and generate a linear rectifier.
Savir, Yonatan; Tu, Benjamin P; Springer, Michael
2015-09-23
Many biological responses require a dynamic range that is larger than standard bi-molecular interactions allow, yet the also ability to remain off at low input. Here we mathematically show that an enzyme reaction system involving a combination of competitive inhibition, conservation of the total level of substrate and inhibitor, and positive feedback can behave like a linear rectifier-that is, a network motif with an input-output relationship that is linearly sensitive to substrate above a threshold but unresponsive below the threshold. We propose that the evolutionarily conserved yeast SAGA histone acetylation complex may possess the proper physiological response characteristics and molecular interactions needed to perform as a linear rectifier, and we suggest potential experiments to test this hypothesis. One implication of this work is that linear responses and linear rectifiers might be easier to evolve or synthetically construct than is currently appreciated.
Goudkamp, Jacqueline E; Seebacher, Frank; Ahern, Mark; Franklin, Craig E
2004-07-01
Differential heart rates during heating and cooling (heart rate hysteresis) are an important thermoregulatory mechanism in ectothermic reptiles. We speculate that heart rate hysteresis has evolved alongside vascularisation, and to determine whether this phenomenon occurs in a lineage with vascularised circulatory systems that is phylogenetically distant from reptiles, we measured the response of heart rate to convective heat transfer in the Australian freshwater crayfish, Cherax destructor. Heart rate during convective heating (from 20 to 30 degrees C) was significantly faster than during cooling for any given body temperature. Heart rate declined rapidly immediately following the removal of the heat source, despite only negligible losses in body temperature. This heart rate 'hysteresis' is similar to the pattern reported in many reptiles and, by varying peripheral blood flow, it is presumed to confer thermoregulatory benefits particularly given the thermal sensitivity of many physiological rate functions in crustaceans.
Physiological aeroecology: Anatomical and physiological adaptations for flight
USDA-ARS?s Scientific Manuscript database
Flight has evolved independently in birds, bats, and insects and was present in the Mesozoic pterosaurians that have disappeared. Of the roughly 1 million living animal species, more than three-quarters are flying insects. Flying is an extremely successful way of locomotion. At first glance this see...
Gene refashioning through innovative shifting of reading frames in mosses.
Guan, Yanlong; Liu, Li; Wang, Qia; Zhao, Jinjie; Li, Ping; Hu, Jinyong; Yang, Zefeng; Running, Mark P; Sun, Hang; Huang, Jinling
2018-04-19
Early-diverging land plants such as mosses are known for their outstanding abilities to grow in various terrestrial habitats, incorporating tremendous structural and physiological innovations, as well as many lineage-specific genes. How these genes and functional innovations evolved remains unclear. In this study, we show that a dual-coding gene YAN/AltYAN in the moss Physcomitrella patens evolved from a pre-existing hemerythrin gene. Experimental evidence indicates that YAN/AltYAN is involved in fatty acid and lipid metabolism, as well as oil body and wax formation. Strikingly, both the recently evolved dual-coding YAN/AltYAN and the pre-existing hemerythrin gene might have similar physiological effects on oil body biogenesis and dehydration resistance. These findings bear important implications in understanding the mechanisms of gene origination and the strategies of plants to fine-tune their adaptation to various habitats.
Adaptation to seasonality and the winter freeze
Preston, Jill C.; Sandve, Simen R.
2013-01-01
Flowering plants initially diversified during the Mesozoic era at least 140 million years ago in regions of the world where temperate seasonal environments were not encountered. Since then several cooling events resulted in the contraction of warm and wet environments and the establishment of novel temperate zones in both hemispheres. In response, less than half of modern angiosperm families have members that evolved specific adaptations to cold seasonal climates, including cold acclimation, freezing tolerance, endodormancy, and vernalization responsiveness. Despite compelling evidence for multiple independent origins, the level of genetic constraint on the evolution of adaptations to seasonal cold is not well understood. However, the recent increase in molecular genetic studies examining the response of model and crop species to seasonal cold offers new insight into the evolutionary lability of these traits. This insight has major implications for our understanding of complex trait evolution, and the potential role of local adaptation in response to past and future climate change. In this review, we discuss the biochemical, morphological, and developmental basis of adaptations to seasonal cold, and synthesize recent literature on the genetic basis of these traits in a phylogenomic context. We find evidence for multiple genetic links between distinct physiological responses to cold, possibly reinforcing the coordinated expression of these traits. Furthermore, repeated recruitment of the same or similar ancestral pathways suggests that land plants might be somewhat pre-adapted to dealing with temperature stress, perhaps making inducible cold traits relatively easy to evolve. PMID:23761798
Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution
NASA Technical Reports Server (NTRS)
Tsang, Joyce; Joyce, Gerald F.
1996-01-01
In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.
The oxygen paradox of neurovascular coupling
Leithner, Christoph; Royl, Georg
2014-01-01
The coupling of cerebral blood flow (CBF) to neuronal activity is well preserved during evolution. Upon changes in the neuronal activity, an incompletely understood coupling mechanism regulates diameter changes of supplying blood vessels, which adjust CBF within seconds. The physiologic brain tissue oxygen content would sustain unimpeded brain function for only 1 second if continuous oxygen supply would suddenly stop. This suggests that the CBF response has evolved to balance oxygen supply and demand. Surprisingly, CBF increases surpass the accompanying increases of cerebral metabolic rate of oxygen (CMRO2). However, a disproportionate CBF increase may be required to increase the concentration gradient from capillary to tissue that drives oxygen delivery. However, the brain tissue oxygen content is not zero, and tissue pO2 decreases could serve to increase oxygen delivery without a CBF increase. Experimental evidence suggests that CMRO2 can increase with constant CBF within limits and decreases of baseline CBF were observed with constant CMRO2. This conflicting evidence may be viewed as an oxygen paradox of neurovascular coupling. As a possible solution for this paradox, we hypothesize that the CBF response has evolved to safeguard brain function in situations of moderate pathophysiological interference with oxygen supply. PMID:24149931
Response mechanisms of conifers to air pollutants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyssek, R.; Reich, P.; Oren, R.
1995-07-01
Conifers are known to respond to SO{sub 2}, O{sub 3}, NO{sub x} and acid deposition. Of these pollutants, O{sub 3} is likely the most widespread and phytotoxic compound, and therefore of great interest to individuals concerned with forest resources Direct biological responses have a toxicological effects on metabolism which can then scale to effects on tree growth and forest ecology, including processes of competition and succession. Air pollution can cause reductions in photosynthesis and stomatal conductance, which are the physiological parameters most rigorously studied for conifers. Some effects air pollutants can have on plants are influenced by the presence ofmore » co-occurring environmental stresses. For example, drought usually reduces vulnerability of plants to air pollution. In addition, air pollution sensitivity may differ among species and with plant/leaf age. Plants may make short-term physiological adjustments to compensate for air pollution or may evolve resistance to air pollution through the processes of selection. Models are necessary to understand how physiological processes, growth processes, and ecological processes are affected by air pollutants. The process of defining the ecological risk that air pollutants pose for coniferous forests requires approaches that exploit existing databases, environmental monitoring of air pollutants and forest resources, experiments with well-defined air pollution treatments and environmental control/monitoring, modeling, predicting air pollution-caused changes in productivity and ecological processes over time and space, and integration of social values.« less
Dawson, Alistair
2008-05-12
This paper reviews information from ecological and physiological studies to assess how extrinsic factors can modulate intrinsic physiological processes. The annual cycle of birds is made up of a sequence of life-history stages: breeding, moult and migration. Each stage has evolved to occur at the optimum time and to last for the whole duration of time available. Some species have predictable breeding seasons, others are more flexible and some breed opportunistically in response to unpredictable food availability. Photoperiod is the principal environmental cue used to time each stage, allowing birds to adapt their physiology in advance of predictable environmental changes. Physiological (neuroendocrine and endocrine) plasticity allows non-photoperiodic cues to modulate timing to enable individuals to cope with, and benefit from, short-term environmental variability. Although the timing and duration of the period of full gonadal maturation is principally controlled by photoperiod, non-photoperiodic cues, such as temperature, rainfall or food availability, could potentially modulate the exact time of breeding either by fine-tuning the time of egg-laying within the period of full gonadal maturity or, more fundamentally, by modulating gonadal maturation and/or regression. The timing of gonadal regression affects the time of the start of moult, which in turn may affect the duration of the moult. There are many areas of uncertainty. Future integrated studies are required to assess the scope for flexibility in life-history strategies as this will have a critical bearing on whether birds can adapt sufficiently rapidly to anthropogenic environmental changes, in particular climate change.
INTER-REGULATION OF THE UNFOLDED PROTEIN RESPONSE AND AUXIN SIGNALING
Chen, Yani; Aung, Kyaw; Rolčík, Jakub; Walicki, Kathryn; Friml, Jiří; Brandizzi, Federica
2013-01-01
SUMMARY The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin sensors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes. PMID:24180465
Santos, Mauro; Castañeda, Luis E; Rezende, Enrico L
2012-01-01
The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h2 = 0.25, realized heritabilities of knockdown temperature are around 0.08–0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster. PMID:23170220
Kreuzer, Kenneth N.
2013-01-01
Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899
Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots.
Dubos, Christian; Plomion, Christophe
2003-01-01
Root adaptation to soil environmental factors is very important to maritime pine, the main conifer species used for reforestation in France. The range of climates in the sites where this species is established varies from flooded in winter to drought-prone in summer. No studies have yet focused on the morphological, physiological or molecular variability of the root system to adapt its growth to such an environment. We developed a strategy to isolate drought-responsive genes in the root tissue in order to identify the molecular mechanisms that trees have evolved to cope with drought (the main problem affecting wood productivity), and to exploit this information to improve drought stress tolerance. In order to provide easy access to the root system, seedlings were raised in hydroponic solution. Polyethylene glycol was used as an osmoticum to induce water deficit. Using the cDNA-AFLP technique, we screened more than 2500 transcript derived fragments, of which 33 (1.2%) showed clear variation in presence/absence between non stressed and stressed medium. The relative abundance of these transcripts was then analysed by reverse northern. Only two out of these 33 genes showed significant opposite behaviour between both techniques. The identification and characterization of water-deficit responsive genes in roots provide the emergence of physiological understanding of the patterns of gene expression and regulation involved in the drought stress response of maritime pine.
Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease.
Wancket, Lyn M; Frazier, W Joshua; Liu, Yusen
2012-02-13
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression. Copyright © 2011 Elsevier Inc. All rights reserved.
Relating Human Genetic Variation to Variation in Drug Responses
Madian, Ashraf G.; Wheeler, Heather E.; Jones, Richard Baker; Dolan, M. Eileen
2012-01-01
Although sequencing a single human genome was a monumental effort a decade ago, more than one thousand genomes have now been sequenced. The task ahead lies in transforming this information into personalized treatment strategies that are tailored to the unique genetics of each individual. One important aspect of personalized medicine is patient-to-patient variation in drug response. Pharmacogenomics addresses this issue by seeking to identify genetic contributors to human variation in drug efficacy and toxicity. Here, we present a summary of the current status of this field, which has evolved from studies of single candidate genes to comprehensive genome-wide analyses. Additionally, we discuss the major challenges in translating this knowledge into a systems-level understanding of drug physiology with the ultimate goal of developing more effective personalized clinical treatment strategies. PMID:22840197
Herde, Marco; Howe, Gregg A
2014-07-01
Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Itsy Bitsy Spider…: Infants React with Increased Arousal to Spiders and Snakes
Hoehl, Stefanie; Hellmer, Kahl; Johansson, Maria; Gredebäck, Gustaf
2017-01-01
Attention biases have been reported for ancestral threats like spiders and snakes in infants, children, and adults. However, it is currently unclear whether these stimuli induce increased physiological arousal in infants. Here, 6-month-old infants were presented with pictures of spiders and flowers (Study 1, within-subjects), or snakes and fish (Study 1, within-subjects; Study 2, between-subjects). Infants’ pupillary responses linked to activation of the noradrenergic system were measured. Infants reacted with increased pupillary dilation indicating arousal to spiders and snakes compared with flowers and fish. Results support the notion of an evolved preparedness for developing fear of these ancestral threats. PMID:29093687
NASA Astrophysics Data System (ADS)
Huang, Pin-Chieh; Pande, Paritosh; Shelton, Ryan L.; Joa, Frank; Moore, Dave; Gillman, Elisa; Kidd, Kimberly; Nolan, Ryan M.; Odio, Mauricio; Carr, Andrew; Boppart, Stephen A.
2017-03-01
Influenced by both the intrinsic viscoelasticity of the tissue constituents and the time-evolved redistribution of fluid within the tissue, the biomechanical response of skin can reflect not only localized pathology but also systemic physiology of an individual. While clinical diagnosis of skin pathologies typically relies on visual inspection and manual palpation, a more objective and quantitative approach for tissue characterization is highly desirable. Optical coherence tomography (OCT) is an interferometry-based imaging modality that enables in vivo assessment of cross-sectional tissue morphology with micron-scale resolution, which surpasses those of most standard clinical imaging tools, such as ultrasound imaging and magnetic resonance imaging. This pilot study investigates the feasibility of characterizing the biomechanical response of in vivo human skin using OCT. OCT-based quantitative metrics were developed and demonstrated on the human subject data, where a significant difference between deformed and nondeformed skin was revealed. Additionally, the quantified postindentation recovery results revealed differences between aged (adult) and young (infant) skin. These suggest that OCT has the potential to quantitatively assess the mechanically perturbed skin as well as distinguish different physiological conditions of the skin, such as changes with age or disease.
Meng, Jie; Wang, Ting; Li, Li; Zhang, Guofan
2018-07-01
Pacific oyster (Crassostrea gigas) distribute a steep gradient of environmental stress between intertidal and subtidal habits and provide insight into population-scale patterns and underlying processes of variation in physiological tolerance. In this study, 1-year-old-F 1 oysters, collected from subtidal and intertidal habitats, were obtained after common garden experiment. Genetic differentiation and physiological responses under air exposure were examined to determine whether they had evolved into local adapted subpopulations. Mortality rate, anaerobic glycolysis metabolism, and energy status indicated that oyster had initiated metabolism depression and anaerobic glycolysis metabolism in both intertidal and subtidal oysters under air exposure. However, the subtidal oysters displayed the larger energy metabolism depressions and the earlier anaerobic glycolysis responses. This may indicate that subtidal oysters were more sensitives to hypoxia stress, which may lead the higher mortality rate under long term of air exposure. Based on a common garden experimental design, we propose that this diversification may have a genetic background. Overall, the clear differences between intertidal and subtidal oysters under air exposure have provided an important reference for their aquaculture and transportation used in commercial production. Copyright © 2018. Published by Elsevier Ltd.
Velotta, Jonathan P.; Wegrzyn, Jill L.; Ginzburg, Samuel; Kang, Lin; Czesny, Sergiusz J.; O'Neill, Rachel J.; McCormick, Stephen; Michalak, Pawel; Schultz, Eric T.
2017-01-01
Comparative approaches in physiological genomics offer an opportunity to understand the functional importance of genes involved in niche exploitation. We used populations of Alewife (Alosa pseudoharengus) to explore the transcriptional mechanisms that underlie adaptation to fresh water. Ancestrally anadromous Alewives have recently formed multiple, independently derived, landlocked populations, which exhibit reduced tolerance of saltwater and enhanced tolerance of fresh water. Using RNA-seq, we compared transcriptional responses of an anadromous Alewife population to two landlocked populations after acclimation to fresh (0 ppt) and saltwater (35 ppt). Our results suggest that the gill transcriptome has evolved in primarily discordant ways between independent landlocked populations and their anadromous ancestor. By contrast, evolved shifts in the transcription of a small suite of well-characterized osmoregulatory genes exhibited a strong degree of parallelism. In particular, transcription of genes that regulate gill ion exchange has diverged in accordance with functional predictions: freshwater ion-uptake genes (most notably, the ‘freshwater paralog’ of Na+/K+-ATPase α-subunit) were more highly expressed in landlocked forms, whereas genes that regulate saltwater ion secretion (e.g. the ‘saltwater paralog’ of NKAα) exhibited a blunted response to saltwater. Parallel divergence of ion transport gene expression is associated with shifts in salinity tolerance limits among landlocked forms, suggesting that changes to the gill's transcriptional response to salinity facilitate freshwater adaptation.
Innate and adaptive immune responses to cell death
Rock, Kenneth L.; Lai, Jiann-Jyh; Kono, Hajime
2011-01-01
Summary The immune system plays an essential role in protecting the host against infections and to accomplish this task has evolved mechanisms to recognize microbes and destroy them. In addition, it monitors the health of cells and responds to ones that have been injured and die, even if this occurs under sterile conditions. This process is initiated when dying cells expose intracellular molecules that can be recognized by cells of the innate immune system. As a consequence of this recognition, dendritic cells are activated in ways that help to promote T-cell responses to antigens associated with the dying cells. In addition, macrophages are stimulated to produce the cytokine interleukin-1 that then acts on radioresistant parenchymal cells in the host in ways that drive a robust inflammatory response. In addition to dead cells, a number of other sterile particles and altered physiological states can similarly stimulate an inflammatory response and do so through common pathways involving the inflammasome and interleukin-1. These pathways underlie the pathogenesis of a number of diseases. PMID:21884177
Crew Factors in Flight Operations X: Alertness Management in Flight Operations
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.
1999-01-01
In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.
Crew Factors in Flight Operations X: Alertness Management in Flight Operations
NASA Technical Reports Server (NTRS)
Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.
2001-01-01
In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.
Kaisarevic, Sonja N; Andric, Silvana A; Kostic, Tatjana S
2017-09-01
In response to the Bologna Declaration and contemporary trends in Animal Physiology education, the Animal Physiology course at the Faculty of Sciences, University of Novi Sad, Serbia, has evolved over a 12-yr period (2001-2012): from a classical two-semester course toward a one-semester course utilizing computer simulations of animal experiments, continual assessment, lectures, and an optional oral exam. This paper presents an overview of student achievement, the impact of reforms on learning outcomes, and lessons that we as educators learned during this process. The reforms had a positive impact on the percentage of students who completed the course within the same academic year. In addition, the percentage of students who completed the practical exam increased from 54% to >95% following the transition to a Bologna-based approach. However, average final grades declined from 8.0 to 6.8 over the same period. Students also appear reluctant to take the optional oral exam, and 82-91% of students were satisfied with the lower final grade obtained from only assessments and tests administered during the semester. In our endeavor to achieve learning outcomes set during the pre-Bologna period, while adopting contemporary teaching approaches, we sought to increase students' motivation to strive toward better performance, while ensuring that the increased quantity of students who complete the course is coupled with increased quality of education and a more in-depth understanding of animal physiology. Copyright © 2017 the American Physiological Society.
Neural control hierarchy of the heart has not evolved to deal with myocardial ischemia.
Kember, G; Armour, J A; Zamir, M
2013-08-01
The consequences of myocardial ischemia are examined from the standpoint of the neural control system of the heart, a hierarchy of three neuronal centers residing in central command, intrathoracic ganglia, and intrinsic cardiac ganglia. The basis of the investigation is the premise that while this hierarchical control system has evolved to deal with "normal" physiological circumstances, its response in the event of myocardial ischemia is unpredictable because the singular circumstances of this event are as yet not part of its evolutionary repertoire. The results indicate that the harmonious relationship between the three levels of control breaks down, because of a conflict between the priorities that they have evolved to deal with. Essentially, while the main priority in central command is blood demand, the priority at the intrathoracic and cardiac levels is heart rate. As a result of this breakdown, heart rate becomes less predictable and therefore less reliable as a diagnostic guide as to the traumatic state of the heart, which it is commonly used as such following an ischemic event. On the basis of these results it is proposed that under the singular conditions of myocardial ischemia a determination of neural control indexes in addition to cardiovascular indexes has the potential of enhancing clinical outcome.
Implementation of High-resolution Manometry in the Clinical Practice of Speech Language Pathology
Thibeault, Susan; McCulloch, Timothy M.
2014-01-01
Visual imaging modalities, videofluoroscopic swallow study (VFSS) and fiberoptic endoscopic evaluation of swallow, for assessment of oropharyngeal dysphagia have been part of the speech language pathologist’s (SLPs) armamentarium for the diagnosis and treatment of dysphagia for decades. Recently, the addition of high-resolution manometry (HRM) has enabled the SLP to evaluate pharyngeal pressures and upper esophageal sphincter relaxation. Taken together, the use of visual imaging modalities with HRM can improve interpretation of swallowing physiology and facilitate more effective treatment planning. The goal of this article is to describe a clinical paradigm using HRM as an adjunct to VFSS, by the SLP, in the assessment of complex dysphagia. Moreover, in three cases described, the value of manometric measurements in elucidating swallowing imaging studies and documenting physiologic change in response to treatment is highlighted. As technology in this area is evolving, so will the clinical use of HRM by the SLP. Limitations of current HRM systems and applications are discussed. PMID:24233810
Vargas-Arispuro, I; Corella-Madueño, M A G; Harris, M K; Martínez-Téllez, M A; Gardea, A A; Fu-Castillo, A; Orozco-Avitia, A
2013-10-01
Acrobasis nuxvorella Neunzig (pecan nut casebearer) is a monophagous herbivore of Carya illinoinensis (Wang.) K. Koch (pecan); both are indigenous to North America, where Carya has evolved for ≈60 million years. We hypothesized that this close association may have resulted in a parallel evolution allowing casebearer to use pecan volatiles to synchronize seasonality. Casebearer overwinters in diapause as a first-instar larva in a hibernaculum attached to a dormant pecan bud. Larval emergence from this structure after diapause or postdiapause quiescence coincides with the onset of pecan bud growth in the spring, and this interaction was the subject of this study. Dormant pecan twigs with hibernacula-infested buds were exposed to a water control or pecan volatiles from 'Western Schley' cultivar, and monitored to observe larval response by using a microcalorimeter. Initial testing showed that metabolic heat produced by overwintering larvae remained low and unchanged when exposed to water vapor and significantly increased within a few hours after exposure to volatiles from new pecan foliage. This shows that these larvae in hibernacula are in a physiologically suppressed state of diapause or postdiapause quiescence, from which they detect and respond to these pecan volatiles. Further studies to quantify larval responses showed that 90 and 80% of the larvae became active and emerged from their hibernacula ≈6 d after exposure to Western Schley and 'Wichita' volatiles, respectively. Mixtures of 13 sesquiterpenes from those pecan volatiles were identified to induce physiological activity within larvae after hours of exposure, followed some days later by larval emergence from hibernacula. Host volatiles, to our knowledge, have not previously been reported to induce early instar larvae in hibernacula to rouse from a state of physiological arrest to resume normal growth and development. This also has potential for use in pest management.
Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural.
Jung, Young Hoon; Kim, Sooah; Yang, Jungwoo; Seo, Jin-Ho; Kim, Kyoung Heon
2017-03-01
Furfural, one of the most common inhibitors in pre-treatment hydrolysates, reduces the cell growth and ethanol production of yeast. Evolutionary engineering has been used as a selection scheme to obtain yeast strains that exhibit furfural tolerance. However, the response of Saccharomyces cerevisiae to furfural at the metabolite level during evolution remains unknown. In this study, evolutionary engineering and metabolomic analyses were applied to determine the effects of furfural on yeasts and their metabolic response to continuous exposure to furfural. After 50 serial transfers of cultures in the presence of furfural, the evolved strains acquired the ability to stably manage its physiological status under the furfural stress. A total of 98 metabolites were identified, and their abundance profiles implied that yeast metabolism was globally regulated. Under the furfural stress, stress-protective molecules and cofactor-related mechanisms were mainly induced in the parental strain. However, during evolution under the furfural stress, S. cerevisiae underwent global metabolic allocations to quickly overcome the stress, particularly by maintaining higher levels of metabolites related to energy generation, cofactor regeneration and recovery from cellular damage. Mapping the mechanisms of furfural tolerance conferred by evolutionary engineering in the present study will be led to rational design of metabolically engineered yeasts. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Looking at physiological anthropology from a historical standpoint.
Katsuura, Tetsuo
2005-05-01
As one way of thinking about physiological anthropology, let us survey it from a historical viewpoint. At the beginning of the 19th century, Blumenbach, considered the father of Physical Anthropology, wrote his "Handbook of Comparative Anatomy and Physiology." The subsequent research conducted and papers written by researchers such as Broca and Martin pointed in the direction of physiological anthropology; furthermore, the research carried out by the American researchers Demon and Baker had a physiological anthropology "feel." The courses in Physiological Anthropology taught by Tokizane exerted a major influence on physiological anthropology in Japan. The precursor of the Japan Society of Physiological Anthropology, organized by Sato in 1978, was extremely significant in the effect that it had on the subsequent development of physiological anthropology. The holding of the biennial International Congress of Physiological Anthropology, along with the allocation of the Research sub-field of Physiological Anthropology in the Grant-in-Aid for Scientific Research, would seem to suggest that the field of physiological anthropology is set to increasingly grow and evolve.
Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R
2017-07-15
Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Models to study gravitational biology of Mammalian reproduction
NASA Technical Reports Server (NTRS)
Tou, Janet; Ronca, April; Grindeland, Richard; Wade, Charles
2002-01-01
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.
Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf
2013-07-01
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Knepper, Caleb; Day, Brad
2010-01-01
More than 60 years ago, H.H. Flor proposed the "Gene-for-Gene" hypothesis, which described the genetic relationship between host plants and pathogens. In the decades that followed Flor's seminal work, our understanding of the plant-pathogen interaction has evolved into a sophisticated model, detailing the molecular genetic and biochemical processes that control host-range, disease resistance signaling and susceptibility. The interaction between plants and microbes is an intimate exchange of signals that has evolved for millennia, resulting in the modification and adaptation of pathogen virulence strategies and host recognition elements. In total, plants have evolved mechanisms to combat the ever-changing landscape of biotic interactions bombarding their environment, while in parallel, plant pathogens have co-evolved mechanisms to sense and adapt to these changes. On average, the typical plant is susceptible to attack by dozens of microbial pathogens, yet in most cases, remains resistant to many of these challenges. The sum of research in our field has revealed that these interactions are regulated by multiple layers of intimately linked signaling networks. As an evolved model of Flor's initial observations, the current paradigm in host-pathogen interactions is that pathogen effector molecules, in large part, drive the recognition, activation and subsequent physiological responses in plants that give rise to resistance and susceptibility. In this Chapter, we will discuss our current understanding of the association between plants and microbial pathogens, detailing the pressures placed on both host and microbe to either maintain disease resistance, or induce susceptibility and disease. From recognition to transcriptional reprogramming, we will review current data and literature that has advanced the classical model of the Gene-for-Gene hypothesis to our current understanding of basal and effector triggered immunity.
Transhydrogenase Promotes the Robustness and Evolvability of E. coli Deficient in NADPH Production
Chou, Hsin-Hung; Marx, Christopher J.; Sauer, Uwe
2015-01-01
Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1) modulating the expression of membrane-bound transhydrogenase (mTH) in every population; (2) simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities. PMID:25715029
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Integrated imaging of cardiac anatomy, physiology, and viability.
Arrighi, James A
2009-03-01
Technologic developments in imaging will have a significant impact on cardiac imaging over the next decade. These advances will permit more detailed assessment of cardiac anatomy, complex assessment of cardiac physiology, and integration of anatomic and physiologic data. The distinction between anatomic and physiologic imaging is important. For assessing patients with known or suspected coronary artery disease, physiologic and anatomic imaging data are complementary. The strength of anatomic imaging rests in its ability to detect the presence of disease, whereas physiologic imaging techniques assess the impact of disease, such as whether a coronary atherosclerotic lesion limits myocardial blood flow. Research indicates that physiologic data are more prognostically important than anatomic data, but both may be important in patient management decisions. Integrated cardiac imaging is an evolving field, with many potential indications. These include assessment of coronary stenosis, myocardial viability, anatomic and physiologic characterization of atherosclerotic plaque, and advanced molecular imaging.
Chordate betagamma-crystallins and the evolutionary developmental biology of the vertebrate lens.
Riyahi, Kumars; Shimeld, Sebastian M
2007-07-01
Several animal lineages, including the vertebrates, have evolved sophisticated eyes with lenses that refract light to generate an image. The nearest invertebrate relatives of the vertebrates, such as the ascidians (sea squirts) and amphioxus, have only basic light detecting organs, leading to the widely-held view that the vertebrate lens is an innovation that evolved in early vertebrates. From an embryological perspective the lens is different from the rest of the eye, in that the eye is primarily of neural origin while the lens derives from a non-neural ectodermal placode which invaginates into the developing eye. How such an organ could have evolved has attracted much speculation. Recently, however, molecular developmental studies of sea squirts have started to suggest a possible evolutionary origin for the lens. First, studies of the Pax, Six, Eya and other gene families have indicated that sea squirts have areas of non-neural ectoderm homologous to placodes, suggesting an origin for the embryological characteristics of the lens. Second, the evolution and regulation of the betagamma-crystallins has been studied. These form one of the key crystallin gene families responsible for the transparency of the lens, and regulatory conservation between the betagamma-crystallin gene in the sea squirt Ciona intestinalis and the vertebrate visual system has been experimentally demonstrated. These data, together with knowledge of the morphological, physiological and gene expression similarities between the C. intestinalis ocellus and vertebrate retina, have led us to propose a hypothesis for the evolution of the vertebrate lens and integrated vertebrate eye via the co-option and combination of ancient gene regulatory networks; one controlling morphogenetic aspects of lens development and one controlling the expression of a gene family responsible for the biophysical properties of the lens, with the components of the retina having evolved from an ancestral photoreceptive organ derived from the anterior central nervous system.
Animal-Microbial Symbioses in Changing Environments
Carey, Hannah V.; Duddleston, Khrystyne N.
2014-01-01
The environments in which animals have evolved and live have profound effects on all aspects of their biology. Predictable rhythmic changes in the physical environment are arguably among the most important forces shaping the evolution of behavior and physiology of animals, and to anticipate and prepare for these predictable changes animals have evolved biological clocks. Unpredictable changes in the physical environment have important impacts on animal biology as well. The ability of animals to cope with and survive unpredictable perturbations depends on phenotypic plasticity and/or microevolution. From the time metazoans first evolved from their protistan ancestors they have lived in close association with a diverse array of microbes that have influenced, in some way, all aspects of the evolution of animal structure, function and behavior. Yet, few studies have addressed whether daily or seasonal rhythms may affect, or be affected by, an animal’s microbial symbionts. This survey highlights how biologists interested in the ecological and evolutionary physiology of animals whose lifestyles are influenced by environmental cycles may benefit from considering whether symbiotic microbes have shaped the features they study. PMID:25086977
Unstable employment and health in middle age in the longitudinal 1970 British Birth Cohort Study.
Waynforth, David
2018-01-01
Jobs for life have become increasingly rare in industrialized economies, and have been replaced by shorter-term employment contracts and freelancing. This labour market change is likely to be accompanied by physiological changes in individuals who have experienced little job stability. Evolved responses to increased environmental instability or stochasticity include increased fat deposition and fight-or-flight responses, such as glucose mobilization and increased blood pressure. These responses may have evolved by natural selection as beneficial to individuals in the short-term, but are damaging in the longer term. This study tested whether job losses experienced between ages 30 and 42 are associated with increased body weight, hypertension and diabetes diagnosis in the 1970 British Birth Cohort, which consists of all registered births in a one-week period in April 1970. Each job loss experienced increased the odds of developing diabetes by 1.39 times (CI 1.08-1.80), and of hypertension by 1.28 times (CI 1.07-1.53). Another economic variable, higher personal debt, was associated with all three of these health outcomes: every £100 000 of debt roughly doubled the odds of gaining at least 5 kg between ages 30 and 42. These associations between job loss and health-risk factors suggest that our changing economy results in increases in the prevalence of risk factors for cardiovascular disease. At a broader level, they are consistent with evolutionary understandings of environmental stochasticity, and are a reminder that economic policy is also health policy.
The Evolution of Two-Component Signal Transduction Systems
Capra, Emily J.; Laub, Michael T.
2014-01-01
To exist in a wide range of environmental niches, bacteria must sense and respond to a myriad of external signals. A primary means by which this occurs is through two-component signal transduction pathways, typically comprised of a histidine kinase that receives the input stimuli and a response regulator that effects an appropriate change in cellular physiology. Histidine kinases and response regulators have an intrinsic modularity that separates signal input, phosphotransfer, and output response; this modularity has allowed bacteria to dramatically expand and diversify their signaling capabilities. Recent work has begun to reveal the molecular basis by which two-component proteins evolve. How and why do orthologous signaling proteins diverge? How do cells gain new pathways and recognize new signals? What changes are needed to insulate a new pathway from existing pathways? What constraints are there on gene duplication and lateral gene transfer? Here, we review progress made in answering these questions, highlighting how the integration of genome sequence data with experimental studies is providing major new insights. PMID:22746333
MacManes, Matthew David
2017-08-01
Animals living in desert environments are forced to survive despite severe heat, intense solar radiation, and both acute and chronic dehydration. These animals have evolved phenotypes that effectively address these environmental stressors. To begin to understand the ways in which the desert-adapted rodent Peromyscus eremicus survives, reproductively mature adults were subjected to 72 h of water deprivation, during which they lost, on average, 23% of their body weight. The animals reacted via a series of changes in the kidney, which included modulating expression of genes responsible for reducing the rate of transcription and maintaining water and salt balance. Extracellular matrix turnover appeared to be decreased, and apoptosis was limited. In contrast to the canonical human response, serum creatinine and other biomarkers of kidney injury were not elevated, suggesting that changes in gene expression related to acute dehydration may effectively prohibit widespread kidney damage in the cactus mouse. Copyright © 2017 the American Physiological Society.
Mechanisms for the epigenetic inheritance of stress response in single cells.
Xue, Yuan; Acar, Murat
2018-05-30
Cells have evolved to dynamically respond to different types of environmental and physiological stress conditions. The information about a previous stress stimulus experience by a mother cell can be passed to its descendants, allowing them to better adapt to and survive in new environments. In recent years, live-cell imaging combined with cell-lineage tracking approaches has elucidated many important principles that guide stress inheritance at the single-cell and population level. In this review, we summarize different strategies that cells can employ to pass the 'memory' of previous stress responses to their descendants. Among these strategies, we focus on a recent discovery of how specific features of Msn2 nucleo-cytoplasmic shuttling dynamics could be inherited across cell lineages. We also discuss how stress response can be transmitted to progenies through changes in chromatin and through partitioning of anti-stress factors and/or damaged macromolecules between mother and daughter cells during cell division. Finally, we highlight how emergent technologies will help address open questions in the field.
Verde, Cinzia; Giordano, Daniela; di Prisco, Guido
2008-01-01
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
Nitric oxide: a multitasked signaling gas in plants.
Domingos, Patricia; Prado, Ana Margarida; Wong, Aloysius; Gehring, Christoph; Feijo, Jose A
2015-04-01
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
What Is Nausea? A Historical Analysis of Changing Views
Balaban, Carey D.; Yates, Bill J.
2016-01-01
The connotation of “nausea” has changed across several millennia. The medical term ‘nausea’ is derived from the classical Greek terms ναυτια and ναυσια, which designated the signs and symptoms of seasickness. In classical texts, nausea referred to a wide range of perceptions and actions, including lethargy and disengagement, headache (migraine), and anorexia, with an awareness that vomiting was imminent only when the condition was severe. However, some recent articles have limited the definition to the sensations that immediately precede emesis. Defining nausea is complicated by the fact that it has many triggers, and can build-up slowly or rapidly, such that the prodromal signs and symptoms can vary. In particular, disengagement responses referred to as the “sopite syndrome” are typically present only when emetic stimuli are moderately provocative, and do not quickly culminate in vomiting or disengagement from the triggering event. This review considers how the definition of “nausea” has evolved over time, and summarizes the physiological changes that occur prior to vomiting that may be indicative of nausea. Also described are differences in the perception of nausea, as well as the accompanying physiological responses, that occur with varying stimuli. This information is synthesized to provide an operational definition of nausea. PMID:27450627
Weak coordination between leaf structure and function among closely related tomato species.
Muir, Christopher D; Conesa, Miquel À; Roldán, Emilio J; Molins, Arántzazu; Galmés, Jeroni
2017-03-01
Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO 2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The spectrotemporal filter mechanism of auditory selective attention
Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.
2013-01-01
SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126
Laboratory evolution of copper tolerant yeast strains
2012-01-01
Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286
Reproductive Resilience to Food Shortage in a Small Heterothermic Primate
Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations. PMID:22848507
Reproductive resilience to food shortage in a small heterothermic primate.
Canale, Cindy I; Huchard, Elise; Perret, Martine; Henry, Pierre-Yves
2012-01-01
The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive resilience to energetic bottlenecks. More generally, species living in variable and unpredictable habitats may have evolved a flexible reproductive physiology that helps buffer environmental fluctuations.
Di Poi, Carole; Bélanger, Dominic; Amyot, Marc; Rogers, Sean; Aubin-Horth, Nadia
2016-07-01
The molecular mechanisms underlying behavioural evolution following colonization of novel environments are largely unknown. Molecules that interact to control equilibrium within an organism form physiological regulatory networks. It is essential to determine whether particular components of physiological regulatory networks evolve or if the network as a whole is affected in populations diverging in behavioural responses, as this may affect the nature, amplitude and number of impacted traits. We studied the regulation of four physiological regulatory networks in freshwater and marine populations of threespine stickleback raised in a common environment, which were previously characterized as showing evolutionary divergence in behaviour and stress reactivity. We measured nineteen components of these networks (ligands and receptors) using mRNA and monoamine levels in the brain, pituitary and interrenal gland, as well as hormone levels. Freshwater fish showed higher expression in the brain of adrenergic (adrb2a), serotonergic (htr2a) and dopaminergic (DRD2) receptors, but lower expression of the htr2b receptor. Freshwater fish also showed higher expression of the mc2r receptor of the glucocorticoid axis in the interrenals. Collectively, our results suggest that the inheritance of the regulation of these networks may be implicated in the evolution of behaviour and stress reactivity in association with population divergence. Our results also suggest that evolutionary change in freshwater threespine stickleback may be more associated with the expression of specific receptors rather than with global changes of all the measured constituents of the physiological regulatory networks. © 2016 John Wiley & Sons Ltd.
Perceived exertion. Antecedents and applications.
Watt, B; Grove, R
1993-04-01
The field of perceived exertion has largely concerned itself with the problem of identifying the primary antecedents to this psychophysiological phenomenon. A vast literature has evolved addressing this problem, but it is fraught with contradictions. At this stage a comprehensive theory of perceived exertion does not exist. It is generally accepted that perception of exertion is dominated by physiological determinants. Physiological sensory cues have been separated into 2 categories: local factors (sensations from the working muscles and joints), and central factors (sensations from the cardiopulmonary system). Major reviews in this area generally agree that local factors dominate perception of exertion. Recent work in perceived exertion has placed an emphasis on examining the contributing psychological factors. Research into the psychological factors affecting perceived exertion has been highly fragmented with no apparent theoretical framework as a base. At the same time it is clear that an integration of psychological and physiological variables is required to obtain theoretically meaningful knowledge of this multidimensional construct. The assumed dominance of physiological factors has been challenged by the contention that in field situations, in which a variety of social psychological influences operate, psychological determinants of perceived exertion may be vastly more influential than previously estimated. Identification of the primary determinants of perceived exertion and knowledge of how these factors are integrated is vital for a concrete theory of perceived exertion to evolve.
Causse, Mickaël; Sénard, Jean-Michel; Démonet, Jean François; Pastor, Josette
2010-06-01
The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error.
Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates?
Wudick, Michael M; Michard, Erwan; Oliveira Nunes, Custódio; Feijó, José A
2018-04-19
Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.
Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin
2015-01-01
The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358
Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels
2016-07-01
What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs.
O'Donnell, Daniel R; Hamman, Carolyn R; Johnson, Evan C; Kremer, Colin T; Klausmeier, Christopher A; Litchman, Elena
2018-06-25
Rapid evolution in response to environmental change will likely be a driving force determining the distribution of species across the biosphere in coming decades. This is especially true of microorganisms, many of which may evolve in step with warming, including phytoplankton, the diverse photosynthetic microbes forming the foundation of most aquatic food webs. Here we tested the capacity of a globally important, model marine diatom Thalassiosira pseudonana, for rapid evolution in response to temperature. Selection at 16 and 31°C for 350 generations led to significant divergence in several temperature response traits, demonstrating local adaptation and the existence of tradeoffs associated with adaptation to different temperatures. In contrast, competitive ability for nitrogen (commonly limiting in marine systems), measured after 450 generations of temperature selection, did not diverge in a systematic way between temperatures. This study shows how rapid thermal adaptation affects key temperature and nutrient traits and, thus, a population's long-term physiological, ecological, and biogeographic response to climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga
2016-01-01
Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.
Mechano-biological Coupling of Cellular Responses to Microgravity
NASA Astrophysics Data System (ADS)
Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan
2015-11-01
Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.
Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.
Hua, Qiang; Joyce, Andrew R; Fong, Stephen S; Palsson, Bernhard Ø
2006-12-05
Experimental evolution is now frequently applied to many biological systems to achieve desired objectives. To obtain optimized performance for metabolite production, a successful strategy has been recently developed that couples metabolic engineering techniques with laboratory evolution of microorganisms. Previously, we reported the growth characteristics of three lactate-producing, adaptively evolved Escherichia coli mutant strains designed by the OptKnock computational algorithm. Here, we describe the use of (13)C-labeled experiments and mass distribution measurements to study the evolutionary effects on the fluxome of these differently designed strains. Metabolic flux ratios and intracellular flux distributions as well as physiological data were used to elucidate metabolic responses over the course of adaptive evolution and metabolic differences among strains. The study of 3 unevolved and 12 evolved engineered strains as well as a wild-type strain suggests that evolution resulted in remarkable improvements in both substrate utilization rate and the proportion of glycolytic flux to total glucose utilization flux. Among three strain designs, the most significant increases in the fraction of glucose catabolized through glycolysis (>50%) and the glycolytic fluxes (>twofold) were observed in phosphotransacetylase and phosphofructokinase 1 (PFK1) double deletion (pta- pfkA) strains, which were likely attributed to the dramatic evolutionary increase in gene expression and catalytic activity of the minor PFK encoded by pfkB. These fluxomic studies also revealed the important role of acetate synthetic pathway in anaerobic lactate production. Moreover, flux analysis suggested that independent of genetic background, optimal relative flux distributions in cells could be achieved faster than physiological parameters such as nutrient utilization rate. (c) 2006 Wiley Periodicals, Inc.
BREESE, GEORGE R.; SINHA, RAJITA; HEILIG, MARKUS
2010-01-01
Alcoholism is a chronic relapsing disorder. Major characteristics observed in alcoholics during an initial period of alcohol abstinence are altered physiological functions and a negative emotional state. Evidence suggests that a persistent, cumulative adaptation involving a kindling/allostasis-like process occurs during the course of repeated chronic alcohol exposures that is critical for the negative symptoms observed during alcohol withdrawal. Basic studies have provided evidence for specific neurotransmitters within identified brain sites being responsible for the negative emotion induced by the persistent cumulative adaptation following intermittent-alcohol exposures. After an extended period of abstinence, the cumulative alcohol adaptation increases susceptibility to stress- and alcohol cue-induced negative symptoms and alcohol seeking, both of which can facilitate excessive ingestion of alcohol. In the alcoholic, stressful imagery and alcohol cues alter physiological responses, enhance negative emotion, and induce craving. Brain fMRI imaging following stress and alcohol cues has documented neural changes in specific brain regions of alcoholics not observed in social drinkers. Such altered activity in brain of abstinent alcoholics to stress and alcohol cues is consistent with a continuing ethanol adaptation being responsible. Therapies in alcoholics found to block responses to stress and alcohol cues would presumably be potential treatments by which susceptibility for continued alcohol abuse can be reduced. By continuing to define the neurobiological basis of the sustained alcohol adaptation critical for the increased susceptibility of alcoholics to stress and alcohol cues that facilitate craving, a new era is expected to evolve in which the high rate of relapse in alcoholism is minimized. 250 PMID:20951730
Interorgan Communication Pathways in Physiology: Focus on Drosophila
Droujinine, Ilia A.; Perrimon, Norbert
2017-01-01
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease. PMID:27732790
Interorgan Communication Pathways in Physiology: Focus on Drosophila.
Droujinine, Ilia A; Perrimon, Norbert
2016-11-23
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.
Kooyers, N J; Olsen, K M
2013-01-01
The recurrent evolution of adaptive clines within a species can be used to elucidate the selective factors and genetic responses that underlie adaptation. White clover is polymorphic for cyanogenesis (HCN release with tissue damage), and climate-associated cyanogenesis clines have evolved throughout the native and introduced species range. This polymorphism arises through two independently segregating Mendelian polymorphisms for the presence/absence of two required components: cyanogenic glucosides and their hydrolyzing enzyme linamarase. Cyanogenesis is commonly thought to function in herbivore defense; however, the individual cyanogenic components may also serve other physiological functions. To test whether cyanogenesis clines have evolved in response to the same selective pressures acting on the same genetic targets, we examined cyanogenesis cline shape and its environmental correlates in three world regions: southern New Zealand, the central United States and the US Pacific Northwest. For some regional comparisons, cline shapes are remarkably similar despite large differences in the spatial scales over which clines occur (40–1600 km). However, we also find evidence for major differences in both the agents and targets of selection among the sampled clines. Variation in cyanogenesis frequency is best predicted using a combination of minimum winter temperature and aridity variables. Together, our results provide evidence that recurrent adaptive clines do not necessarily reflect shared adaptive processes. PMID:23900395
Male song sparrows have elevated testosterone in response to neighbors versus strangers.
Moser-Purdy, Christopher; MacDougall-Shackleton, Scott A; Bonier, Frances; Graham, Brendan A; Boyer, Andrea C; Mennill, Daniel J
2017-07-01
Upon hearing a conspecific signal, animals must assess their relationship with the signaller and respond appropriately. Territorial animals usually respond more aggressively to strangers than neighbors in a phenomenon known as the "dear enemy effect". This phenomenon likely evolved because strangers represent a threat to an animal's territory tenure and parentage, whereas neighbors only represent a threat to an animal's parentage because they already possess a territory (providing territory boundaries are established and stable). Although the dear enemy effect has been widely documented using behavioral response variables, little research has been conducted on the physiological responses of animals to neighbors versus strangers. We sought to investigate whether the dear enemy effect is observed physiologically by exposing territorial male song sparrows (Melospiza melodia) to playback simulating a neighbor or a stranger, and then collecting blood samples to measure plasma testosterone levels. We predicted that song sparrows would exhibit increased testosterone levels after exposure to stranger playback compared to neighbor playback, due to the role testosterone plays in regulating aggression. Contrary to our prediction, we found that song sparrows had higher testosterone levels after exposure to neighbor playback compared to stranger playback. We discuss several explanations for our result, notably that corticosterone may regulate the dear enemy effect in male song sparrows and this may inhibit plasma testosterone. Future studies will benefit from examining corticosterone in addition to testosterone, to better understand the hormonal underpinnings of the dear enemy effect. Copyright © 2017 Elsevier Inc. All rights reserved.
Artificial light at night alters behavior in laboratory and wild animals.
Russart, Kathryn L G; Nelson, Randy J
2018-05-28
Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems. © 2018 Wiley Periodicals, Inc.
Paleophysiology: From Fossils to the Future.
Vermeij, Geerat J
2015-10-01
Future environments may resemble conditions that have not existed for millions of years. To assess the adaptive options available to organisms evolving under such circumstances, it is instructive to probe paleophysiology, the ways in which ancient life coped with its physical and chemical surroundings. To do this, we need reliable proxies that are based on fundamental principles, quantitatively verified in living species, and observable in fossil remains. Insights have already come from vertebrates and plants, and others will likely emerge for marine animals if promising proxies are validated. Many questions remain about the circumstances for the evolution of environmental tolerances, metabolic rates, biomineralization, and physiological responses to interacting species, and about how living organisms will perform under exceptional conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anhydrobiosis in tardigrades--the last decade.
Wełnicz, Weronika; Grohme, Markus A; Kaczmarek, Lukasz; Schill, Ralph O; Frohme, Marcus
2011-05-01
The current state of knowledge about anhydrobiosis in tardigrades is presented. In response to adverse environmental conditions tardigrades arrest their metabolic activity and after complete dehydration enter the so-called "tun" state. In this ametabolic state they are able to tolerate exposure to various chemical and physical extremes. These micrometazoans have evolved various kinds of morphological, physiological and molecular adaptations to reduce the effects of desiccation. In this review we address behavioral adaptation, morphological features and molecules which determine the anhydrobiotic survival. The influence of the time spent in anhydrobiotic state on the lifespan and DNA and the role of the antioxidant defense system are also considered. Finally we summarize recent input from the "omics" sciences. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhai, Longmei; Xiao, Dashuang; Sun, Chaohua; Wu, Ting; Han, Zhenhai; Zhang, Xinzhong; Xu, Xuefeng; Wang, Yi
2016-12-01
To cope with iron (Fe) deficiency, plants have evolved a wide range of adaptive responses from changes in morphology to altered physiological responses. Recent studies have demonstrated that nitric oxide (NO) is involved in the Fe-deficiency response through hormonal signaling pathways. Here, we report that NO plays a significant role in Malus xiaojinensis, an Fe-efficient woody plant. Fe deficiency triggered significant accumulation of NO in the root system, predominantly in the outer cortical and epidermal cells of the elongation zone. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) completely arrested Fe deficiency-induced root hair formation, blocked the increase in root ferric-chelate reductase activity and in root H + excretion, further reduced the active iron content in young leaves and roots, and prevented the upregulation of the critical Fe-related genes, FIT, MxFRO2-like, and MxIRT1. These conditions were restored under Fe deficiency by treatment with the NO donor, sodium nitroprusside (SNP). Additionally, chlorophyll content and relative expression levels of the genes chlorophyll a deoxygenase (MxCAO) and polyamine oxidase (MxPAO) were not changed significantly following Fe deficiency for 6 d; however, SNP treatment increased MxHEMA gene expression. Interestingly, the Fv/Fm ratio, the maximum quantum yield of photosystem II (PSII), decreased significantly following cPTIO treatment. We observed more severe chlorosis under Fe deficiency with cPTIO treatment for 9 d. These results strongly suggest that NO mediates a range of responses to Fe deficiency in M. xiaojinensis, from morphological changes to the regulation of physiological processes and gene expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NO, nitrotyrosine, and cyclic GMP in signal transduction
NASA Technical Reports Server (NTRS)
Hanafy, K. A.; Krumenacker, J. S.; Murad, F.
2001-01-01
Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Alpatov, A. M.; Hoban-Higgins, T. M.; Klimovitsky, V. Y.
1994-01-01
Mammals have developed the ability to adapt to most variations encountered in their everyday environment. For example, homeotherms have developed the ability to maintain the internal cellular environment at a relatively constant temperature. Also, in order to compensate for temporal variations in the terrestrial environment, the circadian timing system has evolved. However, throughout the evolution of life on earth, living organisms have been exposed to the influence of an unvarying level of earth's gravity. As a result changes in gravity produce adaptive responses which are not completely understood. In particular, spaceflight has pronounced effects on various physiological and behavioral systems. Such systems include body temperature regulation and circadian rhythms. This program has examined the influence of microgravity on temperature regulation and circadian timekeeping systems in Rhesus monkeys. Animals flown on the Soviet Biosatellite, COSMOS 2044, were exposed to 14 days of microgravity while constantly monitoring the circadian patterns temperature regulation, heart rate and activity. This experiment has extended our previous observations from COSMOS 1514, as well as providing insights into the physiological mechanisms that produce these changes.
Divino, Jeffrey N; Monette, Michelle Y.; McCormick, Stephen; Yancey, Paul H.; Flannery, Kyle G.; Bell, Michael A.; Rollins, Jennifer L.; von Hippel, Frank A.; Schultz, Eric T.
2016-01-01
Conclusion: Enhanced freshwater tolerance has evolved rapidly in recently landlocked stickleback compared with their anadromous ancestors (0.569 haldanes), but the former have retained ancestral seawater-osmoregulatory function.
Inducible Tolerance to Agrochemicals Was Paved by Evolutionary Responses to Predators.
Jones, Devin K; Hintz, William D; Schuler, Matthew S; Yates, Erika K; Mattes, Brian M; Relyea, Rick A
2017-12-05
Recent research has reported increased tolerance to agrochemicals in target and nontarget organisms following acute physiological changes induced through phenotypic plasticity. Moreover, the most inducible populations are those from more pristine locations, far from agrochemical use. We asked why do populations with no known history of pesticide exposure have the ability to induce adaptive responses to novel agrochemicals? We hypothesized that increased pesticide tolerance results from a generalized stressor response in organisms, and would be induced following sublethal exposure to natural and anthropogenic stressors. We exposed larval wood frogs (Lithobates sylvaticus) to one of seven natural or anthropogenic stressors (predator cue (Anax spp.), 0.5 or 1.0 mg carbaryl/L, road salt (200 or 1000 mg Cl - /L), ethanol-vehicle control, or no-stressor control) and subsequently tested their tolerance to a lethal carbaryl concentration using time-to-death assays. We observed induced carbaryl tolerance in tadpoles exposed to 0.5 mg/L carbaryl and also in tadpoles exposed to predator cues. Our results suggest that the ability to induce pesticide tolerance likely arose through evolved antipredator responses. Given that antipredator responses are widespread among species, many animals might possess inducible pesticide tolerance, buffering them from agrochemical exposure.
Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity
Gao, Xiquan; Cox, Kevin L.; He, Ping
2014-01-01
An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498
Unstable employment and health in middle age in the longitudinal 1970 British Birth Cohort Study
Waynforth, David
2018-01-01
Abstract Background and objectives Jobs for life have become increasingly rare in industrialized economies, and have been replaced by shorter-term employment contracts and freelancing. This labour market change is likely to be accompanied by physiological changes in individuals who have experienced little job stability. Evolved responses to increased environmental instability or stochasticity include increased fat deposition and fight-or-flight responses, such as glucose mobilization and increased blood pressure. These responses may have evolved by natural selection as beneficial to individuals in the short-term, but are damaging in the longer term. Methodology This study tested whether job losses experienced between ages 30 and 42 are associated with increased body weight, hypertension and diabetes diagnosis in the 1970 British Birth Cohort, which consists of all registered births in a one-week period in April 1970. Results Each job loss experienced increased the odds of developing diabetes by 1.39 times (CI 1.08–1.80), and of hypertension by 1.28 times (CI 1.07–1.53). Another economic variable, higher personal debt, was associated with all three of these health outcomes: every £100 000 of debt roughly doubled the odds of gaining at least 5 kg between ages 30 and 42. Conclusions and implications These associations between job loss and health-risk factors suggest that our changing economy results in increases in the prevalence of risk factors for cardiovascular disease. At a broader level, they are consistent with evolutionary understandings of environmental stochasticity, and are a reminder that economic policy is also health policy. PMID:29692897
Geographic divergence in upper thermal limits across insect life stages: does behavior matter?
MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G
2016-05-01
Insects with complex life cycles vary in size, mobility, and thermal ecology across life stages. We examine how differences in the capacity for thermoregulatory behavior influence geographic differences in physiological heat tolerance among egg and adult Colias butterflies. Colias adults exhibit differences in morphology (wing melanin and thoracic setal length) along spatial gradients, whereas eggs are morphologically indistinguishable. Here we compare Colias eriphyle eggs and adults from two elevations and Colias meadii from a high elevation. Hatching success and egg development time of C. eriphyle eggs did not differ significantly with the elevation of origin. Egg survival declined in response to heat-shock temperatures above 38-40 °C and egg development time was shortest at intermediate heat-shock temperatures of 33-38 °C. Laboratory experiments with adults showed survival in response to heat shock was significantly greater for Colias from higher than from lower elevation sites. Common-garden experiments at the low-elevation field site showed that C. meadii adults initiated heat-avoidance and over-heating behaviors significantly earlier in the day than C. eriphyle. Our study demonstrates the importance of examining thermal tolerances across life stages. Our findings are inconsistent with the hypothesis that thermoregulatory behavior inhibits the geographic divergence of physiological traits in mobile stages, and suggest that sessile stages may evolve similar heat tolerances in different environments due to microclimatic variability or evolutionary constraints.
Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G
2013-01-01
Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.
Tang, Sha; Li, Lin; Wang, Yongqiang; Chen, Qiannan; Zhang, Wenying; Jia, Guanqing; Zhi, Hui; Zhao, Baohua; Diao, Xianmin
2017-08-30
Understanding drought-tolerance mechanisms and identifying genetic dominance are important for crop improvement. Setaria italica, which is extremely drought-tolerant, has been regarded as a model plant for studying stress biology. Moreover, different genotypes of S. italica have evolved various drought-tolerance/avoidance mechanisms that should be elucidated. Physiological and transcriptomic comparisons between drought-tolerant S. italica cultivar 'Yugu1' and drought-sensitive 'An04' were conducted. 'An04' had higher yields and more efficient photosystem activities than 'Yugu1' under well-watered conditions, and this was accompanied by positive brassinosteroid regulatory actions. However, 'An04's growth advantage was severely repressed by drought, while 'Yugu1' maintained normal growth under a water deficiency. High-throughput sequencing suggested that the S. italica transcriptome was severely remodelled by genotype × environment interactions. Expression profiles of genes related to phytohormone metabolism and signalling, transcription factors, detoxification, and other stress-related proteins were characterised, revealing genotype-dependent and -independent drought responses in different S. italica genotypes. Combining our data with drought-tolerance-related QTLs, we identified 20 candidate genes that contributed to germination and early seedling' drought tolerance in S. italica. Our analysis provides a comprehensive picture of how different S. italica genotypes respond to drought, and may be used for the genetic improvement of drought tolerance in Poaceae crops.
Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.
2013-01-01
Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology. PMID:24312230
The science of dermocosmetics and its role in dermatology.
Dreno, B; Araviiskaia, E; Berardesca, E; Bieber, T; Hawk, J; Sanchez-Viera, M; Wolkenstein, P
2014-11-01
Our increased knowledge of normal skin physiology has ushered in a subtle revolution in cosmetic science. Originally designed as preparations to enhance personal appearance by direct application on to the skin, cosmetics have now taken on a new role in dermatology, through the support of the management of many skin disorders. This evolving role of cosmetics in skin care is primarily due to scientific and technological advancements that have changed our understanding of normal skin physiology and how cosmetics modify its appearance both physically and biologically. The vast array of techniques currently available to investigate skin responsivity to multiple stimuli has brought about a new era in cosmetic and dermocosmetic development based on a robust understanding of skin physiology and its varied responses to commonly encountered environmental insults. Most cosmetic research is undertaken on reconstructed skin models crucial in dermatological research, given the strict ban imposed by the European Union on animal testing. In addition, the design and conduct of trials evaluating cosmetics now follow rules comparable to those used in the development and evaluation of pharmaceutical products. Cosmetic research should now aim to ensure all trials adhere to strictly reproducible and scientifically sound methodologies. The objective of this review is to provide an overview of the multidisciplinary scientific approach used in formulating dermocosmetics, and to examine the major advances in dermocosmetic development and assessment, the safety and regulatory guidelines governing their production and the exciting future outlook for these dermocosmetic processes following good practice rules. © 2014 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of the European Academy of Dermatology and Venereology.
Hu, Marian Y.; Guh, Ying-Jey; Shao, Yi-Ta; Kuan, Pou-Long; Chen, Guan-Lin; Lee, Jay-Ron; Jeng, Ming-Shiou; Tseng, Yung-Che
2016-01-01
Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments. PMID:26869933
Robert, Kylie A; Bronikowski, Anne M
2010-02-01
Evolutionary theories of aging are linked to life-history theory in that age-specific schedules of reproduction and survival determine the trajectory of age-specific mutation/selection balances across the life span and thus the rate of senescence. This is predicted to manifest at the organismal level in the evolution of energy allocation strategies of investing in somatic maintenance and robust stress responses in less hazardous environments in exchange for energy spent on growth and reproduction. Here we report experiments from long-studied populations of western terrestrial garter snakes (Thamnophis elegans) that reside in low and high extrinsic mortality environments, with evolved long and short life spans, respectively. Laboratory common-environment colonies of these two ecotypes were tested for a suite of physiological traits after control and stressed gestations. In offspring derived from control and corticosterone-treated dams, we measured resting metabolism; mitochondrial oxygen consumption, ATP and free radical production rates; and erythrocyte DNA damage and repair ability. We evaluated whether these aging biomarkers mirrored the evolution of life span and whether they were sensitive to stress. Neonates from the long-lived ecotype (1) were smaller, (2) consumed equal amounts of oxygen when corrected for body mass, (3) had DNA that damaged more readily but repaired more efficiently, and (4) had more efficient mitochondria and more efficient cellular antioxidant defenses than short-lived snakes. Many ecotype differences were enhanced in offspring derived from stress-treated dams, which supports the conclusion that nongenetic maternal effects may further impact the cellular stress defenses of offspring. Our findings reveal that physiological evolution underpins reptilian life histories and sheds light on the connectedness between stress response and aging pathways in wild-dwelling organisms.
Erkosar, Berra; Kolly, Sylvain; van der Meer, Jan R; Kawecki, Tadeusz J
2017-10-24
Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. IMPORTANCE Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and survival. Thus, despite its ancient evolutionary history, the reliance of animal hosts on their microbial partners can be surprisingly flexible and may be relaxed by short-term evolution. Copyright © 2017 Erkosar et al.
Ray, Anuradha; Wenzel, Sally E.
2015-01-01
Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792
The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae).
Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard
2016-01-01
Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host's calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.
The Auditory System of the Dipteran Parasitoid Emblemasoma auditrix (Sarcophagidae)
Tron, Nanina; Stölting, Heiko; Kampschulte, Marian; Martels, Gunhild; Stumpner, Andreas; Lakes-Harlan, Reinhard
2016-01-01
Several taxa of insects evolved a tympanate ear at different body positions, whereby the ear is composed of common parts: a scolopidial sense organ, a tracheal air space, and a tympanal membrane. Here, we analyzed the anatomy and physiology of the ear at the ventral prothorax of the sarcophagid fly, Emblemasoma auditrix (Soper). We used micro-computed tomography to analyze the ear and its tracheal air space in relation to the body morphology. Both tympana are separated by a small cuticular bridge, face in the same frontal direction, and are backed by a single tracheal enlargement. This enlargement is connected to the anterior spiracles at the dorsofrontal thorax and is continuous with the tracheal network in the thorax and in the abdomen. Analyses of responses of auditory afferents and interneurons show that the ear is broadly tuned, with a sensitivity peak at 5 kHz. Single-cell recordings of auditory interneurons indicate a frequency- and intensity-dependent tuning, whereby some neurons react best to 9 kHz, the peak frequency of the host’s calling song. The results are compared to the convergently evolved ear in Tachinidae (Diptera). PMID:27538415
Sensory Drive, Color, and Color Vision.
Price, Trevor D
2017-08-01
Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.
Water balance in desert Drosophila: lessons from non-charismatic microfauna.
Gibbs, Allen G
2002-11-01
Water stress is a particularly important problem for insects and other small organisms in arid environments. Cactophilic fruit flies in the genus Drosophila have invaded deserts on numerous occasions, including multiple independent invasions of North American deserts. Because the evolutionary history of this genus is so well studied, we can investigate the mechanisms of adaptation in a rigorous phylogenetic context. As expected, desert fruit flies lose water less rapidly than their mesic congeners. They are also able to tolerate the loss of a greater percentage of body water, but this difference is mainly due to phylogenetic history, and does not represent an adaptation specifically to desert habitats. A laboratory analogue of desert Drosophila is provided by populations of D. melanogaster that have been subjected to selection for desiccation resistance. Selected populations resemble desert species in that they lose water slowly, relative to control populations, and are not more tolerant of dehydration stress. They differ, however, in having much higher water contents and different behavioral responses to desiccating conditions. Our comparisons of laboratory and natural populations reveal that not all possible adaptive mechanisms evolve in stressful environments. Different physiological and behavioral strategies may evolve depending upon the particular options available in the environment.
NASA Astrophysics Data System (ADS)
Hun Yeon, Ju; Chan, Karen Y. T.; Wong, Ting-Chia; Chan, Kelvin; Sutherland, Michael R.; Ismagilov, Rustem F.; Pryzdial, Edward L. G.; Kastrup, Christian J.
2015-05-01
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Fuentes, Rolly G; Baltazar, Aurora M; Merca, Florinia E; Ismail, Abdelbagi M; Johnson, David E
2010-01-01
Purple nutsedge (Cyperus rotundus L.) is a major weed of upland crops and vegetables. Recently, a flood-tolerant ecotype evolved as a serious weed in lowland rice. This study attempted to establish the putative growth and physiological features that led to this shift in adaptation. Tubers of upland C. rotundus (ULCR) and lowland C. rotundus (LLCR) ecotypes were collected from their native habitats and maintained under the respective growth conditions in a greenhouse. Five experiments were conducted to assess the variation between the two ecotypes in germination, growth and tuber morphology when grown in their native or 'switched' conditions. Carbohydrate storage and mobilization, and variation in anaerobic respiration under hypoxia were compared. Tubers of LLCR were larger than those of ULCR, with higher carbohydrate content, and larger tubers developed with increasing floodwater depth. Stems of LLCR had larger diameter and proportionally larger air spaces than those of ULCR: a method of aerating submerged plant parts. The LLCR ecotype can also mobilize and use carbohydrate reserves under hypoxia, and it maintained relatively lower and steadier activity of alcohol dehydrogenase (ADH) as a measure of sustained anaerobic respiration. In contrast, ADH activity in ULCR increased faster upon a shift to hypoxia and then sharply decreased, suggesting depletion of available soluble sugar substrates. The LLCR ecotype also maintained lower lactate dehydrogenase activity under flooded conditions, which could reduce chances of cellular acidosis. These adaptive traits in the LLCR ecotype were expressed constitutively, but some of them, such as tuber growth and aerenchyma development, are enhanced with stress severity. The LLCR ecotype attained numerous adaptive traits that could have evolved as a consequence of natural evolution or repeated management practices, and alternative strategies are necessary because flooding is no longer a feasible management option.
Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins
Williams, Tony D.
2016-01-01
When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18–57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration–reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration–reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes. In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. PMID:27708146
Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory.
Fukushima, Kenji; Fang, Xiaodong; Alvarez-Ponce, David; Cai, Huimin; Carretero-Paulet, Lorenzo; Chen, Cui; Chang, Tien-Hao; Farr, Kimberly M; Fujita, Tomomichi; Hiwatashi, Yuji; Hoshi, Yoshikazu; Imai, Takamasa; Kasahara, Masahiro; Librado, Pablo; Mao, Likai; Mori, Hitoshi; Nishiyama, Tomoaki; Nozawa, Masafumi; Pálfalvi, Gergő; Pollard, Stephen T; Rozas, Julio; Sánchez-Gracia, Alejandro; Sankoff, David; Shibata, Tomoko F; Shigenobu, Shuji; Sumikawa, Naomi; Uzawa, Taketoshi; Xie, Meiying; Zheng, Chunfang; Pollock, David D; Albert, Victor A; Li, Shuaicheng; Hasebe, Mitsuyasu
2017-02-06
Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identified genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid proteins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory.
Volumetric Deformation of Live Cells Induced by Pressure-Activated Cross-Membrane Ion Transport
NASA Astrophysics Data System (ADS)
Hui, T. H.; Zhou, Z. L.; Qian, J.; Lin, Y.; Ngan, A. H. W.; Gao, H.
2014-09-01
In this work, we developed a method that allows precise control over changes in the size of a cell via hydrostatic pressure changes in the medium. Specifically, we show that a sudden increase, or reduction, in the surrounding pressure, in the physiologically relevant range, triggers cross-membrane fluxes of sodium and potassium ions in leukemia cell lines K562 and HL60, resulting in reversible volumetric deformation with a characteristic time of around 30 min. Interestingly, healthy leukocytes do not respond to pressure shocks, suggesting that the cancer cells may have evolved the ability to adapt to pressure changes in their microenvironment. A model is also proposed to explain the observed cell deformation, which highlights how the apparent viscoelastic response of cells is governed by the microscopic cross-membrane transport.
Harnessing plasticity for the treatment of neurosurgical disorders: an overview.
Chen, H Isaac; Attiah, Mark; Baltuch, Gordon; Smith, Douglas H; Hamilton, Roy H; Lucas, Timothy H
2014-11-01
Plasticity is fundamental to normal central nervous system function and its response to injury. Understanding this adaptive capacity is central to the development of novel surgical approaches to neurologic disease. These innovative interventions offer the promise of maximizing functional recovery for patients by harnessing targeted plasticity. Developing novel therapies will require the unprecedented integration of neuroscience, bioengineering, molecular biology, and physiology. Such synergistic approaches will create therapeutic options for patients previously outside of the scope of neurosurgery, such as those with permanent disability after traumatic brain injury or stroke. In this review, we synthesize the rapidly evolving field of plasticity and explore ways that neurosurgeons may enhance functional recovery in the future. We conclude that understanding plasticity is fundamental to modern neurosurgical education and practice. Copyright © 2014 Elsevier Inc. All rights reserved.
Kuchel, Otto
2003-03-01
Emotional stress acutely and repetitively causing blood pressure increase or aggravating existing hypertension is usually not reflected by norepinephrine and epinephrine increase but by a sudden rise of dopamine, the third "defensive" catecholamine coping with the damaging neuropsychological and cardiovascular actions of the first two. This double-edged sympathetic response to emotional stress evolves during human lifespan and long-term evolution of hypertension. In the course of philogenesis it carries a potential mismatch between the normal physiology of the human dopaminergic system and current environmental (emotional particularly) conditions in industrialized countries. This offers a rational support to a mental stress-cardiovascular diseases relationship proposed 40 years ago in a WHO report which followed a memorable 1960 Prague Hypertension Meeting.
Metabolic and physiological adjustment of Suaeda maritima to combined salinity and hypoxia
Behr, Jan H.; Bouchereau, Alain; Berardocco, Solenne; Seal, Charlotte E.; Flowers, Timothy J.
2017-01-01
Background and Aims Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to salinity combined with hypoxia were investigated on a physiological and metabolic level. Methods To compare the adaptive mechanisms to deficient, optimal and stressful salt concentrations, S. maritima plants were grown in a hydroponic culture under low, medium and high salt concentrations. Additionally, hypoxic conditions were applied to investigate the impact of hypoxia combined with different salt concentrations. A non-targeted metabolic approach was used to clarify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms of S. maritima. Key Results Roots exposed to hypoxic conditions showed an increased level of tricarboxylic acid (TCA)-cycle intermediates such as succinate, malate and citrate. During hypoxia, the concentration of free amino acids increased in shoots and roots. Osmoprotectants such as proline and glycine betaine increased in concentrations as the external salinity was increased under hypoxic conditions. Conclusions The combination of high salinity and hypoxia caused an ionic imbalance and an increase of metabolites associated with osmotic stress and photorespiration, indicating a severe physiological and metabolic response under these conditions. Disturbed proline degradation in the roots induced an enhanced proline accumulation under hypoxia. The enhanced alanine fermentation combined with a partial flux of the TCA cycle might contribute to the tolerance of S. maritima to hypoxic conditions. PMID:28110268
Coping with Physiological Oxidative Stress: A Review of Antioxidant Strategies in Seals
Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Elsner, Robert; Ortiz, Rudy M.
2012-01-01
While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that allow adapted mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term. PMID:22327141
Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.
2007-01-01
Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886
Circadian Clock Control of Endocrine Factors
Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.
2015-01-01
Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387
Development and differentiation of the erythroid lineage in mammals
Barminko, Jeffrey; Reinholt, Brad; Baron, Margaret H.
2016-01-01
Summary The red blood cell (RBC) is responsible for performing the highly specialized function of oxygen transport, making it essential for survival during gestation and postnatal life. Establishment of sufficient RBC numbers, therefore, has evolved to be a major priority of the postimplantation embryo. The “primitive” erythroid lineage is the first to be specified in the developing embryo proper. Significant resources are dedicated to producing RBCs throughout gestation. Two transient and morphologically distinct waves of hematopoietic progenitor-derived erythropoiesis are observed in development before hematopoietic stem cells (HSCs) take over to produce “definitive” RBCs in the fetal liver. Toward the end of gestation, HSCs migrate to the bone marrow, which becomes the primary site of RBC production in the adult. Erythropoiesis is regulated at various stages of erythroid cell maturation to ensure sufficient production of RBCs in response to physiological demands. Here, we highlight key aspects of mammalian erythroid development and maturation as well as differences among the primitive and definitive erythroid cell lineages. PMID:26709231
Hormonally active phytochemicals and vertebrate evolution.
Lambert, Max R; Edwards, Thea M
2017-06-01
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Puterbaugh, J S
2009-06-01
During the past century, the medical profession has developed a paradigm for the treatment of obesity, which prescribes specific exercise and dietary goals under the umbrella of 'lifestyle change'. It has three components, all of which evolved from origins that had nothing to do with weight control. First, it is individually prescriptive, that is weight loss is considered the responsibility of the individual as contrasted to a societal or group responsibility. Second, it recommends exercise aimed towards structured, or non-functional, activities with a variety of physiological endpoints. Last, dietary goals are defined by calories, exchanges, food groups and various nutritional components. Diets are usually grouped by these goals. This model is unique to America, it is not working and it has also played a causal role in the obesity it is attempting to eliminate. A new model must be developed, which contains an observationally based societal prescription and links activity with functional outcomes and diets, which are food rather than nutritionally based.
Reid, Noah M; Whitehead, Andrew
2016-09-01
Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Adamo, Shelley A
2014-09-01
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re‐epithelialization
Garcin, Clare L.; Ansell, David M.; Headon, Denis J.; Paus, Ralf
2016-01-01
Abstract The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re‐establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15+ve bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo‐epidermis. However, the identity of the first‐responding cells, and in particular whether this process involves a direct contribution of K15+ve bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin‐mediated partial ablation of K15+ve bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377–1385 PMID:26756547
Early stress and human behavioral development: emerging evolutionary perspectives.
Del Giudice, M
2014-08-01
Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.
Gudys, Kornelia; Guzy-Wrobelska, Justyna; Janiak, Agnieszka; Dziurka, Michał A.; Ostrowska, Agnieszka; Hura, Katarzyna; Jurczyk, Barbara; Żmuda, Katarzyna; Grzybkowska, Daria; Śróbka, Joanna; Urban, Wojciech; Biesaga-Koscielniak, Jolanta; Filek, Maria; Koscielniak, Janusz; Mikołajczak, Krzysztof; Ogrodowicz, Piotr; Krystkowiak, Karolina; Kuczyńska, Anetta; Krajewski, Paweł; Szarejko, Iwona
2018-01-01
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits. PMID:29946328
Reproductive Physiology of Marsupials
ERIC Educational Resources Information Center
Sharman, G. B.
1970-01-01
Describes some unique features of marsupial reproduction which include (1) chromosomal sex determination, (2) reproductive system, (3) birth, (4) location, and (5) embryonic diapause. These features suggest that viviparity evolved separately in eutherian and marsupial stocks after their derivation from a common oviparous ancestor. Bibliography.…
Entomopathogen ID: A multi-locus sequence alignment resource for entomopathogenic fungi
USDA-ARS?s Scientific Manuscript database
The ability to correctly identify entomopathogenic fungi is an important step in developing biopesticides and effectively communicating research results. Over the years, identifying entomopathogenic fungi has evolved from a system based on diagnostic morphological and physiological characters to mol...
Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U
2016-05-01
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F.; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria
2016-01-01
Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical relevance. PMID:27911923
González, Carina Verónica; Jofré, María Florencia; Vila, Hernán F; Stoffel, Markus; Bottini, Rubén; Giordano, Carla Valeria
2016-01-01
Plants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field. Under full sunlight, phytochromes perceive high red to far red ratios (R:FR; 1.1), whereas overhead or lateral low R:FR (below 1.1) are sensed in the presence of plant shade or neighboring plants, respectively. Grapevine is one of the most important fruit crops in the world. To date, studies on grapevine response to light focused on different Photosynthetic Active Radiation (PAR) levels; however, limited data exist about its response to light quality. In this study we aimed to investigate morphological, biochemical, and hydraulic responses of Vitis vinifera to variations in R:FR. Therefore, we irradiated Syrah and Torrontés Riojano plants, grown in a glasshouse, with lateral FR light (low lateral R:FR treatment), while others, that were kept as controls, were not irradiated (ambient lateral R:FR treatment). In response to the low lateral R:FR treatment, grapevine plants did not display any of the SAS morphological markers (i.e. stem length, petiole length and angle, number of lateral shoots) in any of the cultivars assessed, despite an increase in gibberelins and auxin concentrations in leaf tissues. Low lateral R:FR did not affect dry matter partitioning, water-related traits (stomata density and index, wood anatomy), or water-related physiology (plant conductance, transpiration rate, stem hydraulic conductivity, stomatal conductance). None of the Vitis vinifera varieties assessed displayed the classical morphological and hydraulic responses associated to SAS induced by phytochromes. We discuss these results in the context of natural grapevine environment and agronomical relevance.
Guo, Jin-Hu; Qu, Wei-Min; Chen, Shan-Guang; Chen, Xiao-Ping; Lv, Ke; Huang, Zhi-Li; Wu, Yi-Lan
2014-01-01
The circadian clock and sleep are essential for human physiology and behavior; deregulation of circadian rhythms impairs health and performance. Circadian clocks and sleep evolved to adapt to Earth's environment, which is characterized by a 24-hour light-dark cycle. Changes in gravity load, lighting and work schedules during spaceflight missions can impact circadian clocks and disrupt sleep, in turn jeopardizing the mood, cognition and performance of orbiting astronauts. In this review, we summarize our understanding of both the influence of the space environment on the circadian timing system and sleep and the impact of these changes on astronaut physiology and performance.
McElroy, Matthew T
2014-01-01
Physiological function in ectotherms is tightly linked to body temperature. As a result, the thermal sensitivity of physiological function may evolve to optimize fitness across different thermal environments. One hypothesis for the evolution of thermal sensitivity, coadaptation, predicts that optimal temperatures for performance should evolve to match the temperatures that an organism experiences in nature. Another hypothesis, countergradient variation, posits that genetic variation can compensate for decreased performance in cool environments, leading to physiological phenotypes that do not track environmental temperatures. On Mo'orea, French Polynesia, thermal ecology and physiology were studied in two morphologically similar skinks that differ in habitat use. Previous studies show that Emoia impar tends to inhabit closed-canopy and interior habitats that are cooler compared to those inhabited by Emoia cyanura, but these differences had not been quantified on Mo'orea. The goal of this study was to determine whether this pattern of habitat partitioning exists on Mo'orea and relates to interspecific differences in thermal physiology and to evaluate whether the evolution of thermal sensitivity supports coadaptation or countergradient variation. I found that E. impar inhabits closed-canopy habitats with cooler substrates and with higher altitudes compared to habitats of E. cyanura. Although the two species do not differ significantly in critical thermal minimum, E. impar has a significantly lower preferred body temperature and critical thermal maximum than does E. cyanura. Despite a preference for cooler habitats and temperatures, E. impar has a warmer optimal temperature for sprint speed and sprints faster than E. cyanura at all temperatures, which supports the countergradient model of thermal adaptation. These results are robust to three different curve-fitting functions and support the view that generalist/specialist trade-offs do not universally constrain the evolution of performance curves.
EEVEE: the Empathy-Enhancing Virtual Evolving Environment
Jackson, Philip L.; Michon, Pierre-Emmanuel; Geslin, Erik; Carignan, Maxime; Beaudoin, Danny
2015-01-01
Empathy is a multifaceted emotional and mental faculty that is often found to be affected in a great number of psychopathologies, such as schizophrenia, yet it remains very difficult to measure in an ecological context. The challenge stems partly from the complexity and fluidity of this social process, but also from its covert nature. One powerful tool to enhance experimental control over such dynamic social interactions has been the use of avatars in virtual reality (VR); information about an individual in such an interaction can be collected through the analysis of his or her neurophysiological and behavioral responses. We have developed a unique platform, the Empathy-Enhancing Virtual Evolving Environment (EEVEE), which is built around three main components: (1) different avatars capable of expressing feelings and emotions at various levels based on the Facial Action Coding System (FACS); (2) systems for measuring the physiological responses of the observer (heart and respiration rate, skin conductance, gaze and eye movements, facial expression); and (3) a multimodal interface linking the avatar's behavior to the observer's neurophysiological response. In this article, we provide a detailed description of the components of this innovative platform and validation data from the first phases of development. Our data show that healthy adults can discriminate different negative emotions, including pain, expressed by avatars at varying intensities. We also provide evidence that masking part of an avatar's face (top or bottom half) does not prevent the detection of different levels of pain. This innovative and flexible platform provides a unique tool to study and even modulate empathy in a comprehensive and ecological manner in various populations, notably individuals suffering from neurological or psychiatric disorders. PMID:25805983
Spaeth, Andrea M; Goel, Namni; Dinges, David F
2014-01-01
The use of caffeine-containing energy products (CCEP) has increased worldwide in recent years and research shows that CCEP can improve cognitive and physical performance. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in CCEP. Presumably, individuals consume CCEP to counteract feelings of ‘low-energy’ in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia and the time-on-task effect as causes of ‘low energy’ and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment on healthy adults undergoing three nights of total sleep deprivation (with or without 2 hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. We conclude with future directions for research on this important and evolving topic. PMID:25293542
McCafferty, D J; Pandraud, G; Gilles, J; Fabra-Puchol, M; Henry, P-Y
2017-12-28
Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.
Overview of the Neurolab Spacelab mission
NASA Technical Reports Server (NTRS)
Homick, J. L.; Delaney, P.; Rodda, K.
1998-01-01
Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.
Renal Transport of Uric Acid: Evolving Concepts and Uncertainties
Bobulescu, Ion Alexandru; Moe, Orson W.
2013-01-01
In addition to its role as a metabolic waste product, uric acid has been proposed to be an important molecule with multiple functions in human physiology and pathophysiology and may be linked to human diseases beyond nephrolithiasis and gout. Uric acid homeostasis is determined by the balance between production, intestinal secretion, and renal excretion. The kidney is an important regulator of circulating uric acid levels, by reabsorbing around 90% of filtered urate, while being responsible for 60–70% of total body uric acid excretion. Defective renal handling of urate is a frequent pathophysiologic factor underpinning hyperuricemia and gout. In spite of tremendous advances over the past decade, the molecular mechanisms of renal urate transport are still incompletely understood. Many transport proteins are candidate participants in urate handling, with URAT1 and GLUT9 being the best characterized to date. Understanding these transporters is increasingly important for the practicing clinician as new research unveils their physiology, importance in drug action, and genetic association with uric acid levels in human populations. The future may see the introduction of new drugs that specifically act on individual renal urate transporters for the treatment of hyperuricemia and gout. PMID:23089270
Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio
2017-10-01
Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.
Managing fatigue in operational settings I : physiological considerations and countermeasures
DOT National Transportation Integrated Search
1996-01-01
Modern society has evolved to rely increasingly on 24-hour operations in many diverse settings. Furthermore, the requirement for 24-hour operations will grow as the United States competes in the 24-hour global economy. Humans are hard-wired with a ge...
Roberts, R Michael; Green, Jonathan A; Schulz, Laura C
2016-01-01
The still apt definition of a placenta is that coined by Mossman, namely apposition or fusion of the fetal membranes to the uterine mucosa for physiological exchange. As such it is a specialized organ whose purpose is to provide continuing support to the developing young. By this definition, placentas have evolved within every vertebrate class other than birds. They have evolved on multiple occasions, often within quite narrow taxonomic groups. As the placenta and the maternal system associate more intimately, such that the conceptus relies extensively on maternal support, the relationship leads to increased conflict that drives adaptive changes on both sides. The story of vertebrate placentation, therefore, is one of convergent evolution at both the macro- and molecular levels. In this short review, we first describe the emergence of placental-like structures in non-mammalian vertebrates and then transition to mammals themselves. We close the review by discussing mechanisms that might have favored diversity and hence evolution of the morphology and physiology of the placentas of eutherian mammals. PMID:27486265
The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth.
Nunn, Alistair V W; Guy, Geoffrey W; Bell, Jimmy D
2014-01-01
Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of "hormesis", a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence - "the intelligence paradox". One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the "intelligence paradox" would be the inevitable side-effect of the evolution of intelligence. ET may not need to just "phone home" but may also need to "phone the local gym". This suggests another possible reason to explain Fermi's paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can't afford to explore the galaxy because it has to pay its healthcare costs.
The intelligence paradox; will ET get the metabolic syndrome? Lessons from and for Earth
2014-01-01
Mankind is facing an unprecedented health challenge in the current pandemic of obesity and diabetes. We propose that this is the inevitable (and predictable) consequence of the evolution of intelligence, which itself could be an expression of life being an information system driven by entropy. Because of its ability to make life more adaptable and robust, intelligence evolved as an efficient adaptive response to the stresses arising from an ever-changing environment. These adaptive responses are encapsulated by the epiphenomena of “hormesis”, a phenomenon we believe to be central to the evolution of intelligence and essential for the maintenance of optimal physiological function and health. Thus, as intelligence evolved, it would eventually reach a cognitive level with the ability to control its environment through technology and have the ability remove all stressors. In effect, it would act to remove the very hormetic factors that had driven its evolution. Mankind may have reached this point, creating an environmental utopia that has reduced the very stimuli necessary for optimal health and the evolution of intelligence – “the intelligence paradox”. One of the hallmarks of this paradox is of course the rising incidence in obesity, diabetes and the metabolic syndrome. This leads to the conclusion that wherever life evolves, here on earth or in another part of the galaxy, the “intelligence paradox” would be the inevitable side-effect of the evolution of intelligence. ET may not need to just “phone home” but may also need to “phone the local gym”. This suggests another possible reason to explain Fermi’s paradox; Enrico Fermi, the famous physicist, suggested in the 1950s that if extra-terrestrial intelligence was so prevalent, which was a common belief at the time, then where was it? Our suggestion is that if advanced life has got going elsewhere in our galaxy, it can’t afford to explore the galaxy because it has to pay its healthcare costs. PMID:25089149
Differential evolution of asexual and sexual females in a benign culture environment
Snell, Terry W.
2013-01-01
Here we report one of the first investigations of evolvability of lifespan and reproduction in metazoans, examining both extrinsic and intrinsic factors. We tested effects on senescence of an environmental variable (simulated lake hydroperiod, the length of time an aquatic habitat is inundated), female reproductive physiology (asexual females that reproduce by ameiosis, versus sexual females reproducing by meiosis), and time in a benign culture environment (minimal, if any, external mortality factors). To do this we established chemostat cultures of the rotifer Brachionus plicatilis s.s., and maintained the cultures for 385 d. Hydroperiod alone or in interaction with the effects of time in the benign environment (season) or reproductive physiology had no significant effect on the net reproductive rate, generation time, or rate of aging. Yet combining animals from both ephemeral and permanent hydroperiods revealed a 26% increase in asexual female lifespan across seasons (23% decrease in the rate of aging) and a 56% increase in asexual fecundity, suggesting that maintenance in benign laboratory conditions leads to slower aging. The relative stasis of traits for sexual females implies an impact of reproductive physiology on evolvability. In addition we found a positive correlation between fecundity and lifespan, suggesting an absence of trade-offs in life history traits in the benign laboratory environment. PMID:24795527
The Act of Answering Questions Elicited Differentiated Responses in a Concealed Information Test.
Otsuka, Takuro; Mizutani, Mitsuyoshi; Yagi, Akihiro; Katayama, Jun'ichi
2018-04-17
The concealed information test (CIT), a psychophysiological detection of deception test, compares physiological responses between crime-related and crime-unrelated items. In previous studies, whether the act of answering questions affected physiological responses was unclear. This study examined effects of both question-related and answer-related processes on physiological responses. Twenty participants received a modified CIT, in which the interval between presentation of questions and answering them was 27 s. Differentiated respiratory movements and cardiovascular responses between items were observed for both questions (items) and answers, while differentiated skin conductance response was observed only for questions. These results suggest that physiological responses to questions reflected orientation to a crime-related item, while physiological responses during answering reflected inhibition of psychological arousal caused by orienting. Regarding the CIT's accuracy, participants' perception of the questions themselves more strongly influenced physiological responses than answering them. © 2018 American Academy of Forensic Sciences.
NASA Technical Reports Server (NTRS)
Vernikos, J.
1996-01-01
The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these 'bound' proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites . The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions.
Castellani, John W; Young, Andrew J
2016-04-01
Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.
Spangler, G
1997-08-01
The aim of the study was to compare emotional and physiological responses to real and control examinations and to assess their relation to personality characteristics. Emotional responses were assessed by state anxiety and perceived stress. The assessment of physiological responses included the activity of the cardiac system (heart periods, vagal tone), the adrenocortical system (cortisol) and the immune system (immune globulin A, sIgA). Emotional and physiological responses of 23 students (12 males, 11 females) were assessed during an oral exam at the end of a basic course in psychology which was a prerequisite for the students' final exams. For the control condition physiological responses were assessed one week before the examination during a memory test. The findings of the study demonstrate different emotional and physiological response patterns to examinations as compared to the control condition. Heightened anxiety was observed only before the exam. Whereas within-situation physiological responses (higher heart periods, cortisol, and sIgA; lower vagal tone) were observed both under the exam and control condition, responses to exam condition indicated pre-exam anticipatory activation and post-exam restricted recovery responses. With regard to personality characteristics subjects with high ego-resiliency showed more flexible adaptation than subjects with low ego-resiliency both on the emotional level (anxiety down-regulation after exam) and on the physiological level (situation-specific responses, quick recovery). Subjects with high ego-control exhibited a lower physiological reactivity under both conditions, i.e. they seemed to maintain longer their control also on a physiological level independent of the type of situation.
USDA-ARS?s Scientific Manuscript database
The gut represents a continuously evolving ecosystem where a dynamic interaction between host immune, neuroendocrine and entero-endocrine cells and the gut microbiota influences normal physiological development and homeostasis. New antibiotic regulatory policies and cage-free rearing systems in pou...
Synchrony and Desynchrony in Circadian Clocks: Impacts on Learning and Memory
ERIC Educational Resources Information Center
Krishnan, Harini C.; Lyons, Lisa C.
2015-01-01
Circadian clocks evolved under conditions of environmental variation, primarily alternating light dark cycles, to enable organisms to anticipate daily environmental events and coordinate metabolic, physiological, and behavioral activities. However, modern lifestyle and advances in technology have increased the percentage of individuals working in…
Developmental Control and Plasticity of Fruit and Seed Dimorphism in Aethionema arabicum1[CC-BY
Lenser, Teresa; Adigüzel, Nezaket; Dönmez, Ali A.; Grosche, Christopher; Kettermann, Marcel; Mayland-Quellhorst, Sara; Mohammadin, Setareh; Rümpler, Florian; Sperber, Katja; Wiegand, Nils
2016-01-01
Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet hedging, a strategy that reduces the temporal variance in fitness at the expense of a lowered arithmetic mean fitness. Both phenomena are thought to represent important adaptation strategies to unstable environments. However, little is known about the underlying mechanisms of these phenomena, partly due to the lack of suitable model systems. We used phylogenetic and comparative analyses of fruit and seed anatomy, biomechanics, physiology, and environmental responses to study fruit and seed heteromorphism, a typical morphological basis of a bet-hedging strategy of plants, in the annual Brassicaceae species Aethionema arabicum. Our results indicate that heteromorphism evolved twice within the Aethionemeae, including once for the monophyletic annual Aethionema clade. The dimorphism of Ae. arabicum is associated with several anatomic, biomechanical, gene expression, and physiological differences between the fruit and seed morphs. However, fruit ratios and numbers change in response to different environmental conditions. Therefore, the life-history strategy of Ae. arabicum appears to be a blend of bet hedging and plasticity. Together with the available genomic resources, our results pave the way to use this species in future studies intended to unravel the molecular control of heteromorphism and plasticity. PMID:27702842
Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A
2011-10-01
This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Dover, John A; Burmeister, Alita R; Molineux, Ian J; Parent, Kristin N
2016-09-19
Genomic architecture is the framework within which genes and regulatory elements evolve and where specific constructs may constrain or potentiate particular adaptations. One such construct is evident in phages that use a headful packaging strategy that results in progeny phage heads packaged with DNA until full rather than encapsidating a simple unit-length genome. Here, we investigate the evolution of the headful packaging phage Sf6 in response to barriers that impede efficient phage adsorption to the host cell. Ten replicate populations evolved faster Sf6 life cycles by parallel mutations found in a phage lysis gene and/or by large, 1.2- to 4.0-kb deletions that remove a mobile genetic IS911 element present in the ancestral phage genome. The fastest life cycles were found in phages that acquired both mutations. No mutations were found in genes encoding phage structural proteins, which were a priori expected from the experimental design that imposed a challenge for phage adsorption by using a Shigella flexneri host lacking receptors preferred by Sf6. We used DNA sequencing, molecular approaches, and physiological experiments on 82 clonal isolates taken from all 10 populations to reveal the genetic basis of the faster Sf6 life cycle. The majority of our isolates acquired deletions in the phage genome. Our results suggest that deletions are adaptive and can influence the duration of the phage life cycle while acting in conjunction with other lysis time-determining point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins.
Crossin, Glenn T; Williams, Tony D
2016-10-12
When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18-57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration-reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration-reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. © 2016 The Author(s).
Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius
Faherty, Sheena L.; Villanueva-Cañas, José Luis; Klopfer, Peter H.; Albà, M. Mar; Yoder, Anne D.
2016-01-01
Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators—Madagascar’s dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611
Perioperative fluid management: From physiology to improving clinical outcomes.
Bennett, Victoria A; Cecconi, Maurizio
2017-08-01
Perioperative fluid management is a key component in the care of the surgical patient. It is an area that has seen significant changes and developments, however there remains a wide disparity in practice between clinicians. Historically, patients received large volumes of intravenous fluids perioperatively. The concept of goal directed therapy was then introduced, with the early studies showing significant improvements in morbidity and mortality. The current focus is on fluid therapy guided by an individual patient's physiology. A fluid challenge is commonly performed as part of an assessment of a patient's fluid responsiveness. There remains wide variation in how clinicians perform a fluid challenge and this review explores the evidence for how to administer an effective challenge that is both reliable and reproducible. The methods for monitoring cardiac output have evolved from the pulmonary artery catheter to a range of less invasive techniques. The different options that are available for perioperative use are considered. Fluid status can also be assessed by examining the microcirculation and the importance of recognising the possibility of a lack of coherence between the macro and microcirculation is discussed. Fluid therapy needs to be targeted to specific end points and individualised. Not all patients who respond to a fluid challenge will necessarily require additional fluid administration and care should be aimed at identifying those who do. This review aims to explain the underlying physiology and describe the evidence base and the changes that have been seen in the approach to perioperative fluid therapy.
González-Santoyo, Isaac; González-Tokman, Daniel M; Munguía-Steyer, Roberto E; Córdoba-Aguilar, Alex
2014-01-01
Signals of fighting indicate an animal's intention to attack and so they serve to prevent costly aggressive encounters. However, according to theory, a signal that is different in design (i.e. a novel signal) but that fails to inform fighting intentions will result in negative fitness consequences for the bearer. In the present study we used males of the territorial damselfly Hetaerina americana, which have a red wing spot during territory defense that has evolved as a signal of fighting ability. By producing a novel signal (covering the red spot with blue ink) in territory owners, we investigated: a) the behavioral responses by conspecific males; b) survival cost and c) three physiological mediators of impaired survival: muscular fat reserves, muscle mass and immune ability. We predicted that males with the novel signal would be attacked more often by conspecifics as the former would fail to convey fighting ability and intentions adequately. This will result in lower survival and physiological condition for the novel signal bearers. We found that, compared to control males (males whose red spot was not changed), experimental males had reduced survival, were less able to hold a territory, and had a reduced muscle mass. It seems that spot modified males were not able to effectively communicate their territory tenancy, which may explain why they lost their defended sites. Our results provide support for theoretical models that a novel signal that fails to informing fighting ability may lead to a fitness cost for bearers.
Molecular and physiological mechanisms of plant tolerance to toxic metals
USDA-ARS?s Scientific Manuscript database
Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...
Physiology and Genetics of Tree-Phytophage Interactions
Frances Lieutier; William J. Mattson; Michael R. Wagner
1999-01-01
Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...
Physiological and molecular regulation of metamorphic commitment in the solitary bee Osmia lignaria
USDA-ARS?s Scientific Manuscript database
The insect body size model hypothesizes that larval growth and metamorphosis are the developmental basis for adult size variation. Recent studies have suggested that these mechanisms may hold common elements among different taxa, while also diversifying as life histories evolve. However, the mechani...
The Relationship of Nutrition to Brain Development and Behavior.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Committee on International Nutrition Programs.
The physical, chemical, and physiological development of the brain and consequent behavior in all species of higher animals evolves from the continuous interaction of genetic and numerous environmental factors. Among the latter are nutritional, disease, psychological, learning, and cultural variables. Of these, nutrition is concerned directly with…
Gut immune system: a new frontier for nutritional modulation of gut health
USDA-ARS?s Scientific Manuscript database
The gut represents a continuously evolving ecosystem consisting of trillions of commensal bacteria living in symbiosis with the host. The host-microbe interplay plays a crucial role in physiological development and health of the host. There is increasing evidence that shows a dynamic interaction be...
The evolution of siderophore production as a competitive trait.
Niehus, Rene; Picot, Aurore; Oliveira, Nuno M; Mitri, Sara; Foster, Kevin R
2017-06-01
Microbes have the potential to be highly cooperative organisms. The archetype of microbial cooperation is often considered to be the secretion of siderophores, molecules scavenging iron, where cooperation is threatened by "cheater" genotypes that use siderophores without making them. Here, we show that this view neglects a key piece of biology: siderophores are imported by specific receptors that constrain their use by competing strains. We study the effect of this specificity in an ecoevolutionary model, in which we vary siderophore sharing among strains, and compare fully shared siderophores with private siderophores. We show that privatizing siderophores fundamentally alters their evolution. Rather than a canonical cooperative good, siderophores become a competitive trait used to pillage iron from other strains. We also study the physiological regulation of siderophores using in silico long-term evolution. Although shared siderophores evolve to be downregulated in the presence of a competitor, as expected for a cooperative trait, privatized siderophores evolve to be upregulated. We evaluate these predictions using published experimental work, which suggests that some siderophores are upregulated in response to competition akin to competitive traits like antibiotics. Although siderophores can act as a cooperative good for single genotypes, we argue that their role in competition is fundamental to understanding their biology. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Neuropeptides in the Gonads: From Evolution to Pharmacology
McGuire, Nicolette L.; Bentley, George E.
2010-01-01
Vertebrate gonads are the sites of synthesis and binding of many peptides that were initially classified as neuropeptides. These gonadal neuropeptide systems are neither well understood in isolation, nor in their interactions with other neuropeptide systems. Further, our knowledge of the control of these gonadal neuropeptides by peripheral hormones that bind to the gonads, and which themselves are under regulation by true neuropeptide systems from the hypothalamus, is relatively meager. This review discusses the existence of a variety of neuropeptides and their receptors which have been discovered in vertebrate gonads, and the possible way in which such systems could have evolved. We then focus on two key neuropeptides for regulation of the hypothalamo-pituitary-gonadal axis: gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH). Comparative studies have provided us with a degree of understanding as to how a gonadal GnRH system might have evolved, and they have been responsible for the discovery of GnIH and its gonadal counterpart. We attempt to highlight what is known about these two key gonadal neuropeptides, how their actions differ from their hypothalamic counterparts, and how we might learn from comparative studies of them and other gonadal neuropeptides in terms of pharmacology, reproductive physiology and evolutionary biology. PMID:21607065
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann
2015-11-01
Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel
2015-10-01
The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency.
Allen, Judith E.; Sutherland, Tara E.
2014-01-01
Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340
Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis1
Haake, Volker; Cook, Daniel; Riechmann, José Luis; Pineda, Omaira; Thomashow, Michael F.; Zhang, James Z.
2002-01-01
In plants, low temperature and dehydration activate a set of genes containing C-repeat/dehydration-responsive elements in their promoter. It has been shown previously that the Arabidopsis CBF/DREB1 transcription activators are critical regulators of gene expression in the signal transduction of cold acclimation. Here, we report the isolation of an apparent homolog of the CBF/DREB1 proteins (CBF4) that plays the equivalent role during drought adaptation. In contrast to the three already identified CBF/DREB1 homologs, which are induced under cold stress, CBF4 gene expression is up-regulated by drought stress, but not by low temperature. Overexpression of CBF4 in transgenic Arabidopsis plants results in the activation of C-repeat/dehydration-responsive element containing downstream genes that are involved in cold acclimation and drought adaptation. As a result, the transgenic plants are more tolerant to freezing and drought stress. Because of the physiological similarity between freezing and drought stress, and the sequence and structural similarity of the CBF/DREB1 and the CBF4 proteins, we propose that the plant's response to cold and drought evolved from a common CBF-like transcription factor, first through gene duplication and then through promoter evolution. PMID:12376631
Strong, David R; Messer, Karen; Hartman, Sheri J; Conway, Kevin P; Hoffman, Allison C; Pharris-Ciurej, Nikolas; White, Martha; Green, Victoria R; Compton, Wilson M; Pierce, John
2015-07-01
Nicotine dependence (ND) is a key construct that organizes physiological and behavioral symptoms associated with persistent nicotine intake. Measurement of ND has focused primarily on cigarette smokers. Thus, validation of brief instruments that apply to a broad spectrum of tobacco product users is needed. We examined multiple domains of ND in a longitudinal national study of the United States population, the United States National Epidemiological Survey of Alcohol and Related Conditions (NESARC). We used methods based in item response theory to identify and validate increasingly brief measures of ND that included symptoms to assess ND similarly among cigarette, cigar, smokeless, and poly tobacco users. Confirmatory factor analytic models supported a single, primary dimension underlying symptoms of ND across tobacco use groups. Differential Item Functioning (DIF) analysis generated little support for systematic differences in response to symptoms of ND across tobacco use groups. We established significant concurrent and predictive validity of brief 3- and 5-symptom indices for measuring ND. Measuring ND across tobacco use groups with a common set of symptoms facilitates evaluation of tobacco use in an evolving marketplace of tobacco and nicotine products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-10-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2012-01-01
The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.
Hair Follicle Bulge Stem Cells Appear Dispensable for the Acute Phase of Wound Re-epithelialization.
Garcin, Clare L; Ansell, David M; Headon, Denis J; Paus, Ralf; Hardman, Matthew J
2016-05-01
The cutaneous healing response has evolved to occur rapidly, in order to minimize infection and to re-establish epithelial homeostasis. Rapid healing is achieved through complex coordination of multiple cell types, which importantly includes specific cell populations within the hair follicle (HF). Under physiological conditions, the epithelial compartments of HF and interfollicular epidermis remain discrete, with K15(+ve) bulge stem cells contributing progeny for HF reconstruction during the hair cycle and as a basis for hair shaft production during anagen. Only upon wounding do HF cells migrate from the follicle to contribute to the neo-epidermis. However, the identity of the first-responding cells, and in particular whether this process involves a direct contribution of K15(+ve) bulge cells to the early stage of epidermal wound repair remains unclear. Here we demonstrate that epidermal injury in murine skin does not induce bulge activation during early epidermal wound repair. Specifically, bulge cells of uninjured HFs neither proliferate nor appear to migrate out of the bulge niche upon epidermal wounding. In support of these observations, Diphtheria toxin-mediated partial ablation of K15(+ve) bulge cells fails to delay wound healing. Our data suggest that bulge cells only respond to epidermal wounding during later stages of repair. We discuss that this response may have evolved as a protective safeguarding mechanism against bulge stem cell exhaust and tumorigenesis. Stem Cells 2016;34:1377-1385. © 2016 The Authors. Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Early caregiving and physiological stress responses.
Luecken, Linda J; Lemery, Kathryn S
2004-05-01
Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.
Favory, Jean-Jacques; Stec, Agnieszka; Gruber, Henriette; Rizzini, Luca; Oravecz, Attila; Funk, Markus; Albert, Andreas; Cloix, Catherine; Jenkins, Gareth I; Oakeley, Edward J; Seidlitz, Harald K; Nagy, Ferenc; Ulm, Roman
2009-01-01
The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment. PMID:19165148
Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation
Ponton, Fleur; Lefèvre, Thierry; Guerin, Patrick M.; Lebarbenchon, Camille; Duneau, David; Biron, David G.; Thomas, Frédéric
2011-01-01
One of the most fascinating examples of parasite-induced host manipulation is that of hairworms, first, because they induce a spectacular “suicide” water-seeking behavior in their terrestrial insect hosts and, second, because the emergence of the parasite is not lethal per se for the host that can live several months following parasite release. The mechanisms hairworms use to increase the encounter rate between their host and water remain, however, poorly understood. Considering the selective landscape in which nematomorph manipulation has evolved as well as previously obtained proteomics data, we predicted that crickets harboring mature hairworms would display a modified behavioral response to light. Since following parasite emergence in water, the cricket host and parasitic worm do not interact physiologically anymore, we also predicted that the host would recover from the modified behaviors. We examined the effect of hairworm infection on different behavioral responses of the host when stimulated by light to record responses from uninfected, infected, and ex-infected crickets. We showed that hairworm infection fundamentally modifies cricket behavior by inducing directed responses to light, a condition from which they mostly recover once the parasite is released. This study supports the idea that host manipulation by parasites is subtle, complex, and multidimensional. PMID:22476265
Three causes of variation in the photochemical reflectance index (PRI) in evergreen conifers.
Wong, Christopher Y S; Gamon, John A
2015-04-01
The photochemical reflectance index (PRI) reflects diurnal xanthophyll cycle activity and is also influenced by seasonally changing carotenoid : Chl pigment ratios. Both changing pigment pools and xanthophyll cycle activity contribute to photoprotection in evergreen conifers exposed to boreal winters, but they operate over different timescales, and their relative contribution to the PRI signal has often been unclear. To clarify these responses and their contribution to the PRI signal, leaf PRI, pigment composition, temperature and irradiance were monitored over 2 yr for two evergreen conifers (Pinus contorta and Pinus ponderosa) in a boreal climate. PRI was affected by three distinct processes operating over different timescales and exhibiting contrasting spectral responses. Over the 2 yr study period, the greatest change in PRI resulted from seasonally changing carotenoid : Chl pigment ratios, followed by a previously unreported shifting leaf albedo during periods of deep cold. Remarkably, the smallest change was attributable to the xanthophyll cycle. To properly distinguish these three effects, interpretation of PRI must consider temporal context, physiological responses to evolving environmental conditions, and spectral response. Consideration of the separate mechanisms affecting PRI over different timescales could greatly improve efforts to monitor changing photosynthetic activity using optical remote sensing. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.
Navara, Kristen J.
2016-01-01
Competition between conspecifics during the breeding season can result in behavioural and physiological programming of offspring via maternal effects. For birds, in which maternal effects are best studied, it has been claimed that exposure to increased competition causes greater deposition of testosterone into egg yolks, which creates faster growing, more aggressive offspring; such traits are thought to be beneficial for high-competition environments. Nevertheless, not all species show a positive relationship between competitive interactions and yolk testosterone, and an explanation for this interspecific variation is lacking. We here test if the magnitude and direction of maternal testosterone allocated to eggs in response to competition can be explained by life-history traits while accounting for phylogenetic relationships. We performed a meta-analysis relating effect size of yolk testosterone response to competition with species coloniality, nest type, parental effort and mating type. We found that effect size was moderated by coloniality and nest type; colonial species and those with open nests allocate less testosterone to eggs when in more competitive environments. Applying a life-history perspective helps contextualize studies showing little or negative responses of yolk testosterone to competition and improves our understanding of how variation in this maternal effect may have evolved. PMID:28018636
Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
Zhang, Zhaoliang; Liao, Hong; Lucas, William J
2014-03-01
As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. © 2014 Institute of Botany, Chinese Academy of Sciences.
Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph
Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.
Order and disorder: Temporal organization of eating
Rowland, Neil E.
2012-01-01
Feeding behavior is described from an evolutionary perspective, and implications for modern neurobiological studies are suggested. In particular, it is argued that meals may have evolved more for sociocultural reasons than physiological imperatives, and that biological approaches to the study of feeding episodes should adopt a more flexible model that is founded in economic or cost-benefit considerations. Specific examples of flexibility in mouse feeding behavior are given. It is further argued that the modern human food environment is so immoderate that physiological manipulations designed to restrain eating have little hope of achieving this goal. PMID:22138508
Truzzi, Anna; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca
2016-10-15
Autistic traits are distributed on a continuum that ranges from non-clinical to clinical condition. Atypical responses to social situations represent a core feature of the Autism Spectrum Disorders phenotype. Here, we hypothesize that atypical physiological responses to social stimuli may predict non-clinical autistic and empathy traits levels. We measured physiological responses (heart rate, facial temperature) of 40 adults (20F) while showing them 24 movies representing dyadic interactions. Autistic traits were assessed through Autism Quotient questionnaire (AQ), while empathy traits were measured using the Empathy Quotient questionnaire (EQ). Opposite correlations between AQ and EQ scores and physiological responses were found. Analysis of physiological responses revealed that individuals with better social abilities, low AQ and high EQ, show opposite activation patterns compared to people with high AQ and low EQ. Findings show that physiological responses could be biomarkers for people's autistic traits and social abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Azua-Bustos, Armando; Zúñiga, Jorge; Arenas-Fajardo, Cristián; Orellana, Marcelo; Salas, Loreto; Rafael, Vicuña
2014-01-01
The comprehensive study of microorganisms that evolved in the Atacama Desert, the driest and oldest on earth, may help to understand the key role of water for life. In this context, we previously characterized the microenvironment that allows colonization of the underside of quartzes in the Coastal Range of this desert by hypolithic microorganisms (Azua-Bustos et al. Microb Ecol 58:568-581, 2011). Now, we describe the biodiversity composition of these biofilms and the isolation from it of a new cyanobacterial strain. Based on morphologic and phylogenetic analyses, this isolate (AAB1) was classified as a new member of the Gloeocapsopsis genus. Physiological, morphological and molecular responses by isolate AAB1 show that this strain is extremely tolerant to desiccation. Our results also indicate that the isolate biosynthesizes sucrose and trehalose in response to this stressful condition. We identified two candidate genes involved in sucrose synthesis, namely sucrose 6-phosphate synthase and sucrose 6-phosphate phosphatase. Thus, the Gloeocapsopsis isolate AAB1 may represent a suitable model for understanding tolerance to low water availability.
Defensive repertoire of Drosophila larvae in response to toxic fungi.
Trienens, Monika; Kraaijeveld, Ken; Wertheim, Bregje
2017-10-01
Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors. © 2017 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Vasilev, Christina A.; Crowell, Sheila E.; Beauchaine, Theodore P.; Mead, Hilary K.; Gatzke-Kopp, Lisa M.
2009-01-01
Background: Several theoretical perspectives suggest that emotion dysregulation is a predisposing risk factor for many psychiatric disorders. Yet despite a rapidly evolving literature, difficulties with emotion regulation (ER) are often measured inconsistently across studies, with little regard to whether different approaches capture the same…
Tree physiology and bark beetles
Michael G. Ryan; Gerard Sapes; Anna Sala; Sharon Hood
2015-01-01
Irruptive bark beetles usually co-occur with their co-evolved tree hosts at very low (endemic) population densities. However, recent droughts and higher temperatures have promoted widespread tree mortality with consequences for forest carbon, fire and ecosystem services (Kurz et al., 2008; Raffa et al., 2008; Jenkins et al., 2012). In this issue of New Phytologist,...
Inflammatory phenotypes in the intestine of poultry: Not all inflammation is created equally
USDA-ARS?s Scientific Manuscript database
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdepen...
USDA-ARS?s Scientific Manuscript database
The Middle East-Asia Minor 1 (MEAM1) whitefly, Bemisia tabaci (Gennadius) is an economically important pest of food, fiber, and ornamental crops. This pest has evolved a number of adaptations to overcome physiological challenges, including 1) the ability to regulate osmotic stress between gut lumen ...
Assessment and Interpretation of Body Composition in Physical Education
ERIC Educational Resources Information Center
Vehrs, Pat; Hager, Ron
2006-01-01
The physical educator's role is evolving into that of a teacher who is well educated in the areas of teaching, skill acquisition and development, motor learning, exercise physiology, physical conditioning, weight management, health, and lifestyle management. In an era when childhood obesity is at an all-time high, body composition can be one…
Instruction in Renal Physiology on a Minicomputer-Based Educational System.
ERIC Educational Resources Information Center
Wells, C. H.; And Others
A prototypical minicomputer-based educational system was designed at the University of Texas Medical Branch to determine if it is possible to evolve complex educational programs which are effective and also flexible and of low cost. Freshman medical students using the minicomputer program substantially improved their problem-solving abilities in…
USDA-ARS?s Scientific Manuscript database
The wild strawberry, Fragaria vesca, has recently emerged as an excellent model for investigating flower and fruit traits in economically important fruit crops. Its history of physiological studies combined with sequenced genome and a full complement of molecular genetic tools facilitate investigat...
USDA-ARS?s Scientific Manuscript database
The gut represents a continuously evolving ecosystem consisting of trillions of commensal bacteria living in symbiosis with the host. This host-microbe interplay plays a crucial role in physiological development and health of the host. There is increasing evidence that shows a dynamic interaction b...
Sexual and Emotional Infidelity: Evolved Gender Differences in Jealousy Prove Robust and Replicable.
Buss, David M
2018-03-01
Infidelity poses threats to high-investment mating relationships. Because of gender differences in some aspects of reproductive biology, such as internal female fertilization, the nature of these threats differs for men and women. Men, but not women, for example, have recurrently faced the problem of uncertainty in their genetic parenthood. Jealousy is an emotion hypothesized to have evolved to combat these threats. The 1992 article Sex Differences in Jealousy: Evolution, Physiology, and Psychology reported three empirical studies using two different methods, forced-choice and physiological experiments. Results supported the evolution-based hypotheses. The article became highly cited for several reasons. It elevated the status of jealousy as an important emotion to be explained by any comprehensive theory of human emotions. Subsequent meta-analyses robustly supported the evolutionary hypotheses. Moreover, the work supported the evolutionary meta-theory of gender differences, which posits differences only in domains in which the sexes have recurrently faced distinct adaptive problems. It also heralded the newly emerging field of evolutionary psychology as a useful perspective that possesses the scientific virtues of testability, falsifiability, and heuristic value in discovering previously unknown psychological phenomena.
Turner, Bethany L.; Thompson, Amanda L.
2014-01-01
Evolutionary paradigms of human health and nutrition center on the evolutionary discordance or “mismatch” model whereby human bodies, reflecting adaptations established in the Paleolithic era, are ill-suited to modern industrialized diets resulting in rapidly increasing rates of chronic metabolic disease. Whereas this model remains useful, we argue that its utility in explaining the evolution of human dietary tendencies is limited. The assumption that human diets are mismatched to our evolved biology implies that they are instinctual or genetically determined and rooted in the Paleolithic. We review current research indicating that human eating habits are primarily learned through behavioral, social and physiological mechanisms starting in utero and extending throughout the life course. Those adaptations that appear to be strongly genetic likely reflect Neolithic, rather than Paleolithic, adaptations and are significantly influenced by human niche-constructing behavior. Incorporating a broader understanding of the evolved mechanisms by which humans learn and imprint eating habits and the reciprocal effects of those habits on physiology would provide useful tools for structuring more lasting nutrition interventions. PMID:23865796
Cross, Karissa L; Chirania, Payal; Xiong, Weili; Beall, Clifford J; Elkins, James G; Giannone, Richard J; Griffen, Ann L; Guss, Adam M; Hettich, Robert L; Joshi, Snehal S; Mokrzan, Elaine M; Martin, Roman K; Zhulin, Igor B; Leys, Eugene J; Podar, Mircea
2018-03-13
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis , a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome "dark matter," cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.
The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis
Prieto-Bermejo, Rodrigo; Hernández-Hernández, Angel
2017-01-01
Eukaryotic cells have to cope with the constant generation of reactive oxygen species (ROS). Although the excessive production of ROS might be deleterious for cell biology, there is a plethora of evidence showing that moderate levels of ROS are important for the control of cell signaling and gene expression. The family of the nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases or Nox) has evolved to produce ROS in response to different signals; therefore, they fulfil a central role in the control of redox signaling. The role of NADPH oxidases in vascular physiology has been a field of intense study over the last two decades. In this review we will briefly analyze how ROS can regulate signaling and gene expression. We will address the implication of NADPH oxidases and redox signaling in angiogenesis, and finally, the therapeutic possibilities derived from this knowledge will be discussed. PMID:28505091
The importance of physical strength to human males.
Sell, Aaron; Hone, Liana S E; Pound, Nicholas
2012-03-01
Fighting ability, although recognized as fundamental to intrasexual competition in many nonhuman species, has received little attention as an explanatory variable in the social sciences. Multiple lines of evidence from archaeology, criminology, anthropology, physiology, and psychology suggest that fighting ability was a crucial aspect of intrasexual competition for ancestral human males, and this has contributed to the evolution of numerous physical and psychological sex differences. Because fighting ability was relevant to many domains of interaction, male psychology should have evolved such that a man's attitudes and behavioral responses are calibrated according to his formidability. Data are reviewed showing that better fighters feel entitled to better outcomes, set lower thresholds for anger/aggression, have self-favoring political attitudes, and believe more in the utility of warfare. New data are presented showing that among Hollywood actors, those selected for their physical strength (i.e., action stars) are more likely to believe in the utility of warfare.
Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R
2009-01-01
We report on the real-time creation of an application for hands-on neurophysiology in an advanced undergraduate teaching laboratory. Enabled by the rapid software development tools included in the Matlab technical computing environment (The Mathworks, Natick, MA), a team, consisting of a neurophysiology educator and a biophysicist trained as an electrical engineer, interfaced to a course of approximately 15 students from engineering and biology backgrounds. The result is the powerful freeware data acquisition and analysis environment, "g-PRIME." The software was developed from week to week in response to curriculum demands, and student feedback. The program evolved from a simple software oscilloscope, enabling RC circuit analysis, to a suite of tools supporting analysis of neuronal excitability and synaptic transmission analysis in invertebrate model systems. The program has subsequently expanded in application to university courses, research, and high school projects in the US and abroad as free courseware.
Empathy, justice, and moral behavior
Decety, Jean; Cowell, Jason M.
2015-01-01
Empathy shapes the landscape of our social lives. It motivates prosocial and caregiving behaviors, plays a role in inhibiting aggression, and facilitates cooperation between members of a similar social group. Thus, empathy is often conceived as a driving motivation of moral behavior and justice, and as such, everyone would think that it should be cultivated. However, the relationships between empathy, morality, and justice are complex. We begin by explaining what the notion of empathy encompasses and then argue how sensitivity to others’ needs has evolved in the context of parental care and group living. Next, we examine the multiple physiological, hormonal, and neural systems supporting empathy and its functions. One troubling but important corollary of this neuro-evolutionary model is that empathy produces social preferences that can conflict with fairness and justice. An understanding of the factors that mold our emotional response and caring motivation for others helps provide organizational principles and ultimately guides decision-making in medical ethics. PMID:26877887
THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA
Gatton, Michelle L; Chitnis, Nakul; Churcher, Thomas; Donnelly, Martin J; Ghani, Azra C; Godfray, H Charles J; Gould, Fred; Hastings, Ian; Marshall, John; Ranson, Hilary; Rowland, Mark; Shaman, Jeff; Lindsay, Steve W; Meagher, T
2013-01-01
Over the past decade the use of long-lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and mortality. PMID:23550770
Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities
Bridier, Arnaud; Piard, Jean-Christophe; Pandin, Caroline; Labarthe, Simon; Dubois-Brissonnet, Florence; Briandet, Romain
2017-01-01
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed. PMID:28775718
Platelet-rich plasma: a biomimetic approach to enhancement of surgical wound healing.
Fernandez-Moure, Joseph S; Van Eps, Jeffrey L; Cabrera, Fernando J; Barbosa, Zonia; Medrano Del Rosal, Guillermo; Weiner, Bradley K; Ellsworth, Warren A; Tasciotti, Ennio
2017-01-01
Platelets are small anucleate cytoplasmic cell bodies released by megakaryocytes in response to various physiologic triggers. Traditionally thought to be solely involved in the mechanisms of hemostasis, platelets have gained much attention due to their involvement wound healing, immunomodulation, and antiseptic properties. As the field of surgery continues to evolve so does the need for therapies to aid in treating the increasingly complex patients seen. With over 14 million obstetric, musculoskeletal, and urological and gastrointestinal surgeries performed annually, the healing of surgical wounds continues to be of upmost importance to the surgeon and patient. Platelet-rich plasma, or platelet concentrate, has emerged as a possible adjuvant therapy to aid in the healing of surgical wounds and injuries. In this review, we will discuss the wound healing properties of platelet-rich plasma and various surgical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Locomotion in response to shifting climate zones: not so fast.
Feder, Martin E; Garland, Theodore; Marden, James H; Zera, Anthony J
2010-01-01
Although a species' locomotor capacity is suggestive of its ability to escape global climate change, such a suggestion is not necessarily straightforward. Species vary substantially in locomotor capacity, both ontogenetically and within/among populations, and much of this variation has a genetic basis. Accordingly, locomotor capacity can and does evolve rapidly, as selection experiments demonstrate. Importantly, even though this evolution of locomotor capacity may be rapid enough to escape changing climate, genetic correlations among traits (often due to pleiotropy) are such that successful or rapid dispersers are often limited in colonization or reproductive ability, which may be viewed as a trade-off. The nuanced assessment of this variation and evolution is reviewed for well-studied models: salmon, flying versus flightless insects, rodents undergoing experimental evolution, and metapopulations of butterflies. This work reveals how integration of physiology with population biology and functional genomics can be especially informative.
C. elegans dauer formation and the molecular basis of plasticity
Fielenbach, Nicole; Antebi, Adam
2008-01-01
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-β, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals. PMID:18708575
When is it socially acceptable to feel sick?
Lopes, Patricia C.
2014-01-01
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as ‘sickness behaviours’, frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes. PMID:24943375
Root developmental adaptation to phosphate starvation: better safe than sorry.
Péret, Benjamin; Clément, Mathilde; Nussaume, Laurent; Desnos, Thierry
2011-08-01
Phosphorus is a crucial component of major organic molecules such as nucleic acids, ATP and membrane phospholipids. It is present in soils in the form of inorganic phosphate (Pi), which has low availability and poor mobility. To cope with Pi limitations, plants have evolved complex adaptive responses that include morphological and physiological modifications. This review describes how the model plant Arabidopsis thaliana adapts its root system architecture to phosphate deficiency through inhibition of primary root growth, increase in lateral root formation and growth and production of root hairs, which all promote topsoil foraging. A better understanding of plant adaptation to low phosphate will open the way to increased phosphorus use efficiency by crops. Such an improvement is needed in order to adjust how we manage limited phosphorus stocks and to reduce the disastrous environmental effects of phosphate fertilizers overuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wolkow, Alexander; Ferguson, Sally; Aisbett, Brad; Main, Luana
2015-01-01
Emergency work can expose personnel to sleep restriction. Inadequate amounts of sleep can negatively affect physiological and psychological stress responses. This review critiqued the emergency service literature (e.g., firefighting, police/law enforcement, defense forces, ambulance/paramedic personnel) that has investigated the effect of sleep restriction on hormonal, inflammatory and psychological responses. Furthermore, it investigated if a psycho-physiological approach can help contextualize the significance of such responses to assist emergency service agencies monitor the health of their personnel. The available literature suggests that sleep restriction across multiple work days can disrupt cytokine and cortisol levels, deteriorate mood and elicit simultaneous physiological and psychological responses. However, research concerning the interaction between such responses is limited and inconclusive. Therefore, it is unknown if a psycho-physiological relationship exists and as a result, it is currently not feasible for agencies to monitor sleep restriction related stress based on psycho- physiological interactions. Sleep restriction does however, appear to be a major stressor contributing to physiological and psychological responses and thus, warrants further investigation. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Self-contained, low-cost Body-on-a-Chip systems for drug development.
Wang, Ying I; Oleaga, Carlota; Long, Christopher J; Esch, Mandy B; McAleer, Christopher W; Miller, Paula G; Hickman, James J; Shuler, Michael L
2017-11-01
Integrated multi-organ microphysiological systems are an evolving tool for preclinical evaluation of the potential toxicity and efficacy of drug candidates. Such systems, also known as Body-on-a-Chip devices, have a great potential to increase the successful conversion of drug candidates entering clinical trials into approved drugs. Systems, to be attractive for commercial adoption, need to be inexpensive, easy to operate, and give reproducible results. Further, the ability to measure functional responses, such as electrical activity, force generation, and barrier integrity of organ surrogates, enhances the ability to monitor response to drugs. The ability to operate a system for significant periods of time (up to 28 d) will provide potential to estimate chronic as well as acute responses of the human body. Here we review progress towards a self-contained low-cost microphysiological system with functional measurements of physiological responses. Impact statement Multi-organ microphysiological systems are promising devices to improve the drug development process. The development of a pumpless system represents the ability to build multi-organ systems that are of low cost, high reliability, and self-contained. These features, coupled with the ability to measure electrical and mechanical response in addition to chemical or metabolic changes, provides an attractive system for incorporation into the drug development process. This will be the most complete review of the pumpless platform with recirculation yet written.
Li, Li; Chen, Xiaodan; Shi, Lu; Wang, Chuanjing; Fu, Bing; Qiu, Tianhang; Cui, Suxia
2017-01-01
After a long-term adaptation to desert environment, the perennial aquatic plant Phragmites communis has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of Phragmites communis showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR. The unknown phenomenon in plant stress physiology was defined as a proteome translocation response. Quantitative 2D-DIGE technology highlighted these ‘bound’ proteins in DR. Fifty-eight kinds of proteins were identified as candidates of the translocated proteome in Phragmites. The majority were chloroplast proteins. Unexpectedly, Rubisco was the most abundant protein sequestered by DR. Rubisco activase, various chaperons and 2-cysteine peroxiredoxin were major components in the translocation response. Conformational change was assumed to be the main reason for the Rubisco translocation due to no primary sequence difference between DR and SR. The addition of reductant in extraction process partially reversed the translocation response, implying that intracellular redox status plays a role in the translocation response of the proteome. The finding emphasizes the realistic significance of the membrane-association of biomolecule for plant long-term adaptation to complex stress conditions. PMID:28450873
2013-12-19
Physiological Responses of Belugas to "Stressors" to Aid in Assessing the Impact of Environmental and Anthropogenic Challenges on Health 5a. CONTRACT...ANSI Std.Z39.18 " DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. Investigation of the Physiological Responses... physiological i.e. neuroimmunoendocrino logical responses of beluga whales to "Stressors". "Stressor events" will allow for a better understanding and
Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.
Uemura, Tomohiro
2016-10-01
Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Caudal autotomy and regeneration in lizards.
Clause, Amanda R; Capaldi, Elizabeth A
2006-12-01
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.
Evolution of the SOUL Heme-Binding Protein Superfamily Across Eukarya.
Fortunato, Antonio Emidio; Sordino, Paolo; Andreakis, Nikos
2016-06-01
SOUL homologs constitute a heme-binding protein superfamily putatively involved in heme and tetrapyrrole metabolisms associated with a number of physiological processes. Despite their omnipresence across the tree of life and the biochemical characterization of many SOUL members, their functional role and the evolutionary events leading to such remarkable protein repertoire still remain cryptic. To explore SOUL evolution, we apply a computational phylogenetic approach, including a relevant number of SOUL homologs, to identify paralog forms and reconstruct their genealogy across the tree of life and within species. In animal lineages, multiple gene duplication or loss events and paralog functional specializations underlie SOUL evolution from the dawn of ancestral echinoderm and mollusc SOUL forms. In photosynthetic organisms, SOUL evolution is linked to the endosymbiosis events leading to plastid acquisition in eukaryotes. Derivative features, such as the F2L peptide and BH3 domain, evolved in vertebrates and provided innovative functionality to support immune response and apoptosis. The evolution of elements such as the N-terminal protein domain DUF2358, the His42 residue, or the tetrapyrrole heme-binding site is modern, and their functional implications still unresolved. This study represents the first in-depth analysis of SOUL protein evolution and provides novel insights in the understanding of their obscure physiological role.
Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum.
Alipanah, Leila; Rohloff, Jens; Winge, Per; Bones, Atle M; Brembu, Tore
2015-10-01
Algal growth is strongly affected by nitrogen (N) availability. Diatoms, an ecologically important group of unicellular algae, have evolved several acclimation mechanisms to cope with N deprivation. In this study, we integrated physiological data with transcriptional and metabolite data to reveal molecular and metabolic modifications in N-deprived conditions in the marine diatom Phaeodactylum tricornutum. Physiological and metabolite measurements indicated that the photosynthetic capacity and chlorophyll content of the cells decreased, while neutral lipids increased in N-deprived cultures. Global gene expression analysis showed that P. tricornutum responded to N deprivation through an increase in N transport, assimilation, and utilization of organic N resources. Following N deprivation, reduced biosynthesis and increased recycling of N compounds like amino acids, proteins, and nucleic acids was observed at the transcript level. The majority of the genes associated with photosynthesis and chlorophyll biosynthesis were also repressed. Carbon metabolism was restructured through downregulation of the Calvin cycle and chrysolaminarin biosynthesis, and co-ordinated upregulation of glycolysis, the tricarboxylic acid cycle, and pyruvate metabolism, leading to funnelling of carbon sources to lipid metabolism. Finally, reallocation of membrane lipids and induction of de novo triacylglycerol biosynthesis directed cells to accumulation of neutral lipids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
2013-01-01
Background Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and ‘Candidatus Liberibacter asiaticus’ (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. Results This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. Conclusions This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development. PMID:23578104
Nwugo, Chika C; Lin, Hong; Duan, Yongping; Civerolo, Edwin L
2013-04-11
Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and 'Candidatus Liberibacter asiaticus' (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development.
Is Exercise Really Medicine? An Evolutionary Perspective.
Lieberman, Daniel E
2015-01-01
An evolutionary perspective helps evaluate the extent to which exercise is medicine and to explain the exercise paradox: why people tend to avoid exercise despite its benefits. Many lines of evidence indicate that humans evolved to be adapted for regular, moderate amounts of endurance physical activity into late age. However, because energy from food was limited, humans also were selected to avoid unnecessary exertion, and most anatomical and physiological systems evolved to require stimuli from physical activity to adjust capacity to demand. Consequently, selection never operated to cope with the long-term effects of chronic inactivity. However, because all adaptations involve trade-offs, there is no evolutionary-determined dose or type of physical activity that will optimize health. Furthermore, because humans evolved to be active for play or necessity, efforts to promote exercise will require altering environments in ways that nudge or even compel people to be active and to make exercise fun.
The Antarctic Krill Euphausia superba Shows Diurnal Cycles of Transcription under Natural Conditions
Albiero, Alessandro; Sales, Gabriele; Millino, Caterina; Mazzotta, Gabriella M.; Bertolucci, Cristiano; Costa, Rodolfo
2013-01-01
Background Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba) has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. Methodology/Principal Findings The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour) rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. Conclusions Our work represents the first characterization of the krill diurnal transcriptome under natural conditions and provides a first insight into the genetic regulation of physiological changes, which occur around the clock during an Antarctic summer day. PMID:23874706
Position of the American Dietetic Association: functional foods.
Hasler, Clare M; Brown, Amy C
2009-04-01
All foods are functional at some physiological level, but it is the position of the American Dietetic Association (ADA) that functional foods that include whole foods and fortified, enriched, or enhanced foods have a potentially beneficial effect on health when consumed as part of a varied diet on a regular basis, at effective levels. ADA supports research to further define the health benefits and risks of individual functional foods and their physiologically active components. Health claims on food products, including functional foods, should be based on the significant scientific agreement standard of evidence and ADA supports label claims based on such strong scientific substantiation. Food and nutrition professionals will continue to work with the food industry, allied health professionals, the government, the scientific community, and the media to ensure that the public has accurate information regarding functional foods and thus should continue to educate themselves on this emerging area of food and nutrition science. Knowledge of the role of physiologically active food components, from plant, animal, and microbial food sources, has changed the role of diet in health. Functional foods have evolved as food and nutrition science has advanced beyond the treatment of deficiency syndromes to reduction of disease risk and health promotion. This position paper reviews the definition of functional foods, their regulation, and the scientific evidence supporting this evolving area of food and nutrition. Foods can no longer be evaluated only in terms of macronutrient and micronutrient content alone. Analyzing the content of other physiologically active components and evaluating their role in health promotion will be necessary. The availability of health-promoting functional foods in the US diet has the potential to help ensure a healthier population. However, each functional food should be evaluated on the basis of scientific evidence to ensure appropriate integration into a varied diet.
Physiological reactivity to phobic stimuli in people with fear of flying.
Busscher, Bert; van Gerwen, Lucas J; Spinhoven, Philip; de Geus, Eco J C
2010-09-01
The nature of the relationship between physiological and subjective responses in phobic subjects remains unclear. Phobics have been thought to be characterized by a heightened physiological response (physiological perspective) or by a heightened perception of a normal physiological response (psychological perspective). In this study, we examined subjective measures of anxiety, heart rate (HR), and cardiac autonomic responses to flight-related stimuli in 127 people who applied for fear-of-flying therapy at a specialized treatment center and in 36 controls without aviophobia. In keeping with the psychological perspective, we found a large increase in subjective distress (eta(2)=.43) during exposure to flight-related stimuli in the phobics and no change in subjective distress in the controls, whereas the physiological responses of both groups were indiscriminate. However, in keeping with the physiological perspective, we found that, within the group of phobics, increases in subjective fear during exposure were moderately strong coupled to HR (r =.208, P=.022) and cardiac vagal (r =.199, P=.028) reactivity. In contrast to predictions by the psychological perspective, anxiety sensitivity did not modulate this coupling. We conclude that subjective fear responses and autonomic responses are only loosely coupled during mildly threatening exposure to flight-related stimuli. More ecologically valid exposure to phobic stimuli may be needed to test the predictions from the physiological and psychological perspectives. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Ferritins and iron storage in plants.
Briat, Jean-François; Duc, Céline; Ravet, Karl; Gaymard, Frédéric
2010-08-01
Iron is essential for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in the plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differ. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. In this review, our knowledge of the specific features of plant ferritins is presented, at the level of their (i) structure/function relationships, (ii) cellular localization, and (iii) synthesis regulation during development and in response to various environmental cues. A special emphasis is given to their function in plant physiology, in particular concerning their respective roles in iron storage and in protection against oxidative stress. Indeed, the use of reverse genetics in Arabidopsis recently enabled to produce various knock-out ferritin mutants, revealing strong links between these proteins and protection against oxidative stress. In contrast, their putative iron storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron. Copyright 2009 Elsevier B.V. All rights reserved.
Seebacher, Frank; Little, Alexander G
2017-01-01
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Seebacher, Frank; Little, Alexander G.
2017-01-01
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463
Life is determined by its environment
NASA Astrophysics Data System (ADS)
Torday, John S.; Miller, William B.
2016-10-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.
Life is determined by its environment
Torday, John S.; Miller, William B.
2016-01-01
A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547
NASA Astrophysics Data System (ADS)
Hoshiba, Yasuhiro; Hirata, Takafumi; Shigemitsu, Masahito; Nakano, Hideyuki; Hashioka, Taketo; Masuda, Yoshio; Yamanaka, Yasuhiro
2018-06-01
Ecosystem models are used to understand ecosystem dynamics and ocean biogeochemical cycles and require optimum physiological parameters to best represent biological behaviours. These physiological parameters are often tuned up empirically, while ecosystem models have evolved to increase the number of physiological parameters. We developed a three-dimensional (3-D) lower-trophic-level marine ecosystem model known as the Nitrogen, Silicon and Iron regulated Marine Ecosystem Model (NSI-MEM) and employed biological data assimilation using a micro-genetic algorithm to estimate 23 physiological parameters for two phytoplankton functional types in the western North Pacific. The estimation of the parameters was based on a one-dimensional simulation that referenced satellite data for constraining the physiological parameters. The 3-D NSI-MEM optimized by the data assimilation improved the timing of a modelled plankton bloom in the subarctic and subtropical regions compared to the model without data assimilation. Furthermore, the model was able to improve not only surface concentrations of phytoplankton but also their subsurface maximum concentrations. Our results showed that surface data assimilation of physiological parameters from two contrasting observatory stations benefits the representation of vertical plankton distribution in the western North Pacific.
Neonatal pulmonary physiology.
Davis, Ryan P; Mychaliska, George B
2013-11-01
Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.
Tepolt, Carolyn K; Somero, George N
2014-04-01
As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine heat and cold tolerance and acclimatory plasticity. We found that, overall, the species is highly tolerant of both heat and cold, and that it survives higher temperatures than co-occurring native marine crustaceans. Further, we found that both heat and cold tolerance are plastic in response to short-term acclimation (18-31 days at either 5 or 25°C). Comparing patterns within ranges, we found latitudinal gradients in thermal tolerance in the native European range and in the invasive range in eastern North America. This pattern is strongest in the native range, and likely evolved there. Because of a complicated invasion history, the latitudinal pattern in the eastern North American invasive range may be due either to rapid adaptation post-invasion or to adaptive differences between the ancestral populations that founded the invasion. Overall, the broad thermal tolerance ranges of green crabs, which may facilitate invasion of novel habitats, derive from high inherent eurythermality and acclimatory plasticity and potentially adaptive differentiation among populations. The highly flexible physiology that results from these capacities may represent the hallmark of a successful invasive species, and may provide a model for success in a changing world.
Longevity and ageing: appraising the evolutionary consequences of growing old
Bonsall, Michael B
2005-01-01
Senescence or ageing is an increase in mortality and/or decline in fertility with increasing age. Evolutionary theories predict that ageing or longevity evolves in response to patterns of extrinsic mortality or intrinsic damage. If ageing is viewed as the outcome of the processes of behaviour, growth and reproduction then it should be possible to predict mortality rate. Recent developments have shown that it is now possible to integrate these ecological and physiological processes and predict the shape of mortality trajectories. By drawing on the key exciting developments in the cellular, physiological and ecological process of longevity the evolutionary consequences of ageing are reviewed. In presenting these ideas an evolutionary demographic framework is used to argue how trade-offs in life-history strategies are important in the maintenance of variation in longevity within and between species. Evolutionary processes associated with longevity have an important role in explaining levels of biological diversity and speciation. In particular, the effects of life-history trait trade-offs in maintaining and promoting species diversity are explored. Such trade-offs can alleviate the effects of intense competition between species and promote species coexistence and diversification. These results have important implications for understanding a number of core ecological processes such as how species are divided among niches, how closely related species co-occur and the rules by which species assemble into food-webs. Theoretical work reveals that the proximate physiological processes are as important as the ecological factors in explaining the variation in the evolution of longevity. Possible future research challenges integrating work on the evolution and mechanisms of growing old are briefly discussed. PMID:16553312
From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.
Sarkar, Subhadeep; Misra, Sudip
2016-01-01
Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.
Rezende-Filho, Flávio Moura; da Fonseca, Lucas José Sá; Nunes-Souza, Valéria; Guedes, Glaucevane da Silva; Rabelo, Luiza Antas
2014-09-15
Teaching physiology, a complex and constantly evolving subject, is not a simple task. A considerable body of knowledge about cognitive processes and teaching and learning methods has accumulated over the years, helping teachers to determine the most efficient way to teach, and highlighting student's active participation as a means to improve learning outcomes. In this context, this paper describes and qualitatively analyzes an experience of a student-centered teaching-learning methodology based on the construction of physiological-physical models, focusing on their possible application in the practice of teaching physiology. After having Physiology classes and revising the literature, students, divided in small groups, built physiological-physical models predominantly using low-cost materials, for studying different topics in Physiology. Groups were followed by monitors and guided by teachers during the whole process, finally presenting the results in a Symposium on Integrative Physiology. Along the proposed activities, students were capable of efficiently creating physiological-physical models (118 in total) highly representative of different physiological processes. The implementation of the proposal indicated that students successfully achieved active learning and meaningful learning in Physiology while addressing multiple learning styles. The proposed method has proved to be an attractive, accessible and relatively simple approach to facilitate the physiology teaching-learning process, while facing difficulties imposed by recent requirements, especially those relating to the use of experimental animals and professional training guidelines. Finally, students' active participation in the production of knowledge may result in a holistic education, and possibly, better professional practices.
ERIC Educational Resources Information Center
Gouvousis, Aphroditi; Heilmann, John; Golden, Jeanne; Kalinowski, Joseph; Hudson, Suzanne; Hough, Monica Strauss
2010-01-01
This study investigated attitudes and physiological responses demonstrated by preservice learners towards young children with autism spectrum disorders (ASD). The Self-Assessment Manikin (SAM) and two physiological measures (skin conductance and heart rate responses) were obtained. Four behaviors (two control and two problematic) depicting…
Age-related changes in tree growth and physiology
Andrew Groover
2017-01-01
Trees pass through specific developmental phases as they age, including juvenile to adult, and vegetative to reproductive phases. The timing of these transitions is regulated genetically but is also highly influenced by the environment. Tree species have evolved different strategies and life histories that affect how they age â for example some pioneer species are fast...
USDA-ARS?s Scientific Manuscript database
The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environm...
ERIC Educational Resources Information Center
Zauner, Christian W.; Benson, Norma Y.
This investigation sought to determine whether the excellent performer evolves from typical material through training or if he brings facilitating characteristics with him to practice on the first day. Subjects were highly successful AAU age-group competitors who had invested at least 50 percent of their lives in swim training. These seven female…
Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo
Torday, John S.; Rehan, V. K.
2009-01-01
Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell–cell signaling and extrinsic factors is the reverse of the “top-down” conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a “middle-out” cell–cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell–cell communication as the basis for complex physiologic traits, from sponges to man. PMID:20607136
A wearable device for emotional recognition using facial expression and physiological response.
Jangho Kwon; Da-Hye Kim; Wanjoo Park; Laehyun Kim
2016-08-01
This paper introduces a glasses-typed wearable system to detect user's emotions using facial expression and physiological responses. The system is designed to acquire facial expression through a built-in camera and physiological responses such as photoplethysmogram (PPG) and electrodermal activity (EDA) in unobtrusive way. We used video clips for induced emotions to test the system suitability in the experiment. The results showed a few meaningful properties that associate emotions with facial expressions and physiological responses captured by the developed wearable device. We expect that this wearable system with a built-in camera and physiological sensors may be a good solution to monitor user's emotional state in daily life.
NASA Astrophysics Data System (ADS)
Bradley, A. S.; Muller, E.; Bringel, F.; Vuilleumier, S.; Pearson, A.; Marx, C. J.
2010-12-01
Hopanoids are geologically stable triterpenoids with a rock record extending to the Archean (1), but little information exists regarding their physiological role in modern organisms. Determining the physiological role of hopanoids is a key step in deciphering their geological and evolutionary history. To this end, we are investigating the function of hopanoids in the facultative methylotrophic bacterium Methylobacterium through a series of experiments in which we compare the behavior of wild type strains to mutants deficient in key genes associated with hopanoid biosynthesis. Mutant strains of bacteria deficient in the gene shc for squalene-hopene cyclase (SHC) lack hopanoids, but show only a subtle growth defect under pH and temperature stress in Rhodopseudomonas (2), and no growth defect in Streptomyces (3). In contrast, mutant strains of Methylobacterium deficient in SHC show a severe growth defect under usual growth conditions, with slower growth rates, alterations in cell morphology, increased sensitivity to toxic compounds, and severe flocculation during growth in liquid media. This severe phenotype offered an opportunity to investigate the function of hopanoids through an experimental evolution protocol. By serial passage through batch culture, sixteen replicate populations of the mutant strain were evolved in liquid media for approximately 120 generations. Populations evolved on each substrate show improved growth rates, approaching that of wild type strains. Current work is aimed at characterizing the physiology, and resequencing genomes of evolved isolates to determine the adaptations corresponding improved fitness. We predict that these adaptations will lead to hypotheses regarding hopanoid function. Mutations of other hopanoid-associated genes in Methylobacterium produce an altered suite of hopanoid compounds. Through mutation of hopanoid-associated genes, we have identified the first steps of hopanoid side chain biosynthesis (4). These mutant strains offer the opportunity for further evolutionary experiments, which may elucidate the function of specific hopanoid structures. 1. J. J. Brocks, R. E. Summons, in Biogeochemistry W. H. Schlesinger, Ed. (Elsevier, Oxford, 2004), vol. 8, pp. 63-116. 2. P. V. Welander et al., Journal of Bacteriology 191, 6145 (2009). 3. R. F. Seipke, R. Loria, Journal of Bacteriology 191, 5216 (2009). 4. A. S. Bradley, A. Pearson, J. P. Sáenz, C. J. Marx, Organic Geochemistry, in press (2010).
Experimental evolution gone wild.
Scheinin, M; Riebesell, U; Rynearson, T A; Lohbeck, K T; Collins, S
2015-05-06
Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.
Aldao, Amelia; McLaughlin, Katie A; Hatzenbuehler, Mark L; Sheridan, Margaret A
Although previous studies have established that rumination influences responses to stressful life events, the mechanisms underlying this relationship remain inadequately understood. The current study examines the relationship between trait rumination and affective, cognitive, and physiological responses to a standardized laboratory-based stressor in adolescents. A community-based sample of adolescents (N = 157) aged 13-17 completed the Trier Social Stress Test (TSST). Affective, cognitive, and physiological responses were obtained before, during, and after the TSST. Adolescents who engaged in habitual rumination experienced greater negative affect and more negative cognitive appraisals in response to the TSST than adolescents with lower levels of rumination. Rumination was unrelated to heart rate reactivity, but predicted slower heart rate recovery from the TSST, indicating that rumination might be specifically associated with physiological recovery from stress. Rumination is associated with negative affective, cognitive, and physiological responses following stressors, suggesting potential mechanisms through which it might increase risk for psychopathology.
Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila.
Charpentier, Xavier; Kay, Elisabeth; Schneider, Dominique; Shuman, Howard A
2011-03-01
Natural transformation by competence is a major mechanism of horizontal gene transfer in bacteria. Competence is defined as the genetically programmed physiological state that enables bacteria to actively take up DNA from the environment. The conditions that signal competence development are multiple and elusive, complicating the understanding of its evolutionary significance. We used expression of the competence gene comEA as a reporter of competence development and screened several hundred molecules for their ability to induce competence in the freshwater living pathogen Legionella pneumophila. We found that comEA expression is induced by chronic exposure to genotoxic molecules such as mitomycin C and antibiotics of the fluoroquinolone family. These results indicated that, in L. pneumophila, competence may be a response to genotoxic stress. Sunlight-emitted UV light represents a major source of genotoxic stress in the environment and we found that exposure to UV radiation effectively induces competence development. For the first time, we show that genetic exchanges by natural transformation occur within an UV-stressed population. Genotoxic stress induces the RecA-dependent SOS response in many bacteria. However, genetic and phenotypic evidence suggest that L. pneumophila lacks a prototypic SOS response and competence development in response to genotoxic stress is RecA independent. Our results strengthen the hypothesis that competence may have evolved as a DNA damage response in SOS-deficient bacteria. This parasexual response to DNA damage may have enabled L. pneumophila to acquire and propagate foreign genes, contributing to the emergence of this human pathogen.
Bruce, Toby J A
2015-02-01
In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang
2014-01-01
Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects. PMID:24918926
Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang
2014-01-01
Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.
Dubner, Sergio; Auricchio, Angelo; Steinberg, Jonathan S; Vardas, Panos; Stone, Peter; Brugada, Josep; Piotrowicz, Ryszard; Hayes, David L; Kirchhof, Paulus; Breithardt, Günter; Zareba, Wojciech; Schuger, Claudio; Aktas, Mehmet K; Chudzik, Michal; Mittal, Suneet; Varma, Niraj
2012-02-01
We are in the midst of a rapidly evolving era of technology-assisted medicine. The field of telemedicine provides the opportunity for highly individualized medical management in a way that has never been possible before. Evolving medical technologies using cardiac implantable devices (CIEDs) with capabilities for remote monitoring permit evaluation of multiple parameters of cardiovascular physiology and risk, including cardiac rhythm, device function, blood pressure values, the presence of myocardial ischaemia, and the degree of compensation of congestive heart failure. Cardiac risk, device status, and response to therapies can now be assessed with these electronic systems of detection and reporting. This document reflects the extensive experience from investigators and innovators around the world who are shaping the evolution of this rapidly expanding field, focusing in particular on implantable pacemakers (IPGs), implantable cardioverter-defibrillators (ICDs), devices for cardiac resynchronization therapy (CRT) (both, with and without defibrillation properties), loop recorders, and haemodynamic monitoring devices. This document covers the basic methodologies, guidelines for their use, experience with existing applications, and the legal and reimbursement aspects associated with their use. To adequately cover this important emerging topic, the International Society for Holter and Noninvasive Electrocardiology (ISHNE) and the European Heart Rhythm Association (EHRA) combined their expertise in this field. We hope that the development of this field can contribute to improve care of our cardiovascular patients.
[Evolutionary history of human locomotor system--from walking to long-distance running].
Viranta-Kovanen, Suvi
2015-01-01
Bipedality evolved in hominids more than 4 million years ago. Bipedals were a diverse group including the lineage of obligatory walkers that finally lead to humans. Important anatomical changes in this group were: enhanced lumbar lordosis, shortening of the ilium, and emphasize on the parasagittal movements. Long-distance running evolved much later and it was associated with well-developed plantar arches, strengthening of muscles supporting the erect trunk, and decoupling of the pectoral girdle and head. In addition to anatomical changes, humans have many physiological adaptations to long-distance running. It is likely that the ability to run long-distance has been important for the survival of our species.
Tensions inherent in the evolving role of the infection preventionist.
Conway, Laurie J; Raveis, Victoria H; Pogorzelska-Maziarz, Monika; Uchida, May; Stone, Patricia W; Larson, Elaine L
2013-11-01
The role of infection preventionists (IPs) is expanding in response to demands for quality and transparency in health care. Practice analyses and survey research have demonstrated that IPs spend a majority of their time on surveillance and are increasingly responsible for prevention activities and management; however, deeper qualitative aspects of the IP role have rarely been explored. We conducted a qualitative content analysis of in-depth interviews with 19 IPs at hospitals throughout the United States to describe the current IP role, specifically the ways that IPs effect improvements and the facilitators and barriers they face. The narratives document that the IP role is evolving in response to recent changes in the health care landscape and reveal that this progression is associated with friction and uncertainty. Tensions inherent in the evolving role of the IP emerged from the interviews as 4 broad themes: (1) expanding responsibilities outstrip resources, (2) shifting role boundaries create uncertainty, (3) evolving mechanisms of influence involve trade-offs, and (4) the stress of constant change is compounded by chronic recurring challenges. Advances in implementation science, data standardization, and training in leadership skills are needed to support IPs in their evolving role. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Why are there so many explanations for primate brain evolution?
2017-01-01
The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of ‘smart foraging’ and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673920
Behavioral and Physiological Responses of Horses to Simulated Aircraft Noise
1991-01-01
AL-TR-1991-0123 A R M BEHAVIORAL AND PHYSIOLOGICAL S RESPONSES OF HORSES TO SIMULATED T AIRCRAFT NOISE R 0 N G Michelle M. LeBlanc Christoph Lombard...COVERED • 10 January 1991 IFinal Report Dec 89 to Jan 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Behavioral and Physiological Responses of Horses to...NUMBER OF PAGES Aircraft, Noise, Domestic Animals, Horses , 70 Disturbance, Physiological Effects 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY
Cline, Rebecca J W; Orom, Heather; Chung, Jae Eun; Hernandez, Tanis
2014-09-01
Experiencing a disaster has significant negative effects on psychological adjustment. Case study accounts point to two consistent trends in slowly-evolving environmental disasters: (a) patterns of negative social dynamics, and (b) relatively worse psychological outcomes than in natural disasters. Researchers have begun to explicitly postulate that the social consequences of slowly-evolving environmental disasters (e.g., community conflict) have their own effects on victims' psychological outcomes. This study tested a model of the relationship between those social consequences and psychological adjustment of victims of a slowly-evolving environmental disaster, specifically those whose health has been compromised by the amphibole asbestos disaster in Libby, MT. Results indicate that experiencing greater community conflict about the disaster was associated with greater family conflict about the disaster which, in turn, was associated with greater social constraints on talking with others about their disease, both directly and indirectly through experiencing stigmatization. Experiencing greater social constraints was associated with worse psychological adjustment, both directly and indirectly through failed social support. Findings have implications for understanding pathways by which social responses create negative effects on mental health in slowly-evolving environmental disasters. These pathways suggest points for prevention and response (e.g., social support, stigmatization of victims) for communities experiencing slowly-evolving environmental disasters.
NASA Technical Reports Server (NTRS)
Pace, N.
1973-01-01
Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.
Derefinko, Karen J.; Eisenlohr-Moul, Tory A.; Peters, Jessica R.; Roberts, Walter; Walsh, Erin C.; Milich, Richard; Lynam, Donald R.
2017-01-01
Background Physiological responses to reward and extinction are believed to represent the Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS) constructs of Reinforcement Sensitivity Theory and underlie externalizing behaviors, including substance use. However, little research has examined these relations directly. Methods We assessed individuals’ cardiac pre-ejection periods (PEP) and electrodermal responses (EDR) during reward and extinction trials through the “Number Elimination Game” paradigm. Responses represented BAS and BIS, respectively. We then examined whether these responses provided incremental utility in the prediction of future alcohol, marijuana, and cigarette use. Results Zero-inflated Poisson (ZIP) regression models were used to examine the predictive utility of physiological BAS and BIS responses above and beyond previous substance use. Physiological responses accounted for incremental variance over previous use. Low BAS responses during reward predicted frequency of alcohol use at year 3. Low BAS responses during reward and extinction and high BIS responses during extinction predicted frequency of marijuana use at year 3. For cigarette use, low BAS response during extinction predicted use at year 3. Conclusions These findings suggest that the constructs of Reinforcement Sensitivity Theory, as assessed through physiology, contribute to the longitudinal maintenance of substance use. PMID:27306728
Ge, Xiaochun; Li, Guo-Jing; Wang, Sheng-Bing; Zhu, Huifen; Zhu, Tong; Wang, Xun; Xia, Yiji
2007-01-01
Plants have evolved complicated regulatory systems to control immune responses. Both positive and negative signaling pathways interplay to coordinate development of a resistance response with the appropriate amplitude and duration. AtNUDT7, a Nudix domain-containing protein in Arabidopsis (Arabidopsis thaliana) that hydrolyzes nucleotide derivatives, was found to be a negative regulator of the basal defense response, and its loss-of-function mutation results in enhanced resistance to infection by Pseudomonas syringae. The nudt7 mutation does not cause a strong constitutive disease resistance phenotype, but it leads to a heightened defense response, including accelerated activation of defense-related genes that can be triggered by pathogenic and nonpathogenic microorganisms. The nudt7 mutation enhances two distinct defense response pathways: one independent of and the other dependent on NPR1 and salicylic acid accumulation. In vitro enzymatic assays revealed that ADP-ribose and NADH are preferred substrates of NUDT7, and the hydrolysis activity of NUDT7 is essential for its biological function and is sensitive to inhibition by Ca2+. Further analyses indicate that ADP-ribose is not likely the physiological substrate of NUDT7. However, the nudt7 mutation leads to perturbation of cellular redox homeostasis and a higher level of NADH in pathogen-challenged leaves. The study suggests that the alteration in cellular antioxidant status caused by the nudt7 mutation primes the cells for the amplified defense response and NUDT7 functions to modulate the defense response to prevent excessive stimulation. PMID:17660350
Sepsis: Multiple Abnormalities, Heterogeneous Responses, and Evolving Understanding
Iskander, Kendra N.; Osuchowski, Marcin F.; Stearns-Kurosawa, Deborah J.; Kurosawa, Shinichiro; Stepien, David; Valentine, Catherine
2013-01-01
Sepsis represents the host's systemic inflammatory response to a severe infection. It causes substantial human morbidity resulting in hundreds of thousands of deaths each year. Despite decades of intense research, the basic mechanisms still remain elusive. In either experimental animal models of sepsis or human patients, there are substantial physiological changes, many of which may result in subsequent organ injury. Variations in age, gender, and medical comorbidities including diabetes and renal failure create additional complexity that influence the outcomes in septic patients. Specific system-based alterations, such as the coagulopathy observed in sepsis, offer both potential insight and possible therapeutic targets. Intracellular stress induces changes in the endoplasmic reticulum yielding misfolded proteins that contribute to the underlying pathophysiological changes. With these multiple changes it is difficult to precisely classify an individual's response in sepsis as proinflammatory or immunosuppressed. This heterogeneity also may explain why most therapeutic interventions have not improved survival. Given the complexity of sepsis, biomarkers and mathematical models offer potential guidance once they have been carefully validated. This review discusses each of these important factors to provide a framework for understanding the complex and current challenges of managing the septic patient. Clinical trial failures and the therapeutic interventions that have proven successful are also discussed. PMID:23899564
Krång, Anna-Sara; Knaden, Markus; Steck, Kathrin; Hansson, Bill S.
2012-01-01
The ability to identify chemical cues in the environment is essential to most animals. Apart from marine larval stages, anomuran land hermit crabs (Coenobita) have evolved different degrees of terrestriality, and thus represent an excellent opportunity to investigate adaptations of the olfactory system needed for a successful transition from aquatic to terrestrial life. Although superb processing capacities of the central olfactory system have been indicated in Coenobita and their olfactory system evidently is functional on land, virtually nothing was known about what type of odourants are detected. Here, we used electroantennogram (EAG) recordings in Coenobita clypeatus and established the olfactory response spectrum. Interestingly, different chemical groups elicited EAG responses of opposite polarity, which also appeared for Coenobita compressus and the closely related marine hermit crab Pagurus bernhardus. Furthermore, in a two-choice bioassay with C. clypeatus, we found that water vapour was critical for natural and synthetic odourants to induce attraction or repulsion. Strikingly, also the physiological response was found much greater at higher humidity in C. clypeatus, whereas no such effect appeared in the terrestrial vinegar fly Drosophila melanogaster. In conclusion, our results reveal that the Coenobita olfactory system is restricted to a limited number of water-soluble odourants, and that high humidity is most critical for its function. PMID:22673356
Torpor use during gestation and lactation in a primate
NASA Astrophysics Data System (ADS)
Canale, Cindy I.; Perret, Martine; Henry, Pierre-Yves
2012-02-01
Torpor is an energy-saving mechanism that allows endotherms to overcome energetic challenges. Torpor should be avoided during reproduction because of potential incompatibility with offspring growth. To test if torpor can be used during gestation and lactation to compensate for food shortage, we exposed reproductive female grey mouse lemurs ( Microcebus murinus), a heterothermic primate, to different levels of food availability. Torpor use was characterised by daily skin temperature profiles, and its energetic outcome was assessed from changes in body mass. Food shortage triggered torpor during the end of the gestation period ( n = 1), ranging from shallow in response to 40% food restriction to deep daily torpor in response to 80% restriction. During the early period of lactation, females fed ad libitum ( n = 2) or exposed to a 40% restriction ( n = 4) remained normothermic; but 80% food restricted females ( n = 5) gave priority to energy saving, increasing the frequency and depth of torpor bouts. The use of torpor was insufficient to compensate for 80% energetic shortage during lactation resulting in loss of mass from the mother and delayed growth in the pups. This study provides the first evidence that a heterothermic primate can use torpor to compensate for food shortages even during reproduction. This physiological flexibility likely evolved as a response to climate-driven fluctuations in food availability in Madagascar.
Berghänel, Andreas; Heistermann, Michael; Schülke, Oliver; Ostner, Julia
2016-09-28
Prenatal maternal stress affects offspring phenotype in numerous species including humans, but it is debated whether these effects are evolutionarily adaptive. Relating stress to adverse conditions, current explanations invoke either short-term developmental constraints on offspring phenotype resulting in decelerated growth to avoid starvation, or long-term predictive adaptive responses (PARs) resulting in accelerated growth and reproduction in response to reduced life expectancies. Two PAR subtypes were proposed, acting either on predicted internal somatic states or predicted external environmental conditions, but because both affect phenotypes similarly, they are largely indistinguishable. Only external (not internal) PARs rely on high environmental stability particularly in long-lived species. We report on a crucial test case in a wild long-lived mammal, the Assamese macaque (Macaca assamensis), which evolved and lives in an unpredictable environment where external PARs are probably not advantageous. We quantified food availability, growth, motor skills, maternal caretaking style and maternal physiological stress from faecal glucocorticoid measures. Prenatal maternal stress was negatively correlated to prenatal food availability and led to accelerated offspring growth accompanied by decelerated motor skill acquisition and reduced immune function. These results support the 'internal PAR' theory, which stresses the role of stable adverse internal somatic states rather than stable external environments. © 2016 The Author(s).
The Granuloma in Tuberculosis: Dynamics of a Host–Pathogen Collusion
Ehlers, Stefan; Schaible, Ulrich E.
2012-01-01
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission. PMID:23308075
Gersick, Andrew S; Rubenstein, Daniel I
2017-08-19
Though morphologically very similar, equids across the extant species occupy ecological niches that are surprisingly non-overlapping. Occupancy of these distinct niches appears related to subtle physiological and behavioural adaptations which, in turn, correspond to significant differences in the social behaviours and emergent social systems characterizing the different species. Although instances of intraspecific behavioural variation in equids demonstrate that the same body plan can support a range of social structures, each of these morphologically similar species generally shows robust fidelity to its evolved social system. The pattern suggests a subtle relationship between physiological phenotypes and behavioural flexibility. While environmental conditions can vary widely within relatively short temporal or spatial scales, physiological changes and changes to the behaviours that regulate physiological processes, are constrained to longer cycles of adaptation. Physiology is then the limiting variable in the interaction between ecological variation and behavioural and socio-structural flexibility. Behavioural and socio-structural flexibility, in turn, will generate important feedbacks that will govern physiological function, thus creating a coupled web of interactions that can lead to changes in individual and collective behaviour. Longitudinal studies of equid and other large-bodied ungulate populations under environmental stress, such as those discussed here, may offer the best opportunities for researchers to examine, in real time, the interplay between individual behavioural plasticity, socio-structural flexibility, and the physiological and genetic changes that together produce adaptive change.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).
Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.
2013-01-01
Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030
A Quantitative Approach to Assessing System Evolvability
NASA Technical Reports Server (NTRS)
Christian, John A., III
2004-01-01
When selecting a system from multiple candidates, the customer seeks the one that best meets his or her needs. Recently the desire for evolvable systems has become more important and engineers are striving to develop systems that accommodate this need. In response to this search for evolvability, we present a historical perspective on evolvability, propose a refined definition of evolvability, and develop a quantitative method for measuring this property. We address this quantitative methodology from both a theoretical and practical perspective. This quantitative model is then applied to the problem of evolving a lunar mission to a Mars mission as a case study.
Schradin, Carsten
2013-05-19
Previously, it was widely believed that each species has a specific social organization, but we know now that many species show intraspecific variation in their social organization. Four different processes can lead to intraspecific variation in social organization: (i) genetic variation between individuals owing to local adaptation (between populations) or evolutionarily stable strategies within populations; (ii) developmental plasticity evolved in long-term (more than one generation) unpredictable and short-term (one generation) predictable environments, which is mediated by organizational physiological effects during early ontogeny; (iii) social flexibility evolved in highly unpredictable environments, which is mediated by activational physiological effects in adults; (iv) entirely extrinsic factors such as the death of a dominant breeder. Variation in social behaviour occurs between individuals in the case of genetic variation and developmental plasticity, but within individuals in the case of social flexibility. It is important to study intraspecific variation in social organization to understand the social systems of species because it reveals the mechanisms by which species can adapt to changing environments, offers a useful tool to study the ultimate and proximate causes of sociality, and is an interesting phenomenon by itself that needs scientific explanation.
Turner, Bethany L; Thompson, Amanda L
2013-08-01
Evolutionary paradigms of human health and nutrition center on the evolutionary discordance or "mismatch" model in which human bodies, reflecting adaptations established in the Paleolithic era, are ill-suited to modern industrialized diets, resulting in rapidly increasing rates of chronic metabolic disease. Though this model remains useful, its utility in explaining the evolution of human dietary tendencies is limited. The assumption that human diets are mismatched to the evolved biology of humans implies that the human diet is instinctual or genetically determined and rooted in the Paleolithic era. This review looks at current research indicating that human eating habits are learned primarily through behavioral, social, and physiological mechanisms that start in utero and extend throughout the life course. Adaptations that appear to be strongly genetic likely reflect Neolithic, rather than Paleolithic, adaptations and are significantly influenced by human niche-constructing behavior. Several examples are used to conclude that incorporating a broader understanding of both the evolved mechanisms by which humans learn and imprint eating habits and the reciprocal effects of those habits on physiology would provide useful tools for structuring more lasting nutrition interventions. © 2013 International Life Sciences Institute.
Diamandopoulos, A A; Goudas, P C
2000-01-01
Nephrology is a newborn speciality compared to the other medical specialities. However, the study of the urinary tract's physiology and pathology had begun simultaneously with the birth of medicine. The scientific revolution of the renaissance and enlightenment eras caused an intense contestation of earlier theories and methods as if all knowledge had evolved suddenly from parthenogenesis after the dark (?) medieval years and human intellect suddenly exploded to huge intelligence quotients after the 15th century while before that humans were mentally deprived. Indeed most of the scientific knowledge did evolve impressively during renaissance and enlightenment years but not through parthenogenesis. Some observations, discoveries and inventions of this era were actually reobservations, rediscoveries and reinventions. Such an example is that of the experiments of Sanctorius Santorii of the 16th century AD and of Erasistratus of the 3rd century BC. Sanctorius and Erasistratus carried out an experiment with the same basic principles, similar methodology and proportional results with an almost 2000 years lag phase. With our paper we wish to give credit to earlier researchers of physiological and medical knowledge who, despite the lack of technological support, often concluded in extremely accurate observations. Copyright 2000 S. Karger AG, Basel
Predicting musically induced emotions from physiological inputs: linear and neural network models.
Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M
2013-01-01
Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
Waters, Mark T; Nelson, David C; Scaffidi, Adrian; Flematti, Gavin R; Sun, Yueming K; Dixon, Kingsley W; Smith, Steven M
2012-04-01
Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.
Best practices in risk and crisis communication: Implications for natural hazards management
Toddi A. Steelman; Sarah McCaffrey
2013-01-01
As societies evolve, often the most appropriate response to the hazard must also evolve. However, such shifts in appropriate response to a hazard, whether at the individual or at the societal level, are rarely straightforward: Closing the gap between desired practice and current practice requires effective communication. Although there is a significant literature on...
Veazey, Connie H; Blanchard, Edward B; Hickling, Edward J; Buckley, Todd C
2004-03-01
This study sought to replicate past research that has shown differences in physiological responsiveness among survivors of motor vehicle accidents (MVAs) with posttraumatic stress disorder (PTSD) and those survivors who do not develop this disorder. Such physiological differences have been found specifically with heart rate (HR) reactivity. This study also attempts to account for differences among those survivors with PTSD who do respond physiologically in laboratory situations and those who do not show a physiological response when presented with audiotaped descriptions of their accidents. Results replicated the significant differences in HR reactivity between diagnostic groups with chronic PTSD versus those with subsyndromal PTSD and non-PTSD. Variables related to the severity of the diagnosis and trauma were found to discriminate between physiological responders and nonresponders with chronic PTSD.
The evolution of distributed sensing and collective computation in animal populations
Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D
2015-01-01
Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003
An evolving new paradigm: endothelial cells – conditional innate immune cells
2013-01-01
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413
An evolving new paradigm: endothelial cells--conditional innate immune cells.
Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng
2013-08-22
Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.
Analysis of High-order Social Interaction of Female Mice on the International Space Station
NASA Technical Reports Server (NTRS)
Lowe, M.; Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Cadena, S.; Stodieck, L.; Globus, R. K.; Ronca, A. E.
2017-01-01
Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating.
Tele-ICU and Patient Safety Considerations.
Hassan, Erkan
The tele-ICU is designed to leverage, not replace, the need for bedside clinical expertise in the diagnosis, treatment, and assessment of various critical illnesses. Tele-ICUs are primarily decentralized or centralized models with differing advantages and disadvantages. The centralized model has sufficiently powered published data to be associated with improved mortality and ICU length of stay in a cost-effective manner. Factors associated with improved clinical outcomes include improved compliance with best practices; providing off-hours implementation of the bedside physician's care plan; and identification of and rapid response to physiological instability (initial clinical review within 1 hour) and rapid response to alerts, alarms, or direct notification by bedside clinicians. With improved communication and frequent review of patients between the tele-ICU and the bedside clinicians, the bedside clinician can provide the care that only they can provide. Although technology continues to evolve at a rapid pace, technology alone will most likely not improve clinical outcomes. Technology will enable us to process real or near real-time data into complex and powerful predictive algorithms. However, the remote and bedside teams must work collaboratively to develop care processes to better monitor, prioritize, standardize, and expedite care to drive greater efficiencies and improve patient safety.
P4 medicine approach to obstructive sleep apnoea.
Lim, Diane C; Sutherland, Kate; Cistulli, Peter A; Pack, Allan I
2017-07-01
P4 medicine is an evolving approach to personalized medicine. The four Ps offer a means to: Predict who will develop disease and co-morbidities; Prevent rather than react to disease; Personalize diagnosis and treatment; have patients Participate in their own care. P4 medicine is very applicable to obstructive sleep apnoea (OSA) because each OSA patient has a different pathway to disease and its consequences. OSA has both structural and physiological mechanisms with different clinical subgroups, different molecular profiles and different consequences. This may explain why there are different responses to alternative therapies, such as intraoral devices and hypoglossal nerve stimulation therapy. Currently, technology facilitates patients to participate in their own care from screening for OSA (snoring and apnoea apps) to monitoring response to therapy (sleep monitoring, blood pressure, oxygen saturation and heart rate) as well as monitoring their own continuous positive airway pressure (CPAP) compliance. We present a conceptual framework that provides the basis for a new, P4 medicine approach to OSA and should be considered more in depth: predict and prevent those at high risk for OSA and consequences, personalize the diagnosis and treatment of OSA and build in patient participation to manage OSA. © 2017 Asian Pacific Society of Respirology.
Interaction of entomopathogenic fungi with the host immune system.
Qu, Shuang; Wang, Sibao
2018-06-01
Entomopathogenic fungi can invade wide range of insect hosts in the natural world and have been used as environmentally friendly alternatives to chemical insecticides for pest control. Studies of host-pathogen interactions provide valuable insights into the coevolutionay arms race between fungal pathogens and their hosts. Entomopathogenic fungi have evolved a series of sophisticated strategies to counter insect immune defenses. In response to fungal infection, insect hosts rely on behavior avoidance, physical barrier and innate immune defenses in the fight against invading pathogens. The insect cuticle acts as the first physical barrier against pathogens. It is an inhospitable physiological environment that contains chemicals (e.g., antimicrobial peptides and reactive oxygen species), which inhibit fungal growth. In addition, innate immune responses, including cellular immunity and humoral immunity, play critical roles in preventing fungal infection. In this review, we outline the current state of our knowledge of insect defenses to fungal infection and discuss the strategies by which entomopathogenic fungi counter the host immune system. Increased knowledge regarding the molecular interactions between entomopathogenic fungi and the insect host could provide new strategies for pest management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genetic adaptations of the plateau zokor in high-elevation burrows.
Shao, Yong; Li, Jin-Xiu; Ge, Ri-Li; Zhong, Li; Irwin, David M; Murphy, Robert W; Zhang, Ya-Ping
2015-11-25
The plateau zokor (Myospalax baileyi) spends its entire life underground in sealed burrows. Confronting limited oxygen and high carbon dioxide concentrations, and complete darkness, they epitomize a successful physiological adaptation. Here, we employ transcriptome sequencing to explore the genetic underpinnings of their adaptations to this unique habitat. Compared to Rattus norvegicus, genes belonging to GO categories related to energy metabolism (e.g. mitochondrion and fatty acid beta-oxidation) underwent accelerated evolution in the plateau zokor. Furthermore, the numbers of positively selected genes were significantly enriched in the gene categories involved in ATPase activity, blood vessel development and respiratory gaseous exchange, functional categories that are relevant to adaptation to high altitudes. Among the 787 genes with evidence of parallel evolution, and thus identified as candidate genes, several GO categories (e.g. response to hypoxia, oxygen homeostasis and erythrocyte homeostasis) are significantly enriched, are two genes, EPAS1 and AJUBA, involved in the response to hypoxia, where the parallel evolved sites are at positions that are highly conserved in sequence alignments from multiple species. Thus, accelerated evolution of GO categories, positive selection and parallel evolution at the molecular level provide evidences to parse the genetic adaptations of the plateau zokor for living in high-elevation burrows.
Disgust as an adaptive system for disease avoidance behaviour
Curtis, Valerie; de Barra, Mícheál; Aunger, Robert
2011-01-01
Disgust is an evolved psychological system for protecting organisms from infection through disease avoidant behaviour. This ‘behavioural immune system’, present in a diverse array of species, exhibits universal features that orchestrate hygienic behaviour in response to cues of risk of contact with pathogens. However, disgust is also a dynamic adaptive system. Individuals show variation in pathogen avoidance associated with psychological traits like having a neurotic personality, as well as a consequence of being in certain physiological states such as pregnancy or infancy. Three specialized learning mechanisms modify the disgust response: the Garcia effect, evaluative conditioning and the law of contagion. Hygiene behaviour is influenced at the group level through social learning heuristics such as ‘copy the frequent’. Finally, group hygiene is extended symbolically to cultural rules about purity and pollution, which create social separations and are enforced as manners. Cooperative hygiene endeavours such as sanitation also reduce pathogen prevalence. Our model allows us to integrate perspectives from psychology, ecology and cultural evolution with those of epidemiology and anthropology. Understanding the nature of disease avoidance psychology at all levels of human organization can inform the design of programmes to improve public health. PMID:21199843
Paraskevas, George K; Koutsouflianiotis, Konstantinos N; Nitsa, Zoi; Demesticha, Theano; Skandalakis, Panagiotis
2016-01-01
The evolution of knowledge regarding the anatomy and physiology of the spleen throughout Antiquity and the Early Middle Ages is described, and general perceptions about this organ during different eras along this time line are presented. The original words of great physicians from the period of time stretching from Ancient Egypt to the Avicennan era are quoted and discussed to demonstrate how knowledge of the spleen has evolved and to present the theories that dominated each era. Furthermore, theories about illnesses relating to the spleen are reported, which show how this organ was perceived-in terms of its function and anatomy-during each era.
Aeromedical decision making--it may be time for a paradigm change.
Steinkraus, Lawrence W; Rayman, Russell B; Butler, William P; Marsh, Royden W; Ercoline, William; Cowl, Clayton T
2012-10-01
Recent events in the U-2 and F-22 fleets have challenged aeromedical experts, highlighting the need for better in-flight aircrew physiologic and cognitive monitoring capability. Existing aerospace medicine risk assessment tools, while necessary, are no longer sufficient to affect positive safety changes given the evolving nature of the aerospace environment. Cognition and its sub-elements are now primary measures for the "Fit to Fly" decision. We must investigate practical methodologies for determining dynamic aircrew physiologic and cognitive function preflight (selection, retention) and in-flight (selection, retention, performance enhancement). In 2010, a panel of aeromedical experts met to address current paradigms and suggest possible solutions. This commentary briefly summarizes panel findings and recommendations.
Delbeke, Jean; Hoffman, Luis; Mols, Katrien; Braeken, Dries; Prodanov, Dimiter
2017-01-01
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies. PMID:29311765
Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A; Tazelaar, Anne O E; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P M; Schluepmann, Henriette
2017-01-01
Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N 2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg -1 N fixed and 35 t dry biomass. 15 N 2 fixation peaked at noon, reaching 0.4 mg N g -1 dry weight h -1 . Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern's physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N 2 -fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants.
Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O. E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P. M.; Schluepmann, Henriette
2017-01-01
Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf pockets and belong to the fastest growing plants. Experimental production reported here demonstrated N-fertilizer independent production of nitrogen-rich biomass with an annual yield potential per ha of 1200 kg−1 N fixed and 35 t dry biomass. 15N2 fixation peaked at noon, reaching 0.4 mg N g−1 dry weight h−1. Azolla ferns therefore merit consideration as protein crops in spite of the fact that little is known about the fern’s physiology to enable domestication. To gain an understanding of their nitrogen physiology, analyses of fern diel transcript profiles under differing nitrogen fertilizer regimes were combined with microscopic observations. Results established that the ferns adapted to the phototrophic N2-fixing symbionts N. azollae by (1) adjusting metabolically to nightly absence of N supply using responses ancestral to ferns and seed plants; (2) developing a specialized xylem-rich vasculature surrounding the leaf-pocket organ; (3) responding to N-supply by controlling transcripts of genes mediating nutrient transport, allocation and vasculature development. Unlike other non-seed plants, the Azolla fern clock is shown to contain both the morning and evening loops; the evening loop is known to control rhythmic gene expression in the vasculature of seed plants and therefore may have evolved along with the vasculature in the ancestor of ferns and seed plants. PMID:28408911
Millikan, W J; Henderson, J M; Stewart, M T; Warren, W D; Marsh, J W; Galloway, J R; Jennings, H; Kawasaki, S; Dodson, T F; Perlino, C A
1989-05-01
Orthotopic liver transplantation (OLT) has become standard therapy for patients with acute hepatic necrosis and end-stage liver disease. This study measured change in hepatic function (galactose elimination capacity [GEC]), liver blood flow (low dose galactose clearance: flow), hepatic volume (CT scan; volume) and morphology after OLT. The aim was to measure the physiologic response after OLT and compare this response with that after selective shunt (SS) and sclerotherapy (ES) to determine which patients should receive specific therapy. Between January 1987 and November 1988, 37 patients underwent OLT. Operative mortality was 18%, which was similar to that of SS in Child's C cirrhotics. GEC and volume were less in transplant patients than in cirrhotics treated with SS or ES. GEC, flow, and volume normalized after OLT; GEC was preserved after ES and SS, but volume decreased. Three preoperative patterns were observed that can aid in selection of OLT candidates. Patients with chronic cirrhosis (chronic active hepatitis; cryptogenic) need OLT when GEC is less than or equal to 225 mg/min and volume is less than or equal to 50% normal. Patients with Budd-Chiari Syndrome require OLT if cirrhosis has evolved. Patients with sclerosing cholangitis and primary biliary cirrhosis qualify for transplants when complications of the portal hypertensive syndrome develop. The studies can also direct therapy for ES failures. Selective shunt is indicated in those patients with stable disease whose GEC is greater than or equal to 300 mg/min and liver volume is greater than 75% normal; OLT is indicated for cirrhotics with GEC that is less than 225 mg/min and liver volume that is less than 50% predicted normal.
Kindermann, Nicole K; Werner, Natalie S
2014-12-01
Mental stress evokes several physiological responses such as the acceleration of heart rate, increase of electrodermal activity and the release of adrenaline. Moreover, physiological stress responses interact with emotional and behavioral stress responses. In the present study we provide evidence that viscero-sensory feedback from the heart (cardiac perception) is an important factor modulating emotional and cognitive stress responses. In our study, we compared participants with high versus low cardiac perception using a computerized mental stress task, in which they had to respond to rapidly presented visual and acoustic stimuli. Additionally, we assessed physiological responses (heart rate, skin conductance). Participants high in cardiac perception reported more negative emotions and showed worse task performance under the stressor than participants low in cardiac perception. These results were not moderated by physiological responses. We conclude that cardiac perception modulates stress responses by intensifying negative emotions and by impairing cognitive performance.
Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction.
Podlasek, Carol A; Mulhall, John; Davies, Kelvin; Wingard, Christopher J; Hannan, Johanna L; Bivalacqua, Trinity J; Musicki, Biljana; Khera, Mohit; González-Cadavid, Nestor F; Burnett, Arthur L
2016-08-01
The biological importance of testosterone is generally accepted by the medical community; however, controversy focuses on its relevance to sexual function and the sexual response, and our understanding of the extent of its role in this area is evolving. To provide scientific evidence examining the role of testosterone at the cellular and molecular levels as it pertains to normal erectile physiology and the development of erectile dysfunction and to assist in guiding successful therapeutic interventions for androgen-dependent sexual dysfunction. In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current basic science literature examining the role of testosterone in sexual function and dysfunction. Testosterone plays an important role in sexual function through multiple processes: physiologic (stimulates activity of nitric oxide synthase), developmental (establishes and maintains the structural and functional integrity of the penis), neural (development, maintenance, function, and plasticity of the cavernous nerve and pelvic ganglia), therapeutically for dysfunctional regulation (beneficial effect on aging, diabetes, and prostatectomy), and phosphodiesterase type 5 inhibition (testosterone supplement to counteract phosphodiesterase type 5 inhibitor resistance). Despite controversies concerning testosterone with regard to sexual function, basic science studies provide incontrovertible evidence for a significant role of testosterone in sexual function and suggest that properly administered testosterone therapy is potentially advantageous for treating male sexual dysfunction. Published by Elsevier Inc.
Monteiro, Diana A.; Taylor, Edwin W.; Sartori, Marina R.; Cruz, André L.; Rantin, Francisco T.; Leite, Cleo A. C.
2018-01-01
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems. PMID:29507882
Field, Katie J; Rimington, William R; Bidartondo, Martin I; Allinson, Kate E; Beerling, David J; Cameron, Duncan D; Duckett, Jeffrey G; Leake, Jonathan R; Pressel, Silvia
2016-01-01
Most land plants form mutualistic associations with arbuscular mycorrhizal fungi of the Glomeromycota, but recent studies have found that ancient plant lineages form mutualisms with Mucoromycotina fungi. Simultaneous associations with both fungal lineages have now been found in some plants, necessitating studies to understand the functional and evolutionary significance of these tripartite associations for the first time. We investigate the physiology and cytology of dual fungal symbioses in the early-diverging liverworts Allisonia and Neohodgsonia at modern and Palaeozoic-like elevated atmospheric CO2 concentrations under which they are thought to have evolved. We found enhanced carbon cost to liverworts with simultaneous Mucoromycotina and Glomeromycota associations, greater nutrient gain compared with those symbiotic with only one fungal group in previous experiments and contrasting responses to atmospheric CO2 among liverwort–fungal symbioses. In liverwort–Mucoromycotina symbioses, there is increased P-for-C and N-for-C exchange efficiency at 440 p.p.m. compared with 1500 p.p.m. CO2. In liverwort–Glomeromycota symbioses, P-for-C exchange is lower at ambient CO2 compared with elevated CO2. No characteristic cytologies of dual symbiosis were identified. We provide evidence of a distinct physiological niche for plant symbioses with Mucoromycotina fungi, giving novel insight into why dual symbioses with Mucoromycotina and Glomeromycota fungi persist to the present day. PMID:26613340
Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang
2013-12-01
Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.
Monteiro, Diana A; Taylor, Edwin W; Sartori, Marina R; Cruz, André L; Rantin, Francisco T; Leite, Cleo A C
2018-02-01
The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.
Photosynthetic diversity meets biodiversity: the C4 plant example.
Sage, Rowan F; Stata, Matt
2015-01-01
Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere. Copyright © 2014. Published by Elsevier GmbH.
A Perspective of the future of nuclear medicine training and certification
Arevalo-Perez, Julio; Paris, Manuel; Graham, Michael M.; Osborne, Joseph R.
2016-01-01
Nuclear Medicine has evolved from a medical subspecialty using quite basic tests to one using elaborate methods to image organ physiology and has truly become “Molecular Imaging”. Concurrently, there has also been a timely debate about who has to be responsible for keeping pace with all of the components of the developmental cycle; imaging, radiopharmaceuticals and instrumentation. Since the foundation of the ABNM, the practice of Nuclear Medicine and the process toward certification have undergone major revisions. At present, the debate is focused on the inevitable future convergence of Radiology and Nuclear Medicine. The potential for further cooperation or fusion of the American Board of Radiology (ABR) and the American Board of Nuclear Medicine (ABNM) is likely to bring about a new path for Nuclear Medicine and Molecular Imaging training. If the merger is done carefully, respecting the strengths of both partners equally, there is an excellent potential to create a hybrid Nuclear Medicine – Radiology specialty that combines Physiology and Molecular Biology with detailed anatomic imaging that will sustain the innovation that has been central to nuclear medicine residency and practice. Herein, we also introduce a few basic trends in imaging utilization in the United States. These trends do not predict future utilization, but highlight the need for an appropriately credentialed practitioner to interpret these examinations and provide value to the healthcare system. PMID:26687859
NASA Technical Reports Server (NTRS)
Low, P. A.; Opfer-Gehrking, T. L.
1999-01-01
The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.
Genomic basis for the convergent evolution of electric organs
Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.
2017-01-01
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089
Winterberg, Pamela D; Jiang, Rong; Maxwell, Josh T; Wang, Bo; Wagner, Mary B
2016-03-01
Uremic cardiomyopathy is responsible for high morbidity and mortality rates among patients with chronic kidney disease (CKD), but the underlying mechanisms contributing to this complex phenotype are incompletely understood. Myocardial deformation analyses (ventricular strain) of patients with mild CKD have recently been reported to predict adverse clinical outcome. We aimed to determine if early myocardial dysfunction in a mouse model of CKD could be detected using ventricular strain analyses. CKD was induced in 5-week-old male 129X1/SvJ mice through partial nephrectomy (5/6Nx) with age-matched mice undergoing bilateral sham surgeries serving as controls. Serial transthoracic echocardiography was performed over 16 weeks following induction of CKD. Invasive hemodynamic measurements were performed at 8 weeks. Gene expression and histology was performed on hearts at 8 and 16 weeks. CKD mice developed decreased longitudinal strain (-25 ± 4.2% vs. -29 ± 2.3%; P = 0.01) and diastolic dysfunction (E/A ratio 1.2 ± 0.15 vs. 1.9 ± 0.18; P < 0.001) compared to controls as early as 2 weeks following 5/6Nx. In contrast, ventricular hypertrophy was not apparent until 4 weeks. Hearts from CKD mice developed progressive fibrosis at 8 and 16 weeks with gene signatures suggestive of evolving heart failure with elevated expression of natriuretic peptides. Uremic cardiomyopathy in this model is characterized by early myocardial dysfunction which preceded observable changes in ventricular geometry. The model ultimately resulted in myocardial fibrosis and increased expression of natriuretic peptides suggestive of progressive heart failure. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Karoly, Hollis C.; Stevens, Courtney J.; Magnan, Renee E.; Harlaar, Nicole; Hutchison, Kent E.; Bryan, Angela D.
2012-01-01
Objective. To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions. PMID:22899923
Coping with thermal challenges: physiological adaptations to environmental temperatures.
Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K
2012-07-01
Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.
Metcalfe, J. D.; Le Quesne, W. J. F.; Cheung, W. W. L.; Righton, D. A.
2012-01-01
Physiological studies focus on the responses of cells, tissues and individuals to stressors, usually in laboratory situations. Conservation and management, on the other hand, focus on populations. The field of conservation physiology addresses the question of how abiotic drivers of physiological responses at the level of the individual alter requirements for successful conservation and management of populations. To achieve this, impacts of physiological effects at the individual level need to be scaled to impacts on population dynamics, which requires consideration of ecology. Successfully realizing the potential of conservation physiology requires interdisciplinary studies incorporating physiology and ecology, and requires that a constructive dialogue develops between these traditionally disparate fields. To encourage this dialogue, we consider the increasingly explicit incorporation of physiology into ecological models applied to marine fish conservation and management. Conservation physiology is further challenged as the physiology of an individual revealed under laboratory conditions is unlikely to reflect realized responses to the complex variable stressors to which it is exposed in the wild. Telemetry technology offers the capability to record an animal's behaviour while simultaneously recording environmental variables to which it is exposed. We consider how the emerging insights from telemetry can strengthen the incorporation of physiology into ecology. PMID:22566680
Research advances in major cereal crops for adaptation to abiotic stresses
Maiti, RK; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172
The cell as the mechanistic basis for evolution.
Torday, J S
2015-01-01
The First Principles for Physiology originated in and emanate from the unicellular state of life. Viewing physiology as a continuum from unicellular to multicellular organisms provides fundamental insight to ontogeny and phylogeny as a functionally integral whole. Such mechanisms are most evident under conditions of physiologic stress; all of the molecular pathways that evolved in service to the vertebrate water-land transition aided and abetted the evolution of the vertebrate lung, for example. Reduction of evolution to cell biology has an important scientific feature—it is predictive. One implication of this perspective on evolution is the likelihood that it is the unicellular state that is actually the object of selection. By looking at the process of evolution from its unicellular origins, the causal relationships between genotype and phenotype are revealed, as are many other aspects of physiology and medicine that have remained anecdotal and counter-intuitive. Evolutionary development can best be considered as a cyclical, epigenetic, reiterative environmental assessment process, originating from the unicellular state, both forward and backward, to sustain and perpetuate unicellular homeostasis. © 2015 Wiley Periodicals, Inc.
Research advances in major cereal crops for adaptation to abiotic stresses.
Maiti, R K; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.
Pharmacokinetics of drugs in pregnancy.
Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve
2015-11-01
Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications. Copyright © 2015 Elsevier Inc. All rights reserved.
Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.
Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro
2017-08-01
Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.
NASA Astrophysics Data System (ADS)
Collins, S.
2010-07-01
Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.
Charpentier, Xavier; Kay, Elisabeth; Schneider, Dominique; Shuman, Howard A.
2011-01-01
Natural transformation by competence is a major mechanism of horizontal gene transfer in bacteria. Competence is defined as the genetically programmed physiological state that enables bacteria to actively take up DNA from the environment. The conditions that signal competence development are multiple and elusive, complicating the understanding of its evolutionary significance. We used expression of the competence gene comEA as a reporter of competence development and screened several hundred molecules for their ability to induce competence in the freshwater living pathogen Legionella pneumophila. We found that comEA expression is induced by chronic exposure to genotoxic molecules such as mitomycin C and antibiotics of the fluoroquinolone family. These results indicated that, in L. pneumophila, competence may be a response to genotoxic stress. Sunlight-emitted UV light represents a major source of genotoxic stress in the environment and we found that exposure to UV radiation effectively induces competence development. For the first time, we show that genetic exchanges by natural transformation occur within an UV-stressed population. Genotoxic stress induces the RecA-dependent SOS response in many bacteria. However, genetic and phenotypic evidence suggest that L. pneumophila lacks a prototypic SOS response and competence development in response to genotoxic stress is RecA independent. Our results strengthen the hypothesis that competence may have evolved as a DNA damage response in SOS-deficient bacteria. This parasexual response to DNA damage may have enabled L. pneumophila to acquire and propagate foreign genes, contributing to the emergence of this human pathogen. PMID:21169481
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. FINAL REPORT Investigation of the Physiological Responses...The overall top level goal of this effort is to investigate the physiological i.e. neuroimmunoendocrinological responses of beluga whales to...adrenocorticotropin hormone, aldosterone , catecholamines) in different matrices (blood, saliva, blow, feces) in conjunction with immune function
Schwartz, Scott; Lowry, David B.; Aspinwall, Michael J.; Palacio-Mejia, Juan Diego; Hawkes, Christine V.; Fay, Philip A.
2016-01-01
Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits. PMID:27246097
Stress physiology in marine mammals: how well do they fit the terrestrial model?
Atkinson, Shannon; Crocker, Daniel; Houser, Dorian; Mashburn, Kendall
2015-07-01
Stressors are commonly accepted as the causal factors, either internal or external, that evoke physiological responses to mediate the impact of the stressor. The majority of research on the physiological stress response, and costs incurred to an animal, has focused on terrestrial species. This review presents current knowledge on the physiology of the stress response in a lesser studied group of mammals, the marine mammals. Marine mammals are an artificial or pseudo grouping from a taxonomical perspective, as this group represents several distinct and diverse orders of mammals. However, they all are fully or semi-aquatic animals and have experienced selective pressures that have shaped their physiology in a manner that differs from terrestrial relatives. What these differences are and how they relate to the stress response is an efflorescent topic of study. The identification of the many facets of the stress response is critical to marine mammal management and conservation efforts. Anthropogenic stressors in marine ecosystems, including ocean noise, pollution, and fisheries interactions, are increasing and the dramatic responses of some marine mammals to these stressors have elevated concerns over the impact of human-related activities on a diverse group of animals that are difficult to monitor. This review covers the physiology of the stress response in marine mammals and places it in context of what is known from research on terrestrial mammals, particularly with respect to mediator activity that diverges from generalized terrestrial models. Challenges in conducting research on stress physiology in marine mammals are discussed and ways to overcome these challenges in the future are suggested.
Tick Tock: Circadian Regulation of Plant Innate Immunity.
Lu, Hua; McClung, C Robertson; Zhang, Chong
2017-08-04
Many living organisms on Earth have evolved the ability to integrate environmental and internal signals to determine time and thereafter adjust appropriately their metabolism, physiology, and behavior. The circadian clock is the endogenous timekeeper critical for multiple biological processes in many organisms. A growing body of evidence supports the importance of the circadian clock for plant health. Plants activate timed defense with various strategies to anticipate daily attacks of pathogens and pests and to modulate responses to specific invaders in a time-of-day-dependent manner (gating). Pathogen infection is also known to reciprocally modulate clock activity. Such a cross talk likely reflects the adaptive nature of plants to coordinate limited resources for growth, development, and defense. This review summarizes recent progress in circadian regulation of plant innate immunity with a focus on the molecular events linking the circadian clock and defense. More and better knowledge of clock-defense cross talk could help to improve disease resistance and productivity in economically important crops.
The C-terminal sequence of several human serine proteases encodes host defense functions.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2011-01-01
Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.
A novel immune-related gene HDD1 of silkworm Bombyx mori is involved in bacterial response.
Zhang, Kui; Pan, Guangzhao; Zhao, Yuzu; Hao, Xiangwei; Li, Chongyang; Shen, Li; Zhang, Rui; Su, Jingjing; Cui, Hongjuan
2017-08-01
Insects have evolved an effective immune system to respond to various challenges. In this study, a novel immune-related gene, called BmHDD1, was first charactered in silkworm, Bombyx mori. BmHDD1 contained an ORF of 837bp and encoding a deduced protein of 278 amino acids. BmHDD1 was specifically expressed in hemocytes, and highly expressed at the molting and metamorphosis stages under normal physiological conditions. Our results suggested that BmHDD1 was mainly generated by hemocytes and secreted into hemolymph. Our results also showed that the expression level of BmHDD1 was significantly increased after 20E injection, which indicated that BmHDD1 might be regulated by ecdysone. More importantly, BmHDD1 was dramatically induced after injected with different types of PAMPs or bacteria, either in hemocytes or fat body. Those results suggested that BmHDD1 plays a role in developing and immunity system in silkworm, Bombyx mori. Copyright © 2017. Published by Elsevier Ltd.
Of mice and men: the evolving phenotype of aromatase deficiency.
Jones, Margaret E E; Boon, Wah Chin; Proietto, Joseph; Simpson, Evan R
2006-03-01
We are rapidly becoming aware of the importance of estrogen in maintaining virtually all facets of male health. In order for estrogens to be synthesized endogenously, the enzyme responsible for their synthesis from androgens, aromatase, must be functional. The seven known men in whom aromatase is nonfunctional all have a mutation in either exon V or IX of the CYP19 gene, which encodes aromatase. Collectively, these men are reported to have undetectable estrogen; normal to high levels of testosterone and gonadotropins; tall stature with delayed skeletal maturation and epiphyseal closure; osteoporosis; impaired lipid and insulin metabolism; and impaired reproductive function. The aromatase knockout mouse presents with a phenotype that is similar in many aspects and provides a valuable tool with which to examine and manipulate the actions of estrogen. By studying the naturally occurring aromatase-deficient humans, together with studies of the aromatase-knockout mouse, we are expanding our understanding of the essential role of estrogen in male physiology.
Putting a finishing touch on GECIs.
Rose, Tobias; Goltstein, Pieter M; Portugues, Ruben; Griesbeck, Oliver
2014-01-01
More than a decade ago genetically encoded calcium indicators (GECIs) entered the stage as new promising tools to image calcium dynamics and neuronal activity in living tissues and designated cell types in vivo. From a variety of initial designs two have emerged as promising prototypes for further optimization: FRET (Förster Resonance Energy Transfer)-based sensors and single fluorophore sensors of the GCaMP family. Recent efforts in structural analysis, engineering and screening have broken important performance thresholds in the latest generation for both classes. While these improvements have made GECIs a powerful means to perform physiology in living animals, a number of other aspects of sensor function deserve attention. These aspects include indicator linearity, toxicity and slow response kinetics. Furthermore creating high performance sensors with optically more favorable emission in red or infrared wavelengths as well as new stably or conditionally GECI-expressing animal lines are on the wish list. When the remaining issues are solved, imaging of GECIs will finally have crossed the last milestone, evolving from an initial promise into a fully matured technology.
Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.
2001-01-01
Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.
Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E
2009-08-11
Where do the genetic variants underlying adaptive change come from? Are currently adaptive alleles recruited by selection from standing genetic variation within populations, moved through introgression from other populations, or do they arise as novel mutations? Here, we examine the molecular basis of repeated adaptation to the toxin of deadly prey in 3 species of garter snakes (Thamnophis) to determine whether adaptation has evolved through novel mutations, sieving of existing variation, or transmission of beneficial alleles across species. Functional amino acid substitutions in the skeletal muscle sodium channel (Na(v)1.4) are largely responsible for the physiological resistance of garter snakes to tetrodotoxin found in their newt (Taricha) prey. Phylogenetic analyses reject the hypotheses that the unique resistance alleles observed in multiple Thamnophis species were present before the split of these lineages, or that alleles were shared among species through occasional hybridization events. Our results demonstrate that adaptive evolution has occurred independently multiple times in garter snakes via the de novo acquisition of beneficial mutations.
Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders?
Harris, Kristina; Kassis, Amira; Major, Geneviève; Chou, Chieh J.
2012-01-01
The gut microbiota refers to the trillions of microorganisms residing in the intestine and is integral in multiple physiological processes of the host. Recent research has shown that gut bacteria play a role in metabolic disorders such as obesity, diabetes, and cardiovascular diseases. The mechanisms by which the gut microbiota affects metabolic diseases are by two major routes: (1) the innate immune response to the structural components of bacteria (e.g., lipopolysaccharide) resulting in inflammation and (2) bacterial metabolites of dietary compounds (e.g., SCFA from fiber), which have biological activities that regulate host functions. Gut microbiota has evolved with humans as a mutualistic partner, but dysbiosis in a form of altered gut metagenome and collected microbial activities, in combination with classic genetic and environmental factors, may promote the development of metabolic disorders. This paper reviews the available literature about the gut microbiota and aforementioned metabolic disorders and reveals the gaps in knowledge for future study. PMID:22315672
Márquez, Manlio F; Gómez-Flores, Jorge Rafael; González-Hermosillo, Jesús A; Ruíz-Siller, Teresita de Jesús; Cárdenas, Manuel
2016-12-29
Vasovagal or neurocardiogenic syncope is a common clinical situation and, as with other entities associated with orthostatic intolerance, the underlying condition is a dysfunction of the autonomic nervous system. This article reviews various aspects of vasovagal syncope, including its relationship with orthostatic intolerance and the role of the autonomic nervous system in it. A brief history of the problem is given, as well as a description of how the names and associated concepts have evolved. The response of the sympathetic system to orthostatic stress, the physiology of the baroreflex system and the neurohumoral changes that occur with standing are analyzed. Evidence is presented of the involvement of the autonomic nervous system, including studies of heart rate variability, microneurography, cardiac innervation, and molecular genetic studies. Finally, we describe different studies on the use of beta-blockers and norepinephrine transporter inhibitors (sibutramine, reboxetine) and the rationality of their use to prevent this type of syncope. Creative Commons
Evolution of Acid-Sensing Olfactory Circuits in Drosophilids.
Prieto-Godino, Lucia L; Rytz, Raphael; Cruchet, Steeve; Bargeton, Benoîte; Abuin, Liliane; Silbering, Ana F; Ruta, Vanessa; Dal Peraro, Matteo; Benton, Richard
2017-02-08
Animals adapt their behaviors to specific ecological niches, but the genetic and cellular basis of nervous system evolution is poorly understood. We have compared the olfactory circuits of the specialist Drosophila sechellia-which feeds exclusively on Morinda citrifolia fruit-with its generalist cousins D. melanogaster and D. simulans. We show that D. sechellia exhibits derived odor-evoked attraction and physiological sensitivity to the abundant Morinda volatile hexanoic acid and characterize how the responsible sensory receptor (the variant ionotropic glutamate receptor IR75b) and attraction-mediating circuit have evolved. A single amino acid change in IR75b is sufficient to recode it as a hexanoic acid detector. Expanded representation of this sensory pathway in the brain relies on additional changes in the IR75b promoter and trans-acting loci. By contrast, higher-order circuit adaptations are not apparent, suggesting conserved central processing. Our work links olfactory ecology to structural and regulatory genetic changes influencing nervous system anatomy and function. Copyright © 2017 Elsevier Inc. All rights reserved.
Schild, Lisa C.; Zbinden, Laurie; Bell, Harold W.; Yu, Yanxun V.; Sengupta, Piali; Goodman, Miriam B.; Glauser, Dominique A.
2015-01-01
SUMMARY Through encounters with predators, competitors, and noxious stimuli, animals have evolved defensive responses that minimize injury and are essential for survival. Physiological adaptation modulates the stimulus intensities that trigger such nocifensive behaviors, but the molecular networks that define their operating range are largely unknown. Here, we identify a novel, gain-of-function allele of the cmk-1 CaMKI gene in C. elegans and show that loss of the regulatory domain of the CaMKI enzyme produces thermal analgesia and shifts the operating range for nocifensive heat avoidance to higher temperatures. Such analgesia depends on nuclear CMK-1 signaling, while cytoplasmic CMK-1 signaling lowers the threshold for thermal avoidance. CMK-1 acts downstream of heat detection in thermal receptor neurons and controls neuropeptide release. Our results establish CaMKI as a key regulator of the operating range for nocifensive behaviors, and suggest strategies for producing thermal analgesia through the regulation of CaMKI-dependent signaling. PMID:25467982
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
Physiological responses induced by pleasant stimuli.
Watanuki, Shigeki; Kim, Yeon-Kyu
2005-01-01
The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.
Differences in autonomic physiological responses between good and poor inductive reasoners.
Melis, C; van Boxtel, A
2001-11-01
We investigated individual- and task-related differences in autonomic physiological responses induced by time limited figural and verbal inductive reasoning tasks. In a group of 52 participants, the percentage of correctly responded task items was evaluated together with nine different autonomic physiological response measures and respiration rate (RR). Weighted multidimensional scaling analyses of the physiological responses revealed three underlying dimensions, primarily characterized by RR, parasympathetic, and sympathetic activity. RR and sympathetic activity appeared to be relatively more important response dimensions for poor reasoners, whereas parasympathetic responsivity was relatively more important for good reasoners. These results suggest that poor reasoners showed higher levels of cognitive processing intensity than good reasoners. Furthermore, for the good reasoners, the dimension of sympathetic activity was relatively more important during the figural than during the verbal reasoning task, which was explained in terms of hemispheric lateralization in autonomic function.
Salvia, Emilie; Guillot, Aymeric; Collet, Christian
2012-05-01
Decision-making in daily activities require different levels of mental load depending on both objective task requirements and self-perception of task constraints. Such factors elicit strain that could influence information processing, decision-making, and forthcoming performance. This experiment aimed at studying how task difficulty, errors and unfair feedback may impact strain. Participants were requested to compare two polygons and to decide as quickly and accurately as possible whether these were identical or different. Task difficulty depended upon the number of polygon sides (from 12 to 21 sides) and their degree of similarity (different by 1, 2 or 3 sides). Reaction time (RT) and response accuracy were the dependent variables as well as electrodermal activity (EDA) and Instantaneous Heart Rate (IHR). Physiological variables from the autonomic nervous system were expected to evolve as a function of strain. As expected, we found that RT increased along with task difficulty. Similarly, the amplitude of IHR responses was affected by task difficulty. We recorded bradycardia during the 5s pre-stimulation period associated with correct responses, while wrong responses were associated with tachycardia. Bradycardia was thus a predictive index of performance related to the readiness to act when the participants focused on external cues. Processing identical polygons elicited longer electrodermal responses than those for different polygons. Indeed, the comparison of two different polygons ended as early as the difference was found. When similar, the participants were still looking for a difference and the issue was uncertain until the performance was displayed. Unfair information, i.e. wrong feedback associated with a good response, as well as response errors elicited larger and longer electrodermal responses. Autonomic nervous system activity was thus task-specific, and correlated to both cognitive and emotional processes. Copyright © 2012 Elsevier B.V. All rights reserved.
Fournier-Level, A; Neumann-Mondlak, A; Good, R T; Green, L M; Schmidt, J M; Robin, C
2016-05-01
Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long-term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field-derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self-organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress-responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade-offs in benign environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Cross, Karissa L.; Chirania, Payal; Xiong, Weili; ...
2018-03-13
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously unculturedDesulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives,D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury weremore » also lost byD. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing.Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, Karissa L.; Chirania, Payal; Xiong, Weili
The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously unculturedDesulfobulbus oralis , the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives,D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury weremore » also lost byD. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing.Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.« less
Optimization of chitosan nanoparticles for colon tumors using experimental design methodology.
Jain, Anekant; Jain, Sanjay K
2016-12-01
Purpose Colon-specific drug delivery systems (CDDS) can improve the bio-availability of drugs through the oral route. A novel formulation for oral administration using ligand coupled chitosan nanoparticles bearing 5-Flurouracil (5FU) encapsulated in enteric coated pellets has been investigated for CDDS. Method The effect of polymer concentration, drug concentration, stirring time and stirring speed on the encapsulation efficiency, and size of nanoparticles were evaluated. The best (or optimum) formulation was obtained by response surface methodology. Using the experimental data, analysis of variance has been carried out to evolve linear empirical models. Using a new methodology, polynomial models have been evolved and the parametric analysis has been carried out. In order to target nanoparticles to the hyaluronic acid (HA) receptors present on colon tumors, HA coupled nanoparticles were tested for their efficacy in vivo. The HA coupled nanoparticles were encapsulated in pellets and were enteric coated to release the drug in the colon. Results Drug release studies under conditions of mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The relatively high local drug concentration with prolonged exposure time provides a potential to enhance anti-tumor efficacy with low systemic toxicity for the treatment of colon cancer. Conclusions Conclusively, HA coupled nanoparticles can be considered as the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of colorectal cancer.
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigation of the Physiological Responses of Belugas...of this effort is to investigate the physiological i.e. neuroimmunoendocrinological responses of beluga whales to “stressors”. “Stressor events...hormone, aldosterone , catecholamines) in different matrices (blood, saliva, blow, feces) in conjunction with immune function. In addition, “stressor
RESPONSE OF THE THERMOREGULATORY SYSTEM TO TOXIC CHEMICALS
The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...
Resistance Training: Physiological Responses and Adaptations (Part 3 of 4).
ERIC Educational Resources Information Center
Fleck, Steven J.; Kraemer, William J.
1988-01-01
The physiological responses and adaptations which occur as a result of resistance training, such as cardiovascular responses, serum lipid count, body composition, and neural adaptations are discussed. Changes in the endocrine system are also described. (JL)
Response of the Thermoregulatory System to Toxic Chemicals
The thermoregulatory system plays a crucial role in the physiological response to pesticides, airborne pollutants, and other toxic agents. The exposure to toxicants via inhalation, cutaneous absorption, or ingestion, their clearance from the body, the physiological responses, del...
Subjective and physiological emotional response in euthymic bipolar patients: a pilot study.
Lemaire, Mathieu; Aguillon-Hernandez, Nadia; Bonnet-Brilhault, Frédérique; Martineau, Joëlle; El-Hage, Wissam
2014-12-15
The euthymic phase of bipolar disorders may be associated with residual emotional and/or subsyndromal symptoms. The aim of this study was to compare subjective and physiologic emotional response to negative, neutral and positive emotion eliciting pictures between euthymic bipolar patients (n=26) and healthy controls (n=30). We evaluated emotional response using an emotional induction method with emotional pictures from the International Affective Picture System. We measured subjective emotional response with the Self-Assessment Manikin and physiological emotional response by measuring pupil size. No difference was found between euthymic bipolar patients and controls regarding subjective emotional response. However, upon viewing positive pictures, pupil dilation was significantly lower in euthymic bipolar patients compared to controls. This finding suggests that euthymic bipolar phase may be associated with reduced physiologic emotional response to positive valence, which is consistent with a more general negative emotional bias or can be understood as a residual emotional subsyndromal symptom. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lang, Annie
1990-01-01
Examines how emotional content in televised messages intensifies physiological attentional responses. Explains that heart rate data indicating both shorter-term responses and longer-term arousal were collected from 10 female and 4 male advertising students. Finds that emotional content increases physiological arousal in viewers and that heart…
Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.
Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S
2016-01-01
Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.
Kleynhans, E; Clusella-Trullas, S; Terblanche, J S
2014-02-01
Physiological responses to transient conditions may result in costly responses with little fitness benefits, and therefore, a trade-off must exist between the speed of response and the duration of exposure to new conditions. Here, using the puparia of an important insect disease vector, Glossina pallidipes, we examine this potential trade-off using a novel combination of an experimental approach and a population dynamics model. Specifically, we explore and dissect the interactions between plastic physiological responses, treatment-duration and -intensity using an experimental approach. We then integrate these experimental results from organismal water-balance data and their plastic responses into a population dynamics model to examine the potential relative fitness effects of simulated transient weather conditions on population growth rates. The results show evidence for the predicted trade-off for plasticity of water loss rate (WLR) and the duration of new environmental conditions. When altered environmental conditions lasted for longer durations, physiological responses could match the new environmental conditions, and this resulted in a lower WLR and lower rates of population decline. At shorter time-scales however, a mismatch between acclimation duration and physiological responses was reflected by reduced overall population growth rates. This may indicate a potential fitness cost due to insufficient time for physiological adjustments to take place. The outcomes of this work therefore suggest plastic water balance responses have both costs and benefits, and these depend on the time-scale and magnitude of variation in environmental conditions. These results are significant for understanding the evolution of plastic physiological responses and changes in population abundance in the context of environmental variability. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Physiological Effects of Nature Therapy: A Review of the Research in Japan.
Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi
2016-08-03
Humans have evolved into what they are today after the passage of 6-7 million years. If we define the beginning of urbanization as the rise of the industrial revolution, less than 0.01% of our species' history has been spent in modern surroundings. Humans have spent over 99.99% of their time living in the natural environment. The gap between the natural setting, for which our physiological functions are adapted, and the highly urbanized and artificial setting that we inhabit is a contributing cause of the "stress state" in modern people. In recent years, scientific evidence supporting the physiological effects of relaxation caused by natural stimuli has accumulated. This review aimed to objectively demonstrate the physiological effects of nature therapy. We have reviewed research in Japan related to the following: (1) the physiological effects of nature therapy, including those of forests, urban green space, plants, and wooden material and (2) the analyses of individual differences that arise therein. The search was conducted in the PubMed database using various keywords. We applied our inclusion/exclusion criteria and reviewed 52 articles. Scientific data assessing physiological indicators, such as brain activity, autonomic nervous activity, endocrine activity, and immune activity, are accumulating from field and laboratory experiments. We believe that nature therapy will play an increasingly important role in preventive medicine in the future.
Role of cell type and animal species in tumor metastasis
NASA Astrophysics Data System (ADS)
Solban, Nicolas; Georgakoudi, Irene; Rice, William L.; Lin, Charles; Hasan, Tayyaba
2004-06-01
Photodynamic therapy (PDT) is now a reasonably well-known therapeutic option and is approved as a first line treatment of age-related macular degeneration (AMD), a non-oncologic condition. For most cancer applications PDT is approved mainly as a palliative or adjunctive treatment often when all other options have failed. As the modality evolves toward becoming a first-line or curative option, long-term effects of processes involved will need to be studied. Cellular and tissue responses to PDT are more complex than responses to the more conventional therapies, perhaps because PDT is inherently a binary (or ternary) therapy. In addition to the nature and localization of the photosensitizer (PS), the timing of illumination after administration, the mode of administration and the PS and light doses, the efficacy and selectivity of responses are also determined by the physiology and geometry of tumors, the inherent survivability of tumor cells (in circulation and other anatomic sites) and cellular and molecular responses to PDT. The overall outcome of photodynamic treatment in the long term is determined by a combination, in varying degrees, of all of the above factors. In order to enhance and broaden the application of PDT to complex anatomical sites, an understanding of these factors would be useful. In the laboratory, the outcome is also dependent on the specific animal models being studied. This manuscript discusses preliminary studies along these lines using a variety of tools and implications, if any, of the results obtained.
The XIIIth International Physiological Congress in Boston in 1929: American physiology comes of age.
Rall, Jack A
2016-03-01
In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological Congress occurred in 1889 in Switzerland with an emphasis on experimental demonstrations. The XIIIth Congress, the first to be held outside of Europe, took place in Boston, MA, in 1929. It was a watershed meeting and indicated that American physiology had come of age. Meticulously organized, it was the largest congress to date, with over 1,200 participants from more than 40 countries. Getting to the congress was a cultural adventure, especially for the 400 scientists and their families from over 20 European countries, who sailed for 10 days on the S.S. Minnekahda. Many of the great physiologists of the world were in attendance, including 22 scientists who were either or would become Nobel Laureates. There were hundreds of platform presentations and many experimental demonstrations. The meeting was not without controversy as a conflict, still not completely settled, arose over the discovery of ATP. After the meeting, hundreds of participants made a memorable trip to the Marine Biological Laboratory at Woods Hole, MA, which culminated in a "good old fashioned Cape Cod Clambake." Although not as spectacular as the 1929 congress, the physiological congresses have continued with goals similar to those established more than a century ago. Copyright © 2016 The American Physiological Society.
Pediatric heart transplantation: demographics, outcomes, and anesthetic implications.
Schure, Annette Y; Kussman, Barry D
2011-05-01
The evolving demographics, outcomes, and anesthetic management of pediatric heart transplant recipients are reviewed. As survival continues to improve, an increasing number of these patients will present to our operating rooms and sedation suites. It is therefore important that all anesthesiologists, not only those specialized in cardiac anesthesia, have a basic understanding of the physiologic changes in the transplanted heart and the anesthetic implications thereof. © 2010 Blackwell Publishing Ltd.
Emerging Roles of Strigolactones in Plant Responses to Stress and Development
Pandey, Amita; Sharma, Manisha; Pandey, Girdhar K.
2016-01-01
Our environment constantly undergoes changes either natural or manmade affecting growth and development of all the organisms including plants. Plants are sessile in nature and therefore to counter environmental changes such as light, temperature, nutrient and water availability, pathogen, and many others; plants have evolved intricate signaling mechanisms, composed of multiple components including several plant hormones. Research conducted in the last decade has placed Strigolactones (SLs) in the growing list of plant hormones involved in coping with environmental changes. SLs are carotenoid derivatives functioning as both endogenous and exogenous signaling molecules in response to various environmental cues. Initially, SLs were discovered as compounds that are harmful to plants due to their role as stimulants in seed germination of parasitic plants, a more beneficial role in plant growth and development was uncovered much later. SLs are required for maintaining plant architecture by regulating shoot and root growth in response to various external stimuli including arbuscular mycorrhizal fungi, light, nutrients, and temperature. Moreover, a role for SLs has also been recognized during various abiotic and biotic stress conditions making them suitable target for generating genetically engineered crop plants with improved yield. This review discusses the biosynthesis of SLs and their regulatory and physiological roles in various stress conditions. Understanding of detailed signaling mechanisms of SLs will be an important factor for designing genetically modified crops for overcoming the problem of crop loss under stressful conditions. PMID:27092155
Plasqui, G
2017-02-01
Accurate assessment of physical activity and energy expenditure has been a research focus for many decades. A variety of wearable sensors have been developed to objectively capture physical activity patterns in daily life. These sensors have evolved from simple pedometers to tri-axial accelerometers, and multi sensor devices measuring different physiological constructs. The current review focuses on how activity recognition may help to improve daily life energy expenditure assessment. A brief overview is given about how different sensors have evolved over time to pave the way for recognition of different activity types. Once the activity is recognized together with the intensity of the activity, an energetic value can be attributed. This concept can then be tested in daily life using the independent reference technique doubly labeled water. So far, many studies have been performed to accurately identify activity types, and some of those studies have also successfully translated this into energy expenditure estimates. Most of these studies have been performed under standardized conditions, and the true applicability in daily life has rarely been addressed. The results so far however are highly promising, and technological advancements together with newly developed algorithms based on physiological constructs will further expand this field of research. © 2017 World Obesity Federation.
Biomimetics of fetal alveolar flow phenomena using microfluidics.
Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué
2015-01-01
At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.
Bioattractors: dynamical systems theory and the evolution of regulatory processes.
Jaeger, Johannes; Monk, Nick
2014-06-01
In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham
2007-10-01
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
Harte, Christopher B; Meston, Cindy M
2008-05-01
Extensive research suggests that long-term cigarette smoking is an independent risk factor for the introduction of sexual dysfunction in men. However, results of limited data investigating this relationship in women are mixed. No studies have examined the acute effects of tobacco or nicotine on physiological sexual response in women. Controlled experimental studies examining acute effects of isolated nicotine intake on female physiological sexual responses are necessary in order to help elucidate tobacco's potential role in the development and/or maintenance of sexual impairment in women. To examine whether isolated nicotine intake acutely affects sexual arousal responses in nonsmoking women. Twenty-five sexually functional women (mean age = 20 years) each with less than 100 direct exposures to nicotine completed two counterbalanced conditions in which they were randomized to received either nicotine gum (6 mg) or placebo gum, both administered double-blind and matched for appearance, taste, and consistency, approximately 40 minutes prior to viewing an erotic film. Physiological (changes in vaginal pulse amplitude via vaginal photoplethysmography) and subjective (continuous self-report) sexual responses to erotic stimuli were examined, as well as changes in mood. Nicotine significantly reduced genital responses to the erotic films (P = 0.05), corresponding to a 30% attenuation in physiological sexual arousal. This occurred in 11 of 18 women with valid physiological assessments. Nicotine had no significant effect on continuous self-report ratings of sexual arousal (P = 0.45), or on mood (all Ps > 0.05). Acute nicotine intake significantly attenuates physiological sexual arousal in healthy nonsmoking women. Our findings provide support to the hypothesis that nicotine may be the primary pharmacological agent responsible for genital hemodynamic disruption, thereby facilitating a cascade of biochemical and vascular events which may impair normal sexual arousal responses.
The relationship between health and mating success in humans
Rhodes, Gillian
2017-01-01
Health has been claimed to play an important role in human sexual selection, especially in terms of mate choice. Our preferences for attractive individuals are said to represent evolved adaptations for finding high-quality, healthy mates. If this is true, then we expect health to predict mating success in humans. We tested this hypothesis using several important physiological indicators of health, including immune function, oxidative stress and semen quality, and self-reported measures of sexual behaviour that contribute to mating success. In contrast to our hypothesis, we did not find a relationship between the physiological measures of health and sexual behaviour. Our results provide little support for claims that health, at least the health measures we used, increases mating success in relatively healthy humans. PMID:28280558
The S(c)ensory Immune System Theory.
Veiga-Fernandes, Henrique; Freitas, António A
2017-10-01
Viewpoints on the immune system have evolved across different paradigms, including the clonal selection theory, the idiotypic network, and the danger and tolerance models. Herein, we propose that in multicellular organisms, where panoplies of cells from different germ layers interact and immune cells are constantly generated, the behavior of the immune system is defined by the rules governing cell survival, systems physiology and organismic homeostasis. Initially, these rules were imprinted at the single cell-protist level, but supervened modifications in the transition to multicellular organisms. This context determined the emergence of the 'sensory immune system', which operates in a s(c)ensor mode to ensure systems physiology, organismic homeostasis, and perpetuation of its replicating molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Social Regulation of Human Gene Expression: Mechanisms and Implications for Public Health
2013-01-01
Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific “social programs” to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health. PMID:23927506
Construction and screening of marine metagenomic libraries.
Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth
2010-01-01
Marine microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of marine multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on marine tissues of multicellular organisms are rich sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from marine habitats and exemplarily one function based screen of metagenomic clones.
Herring, G.; Cook, Mark I.; Gawlik, D.E.; Call, Erynn M.
2011-01-01
Physiological responses to environmental stress such as adrenocortical hormones and cellular stress proteins have recently emerged as potentially powerful tools for investigating physiological effects of avian food limitation. However, little is known about the physiological stress responses of free-living nestling birds to environmental variation in food availability. We experimentally tested how hydrologically mediated changes in food availability affect the physiological stress responses of juvenile white ibises Eudocimus albus in a fluctuating wetland. We provided supplementary food to free-living nestlings during 2years with contrasting hydrologic and food availability conditions, and used plasma (PCORT) and faecal (FCORT) corticosterone and heat shock proteins (HSP60 and HSP70) from first-hatched (A-nestlings) and second-hatched (B-nestlings) to detect relatively short- to long-term responses to food limitation. Nestling physiological stress responses were relatively low in all treatments during the year with optimal food availability, but PCORT, FCORT and HSP60 levels increased during the poor food year. FCORT and HSP60 responses were clearly due to nutritional condition as elevated concentrations were evident primarily in control nestlings. Significant year by hatch order interactions for both FCORT and HSP60 revealed that these increases were largely incurred by B-nestlings. FCORT and HSP60 responses were also well developed early in neonatal development and remained elevated for the duration of the experiment suggesting a chronic stress response. PCORT and HSP70 were less informative stress responses. The nutritionally mediated increases in FCORT and HSP60 provide compelling evidence that white ibis nestlings can be physiologically affected by environmental food levels. FCORT and HSP60 are effective indicators of nutritional mediated stress for nestling white ibises and potentially for other species prone to capture or handling stress. ?? 2010 The Authors. Functional Ecology ?? 2010 British Ecological Society.
Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco
2015-01-01
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.
García-Pinillos, Felipe; Soto-Hermoso, Víctor Manuel; Latorre-Román, Pedro Ángel
2015-01-01
This study aimed to describe the acute impact of extended interval training (EIT) on physiological and thermoregulatory levels, as well as to determine the influence of athletic performance and age effect on the aforementioned response in endurance runners. Thirty-one experienced recreational male endurance runners voluntarily participated in this study. Subjects performed EIT on an outdoor running track, which consisted of 12 runs of 400 m. The rate of perceived exertion, physiological response through the peak and recovery heart rate, blood lactate, and thermoregulatory response through tympanic temperature, were controlled. A repeated measures analysis revealed significant differences throughout EIT in examined variables. Cluster analysis grouped according to the average performance in 400 m runs led to distinguish between athletes with a higher and lower sports level. Cluster analysis was also performed according to age, obtaining an older group and a younger group. The one-way analysis of variance between groups revealed no significant differences (p≥0.05) in the response to EIT. The results provide a detailed description of physiological and thermoregulatory responses to EIT in experienced endurance runners. This allows a better understanding of the impact of a common training stimulus on the physiological level inducing greater accuracy in the training prescription. Moreover, despite the differences in athletic performance or age, the acute physiological and thermoregulatory responses in endurance runners were similar, as long as EIT was performed at similar relative intensity. PMID:26839621
Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco
2015-01-01
Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology. PMID:27227066
Nonhuman genetics. Genomic basis for the convergent evolution of electric organs.
Gallant, Jason R; Traeger, Lindsay L; Volkening, Jeremy D; Moffett, Howell; Chen, Po-Hao; Novina, Carl D; Phillips, George N; Anand, Rene; Wells, Gregg B; Pinch, Matthew; Güth, Robert; Unguez, Graciela A; Albert, James S; Zakon, Harold H; Samanta, Manoj P; Sussman, Michael R
2014-06-27
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. Copyright © 2014, American Association for the Advancement of Science.
Thomas, R E; Brodersen, C; Carls, M G; Babcock, M; Rice, S D
1999-01-01
Mussels, Mytilus trossulus, were sampled in 1992 and 1993 from beaches in Prince William Sound that had been oiled by the Exxon Valdez spill of March, 1989. At some of the oiled beaches, mussels were collected from beds overlying oiled sediments, and from bedrock adjacent to these beds. Mussels were also collected from beaches within the Sound that had not been impacted by the spill. Polynuclear aromatic hydrocarbon (PAH) concentrations in mussel tissue, physiological responses (byssal thread production, condition index, clearance rate, and glycogen content), were determined for each group of mussels. Total PAH concentrations in mussel tissue ranged from 0 to 6 micrograms g-1, and were significantly greater in mussels from oiled beds than those from reference beds. No significant differences were noted in byssal thread production, condition index, clearance rate, or glycogen content between oiled sample sites and reference sites. The lack of physiological response was surprising because mussels in this study were chronically exposed to PAH for 3-4 years, and none of the physiological responses measured appeared to be affected by that exposure. The lack of a physiological response suggests that chronically exposed mussels may develop a physiological tolerance to PAH, but we recognize that these measures may not have been sensitive enough to discriminate response from background noise.
Simi, S; Peter, Valsa S; Peter, M C Subhash
2017-09-15
Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern of mRNA expression of Na + /K + -ATPase α-subunit isoforms; nkaα1a, nkaα1b and nkaα1c and the shift in nkaα1a and nkaα1b isoforms expression after hypoxia stress in immune-challenged fish, presents transcriptomic evidence for a modified Na + /K + ion transporter system in these fish. Collectively, our data thus provide evidence for an interactive immune-stress response in an air-breathing fish, where the patterns of cortisol-thyroid hormone interaction, the ion transporter functions and the non-specific immune responses are reversed by hypoxia stress in immune-challenged fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.
Fernández Peruchena, Carlos M; Prado-Velasco, Manuel
2010-01-01
Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646
A Riparian Vegetation Ecophysiological Response Model
Jeffrey P. Leighton; Roland J. Risser
1989-01-01
A mathematical model is described that relates mature riparian vegetation ecophysiological response to changes in stream level. This model was developed to estimate the physiological response of riparian vegetation to reductions in streamflow. Field data from two sites on the North Fork of the Kings River were used in the model development. The physiological response...
Erosion of functional independence early in the evolution of a microbial mutualism
Hillesland, Kristina L.; Lim, Sujung; Flowers, Jason J.; Turkarslan, Serdar; Pinel, Nicolas; Zane, Grant M.; Elliott, Nicholas; Qin, Yujia; Wu, Liyou; Baliga, Nitin S.; Zhou, Jizhong; Wall, Judy D.; Stahl, David A.
2014-01-01
Many species have evolved to function as specialized mutualists, often to the detriment of their ability to survive independently. However, there are few, if any, well-controlled observations of the evolutionary processes underlying the genesis of new mutualisms. Here, we show that within the first 1,000 generations of initiating independent syntrophic interactions between a sulfate reducer (Desulfovibrio vulgaris) and a hydrogenotrophic methanogen (Methanococcus maripaludis), D. vulgaris frequently lost the capacity to grow by sulfate respiration, thus losing the primary physiological attribute of the genus. The loss of sulfate respiration was a consequence of mutations in one or more of three key genes in the pathway for sulfate respiration, required for sulfate activation (sat) and sulfate reduction to sulfite (apsA or apsB). Because loss-of-function mutations arose rapidly and independently in replicated experiments, and because these mutations were correlated with enhanced growth rate and productivity, gene loss could be attributed to natural selection, even though these mutations should significantly restrict the independence of the evolved D. vulgaris. Together, these data present an empirical demonstration that specialization for a mutualistic interaction can evolve by natural selection shortly after its origin. They also demonstrate that a sulfate-reducing bacterium can readily evolve to become a specialized syntroph, a situation that may have often occurred in nature. PMID:25267659
Janicke, T; Sandner, P; Ramm, S A; Vizoso, D B; Schärer, L
2016-09-01
Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Emotion regulation and emotion coherence: evidence for strategy-specific effects.
Dan-Glauser, Elise S; Gross, James J
2013-10-01
One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, about how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multichannel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it.
Aging obviates sex-specific physiological responses to exercise.
Deschenes, Michael R; Taylor, Jessica L; Mangis, Katherine A
2013-01-01
Both sex and aging have been shown to affect physiological responses to exercise. The aim of the present investigation was to determine whether aging impacted the sex-specific nature of physiological responses to exercise commonly noted among young adults. Ten aged men (69.0 ± 1.7 years; mean ± SE) and 10 aged women (71.6 ± 1.3 years) reporting similar levels of habitual physical activity performed a 30-min exercise session at 60-65% of their predetermined peak oxygen uptake. Cardiovascular, thermoregulatory, and metabolic variables were assessed before exercise, at the 15th and 30th min of exercise, and at 5 and 15 min into a passive postexercise recovery period. Variables of interest were statistically analyzed via two-way analysis of variance with repeated measures; significance was set at P < 0.05. Significant effects of time (i.e., exercise) for each physiological variable of interest were identified, but not once was a significant effect of group (i.e., sex) detected. Exercise-induced physiological responses to prolonged, moderate intensity exercise were similar among aged men and aged women. This evidence that the sexually dimorphic nature of physiological responses to exercise is obviated with age should be taken into account when prescribing health-related exercise training programs for older individuals. Copyright © 2013 Wiley Periodicals, Inc.
Robison, Faith M; Turner, Marie F; Jahn, Courtney E; Schwartz, Howard F; Prenni, Jessica E; Brick, Mark A; Heuberger, Adam L
2018-02-24
Plant physiology and metabolism are important components of a plant response to microbial pathogens. Physiological resistance of common bean (Phaseolus vulgaris L.) to the fungal pathogen Sclerotinia sclerotiorum has been established, but the mechanisms of resistance are largely unknown. Here, the physiological and metabolic responses of bean varieties that differ in physiological resistance to S. sclerotiorum are investigated. Upon infection, the resistant bean variety A195 had a unique physiological response that included reduced photosynthesis and maintaining a higher leaf surface pH during infection. Leaf metabolomics was performed on healthy tissue adjacent to the necrotic lesion at 16, 24, and 48 hr post inoculation, and 144 metabolites were detected that varied between A195 and Sacramento following infection. The metabolites that varied in leaves included amines/amino acids, organic acids, phytoalexins, and ureides. The metabolic pathways associated with resistance included amine metabolism, uriede-based nitrogen remobilization, antioxidant production, and bean-specific phytoalexin production. A second experiment was conducted in stems of 13 bean genotypes with varying resistance. Stem resistance was associated with phytoalexin production, but unlike leaf metabolism, lipid changes were associated with susceptibility. Taken together, the data supports a multifaceted, physiometabolic response of common bean to S. sclerotiorum that mediates resistance. © 2018 John Wiley & Sons Ltd.
Lovell, John T.; Shakirov, Eugene V.; Schwartz, Scott; ...
2016-05-31
Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responsesmore » to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes. However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits.« less
NASA Astrophysics Data System (ADS)
Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.
2014-12-01
Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.
Emily J. Goodwin; Lisa M. Marino McInnis; Hans M. Williams; Brian P. Oswald; Kenneth W. Farrish
2004-01-01
The objectives of this study were to examine the effects of fertilizer and understory vegetation control (herbicide and prescribed fire) on mature tree physiology and to link observed physiological responses with tree growth. Photosynthetic rate (photosynthesis), transpiration, stomatal conductance, stem diameter, and crown area were measured in two midrotation...
Phelps, Kendra L; Kingston, Tigga
2018-06-01
Environmental and biological context play significant roles in modulating physiological stress responses of individuals in wildlife populations yet are often overlooked when evaluating consequences of human disturbance on individual health and fitness. Furthermore, most studies gauge individual stress responses based on a single physiological biomarker, typically circulating glucocorticoid concentrations, which limits interpretation of the complex, multifaceted responses of individuals to stressors. We selected four physiological biomarkers to capture short-term and prolonged stress responses in a widespread cave-roosting bat, Hipposideros diadema, across multiple gradients of human disturbance in and around caves in the Philippines. We used conditional inference trees and random forest analysis to determine the role of environmental quality (cave complexity, available roosting area), assemblage composition (intra- and interspecific associations and species richness), and intrinsic characteristics of individuals (sex and reproductive status) in modulating responses to disturbance. Direct cave disturbance (hunting pressure and human visitation) was the primary driver of neutrophil-to-lymphocyte ratios, with lower ratios associated with increased disturbance, while context-specific factors were more important in explaining total leukocyte count, body condition, and ectoparasite load. Moreover, conditional inference trees revealed complex interactions among human disturbance and modulating factors. Cave complexity often ameliorated individual responses to human disturbance, whereas conspecific abundance often compounded responses. Our study demonstrates the importance of an integrated approach that incorporates environmental and biological context when identifying drivers of physiological responses, and that assesses responses to gradients of direct and indirect disturbance using multiple complementary biomarkers.
Different ecophysiological responses of freshwater fish to warming and acidification.
Jesus, Tiago F; Rosa, Inês C; Repolho, Tiago; Lopes, Ana R; Pimentel, Marta S; Almeida-Val, Vera M F; Coelho, Maria M; Rosa, Rui
2018-02-01
Future climate change scenarios predict threatening outcomes to biodiversity. Available empirical data concerning biological response of freshwater fish to climate change remains scarce. In this study, we investigated the physiological and biochemical responses of two Iberian freshwater fish species (Squalius carolitertii and the endangered S. torgalensis), inhabiting different climatic conditions, to projected future scenarios of warming (+3°C) and acidification (ΔpH=-0.4). Herein, metabolic enzyme activities of glycolytic (citrate synthase - CS, lactate dehydrogenase - LDH) and antioxidant (glutathione S-transferase, catalase and superoxide dismutase) pathways, as well as the heat shock response (HSR) and lipid peroxidation were determined. Our results show that, under current water pH, warming causes differential interspecific changes on LDH activity, increasing and decreasing its activity in S. carolitertii and in S. torgalensis, respectively. Furthermore, the synergistic effect of warming and acidification caused an increase in LDH activity of S. torgalensis, comparing with the warming condition. As for CS activity, acidification significantly decreased its activity in S. carolitertii whereas in S. torgalensis no significant effect was observed. These results suggest that S. carolitertii is more vulnerable to climate change, possibly as the result of its evolutionary acclimatization to milder climatic condition, while S. torgalensis evolved in the warmer Mediterranean climate. However, significant changes in HSR were observed under the combined warming and acidification (S. carolitertii) or under acidification (S. torgalensis). Our results underlie the importance of conducting experimental studies and address species endpoint responses under projected climate change scenarios to improve conservation strategies, and to safeguard endangered freshwater fish. Copyright © 2017 Elsevier Inc. All rights reserved.
Behaviors of cavefish offer insight into developmental evolution
2015-01-01
SUMMARY Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures—relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. Mol. Reprod. Dev. 82: 268–280, 2015. © 2015 Wiley Periodicals, Inc. PMID:25728684
Yao, Lei; Gohel, Mayur D I; Li, Yi; Chung, Waiyee J
2011-07-01
Clothing is considered the second skin of the human body. The aim of this study was to determine clothing-wearer interaction on skin physiology under mild cold conditions. Skin physiological parameters, subjective sensory response, stress level, and physical properties of clothing fabric from two longitude parallel-designed wear trials were studied. The wear trials involved four kinds of pajamas made from cotton or polyester material that had hydrophilic or hydrophobic treatment, conducted for three weeks under mild cold conditions. Statistical tools, factor analysis, hierarchical linear regression, and logistic regression were applied to analyze the strong predictors of skin physiological parameters, stress level, and sensory response. A framework was established to illustrate clothing-wearer interactions with clothing fabric properties, skin physiology, stress level, and sensory response under mild cold conditions. Fabric has various effects on the human body under mild cold conditions. A fabric's properties influence skin physiology, sensation, and psychological response. © 2011 The International Society of Dermatology.
Crum, Alia J.; Phillips, Damon J.; Goyer, J. Parker; Akinola, Modupe; Higgins, E. Tory
2016-01-01
This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, “AquaCharge Energy Water,” falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water. PMID:27875567
Crum, Alia J; Phillips, Damon J; Goyer, J Parker; Akinola, Modupe; Higgins, E Tory
2016-01-01
This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, "AquaCharge Energy Water," falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water.
Fürtbauer, Ines
2015-01-01
While the literature on consistent individual differences in correlated suites of physiological and behavioural traits is steadily growing for vertebrates, invertebrates have received less attention. The few studies that do exist have measured temporary physiological states (or responses), rather than consistent individual physiological traits. Here, I explore the consistency of individual differences in physiology and behaviour of n=53 shore crabs (Carcinus maenas) by repeatedly measuring haemolymph density (HD) and the crabs' responses to a novel environment. In crustaceans, HD is directly proportional to protein concentrations, and thus indicative of physiological condition. HD was highly repeatable, and crabs showed consistent individual differences in their behavioural responses to a novel environment, thus indicating individual consistency in both physiology and behaviour. Furthermore, HD was significantly correlated with the crabs' risk propensity, i.e. individuals with higher HD spent more time near shelter. Overall, this provides the first evidence for consistency in an endogenous physiological trait in an invertebrate. The link between consistent physiology and behaviour, i.e. coping styles, analogous to those found in vertebrates, suggests metabolic and/or immunological correlates of personality which offer great potential for future studies. PMID:26543575
2012-12-01
USARIEM TECHNICAL REPORT PHYSIOLOGICAL RESPONSES TO MICROCLIMATE COOLING USED BY THE AIR SOLDIER DRESSED AT MOPP 4 IN AN...2012 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physiological Responses to Microclimate Cooling Used By the Air Soldier 5b. GRANT... Microclimate Cooling System MCG HI – Air Warrior Microclimate Cooling Garment Used in High Cooling Configuration MCG LO - Air Warrior Microclimate
Vortex Formation Time is Not an Index of Ventricular Function
Vlachos, Pavlos P.; Little, William C.
2015-01-01
The diastolic intraventricular ring vortex formation and pinch-off process may provide clinically useful insights into diastolic function in health and disease. The vortex ring formation time (FT) concept, based on hydrodynamic experiments dealing with unconfined (large tank) flow, has attracted considerable attention and popularity. Dynamic conditions evolving within the very confined space of a filling, expansible ventricular chamber with relaxing and rebounding viscoelastic muscular boundaries, diverge from unconfined (large tank) flow and encompass rebounding walls’ suction and myocardial relaxation. Indeed, clinical/physiological findings seeking validation in vivo failed to support the notion that FT is an index of normal/abnormal diastolic ventricular function. Therefore, FT as originally proposed cannot and should not be utilized as such an index. Evidently, physiologically accurate models accounting for coupled hydrodynamic and (patho)physiological myocardial wall interactions with the intraventricular flow are still needed to enhance our understanding and yield diastolic function indices useful and reliable in the clinical setting. PMID:25609509
Coping behaviour as an adaptation to stress: post-disturbance preening in colonial seabirds.
Henson, Shandelle M; Weldon, Lynelle M; Hayward, James L; Greene, Daniel J; Megna, Libby C; Serem, Maureen C
2012-01-01
In humans, coping behaviour is an action taken to soothe oneself during or after a stressful or threatening situation. Some human behaviours with physiological functions also serve as coping behaviours, for example, comfort sucking in infants and comfort eating in adults. In birds, the behaviour of preening, which has important physiological functions, has been postulated to soothe individuals after stressful situations. We combine two existing modelling approaches - logistic regression and Darwinian dynamics - to explore theoretically how a behaviour with crucial physiological function might evolve into a coping behaviour. We apply the method to preening in colonial seabirds to investigate whether and how preening might be co-opted as a coping behaviour in the presence of predators. We conduct an in-depth study of the environmental correlates of preening in a large gull colony in Washington, USA, and we perform an independent field test for comfort preening by computing the change in frequency of preening in gulls that were alerted to a predator, but did not flee.
Damage control: Concept and implementation.
Malgras, B; Prunet, B; Lesaffre, X; Boddaert, G; Travers, S; Cungi, P-J; Hornez, E; Barbier, O; Lefort, H; Beaume, S; Bignand, M; Cotte, J; Esnault, P; Daban, J-L; Bordes, J; Meaudre, E; Tourtier, J-P; Gaujoux, S; Bonnet, S
2017-12-01
The concept of damage control (DC) is based on a sequential therapeutic strategy that favors physiological restoration over anatomical repair in patients presenting acutely with hemorrhagic trauma. Initially described as damage control surgery (DCS) for war-wounded patients with abdominal penetrating hemorrhagic trauma, this concept is articulated in three steps: surgical control of lesions (hemostasis, sealing of intestinal spillage), physiological restoration, then surgery for definitive repair. This concept was quickly adapted for intensive care management under the name damage control resuscitation (DCR), which refers to the modalities of hospital resuscitation carried out in patients suffering from traumatic hemorrhagic shock within the context of DCS. It is based mainly on specific hemodynamic resuscitation targets associated with early and aggressive hemostasis aimed at prevention or correction of the lethal triad of hypothermia, acidosis and coagulation disorders. Concomitant integration of resuscitation and surgery from the moment of admission has led to the concept of an integrated DCR-DCS approach, which enables initiation of hemostatic resuscitation upon arrival of the injured person, improving the patient's physiological status during surgery without delaying surgery. This concept of DC is constantly evolving; it stresses management of the injured person as early as possible, in order to initiate hemorrhage control and hemostatic resuscitation as soon as possible, evolving into a concept of remote DCR (RDCR), and also extended to diagnostic and therapeutic radiological management under the name of radiological DC (DCRad). DCS is applied only to the most seriously traumatized patients, or in situations of massive influx of injured persons, as its universal application could lead to a significant and unnecessary excess-morbidity to injured patients who could and should undergo definitive treatment from the outset. DCS, when correctly applied, significantly improves the survival rate of war-wounded. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.
Rogers, Mark W; Mille, Marie-Laure
2016-08-15
Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
A 45-Amino-Acid Scaffold Mined from the PDB for High-Affinity Ligand Engineering.
Kruziki, Max A; Bhatnagar, Sumit; Woldring, Daniel R; Duong, Vandon T; Hackel, Benjamin J
2015-07-23
Small protein ligands can provide superior physiological distribution compared with antibodies, and improved stability, production, and specific conjugation. Systematic evaluation of the PDB identified a scaffold to push the limits of small size and robust evolution of stable, high-affinity ligands: 45-residue T7 phage gene 2 protein (Gp2) contains an α helix opposite a β sheet with two adjacent loops amenable to mutation. De novo ligand discovery from 10(8) mutants and directed evolution toward four targets yielded target-specific binders with affinities as strong as 200 ± 100 pM, Tms from 65 °C ± 3 °C to 80°C ± 1 °C, and retained activity after thermal denaturation. For cancer targeting, a Gp2 domain for epidermal growth factor receptor was evolved with 18 ± 8 nM affinity, receptor-specific binding, and high thermal stability with refolding. The efficiency of evolving new binding function and the size, affinity, specificity, and stability of evolved domains render Gp2 a uniquely effective ligand scaffold. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Benevides, Teal W.; Lane, Shelly J.
2015-01-01
The autonomic nervous system (ANS) is responsible for multiple physiological responses, and dysfunction of this system is often hypothesized as contributing to cognitive, affective, and behavioral responses in children. Research suggests that examination of ANS activity may provide insight into behavioral dysregulation in children with autism…
ERIC Educational Resources Information Center
Takahashi, Hidetoshi; Nakahachi, Takayuki; Stickley, Andrew; Ishitobi, Makoto; Kamio, Yoko
2018-01-01
The objective of this study was to investigate relationships between caregiver-reported sensory processing abnormalities, and the physiological index of auditory over-responsiveness evaluated using acoustic startle response measures, in children with autism spectrum disorders and typical development. Mean acoustic startle response magnitudes in…
Physiological responses to environmental factors related to space flight
NASA Technical Reports Server (NTRS)
Pace, N.; Grunbaum, B. W.; Kodama, A. M.; Mains, R. C.; Rahlmann, D. F.
1975-01-01
Physiological procedures and instrumentation developed for the measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are described along with the physiological response of monkeys to weightlessness. Specific areas examined include: cardiovascular studies; thyroid function; blood oxygen transport; growth and reproduction; excreta analysis for metabolic balance studies; and electrophoretic separation of creatine phosphokinase isoenzymes in human blood.
Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo
2016-01-01
The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491
Programmed cell death in seeds of angiosperms.
López-Fernández, María Paula; Maldonado, Sara
2015-12-01
During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Characteristics of hyperthermia-induced hyperventilation in humans
Tsuji, Bun; Hayashi, Keiji; Kondo, Narihiko; Nishiyasu, Takeshi
2016-01-01
ABSTRACT In humans, hyperthermia leads to activation of a set of thermoregulatory responses that includes cutaneous vasodilation and sweating. Hyperthermia also increases ventilation in humans, as is observed in panting dogs, but the physiological significance and characteristics of the hyperventilatory response in humans remain unclear. The relative contribution of respiratory heat loss to total heat loss in a hot environment in humans is small, and this hyperventilation causes a concomitant reduction in arterial CO2 pressure (hypocapnia), which can cause cerebral hypoperfusion. Consequently, hyperventilation in humans may not contribute to the maintenance of physiological homeostasis (i.e., thermoregulation). To gain some insight into the physiological significance of hyperthermia-induced hyperventilation in humans, in this review, we discuss 1) the mechanisms underlying hyperthermia-induced hyperventilation, 2) the factors modulating this response, and 3) the physiological consequences of the response. PMID:27227102
Singleton, Clarence J; Ashwin, Chris; Brosnan, Mark
2014-12-01
Researchers have suggested that the two primary cognitive features of autism spectrum disorder (ASD), a drive toward nonsocial processing and a reduced drive toward social processing, may be unrelated to each other in the neurotypical (NT) population and may therefore require separate explanations. Drive toward types of processing may be related to physiological arousal to categories of stimuli, such as social (e.g., faces) or nonsocial (e.g., trains). This study investigated how autistic traits in an NT population might relate to differences in physiological responses to nonsocial compared with social stimuli. NT participants were recruited to examine these differences in those with high vs. low degrees of ASD traits. Forty-six participants (21 male, 25 female) completed the Autism Spectrum Quotient (AQ) to measure ASD traits before viewing a series of 24 images while skin conductance response (SCR) was recorded. Images included six nonsocial, six social, six face-like cartoons, and six nonsocial (relating to participants' personal interests). Analysis revealed that those with a higher AQ had significantly greater SCR arousal to nonsocial stimuli than those with a low AQ, and the higher the AQ, the greater the difference between SCR arousal to nonsocial and social stimuli. This is the first study to identify the relationship between AQ and physiological response to nonsocial stimuli, and a relationship between physiological response to both social and nonsocial stimuli, suggesting that physiological response may underlie the atypical drive toward nonsocial processing seen in ASD, and that at the physiological level at least the social and nonsocial in ASD may be related to one another. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Insights from comparative analyses of aging in birds and mammals.
Ricklefs, Robert E
2010-04-01
Many laboratory models used in aging research are inappropriate for understanding senescence in mammals, including humans, because of fundamental differences in life history, maintenance in artificial environments, and selection for early aging and high reproductive rate. Comparative studies of senescence in birds and mammals reveal a broad range in rates of aging among a variety of taxa with similar physiology and patterns of development. These comparisons suggest that senescence is a shared property of all vertebrates with determinate growth, that the rate of senescence has been modified by evolution in response to the potential life span allowed by extrinsic mortality factors, and that most variation among species in the rate of senescence is independent of commonly ascribed causes of aging, such as oxidative damage. Individuals of potentially long-lived species, particularly birds, appear to maintain high condition to near the end of life. Because most individuals in natural populations of such species die of aging-related causes, these populations likely harbor little genetic variation for mechanisms that could extend life further, or these mechanisms are very costly. This, and the apparent evolutionary conservatism in the rate of increase in mortality with age, suggests that variation in the rate of senescence reflects fundamental changes in organism structure, likely associated with the rate of development, rather than physiological or biochemical processes influenced by a few genes. Understanding these evolved differences between long-lived and short-lived organisms would seem to be an essential foundation for designing therapeutic interventions with respect to human aging and longevity.
Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro
2015-01-01
Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617
Nitrogen fertilizer applications are common land-use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree-ring growth patterns and stable isotopes to...
Nitrogen fertilizer applications are common land use management tools, but details on physiological responses to these applications are often lacking, particularly for long-term responses over decades of forest management. We used tree ring growth patterns and stable isotopes to ...
Autonomic Physiological Response Patterns Related to Intelligence
ERIC Educational Resources Information Center
Melis, Cor; van Boxtel, Anton
2007-01-01
We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.; Bailin, S.
2012-03-01
We are developing Frontier, a highly adaptable, stably reconfigurable, web-accessible intelligent decision engine capable of optimizing design as well as the simulating operation of complex systems in response to evolving needs and environment.
Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang
2014-01-01
Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971
Desriac, Noémie; Broussolle, Véronique; Postollec, Florence; Mathot, Anne-Gabrielle; Sohier, Danièle; Coroller, Louis; Leguerinel, Ivan
2013-01-01
Microorganisms are able to adapt to different environments and evolve rapidly, allowing them to cope with their new environments. Such adaptive response and associated protections toward other lethal stresses, is a crucial survival strategy for a wide spectrum of microorganisms, including food spoilage bacteria, pathogens, and organisms used in functional food applications. The growing demand for minimal processed food yields to an increasing use of combination of hurdles or mild preservation factors in the food industry. A commonly used hurdle is low pH which allows the decrease in bacterial growth rate but also the inactivation of pathogens or spoilage microorganisms. Bacillus cereus is a well-known food-borne pathogen leading to economical and safety issues in food industry. Because survival mechanisms implemented will allow bacteria to cope with environmental changes, it is important to provide understanding of B. cereus stress response. Thus this review deals with the adaptive traits of B. cereus cells facing to acid stress conditions. The acid stress response of B. cereus could be divided into four groups (i) general stress response (ii) pH homeostasis, (iii) metabolic modifications and alkali production and (iv) secondary oxidative stress response. This current knowledge may be useful to understand how B. cereus cells may cope to acid environment such as encountered in food products and thus to find some molecular biomarkers of the bacterial behavior. These biomarkers could be furthermore used to develop new microbial behavior prediction tools which can provide insights into underlying molecular physiological states which govern the behavior of microorganisms and thus opening the avenue toward the detection of stress adaptive behavior at an early stage and the control of stress-induced resistance throughout the food chain. PMID:24106490
Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang
2014-01-01
Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores
Glas, Joris J.; Schimmel, Bernardus C. J.; Alba, Juan M.; Escobar-Bravo, Rocío; Schuurink, Robert C.; Kant, Merijn R.
2012-01-01
Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant’s secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant’s resistance to pests. PMID:23235331
McNamara, Kathryn B; Robinson, Stephen P; Rosa, Márta E; Sloan, Nadia S; van Lieshout, Emile; Simmons, Leigh W
2016-06-16
Sperm competition risk and intensity can select for adaptations that increase male fertilisation success. Evolutionary responses are examined typically by generating increased strength of sexual selection via direct manipulation of female mating rates (by enforcing monandry or polyandry) or by alteration of adult sex ratios. Despite being a model species for sexual selection research, the effect of sexual selection intensity via adult sex-ratio manipulation on male investment strategies has not been investigated in the seed beetle, Callosobruchus maculatus. We imposed 32 generations of experimental evolution on 10 populations of beetles by manipulating adult sex ratio. Contrary to predictions, males evolving in male-biased populations did not increase their testes and accessory gland size. This absence of divergence in ejaculate investment was also reflected in the fact that males from male-biased populations were not more successful in either preventing females from remating, or in competing directly for fertilisations. These populations already demonstrate divergence in mating behaviour and immunity, suggesting sufficient generations have passed to allow divergence in physiological and behavioural traits. We propose several explanations for the absence of divergence in sperm competitiveness among our populations and the pitfalls of using sex ratio manipulation to assess evolutionary responses to sexual selection intensity.
McNamara, Kathryn B.; Robinson, Stephen P.; Rosa, Márta E.; Sloan, Nadia S.; van Lieshout, Emile; Simmons, Leigh W.
2016-01-01
Sperm competition risk and intensity can select for adaptations that increase male fertilisation success. Evolutionary responses are examined typically by generating increased strength of sexual selection via direct manipulation of female mating rates (by enforcing monandry or polyandry) or by alteration of adult sex ratios. Despite being a model species for sexual selection research, the effect of sexual selection intensity via adult sex-ratio manipulation on male investment strategies has not been investigated in the seed beetle, Callosobruchus maculatus. We imposed 32 generations of experimental evolution on 10 populations of beetles by manipulating adult sex ratio. Contrary to predictions, males evolving in male-biased populations did not increase their testes and accessory gland size. This absence of divergence in ejaculate investment was also reflected in the fact that males from male-biased populations were not more successful in either preventing females from remating, or in competing directly for fertilisations. These populations already demonstrate divergence in mating behaviour and immunity, suggesting sufficient generations have passed to allow divergence in physiological and behavioural traits. We propose several explanations for the absence of divergence in sperm competitiveness among our populations and the pitfalls of using sex ratio manipulation to assess evolutionary responses to sexual selection intensity. PMID:27306351
Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin
2013-10-01
Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P < 0.001), demonstrating that the changes in the functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.
Cabib, Christopher; Ortega, Omar; Kumru, Hatice; Palomeras, Ernest; Vilardell, Natalia; Alvarez-Berdugo, Daniel; Muriana, Desirée; Rofes, Laia; Terré, Rosa; Mearin, Fermín; Clavé, Pere
2016-09-01
Oropharyngeal dysphagia (OD) is very prevalent among poststroke patients, causing severe complications but lacking specific neurorehabilitation treatment. This review covers advances in the pathophysiology, diagnosis, and physiologically based neurorehabilitation strategies for poststroke OD. The pathophysiology of oropharyngeal biomechanics can be assessed by videofluoroscopy, as delayed laryngeal vestibule closure is closely associated with aspiration. Stroke may affect afferent or efferent neuronal circuits participating in deglutition. The integrity of oropharyngeal-cortical afferent pathways can be assessed by electroencephalography through sensory-evoked potentials by pharyngeal electrical stimulation, while corticopharyngeal efferent pathways can be characterized by electromyography through motor-evoked potentials by transcranial magnetic stimulation. Dysfunction in both cortico-mediated evoked responses is associated with delayed swallow response and aspiration. Studies have reported hemispherical asymmetry on motor control of swallowing and the relevance of impaired oropharyngeal sensitivity on aspiration. Advances in treatment include improvements in compensatory strategies but are mainly focused on (1) peripheral stimulation strategies and (2) central, noninvasive stimulation strategies with evidence of their clinical benefits. Characterization of poststroke OD is evolving from the assessment of impaired biomechanics to the sensorimotor integration processes involved in deglutition. Treatment is also changing from compensatory strategies to promoting brain plasticity, both to recover swallow function and to improve brain-related swallowing dysfunction. © 2016 New York Academy of Sciences.
A review of the physiology of fever in birds.
Gray, David A; Marais, Manette; Maloney, Shane K
2013-04-01
While fever is known to occur in invertebrates and vertebrates, the mechanisms of fever in animals other than mammals have received scant attention. We look initially at the recognition, by the avian immune system, of pathogen associated molecular patterns and the likely role of toll-like receptors in signaling the presence of bacteria and viruses. Several mediators of fever are subsequently released by immune cells, including interleukin-6 and interleukin-1β, that eventually reach the brain and alter thermoregulatory function. As is the case in mammals, prostaglandins appear to be the ultimate mediators of fever in birds, since the febrile response is attenuated when prostaglandin synthesis is inhibited. Ambient temperature modulates the fever response, with larger fevers at higher, and smaller fevers at lower ambient temperatures. Glucocorticoid levels are increased during fever and seem to play an important role by modulating the extent of fever generation, possibly playing a role in the attenuation of fever after repeated exposure to a pathogen in a process termed tolerance, suggesting that the fever process can be phenotypically adapted to likely future conditions. While fever has an ancient phylogenetic history and many of the underling mechanisms in birds appear similar to mammals, there are several important differences that suggest fever has evolved quite differently in these two homeothermic classes.
van Dijkman, Sven C; Alvarez-Jimenez, Ricardo; Danhof, Meindert; Della Pasqua, Oscar
2016-10-01
Whereas ongoing efforts in epilepsy research focus on the underlying disease processes, the lack of a physiologically based rationale for drug and dose selection contributes to inadequate treatment response in children. In fact, limited information on the interindividual variation in pharmacokinetics and pharmacodynamics of anti-epileptic drugs (AEDs) in children drive prescription practice, which relies primarily on dose regimens according to a mg/kg basis. Such practice has evolved despite advancements in pediatric pharmacology showing that growth and maturation processes do not correlate linearly with changes in body size. In this review we aim to provide 1) a comprehensive overview of the sources of variability in the response to AEDs, 2) insight into novel methodologies to characterise such variation and 3) recommendations for treatment personalisation. The use of pharmacokinetic-pharmacodynamic principles in clinical practice is hindered by the lack of biomarkers and by practical constraints in the evaluation of polytherapy. The identification of biomarkers and their validation as tools for drug development and therapeutics will require some time. Meanwhile, one should not miss the opportunity to integrate the available pharmacokinetic data with modeling and simulation concepts to prevent further delays in the development of personalised treatments for pediatric patients.
The response of sap flow to pulses of rain in a temperate Australian woodland
Melanie Zeppel; Catrioina M.O. Macinnis-Ng; Chelcy R. Ford; Derek Eamus
2008-01-01
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response...
West, Tessa V; Koslov, Katrina; Page-Gould, Elizabeth; Major, Brenda; Mendes, Wendy Berry
2017-12-01
During interracial encounters, well-intentioned European Americans sometimes engage in subtle displays of anxiety, which can be interpreted as signs of racial bias by African American partners. In the present research, same-race and cross-race stranger dyads ( N = 123) engaged in getting-acquainted tasks, during which measures of sympathetic nervous system responses (preejection period, PEP) and heart rate variability were continuously collected. PEP scores showed that African American partners had stronger physiological linkage to European American partners who evidenced greater anxiety-greater cortisol reactivity, behavioral tension, and self-reported discomfort-which suggests greater physiological responsiveness to momentary changes in partners' affective states when those partners were anxious. European Americans showed physiological linkage to African American and European American partners, but linkage did not vary as a function of their partner's anxiety. Using physiological linkage offers a novel approach to understanding how affective responses unfold during dynamic intergroup interactions.
Kouchaki, Maryam; Wareham, Justin
2015-03-01
Across 2 studies, we investigated the ethical consequences of physiological responses to social exclusion. In Study 1, participants who were socially excluded were more likely to engage in unethical behavior to make money and the level of physiological arousal experienced during exclusion--measured using galvanic skin response--mediated the effects of exclusion on unethical behavior. Likewise, in Study 2, results from a sample of supervisor-subordinate dyads revealed a positive relationship between experience of workplace ostracism and unethical behaviors as rated by the immediate supervisors. This relationship was mediated by employees' reports of experienced physiological arousal. Together, the results of these studies demonstrate that physiological arousal accompanies social exclusion and provides an explanatory mechanism for the increased unethical behavior in both samples. Theoretical implications of these findings for research on ethical behavior and social exclusion in the workplace are discussed. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Tang, Hongliang; Shen, Jianbo; Zhang, Fusuo; Rengel, Zed
2013-04-01
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
NASA Astrophysics Data System (ADS)
Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng
2011-03-01
Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.
Ambulant Measurements of Physiological Status and Cognitive Performance during Sustained Operations
2009-10-01
the target, reaction time, illegal responses, and missed responses were recorded. 2.4 Physiological measurements 2.4.1 Anthropometry ...system (SPi-Elite, GPsports Australia ) was mounted on the soldiers’ backpack. The system measured continuously during the training weeks. Walking or...the percentage missed stimuli were even more alike. 3.3 Physiological measurements 3.3.1 Anthropometry The soldiers who completed the training
Human Physiology and the Environment in Health and Disease: Readings from Scientific American.
ERIC Educational Resources Information Center
1976
This anthology of articles is designed to supplement standard texts for courses in human physiology, environmental physiology, anatomy and physiology, pathobiology, general biology, and environmental medicine. It focuses on the influences of the external environment on the body, the physiological responses to environmental challenges, and the ways…
Prokaryotic carbonic anhydrases of Earth's environment.
Kumar, R Siva Sai; Ferry, James G
2014-01-01
Carbonic anhydrase is a metalloenzyme catalyzing the reversible hydration of carbon dioxide to bicarbonate. Five independently evolved classes have been described for which one or more are found in nearly every cell type underscoring the general importance of this ubiquitous enzyme in Nature. The bulk of research to date has centered on the enzymes from mammals and plants with less emphasis on prokaryotes. Prokaryotic carbonic anhydrases play important roles in the ecology of Earth's biosphere including acquisition of CO2 for photosynthesis and the physiology of aerobic and anaerobic prokaryotes decomposing the photosynthate back to CO2 thereby closing the global carbon cycle. This review focuses on the physiology and biochemistry of carbonic anhydrases from prokaryotes belonging to the domains Bacteria and Archaea that play key roles in the ecology of Earth's biosphere.
Study of electromechanical and mechanical properties of bacteria using force microscopy
NASA Astrophysics Data System (ADS)
Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey
2010-03-01
The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.
CONNECTIVITY OF ENVIRONMENT, HUMAN HEALTH AND SOCIOECONOMICS: IMPLICATIONS FOR SCIENCE AND POLICY
Environmental and public health policy continues to evolve in response to new and complex social, economic and environmental drivers. Globalization of commerce, evolving patterns of land use, and technological advances in such areas as manufacturing and genetically modified food...
Naimo, T.J.; Atchison, G.J.; Holland Bartels, L. E.
1992-01-01
Several physiological responses have been used to evaluate the effects of contaminants on marine bivalves. Respiration rate, food clearance rate, ammonia excretion rate, and food assimilation efficiency can be quantified and incorporated into a bioenergetics model known as scope for growth. This model estimates an organism's instantaneous energy budget and quantifies the available energy for growth and reproduction. We applied some of these physiological techniques to freshwater mussels to determine the sublethal effects of cadmium. The objective of our study was to quantify the physiological responses of adult pocketbook mussels, Lampsilis ventricosa , exposed to sublethal concentrations of cadmium. We selected L. ventricosa for study because it is abundant in the upper Mississippi River and its life history has been partially documented.
Emotion Regulation and Emotion Coherence: Evidence for Strategy-Specific Effects
Dan-Glauser, Elise S.; Gross, James J.
2014-01-01
One of the central tenets of emotion theory is that emotions involve coordinated changes across experiential, behavioral, and physiological response domains. Surprisingly little is known, however, on how the strength of this emotion coherence is altered when people try to regulate their emotions. To address this issue, we recorded experiential, behavioral, and physiological responses while participants watched negative and positive pictures. Cross-correlations were used to quantify emotion coherence. Study 1 tested how two types of suppression (expressive and physiological) influence coherence. Results showed that both strategies decreased the response coherence measured in negative and positive contexts. Study 2 tested how multi-channel suppression (simultaneously targeting expressive and physiological responses) and acceptance influence emotion coherence. Results again showed that suppression decreased coherence. By contrast, acceptance was not significantly different from the unregulated condition. These findings help to clarify the nature of emotion response coherence by showing how different forms of emotion regulation may differentially affect it. PMID:23731438
Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen
2017-11-01
Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.
Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.
Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.
2014-01-01
The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks. PMID:25184221
Reduced G tolerance associated with supplement use.
Barker, Patrick D
2011-02-01
High G forces encountered in tactical military aviation and aerobatic flight produce a host of physiologic responses aimed at preserving cerebral perfusion. The military has instituted measures to augment the physiologic response in order to avoid G-induced loss of consciousness (G-LOC) because of its potential to cause a catastrophic mishap. The case presented here details a Naval Aviator who experienced reduced G tolerance over two successive flights with a temporal relationship of starting a new supplement. Two components of the supplement, coenzyme Q10 and niacin, are highlighted here for their hemodynamic effects. After stopping the supplement the aviator regained his normal G tolerance and had no further issues in flight. There are several factors that can reduce G tolerance and supplement use has to be considered here because of the potential for altering the normal physiological response to increased G force. Our discussion reviews the physiological effects of increased G force, the spectrum of signs of decompensation under the stress of G force, and the potential effects this supplement had on the normal physiological response to increased G force, thus reducing the aviator's G tolerance.
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Kawashima, Akiko; Putnick, Diane L; Bornstein, Marc H
2014-01-01
Infants universally elicit in adults a set of solicitous behaviors that are evolutionarily important for the survival of the species. However, exposure, experience, and prejudice appear to govern adults' social choice and ingroup attitudes towards other adults. In the current study, physiological arousal and behavioral judgments were assessed while adults processed unfamiliar infant and adult faces of ingroup vs. outgroup members in two contrasting cultures, Japan and Italy. Physiological arousal was investigated using the novel technique of infrared thermography and behavioral judgments using ratings. We uncovered a dissociation between physiological and behavioral responses. At the physiological level, both Japanese and Italian adults showed significant activation (increase of facial temperature) for both ingroup and outgroup infant faces. At the behavioral level, both Japanese and Italian adults showed significant preferences for ingroup adults. Arousal responses to infants appear to be mediated by the autonomic nervous system and are not dependent on direct caregiving exposure, but behavioral responses appear to be mediated by higher-order cognitive processing based on social acceptance and cultural exposure.
Physiological response of pilots to the LBNP-, flight-, and centrifuge load.
Dosel, P; Hanousek, J; Cmiral, J; Petricek, J
1998-07-01
The possibility of the LBNP method's utilization at persons with low resistance of the cardiovascular system to the orthostatic load is a matter one of the research projects of IAM. We concentrated in previous stages our effort on an evaluation of basic physiological responses of the organism to this type of a load and on determination of reliable markers of the precollapse state. After analysis of results of examinations of 64 probands' set we defined qualifying criteria to the prediction for selection of individuals with the insufficient orthostatic resistance. Verification of experimental results by the comparison with well-established examination methods, during a real flight load and at the examination in a human centrifuge, is a goal of the following research activity. In current period of the task's solution the physiological response to an LBNP load has been compared with the physiological response to the load during real flight in an aircraft.
Measuring Physiological Stress Responses in Children: Lessons from a Novice
ERIC Educational Resources Information Center
Quas, Jodi A.
2011-01-01
In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…
ERIC Educational Resources Information Center
Gordon, Ronald D.
A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…
MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE TO FILM.
ERIC Educational Resources Information Center
CASE, HARRY W.; LEVONIAN, EDWARD
THE PRIMARY OBJECTIVE OF THIS STUDY WAS THE DEVELOPMENT OF A SYSTEM WHICH WOULD ALLOW THE MEASUREMENT AND ANALYSIS OF PHYSIOLOGICAL RESPONSE OF STUDENTS VIEWING FILM MATERIAL UNDER CONVENTIONAL CLASSROOM CONDITIONS. THE GALVANIC SKIN RESPONSE (GSR) WAS MEASURED BY SENSORS AND USED AS AN INDICATOR OF STUDENT INTERACTION WITH THE FILM MATERIAL. IN…
Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes
ERIC Educational Resources Information Center
Hwang, Isabel; Wong, Kevin; Lam, Shun Leung; Lam, Paul
2015-01-01
Student response systems (commonly called "clickers") are valuable tools for engaging students in classroom interactions. In this study, we investigated the use of two types of response systems (a traditional clicker and a mobile device) by students in human physiology courses. Our results showed high student satisfaction with the use of…
USDA-ARS?s Scientific Manuscript database
Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...
ERIC Educational Resources Information Center
El-Sheikh, Mona
2005-01-01
Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…
Physiological responses induced by emotion-eliciting films.
Fernández, Cristina; Pascual, Juan C; Soler, Joaquim; Elices, Matilde; Portella, Maria J; Fernández-Abascal, Enrique
2012-06-01
Emotion-eliciting films are commonly used to evoke subjective emotional responses in experimental settings. The main aim of the present study was to investigate whether a set of film clips with discrete emotions were capable to elicit measurable objective physiological responses. The convergence between subjective and objective measures was evaluated. Finally, the effect of gender on emotional responses was investigated. A sample of 123 subjects participated in the study. Individuals were asked to view a set of emotional film clips capable to induce seven emotions: anger, fear, sadness, disgust, amusement, tenderness and neutral state. Skin conductance level (SCL), heart rate (HR) and subjective emotional responses were measured for each film clip. In comparison with neutral films, SCL was significantly increased after viewing fear films, and HR was also significantly incremented for anger and fear films. Physiological variations were associated with arousal measures indicating a convergence between subjective and objective reactions. Women appeared to display significantly greater SCL and HR responses for films inducing sadness. The findings suggest that physiological activation would be more easily induced by emotion-eliciting films that tap into emotions with higher subjective arousal such as anger and fear.
Jeng, Yow-Jiun; Watson, Cheryl S.
2011-01-01
Background Estrogens are potent nongenomic phospho-activators of extracellular-signal–regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. Objectives We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and bisphenol A) to alter ERK responses induced by physiologic concentrations (1 nM) of estradiol (E2), estrone (E1), and estriol (E3). Methods We quantified hormone/mimetic-induced ERK phosphorylations in the GH3/B6/F10 rat pituitary cell line using a plate immunoassay, comparing effects with those on cell proliferation and by estrogen receptor subtype-selective ligands. Results Alone, these structurally related XEs activate ERKs in an oscillating temporal pattern similar (but not identical) to that with physiologic estrogens. The potency of all estrogens was similar (active between femtomolar and nanomolar concentrations). XEs potently disrupted physiologic estrogen signaling at low, environmentally relevant concentrations. Generally, XEs potentiated (at the lowest, subpicomolar concentrations) and attenuated (at the highest, picomolar to 100 nM concentrations) the actions of the physiologic estrogens. Some XEs showed pronounced nonmonotonic responses/inhibitions. The phosphorylated ERK and proliferative responses to receptor-selective ligands were only partially correlated. Conclusions XEs are both imperfect potent estrogens and endocrine disruptors; the more efficacious an XE, the more it disrupts actions of physiologic estrogens. This ability to disrupt physiologic estrogen signaling suggests that XEs may disturb normal functioning at life stages where actions of particular estrogens are important (e.g., development, reproductive cycling, pregnancy, menopause). PMID:20870566
Guntupalli, Vijaya K; Everhart, D Erik; Kalinowski, Joseph; Nanjundeswaran, Chayadevie; Saltuklaroglu, Tim
2007-01-01
People who stutter produce speech that is characterized by intermittent, involuntary part-word repetitions and prolongations. In addition to these signature acoustic manifestations, those who stutter often display repetitive and fixated behaviours outside the speech producing mechanism (e.g. in the head, arm, fingers, nares, etc.). Previous research has examined the attitudes and perceptions of those who stutter and people who frequently interact with them (e.g. relatives, parents, employers). Results have shown an unequivocal, powerful and robust negative stereotype despite a lack of defined differences in personality structure between people who stutter and normally fluent individuals. However, physiological investigations of listener responses during moments of stuttering are limited. There is a need for data that simultaneously examine physiological responses (e.g. heart rate and galvanic skin conductance) and subjective behavioural responses to stuttering. The pairing of these objective and subjective data may provide information that casts light on the genesis of negative stereotypes associated with stuttering, the development of compensatory mechanisms in those who stutter, and the true impact of stuttering on senders and receivers alike. To compare the emotional and physiological responses of fluent speakers while listening and observing fluent and severe stuttered speech samples. Twenty adult participants (mean age = 24.15 years, standard deviation = 3.40) observed speech samples of two fluent speakers and two speakers who stutter reading aloud. Participants' skin conductance and heart rate changes were measured as physiological responses to stuttered or fluent speech samples. Participants' subjective responses on arousal (excited-calm) and valence (happy-unhappy) dimensions were assessed via the Self-Assessment Manikin (SAM) rating scale with an additional questionnaire comprised of a set of nine bipolar adjectives. Results showed significantly increased skin conductance and lower mean heart rate during the presentation of stuttered speech relative to the presentation of fluent speech samples (p<0.05). Listeners also self-rated themselves as being more aroused, unhappy, nervous, uncomfortable, sad, tensed, unpleasant, avoiding, embarrassed, and annoyed while viewing stuttered speech relative to the fluent speech. These data support the notion that stutter-filled speech can elicit physiological and emotional responses in listeners. Clinicians who treat stuttering should be aware that listeners show involuntary physiological responses to moderate-severe stuttering that probably remain salient over time and contribute to the evolution of negative stereotypes of people who stutter. With this in mind, it is hoped that clinicians can work with people who stutter to develop appropriate coping strategies. The role of amygdala and mirror neural mechanism in physiological and subjective responses to stuttering is discussed.
Integrating Evolutionary and Molecular Genetics of Aging
Flatt, Thomas; Schmidt, Paul S.
2010-01-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612
A genetic variant of the sperm-specific SLO3 K+ channel has altered pH and Ca2+ sensitivities.
Geng, Yanyan; Ferreira, Juan J; Dzikunu, Victor; Butler, Alice; Lybaert, Pascale; Yuan, Peng; Magleby, Karl L; Salkoff, Lawrence; Santi, Celia M
2017-05-26
To fertilize an oocyte, sperm must first undergo capacitation in which the sperm plasma membrane becomes hyperpolarized via activation of potassium (K + ) channels and resultant K + efflux. Sperm-specific SLO3 K + channels are responsible for these membrane potential changes critical for fertilization in mouse sperm, and they are only sensitive to pH i However, in human sperm, the major K + conductance is both Ca 2+ - and pH i -sensitive. It has been debated whether Ca 2+ -sensitive SLO1 channels substitute for human SLO3 (hSLO3) in human sperm or whether human SLO3 channels have acquired Ca 2+ sensitivity. Here we show that hSLO3 is rapidly evolving and reveal a natural structural variant with enhanced apparent Ca 2+ and pH sensitivities. This variant allele (C382R) alters an amino acid side chain at a principal interface between the intramembrane-gated pore and the cytoplasmic gating ring of the channel. Because the gating ring contains sensors to intracellular factors such as pH and Ca 2+ , the effectiveness of transduction between the gating ring and the pore domain appears to be enhanced. Our results suggest that sperm-specific genes can evolve rapidly and that natural genetic variation may have led to a SLO3 variant that differs from wild type in both pH and intracellular Ca 2+ sensitivities. Whether this physiological variation confers differences in fertility among males remains to be established. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Jensen, Kim; Schal, Coby; Silverman, Jules
2015-10-01
Insects have evolved fine-tuned gustatory and post-ingestive physiological mechanisms that enable them to self-select an optimal composition of macronutrients. Their ability to forage optimally among multiple food sources and maximize fitness parameters depends on their ability not only to taste and perceive the nutritional value of potential foods but also to avoid deleterious components; the strength of such avoidance should reflect the severity of the perceived hazard. In German cockroaches (Blattella germanica), glucose aversion has evolved in some populations in response to anthropogenic selection with glucose-containing insecticidal baits. In four feeding treatments, we gave newly eclosed glucose-averse female cockroaches free choice to feed from two artificial, nutritionally complementary foods varying in protein and carbohydrate composition, with glucose or fructose as the sole carbohydrate source in either food. After 6days of feeding, we measured diet consumption and the length of basal oocytes as an estimate of sexual maturation. The females did not compromise on their aversion to glucose in order to balance their protein and carbohydrate intake, and experienced lower sexual maturation rates as a consequence. Nutrient specific hunger via feedback mechanisms, and adjustments to gustatory sensitivity thus do not override the deterrence of glucose, likely due to strong selection against ingesting even small amounts of toxin associated with glucose in baits. In the absence of baits, glucose aversion would be expected to incur a fitness cost compared to wild-type individuals due to lower overall food availability but also to larger difficulty in attaining a nutritionally balanced diet. Copyright © 2015 Elsevier Ltd. All rights reserved.
Funaro, Colin F; Böröczky, Katalin; Vargo, Edward L; Schal, Coby
2018-04-10
Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termite Reticulitermes flavipes were analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings of R. flavipes The use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition. Copyright © 2018 the Author(s). Published by PNAS.
Integrating evolutionary and molecular genetics of aging.
Flatt, Thomas; Schmidt, Paul S
2009-10-01
Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.
Evolution of lactation: nutrition v. protection with special reference to five mammalian species.
McClellan, Holly L; Miller, Susan J; Hartmann, Peter E
2008-12-01
The evolutionary origin of the mammary gland has been difficult to establish because little knowledge can be gained on the origin of soft tissue organs from fossil evidence. One approach to resolve the origin of lactation has compared the anatomy of existing primitive mammals to skin glands, whilst another has examined the metabolic and molecular synergy between mammary gland development and the innate immune system. We have reviewed the physiology of lactation in five mammalian species with special reference to these theories. In all species, milk fulfils dual functions of providing protection and nutrition to the young and, furthermore, within species the quality and quantity of milk are highly conserved despite maternal malnutrition or illness. There are vast differences in birth weight, milk production, feeding frequency, macronutrient concentration, growth rate and length of lactation between rabbits, quokkas (Setonix brachyurus), pigs, cattle and humans. The components that protect the neonate against infection do so without causing inflammation. Many protective components are not unique to the mammary gland and are shared with the innate immune system. In contrast, many of the macronutrients in milk are unique to the mammary gland, have evolved from components of the innate immune system, and have either retained or developed multiple functions including the provision of nourishment and protection of the hatchling/neonate. Thus, there is a strong argument to suggest that the mammary gland evolved from the inflammatory response; however, the extensive protection that has developed in milk to actively avoid triggering inflammation seems to be a contradiction.
Behavioral responses in structured populations pave the way to group optimality.
Akçay, Erol; Van Cleve, Jeremy
2012-02-01
An unresolved controversy regarding social behaviors is exemplified when natural selection might lead to behaviors that maximize fitness at the social-group level but are costly at the individual level. Except for the special case of groups of clones, we do not have a general understanding of how and when group-optimal behaviors evolve, especially when the behaviors in question are flexible. To address this question, we develop a general model that integrates behavioral plasticity in social interactions with the action of natural selection in structured populations. We find that group-optimal behaviors can evolve, even without clonal groups, if individuals exhibit appropriate behavioral responses to each other's actions. The evolution of such behavioral responses, in turn, is predicated on the nature of the proximate behavioral mechanisms. We model a particular class of proximate mechanisms, prosocial preferences, and find that such preferences evolve to sustain maximum group benefit under certain levels of relatedness and certain ecological conditions. Thus, our model demonstrates the fundamental interplay between behavioral responses and relatedness in determining the course of social evolution. We also highlight the crucial role of proximate mechanisms such as prosocial preferences in the evolution of behavioral responses and in facilitating evolutionary transitions in individuality.
A review of factors influencing the stress response in Australian marsupials
Hing, Stephanie; Narayan, Edward; Thompson, R. C. Andrew; Godfrey, Stephanie
2014-01-01
Many Australian marsupials are threatened species. In order to manage in situ and ex situ populations effectively, it is important to understand how marsupials respond to threats. Stress physiology (the study of the response of animals to challenging stimuli), a key approach in conservation physiology, can be used to characterize the physiological response of wildlife to threats. We reviewed the literature on the measurement of glucocorticoids (GCs), endocrine indicators of stress, in order to understand the stress response to conservation-relevant stressors in Australian marsupials and identified 29 studies. These studies employed a range of methods to measure GCs, with faecal glucocorticoid metabolite enzyme immunoassay being the most common method. The main stressors considered in studies of marsupials were capture and handling. To date, the benefits of stress physiology have yet to be harnessed fully in marsupial conservation. Despite a theoretical base dating back to the 1960s, GCs have only been used to understand how 21 of the 142 extant species of Australian marsupial respond to stressors. These studies include merely six of the 60 marsupial species of conservation concern (IUCN Near Threatened to Critically Endangered). Furthermore, the fitness consequences of stress for Australian marsupials are rarely examined. Individual and species differences in the physiological stress response also require further investigation, because significant species-specific variations in GC levels in response to stressors can shed light on why some individuals or species are more vulnerable to stress factors while others appear more resilient. This review summarizes trends, knowledge gaps and future research directions for stress physiology research in Australian marsupial conservation. PMID:27293648
A single bout of resistance exercise can enhance episodic memory performance.
Weinberg, Lisa; Hasni, Anita; Shinohara, Minoru; Duarte, Audrey
2014-11-01
Acute aerobic exercise can be beneficial to episodic memory. This benefit may occur because exercise produces a similar physiological response as physical stressors. When administered during consolidation, acute stress, both physical and psychological, consistently enhances episodic memory, particularly memory for emotional materials. Here we investigated whether a single bout of resistance exercise performed during consolidation can produce episodic memory benefits 48 h later. We used a one-leg knee extension/flexion task for the resistance exercise. To assess the physiological response to the exercise, we measured salivary alpha amylase (a biomarker of central norepinephrine), heart rate, and blood pressure. To test emotional episodic memory, we used a remember-know recognition memory paradigm with equal numbers of positive, negative, and neutral IAPS images as stimuli. The group that performed the exercise, the active group, had higher overall recognition accuracy than the group that did not exercise, the passive group. We found a robust effect of valence across groups, with better performance on emotional items as compared to neutral items and no difference between positive and negative items. This effect changed based on the physiological response to the exercise. Within the active group, participants with a high physiological response to the exercise were impaired for neutral items as compared to participants with a low physiological response to the exercise. Our results demonstrate that a single bout of resistance exercise performed during consolidation can enhance episodic memory and that the effect of valence on memory depends on the physiological response to the exercise. Copyright © 2014 Elsevier B.V. All rights reserved.
Spicer, John I
2014-01-01
Hypoxia (low O2) is a common and natural feature of many marine environments. However, human-induced hypoxia has been on the rise over the past half century and is now recognised as a major problem in the world's seas and oceans. Whilst we have information on how marine invertebrates respond physiologically to hypoxia in the laboratory, we still lack understanding of how they respond to such stress in the wild (now and in the future). Consequently, here the question 'what can an ecophysiological approach tell us about physiological responses of marine invertebrates to hypoxia' is addressed. How marine invertebrates work in the wild when challenged with hypoxia is explored using four case studies centred on different hypoxic environments. The recent integration of the various -omics into ecophysiology is discussed, and a number of advantages of, and challenges to, successful integration are suggested. The case studies and -omic/physiology integration data are used to inform the concluding part of the review, where it is suggested that physiological responses to hypoxia in the wild are not always the same as those predicted from laboratory experiments. This is due to behaviour in the wild modifying responses, and therefore more than one type of 'experimental' approach is essential to reliably determine the actual response. It is also suggested that assuming it is known what a measured response is 'for' can be misleading and that taking parodies of ecophysiology seriously may impede research progress. This review finishes with the suggestion that an -omics approach is, and is becoming, a powerful method of understanding the response of marine invertebrates to environmental hypoxia and may be an ideal way of studying hypoxic responses in the wild. Despite centring on physiological responses to hypoxia, the review hopefully serves as a contribution to the discussion of what (animal) ecophysiology looks like (or should look like) in the 21st century.
Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas
2016-05-23
cetacean (beaked whales) and a co-occurring species (sperm whales) for comparison. The physiologic data generated by this project will provide baseline...sex and reproductive status (i.e. other physiologic influences) when interpreting levels of GCs as indicators of stress responses. 2.2 2.2 0 Adult...better understand the sub-lethal, physiologic consequences of underwater noise disturbance on species of concern, like beaked whales, is crucial to
ERIC Educational Resources Information Center
Bugental, Daphne Blunt
2012-01-01
Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress.…
Assessment of anxiety in open field and elevated plus maze using infrared thermography.
Lecorps, Benjamin; Rödel, Heiko G; Féron, Christophe
2016-04-01
Due to their direct inaccessibility, affective states are classically assessed by gathering concomitant physiological and behavioral measures. Although such a dual approach to assess emotional states is frequently used in different species including humans, the invasiveness of procedures for physiological recordings particularly in smaller-sized animals strongly restricts their application. We used infrared thermography, a non-invasive method, to assess physiological arousal during open field and elevated plus maze tests in mice. By measuring changes in surface temperature indicative of the animals' emotional response, we aimed to improve the inherently limited and still controversial information provided by behavioral parameters commonly used in these tests. Our results showed significant and consistent thermal responses during both tests, in accordance with classical physiological responses occurring in stressful situations. Besides, we found correlations between these thermal responses and the occurrence of anxiety-related behaviors. Furthermore, initial temperatures measured at the start of each procedure (open field, elevated plus maze), which can be interpreted as a measure of the animals' initial physiological arousal, predicted the levels of activity and of anxiety-related behaviors displayed during the tests. Our results stress the strong link between physiological correlates of emotions and behaviors expressed during unconditioned fear tests. Copyright © 2016 Elsevier Inc. All rights reserved.
Evolving Strategies for Cancer and Autoimmunity: Back to the Future
Lane, Peter J. L.; McConnell, Fiona M.; Anderson, Graham; Nawaf, Maher G.; Gaspal, Fabrina M.; Withers, David R.
2014-01-01
Although current thinking has focused on genetic variation between individuals and environmental influences as underpinning susceptibility to both autoimmunity and cancer, an alternative view is that human susceptibility to these diseases is a consequence of the way the immune system evolved. It is important to remember that the immunological genes that we inherit and the systems that they control were shaped by the drive for reproductive success rather than for individual survival. It is our view that human susceptibility to autoimmunity and cancer is the evolutionarily acceptable side effect of the immune adaptations that evolved in early placental mammals to accommodate a fundamental change in reproductive strategy. Studies of immune function in mammals show that high affinity antibodies and CD4 memory, along with its regulation, co-evolved with placentation. By dissection of the immunologically active genes and proteins that evolved to regulate this step change in the mammalian immune system, clues have emerged that may reveal ways of de-tuning both effector and regulatory arms of the immune system to abrogate autoimmune responses whilst preserving protection against infection. Paradoxically, it appears that such a detuned and deregulated immune system is much better equipped to mount anti-tumor immune responses against cancers. PMID:24782861
A physiological perspective on the neuroscience of eating.
Geary, Nori
2014-09-01
I present the thesis that 'being physiological,' i.e., analyzing eating under conditions that do not perturb, or minimally perturb, the organism's endogenous processes, should be a central goal of the neuroscience of eating. I describe my understanding of 'being physiological' based on [i] the central neural-network heuristic of CNS function that traces back to Cajal and Sherrington, [ii] research on one of the simpler problems in the neuroscience of eating, identification of endocrine signals that control eating. In this context I consider natural meals, physiological doses and ranges, and antagonist studies. Several examples involve CCK. Next I describe my view of the cutting edge in the molecular neuroscience of eating as it has evolved from the discovery of leptin signaling through the application of optogenetic and pharmacogenetic methods. Finally I describe some novel approaches that may advance the neuroscience of eating in the foreseeable future. I conclude that [i] the neuroscience of eating may soon be able to discern 'physiological' function in the operation of CNS networks mediating eating, [ii] the neuroscience of eating should capitalize on methods developed in other areas of neuroscience, e.g., improved methods to record and manipulate CNS function in behaving animals, identification of canonical regional circuits, use of population electrophysiology, etc., and [iii] subjective aspects of eating are crucial aspects of eating science, but remain beyond mechanistic understanding. Copyright © 2014 Elsevier Inc. All rights reserved.
Pharmacokinetic modeling in aquatic animals. 1. Models and concepts
Barron, M.G.; Stehly, Guy R.; Hayton, W.L.
1990-01-01
While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson, Jill K; Bianconi, Matheus; Besnard, Guillaume; Dunning, Luke T; Lundgren, Marjorie R; Holota, Helene; Vorontsova, Maria S; Hidalgo, Oriane; Leitch, Ilia J; Nosil, Patrik; Osborne, Colin P; Christin, Pascal-Antoine
2016-12-01
Physiological novelties are often studied at macro-evolutionary scales such that their micro-evolutionary origins remain poorly understood. Here, we test the hypothesis that key components of a complex trait can evolve in isolation and later be combined by gene flow. We use C 4 photosynthesis as a study system, a derived physiology that increases plant productivity in warm, dry conditions. The grass Alloteropsis semialata includes C 4 and non-C 4 genotypes, with some populations using laterally acquired C 4 -adaptive loci, providing an outstanding system to track the spread of novel adaptive mutations. Using genome data from C 4 and non-C 4 A. semialata individuals spanning the species' range, we infer and date past migrations of different parts of the genome. Our results show that photosynthetic types initially diverged in isolated populations, where key C 4 components were acquired. However, rare but recurrent subsequent gene flow allowed the spread of adaptive loci across genetic pools. Indeed, laterally acquired genes for key C 4 functions were rapidly passed between populations with otherwise distinct genomic backgrounds. Thus, our intraspecific study of C 4 -related genomic variation indicates that components of adaptive traits can evolve separately and later be combined through secondary gene flow, leading to the assembly and optimization of evolutionary innovations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Dark matters: effects of light at night on metabolism.
Nelson, Randy J; Chbeir, Souhad
2018-05-11
Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light-dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.
Bernal, D; Dickson, K A; Shadwick, R E; Graham, J B
2001-06-01
Elasmobranchs and bony fishes have evolved independently for more than 400 million years. However, two Recent groups, the lamnid sharks (Family Lamnidae) and tunas (Family Scombridae), display remarkable similarities in features related to swimming performance. Traits separating these two groups from other fishes include a higher degree of body streamlining, a shift in the position of the aerobic, red, locomotor muscle that powers sustained swimming to a more anterior location in the body and nearer to the vertebral column, the capacity to conserve metabolic heat (i.e. regional endothermy), an increased gill surface area with a decreased blood-water barrier thickness, a higher maximum blood oxygen carrying capacity, and greater muscle aerobic and anaerobic enzyme activities at in vivo temperatures. The suite of morphological, physiological, and biochemical specializations that define "high-performance fishes" have been extensively characterized in the tunas. This review examines the convergent features of lamnid sharks and tunas in order to gain insight into the extent that comparable environmental selection pressures have led to the independent origin of similar suites of functional characteristics in these two distinctly different taxa. We propose that, despite differences between teleost and elasmobranch fishes, lamnid sharks and tunas have evolved morphological and physiological specializations that enhance their swimming performance relative to other sharks and most other high performance pelagic fishes.
Arousal and hallucinatory activity under two isolation conditions
NASA Technical Reports Server (NTRS)
Levin, J.
1974-01-01
Experimental exploration of the hypothesis that soundproof-room and water-immersion isolation environments differ with respect to the variety of physiological responses and reported hallucinations they elicit. The results obtained support the hypothesis in regard to physiological responses only.
Costs of mounting an immune response during pregnancy in a lizard.
Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald
2013-01-01
Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.
Human Physiological Responses to Acute and Chronic Cold Exposure
NASA Technical Reports Server (NTRS)
Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.
2001-01-01
When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.
Human physiological responses to wooden indoor environment.
Zhang, Xi; Lian, Zhiwei; Wu, Yong
2017-05-15
Previous studies are mainly focused on non-wooden environments, whereas few are concerned with wooden ones. How wooden indoor environments impact the physiology of the occupants is still unclear. The purpose of this study was to explore the distinct physiological responses to wooden and non-wooden indoor environments, assessed by physiological parameters tests including blood pressure, electrocardiogram measurements, electro-dermal activity, oxyhemoglobin saturation, skin temperature, and near distance vision. Twenty healthy adults participated in this experiment, and their physiological responses were evaluated in a 90minute investigation. The results illustrated that; less tension and fatigue were generated in the wooden rooms than in the non-wooden rooms when the participants did their work. In addition, the study also found that the wooden environments benefit the autonomic nervous system, respiratory system, and visual system. Moreover, wooden rooms play a valuable role in physiological regulation and ease function especially after a consecutive period of work. These results provide an experimental basis to support that wooden environment is beneficial to indoor occupants than the non-wooden indoor environment. Copyright © 2017 Elsevier Inc. All rights reserved.