Sample records for evolved simple stellar

  1. The distribution of stars most likely to harbor intelligent life.

    PubMed

    Whitmire, Daniel P; Matese, John J

    2009-09-01

    Simple heuristic models and recent numerical simulations show that the probability of habitable planet formation increases with stellar mass. We combine those results with the distribution of main-sequence stellar masses to obtain the distribution of stars most likely to possess habitable planets as a function of stellar lifetime. We then impose the self-selection condition that intelligent observers can only find themselves around a star with a lifetime greater than the time required for that observer to have evolved, T(i). This allows us to obtain the stellar timescale number distribution for a given value of T(i). Our results show that for habitable planets with a civilization that evolved at time T(i) = 4.5 Gyr the median stellar lifetime is 13 Gyr, corresponding approximately to a stellar type of G5, with two-thirds of the stars having lifetimes between 7 and 30 Gyr, corresponding approximately to spectral types G0-K5. For other values of T(i) the median stellar lifetime changes by less than 50%.

  2. Time Domain Astrochemistry in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore

    2018-01-01

    The chemistry of protoplanetary disks sets the initial composition of newly formed planets and may regulate the efficiency by which planets form. Disk chemical abundances typically evolve over timescales spanning thousands if not millions of years. Consequently, it was a surprise when ALMA observations taken over the course of a single year showed significantly variable emission in H13CO+ relative to the otherwise constant thermal dust emission in the IM Lup protoplanetary disk. HCO+ is a known X-ray sensitive molecule, and by using simple time-evolving chemical models including stellar activity, we demonstrate that stellar X-ray flares are a viable explanation for the observed H13CO+ variability. If this link between chemistry and stellar activity is confirmed, simultaneous observations can provide a new tool to measure (and potentially map) fundamental disk parameters, such as electron density, as the light from X-ray flares propagates across the disk.

  3. The ultraviolet morphology of evolved populations

    NASA Astrophysics Data System (ADS)

    Chávez, Miguel

    2009-04-01

    In this paper I present a summary of the recent investigations we have developed at the Stellar Atmospheres and Populations Research Group (GrAPEs-for its designation in Spanish) at INAOE and collaborators in Italy. These investigations have aimed at providing updated stellar tools for the analysis of the UV spectra of a variety of stellar aggregates, mainly evolved ones. The sequence of material here presented roughly corresponds to the steps we have identified as mandatory to properly establish the applicability of synthetic populations in the analyses of observational data of globular clusters and more complex aged aggregates. The sequence is composed of four main stages, namely, (a) the creation of a theoretical stellar data base that we have called UVBLUE, (b) the comparison of such data base with observational stellar data, (c) the calculation of a set of synthetic spectral energy distributions (SEDs) of simple stellar populations (SSPs) and their validation through a comparison with observations of a sample of galactic globular clusters (GGCs), (d) construction of models for dating local ellipticals and distant red-envelope galaxies. Most of the work relies on the analysis of absorption line spectroscopic indices. The global results are more than satisfactory in the sense that theoretical indices closely follow the overall trends with chemical composition depicted by their empirical counterparts (stars and GGCs).

  4. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  5. Habitable Moons and Planets Around Post-Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Lorenz, R.

    2014-04-01

    Habitability is ephemeral, and arises against the backdrop of stellar evolution. Atmospheric modulation of incoming and outgoing radiative fluxes can restrict or extend the insolation domain in which habitable conditions can persist, and feedbacks (notably, silicate weathering of CO2) may fortuitously adapt that modulation to counteract evolving luminosity. But eventually the star will win. What happens then depends on the histories of stellar luminosity, and of stellar mass loss. While the enhancement of luminosity may render the outer solar system habitable in a classic radiative/convective equilibrium sense, a scenario studied in most detail in connection with Saturn's moon Titan, the enhanced solar wind associated with the latter may strip atmospheres unprotected by magnetic fields. The question of post-main sequence habitability is therefore not a simple one.

  6. The varieties of symmetric stellar rings and radial caustics in galaxy disks

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Lotan, Pnina

    1990-01-01

    Numerical, restricted three-body and analytic calculations are used to study the formation and propagation of cylindrically symmetric stellar ring waves in galaxy disks. It is shown that such waves can evolve in a variety of ways, depending on the amplitude of the perturbation and the potential of the target galaxy. Rings can thicken as they propagate outward, remain at a nearly constant width, or be pinched off at large radii. Multiple, closely spaced rings can result from a low-amplitude collision, while an outer ring can appear well-separated from overlapping inner rings or an apparent lens structure in halo-dominated potentials. All the single-encounter rings consist of paired fold caustics. The simple, impulsive, kinematic oscillation equations appear to provide a remarkably accurate model of the numerical simulations. Simple analytic approximations to these equations permit very good estimates of oscillation periods and amplitudes, the evolution of ring widths, and ring birth and propagation characteristics.

  7. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  8. AN EVOLVING STELLAR INITIAL MASS FUNCTION AND THE GAMMA-RAY BURST REDSHIFT DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F. Y.; Dai, Z. G.

    2011-02-01

    Recent studies suggest that Swift gamma-ray bursts (GRBs) may not trace an ordinary star formation history (SFH). Here, we show that the GRB rate turns out to be consistent with the SFH with an evolving stellar initial mass function (IMF). We first show that the latest Swift sample of GRBs reveals an increasing evolution in the GRB rate relative to the ordinary star formation rate at high redshifts. We then assume only massive stars with masses greater than the critical value to produce GRBs and use an evolving stellar IMF suggested by Dave to fit the latest GRB redshift distribution.more » This evolving IMF would increase the relative number of massive stars, which could lead to more GRB explosions at high redshifts. We find that the evolving IMF can well reproduce the observed redshift distribution of Swift GRBs.« less

  9. A comparison of LBGs, DRGs, and BzK galaxies: their contribution to the stellar mass density in the GOODS-MUSIC sample

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Nonino, M.; Vanzella, E.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Santini, P.

    2007-04-01

    Context: The classification scheme for high redshift galaxies is complex at the present time, with simple colour-selection criteria (i.e. EROs, IEROs, LBGs, DRGs, BzKs), resulting in ill-defined properties for the stellar mass and star formation rate of these distant galaxies. Aims: The goal of this work is to investigate the properties of different classes of high-z galaxies, focusing in particular on the stellar masses of LBGs, DRGs, and BzKs, in order to derive their contribution to the total mass budget of the distant Universe. Methods: We used the GOODS-MUSIC catalog, containing ~3000 Ks-selected (~10 000 z-selected) galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8~μm band, with spectroscopic or accurate photometric redshifts. We selected samples of BM/BX/LBGs, DRGs, and BzK galaxies to discuss the overlap and the limitations of these criteria, which can be overridden by a selection criterion based on physical parameters. We then measured the stellar masses of these galaxies and computed the stellar mass density (SMD) for the different samples up to redshift ≃4. Results: We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. On the other hand, BzK-SF is highly contaminated by passively evolving galaxies at red z-Ks colours. We find that LBGs and DRGs contribute almost equally to the global SMD at z≥ 2 and, in general, that star-forming galaxies form a substantial fraction of the universal SMD. Passively evolving galaxies show a strong negative density evolution from redshift 2 to 3, indicating that we are witnessing the epoch of mass assembly of such objects. Finally we have indications that by pushing the selection to deeper magnitudes, the contribution of less massive DRGs could overtake that of LBGs. Deeper surveys, like the HUDF, are required to confirm this suggestion.

  10. Constraints on the Evolution of the Galaxy Stellar Mass Function I: Role of Star Formation, Mergers, and Stellar Stripping

    NASA Astrophysics Data System (ADS)

    Contini, E.; Kang, Xi; Romeo, A. D.; Xia, Q.

    2017-03-01

    We study the connection between the observed star formation rate-stellar mass (SFR-M *) relation and the evolution of the stellar mass function (SMF) by means of a subhalo abundance matching technique coupled to merger trees extracted from an N-body simulation. Our approach, which considers both galaxy mergers and stellar stripping, is to force the model to match the observed SMF at redshift z> 2, and let it evolve down to the present time according to the observed SFR-M * relation. In this study, we use two different sets of SMFs and two SFR-M * relations: a simple power law and a relation with a mass-dependent slope. Our analysis shows that the evolution of the SMF is more consistent with an SFR-M * relation with a mass-dependent slope, in agreement with predictions from other models of galaxy evolution and recent observations. In order to fully and realistically describe the evolution of the SMF, both mergers and stellar stripping must be considered, and we find that both have almost equal effects on the evolution of SMF at the massive end. Taking into account the systematic uncertainties in the observed data, the high-mass end of the SMF obtained by considering stellar stripping results in good agreement with recent observational data from the Sloan Digital Sky Survey. At {log} {M}* < 11.2, our prediction at z = 0.1 is close to Li & White data, but the high-mass end ({log} {M}* > 11.2) is in better agreement with D’Souza et al. data which account for more massive galaxies.

  11. Quenching versus quiescence: forming realistic massive ellipticals with a simple starvation model

    NASA Astrophysics Data System (ADS)

    Gutcke, Thales A.; Macciò, Andrea V.; Dutton, Aaron A.; Stinson, Greg S.

    2017-04-01

    The decrease in star formation (SF) and the morphological change necessary to produce the z = 0 elliptical galaxy population are commonly ascribed to a sudden quenching event, which is able to rid the central galaxy of its cold gas reservoir in a short time. Following this event, the galaxy is able to prevent further SF and stay quiescent via a maintenance mode. We test whether such a quenching event is truly necessary using a simple model of quiescence. In this model, hot gas (all gas above a temperature threshold) in an ˜1012 M⊙ halo mass galaxy at redshift z ˜ 3 is prevented from cooling. The cool gas continues to form stars at a decreasing rate and the galaxy stellar mass, morphology, velocity dispersion and position on the colour-magnitude diagram (CMD) proceed to evolve. By z = 0, the halo mass has grown to 1013 M⊙ and the galaxy has attained characteristics typical of an observed z = 0 elliptical galaxy. Our model is run in the framework of a cosmological, smooth particle hydrodynamic code that includes SF, early stellar feedback, supernova feedback, metal cooling and metal diffusion. Additionally, we post-process our simulations with a radiative transfer code to create a mock CMD. In contrast to previous assumptions that a pure 'fade away' model evolves too slowly to account for the sparsity of galaxies in the 'green valley', we demonstrate crossing times of ≲1 Gyr. We conclude that no sudden quenching event is necessary to produce such rapid colour transitions.

  12. Core-powered mass-loss and the radius distribution of small exoplanets

    NASA Astrophysics Data System (ADS)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re'em

    2018-05-01

    Recent observations identify a valley in the radius distribution of small exoplanets, with planets in the range 1.5-2.0 R⊕ significantly less common than somewhat smaller or larger planets. This valley may suggest a bimodal population of rocky planets that are either engulfed by massive gas envelopes that significantly enlarge their radius, or do not have detectable atmospheres at all. One explanation of such a bimodal distribution is atmospheric erosion by high-energy stellar photons. We investigate an alternative mechanism: the luminosity of the cooling rocky core, which can completely erode light envelopes while preserving heavy ones, produces a deficit of intermediate sized planets. We evolve planetary populations that are derived from observations using a simple analytical prescription, accounting self-consistently for envelope accretion, cooling and mass-loss, and demonstrate that core-powered mass-loss naturally reproduces the observed radius distribution, regardless of the high-energy incident flux. Observations of planets around different stellar types may distinguish between photoevaporation, which is powered by the high-energy tail of the stellar radiation, and core-powered mass-loss, which depends on the bolometric flux through the planet's equilibrium temperature that sets both its cooling and mass-loss rates.

  13. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.ed

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period ofmore » equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick, N. Pomphrey and P. Xanthopoulos

    Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also appliedmore » to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.« less

  15. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-06-01

    Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.

  16. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  17. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  18. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Cantiello, Matteo; Paxton, Bill; Johnson, Benjamin D.

    2016-06-01

    This is the first of a series of papers presenting the Modules for Experiments in Stellar Astrophysics (MESA) Isochrones and Stellar Tracks (MIST) project, a new comprehensive set of stellar evolutionary tracks and isochrones computed using MESA, a state-of-the-art open-source 1D stellar evolution package. In this work, we present models with solar-scaled abundance ratios covering a wide range of ages (5≤slant {log}({Age}) [{year}]≤slant 10.3), masses (0.1≤slant M/{M}⊙ ≤slant 300), and metallicities (-2.0≤slant [{{Z}}/{{H}}]≤slant 0.5). The models are self-consistently and continuously evolved from the pre-main sequence (PMS) to the end of hydrogen burning, the white dwarf cooling sequence, or the end of carbon burning, depending on the initial mass. We also provide a grid of models evolved from the PMS to the end of core helium burning for -4.0≤slant [{{Z}}/{{H}}]\\lt -2.0. We showcase extensive comparisons with observational constraints as well as with some of the most widely used existing models in the literature. The evolutionary tracks and isochrones can be downloaded from the project website at http://waps.cfa.harvard.edu/MIST/.

  19. Probabilistic HR Diagrams: A New Infrared and X-ray Chronometer for Very Young, Massive Stellar Clusters and Associations

    NASA Astrophysics Data System (ADS)

    Maldonado, Jessica; Povich, Matthew S.

    2016-01-01

    We present a novel method for constraining the duration of star formation in very young, massive star-forming regions. Constraints on stellar population ages are derived from probabilistic HR diagrams (pHRDs) generated by fitting stellar model spectra to the infrared (IR) spectral energy distributions (SEDs) of Herbig Ae/Be stars and their less-evolved, pre-main sequence progenitors. Stellar samples for the pHRDs are selected based on the detection of X-ray emission associated with the IR source, and the lack of detectible IR excess emission at wavelengths ≤4.5 µm. The SED model fits were used to create two-dimensional probability distributions of the stellar parameters, specifically bolometric luminosity versus temperature and mass versus evolutionary age. We present first results from the pHRD analysis of the relatively evolved Carina Nebula and the unevolved M17 SWex infrared dark cloud, which reveal the expected, strikingly different star formation durations between these two regions. In the future, we will apply this method to analyze available X-ray and IR data from the MYStIX project on other Galactic massive star forming regions within 3 kpc of the Sun.

  20. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Benamati, L.; Santos, N. C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S. G.; Tsantaki, M.; Mortier, A.; Sozzetti, A.; De Medeiros, J. R.

    2015-06-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search programme. To date, only one of these stars is known to harbour a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analysed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an local thermodynamic equilibrium (LTE) abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations, both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a `gap' in metallicity between the thick-disc and high-α metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-log g star with low [Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars, we suggest to use a subsample of stars in a `cut-rectangle' in the log g-[Fe/H] diagram to overcome the aforementioned issue.

  1. On the Spatially Resolved Star Formation History in M51. II. X-Ray Binary Population Evolution

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Eufrasio, R. T.; Markwardt, L.; Zezas, A.; Basu-Zych, A.; Fragos, T.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.

    2017-12-01

    We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star formation event. We first utilize detailed stellar population synthesis modeling of far-UV-to-far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star formation histories (SFHs) on subgalactic (≈400 pc) scales. Next, we use the ≈850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star formation rate (SFR) per stellar mass ({M}\\star ) and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age Our best-fit model indicates that the XRB XLF per unit stellar mass declines in normalization, by ˜3-3.5 dex, and steepens in slope from ≈10 Myr to ≈10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how XRB XLFs evolve with age.

  2. The Radial Velocity Variability of the K-giant γ Draconis: Stellar Variability Masquerading as a Planet

    NASA Astrophysics Data System (ADS)

    Hatzes, A. P.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Han, I.; Lee, B.-C.; Kim, K.-M.; Mkrtichian, D.; Döllinger, M.; Hartmann, M.; Karjalainen, M.; Dreizler, S.

    2018-03-01

    We present precise stellar radial velocity (RV) measurements of γ Dra taken from 2003 to 2017. The data from 2003 to 2011 show coherent, long-lived variations with a period of 702 days. These variations are consistent with the presence of a planetary companion having m sin i = 10.7 M Jup whose orbital properties are typical for giant planets found around evolved stars. An analysis of the Hipparcos photometry, Ca II S-index measurements, and measurements of the spectral line shapes during this time show no variations with the RV of the planet, which seems to “confirm” the presence of the planet. However, RV measurements taken from 2011–2017 seem to refute this. From 2011–2013, the RV variations virtually disappear, only to return in 2014 but with a noticeable phase shift. The total RV variations are consistent either with amplitude variations on timescales of ≈10.6 year, or the beating effect between two periods of 666 and 801 days. It seems unlikely that both these signals stem from a two-planet system. A simple dynamical analysis indicates that there is only a 1%–2% chance that the two-planet system is stable. Rather, we suggest that this multi-periodic behavior may represent a new form of stellar variability, possibly related to oscillatory convective modes. If such intrinsic stellar variability is common around K giant stars and is attributed to planetary companions, then the planet occurrence rate among these stars may be significantly lower than thought.

  3. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  4. Evolving Gravitationally Unstable Disks over Cosmic Time: Implications for Thick Disk Formation

    NASA Astrophysics Data System (ADS)

    Forbes, John; Krumholz, Mark; Burkert, Andreas

    2012-07-01

    Observations of disk galaxies at z ~ 2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. We present a one-dimensional simulation code, which we have made publicly available, that economically evolves these galaxies from z ~ 2 to z ~ 0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H2-regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity-dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z ~ 2 decreases along with the cosmological accretion rate, while at lower redshift the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

  5. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  6. Common-envelope ejection in massive binary stars. Implications for the progenitors of GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    Kruckow, M. U.; Tauris, T. M.; Langer, N.; Szécsi, D.; Marchant, P.; Podsiadlowski, Ph.

    2016-11-01

    Context. The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. Aims: We analyse the common-envelope (CE) stage of the traditional formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in this process. Methods: We calculated envelope binding energies of donor stars with initial masses between 4 and 115M⊙ for metallicities of Z = ZMilky Way ≃ Z⊙/ 2 and Z = Z⊙/ 50, and derived minimum masses of in-spiralling objects needed to eject these envelopes. Results: In addition to producing double white dwarf and double neutron star binaries, CE evolution may also produce massive BH-BH systems with individual BH component masses of up to 50 - 60M⊙, in particular for donor stars evolved to giants beyond the Hertzsprung gap. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy, and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Conclusions: Massive stars in a wide range of metallicities and with initial masses of up to at least 115M⊙ may shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate- and low-mass stars with degenerate cores. In addition to being dependent on stellar radius, the envelope binding energies and λ-values also depend on the applied convective core-overshooting parameter, whereas these structure parameters are basically independent of metallicity for stars with initial masses below 60M⊙. Metal-rich stars ≳60M⊙ become luminous blue variables and do not evolve to reach the red giant stage. We conclude that based on stellar structure calculations, and in the view of the usual simple energy budget analysis, events like GW150914 and GW151226 might be produced by the CE channel. Calculations of post-CE orbital separations, however, and thus the estimated LIGO detection rates, remain highly uncertain.

  7. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  8. Strange mode instabilities and mass loss in evolved massive primordial stars

    NASA Astrophysics Data System (ADS)

    Yadav, Abhay Pratap; Kühnrich Biavatti, Stefan Henrique; Glatzel, Wolfgang

    2018-04-01

    A linear stability analysis of models for evolved primordial stars with masses between 150 and 250 M⊙ is presented. Strange mode instabilities with growth rates in the dynamical range are identified for stellar models with effective temperatures below log Teff = 4.5. For selected models, the final fate of the instabilities is determined by numerical simulation of their evolution into the non-linear regime. As a result, the instabilities lead to finite amplitude pulsations. Associated with them are acoustic energy fluxes capable of driving stellar winds with mass-loss rates in the range between 7.7 × 10-7 and 3.5 × 10-4 M⊙ yr-1.

  9. Evolutionary synthesis of simple stellar populations. Colours and indices

    NASA Astrophysics Data System (ADS)

    Kurth, O. M.; Fritze-v. Alvensleben, U.; Fricke, K. J.

    1999-07-01

    We construct evolutionary synthesis models for simple stellar populations using the evolutionary tracks from the Padova group (1993, 1994), theoretical colour calibrations from \\cite[Lejeune et al. (1997, 1998)]{lejeune} and fit functions for stellar atmospheric indices from \\cite[Worthey et al. (1994)]{worthey}. A Monte-Carlo technique allows us to obtain a smooth time evolution of both broad band colours in UBVRIK and a series of stellar absorption features for Single Burst Stellar Populations (SSPs). We present colours and indices for SSPs with ages from 1 \\ 10(9) yrs to 1.6 \\ 10(10) yrs and metallicities [M/H]=-2.3, -1.7, -0.7, -0.4, 0.0 and 0.4. Model colours and indices at an age of about a Hubble time are in good agreement with observed colours and indices of the Galactic and M 31 GCs.

  10. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star formation efficiency. This paper contains data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. A simple physical model for X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.

    1977-01-01

    In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.

  12. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  13. Color-size Relations of Disc Galaxies with Similar Stellar Masses

    NASA Astrophysics Data System (ADS)

    Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.

    2011-01-01

    To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.

  14. Feast and Famine: regulation of black hole growth in low-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Heckman, Timothy M.

    2009-07-01

    We analyse the observed distribution of Eddington ratios (L/LEdd) as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [M*/starformationrate (SFR) ~ a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (M*/SFR >> a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.

  15. Finding evolved stars in the inner Galactic disk with Gaia

    NASA Astrophysics Data System (ADS)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  16. VizieR Online Data Catalog: PTPS stars. III. The evolved stars sample (Niedzielski+, 2016)

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Deka-Szymankiewicz, B.; Adamczyk, M.; Adamow, M.; Nowak, G.; Wolszczan, A.

    2015-11-01

    We present basic atmospheric parameters (Teff, logg, vt and [Fe/H]), rotation velocities and absolute radial velocities as well as luminosities, masses, ages and radii for 402 stars (including 11 single-lined spectroscopic binaries), mostly subgiants and giants. For 272 of them we present parameters for the first time. For another 53 stars we present estimates of Teff and log g based on photometric calibrations. We also present basic properties of the complete list of 744 stars that form the PTPS evolved stars sample. We examined stellar masses for 1255 stars in five other planet searches and found some of them likely to be significantly overestimated. Applying our uniformly determined stellar masses we confirm the apparent increase of companions masses for evolved stars, and we explain it, as well as lack of close-in planets with limited effective radial velocity precision for those stars due to activity. (5 data files).

  17. The VLTI: An Ever Improving Imaging Machine

    NASA Astrophysics Data System (ADS)

    Merand, Antoine

    2018-04-01

    The last decade has seen VLTI transitioning from 2 to 3 to 4 Telescopes recombination. This led to an increase in the morphological complexity observations are able to address, and ultimately the possibility to reconstruct images. Reconstructing images using 4T data only is not a simple feat and requires coordinated observations with multiple re-configurations of VLTI moving telescopes, the Auxiliary Telescopes (AT). Whereas the current second generation instruments (GRAVITY and MATISSE) combine the 4 currently available telescopes, the VLTI platform can accommodate many more telescopes, and the tunnel has space for 2 more delay lines, allowing to combine simultaneously up to 8 telescopes. I will have a look at how VLTI could evolve to include and operate additional telescopes, as well as the improvements (and limitations) related to imaging stellar surfaces.

  18. Spectroscopic decomposition of the galaxy and halo of the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Johnston, Evelyn J.; Merrifield, Michael; Aragón-Salamanca, Alfonso

    2018-05-01

    Information on the star-formation histories of cD galaxies and their extended stellar haloes lie in their spectra. Therefore, to determine whether these structures evolved together or through a two-phase formation, we need to spectroscopically separate the light from each component. We present a pilot study to use BUDDI to fit and extract the spectra of the cD galaxy NGC 3311 and its halo in an Integral Field Spectroscopy datacube, and carry out a simple stellar populations analysis to study their star-formation histories. Using MUSE data, we were able to isolate the light of the galaxy and its halo throughout the datacube, giving spectra representing purely the light from each of these structures. The stellar populations analysis of the two components indicates that, in this case, the bulk of the stars in both the halo and the central galaxy are very old, but the halo is more metal poor and less α-enriched than the galaxy. This result is consistent with the halo forming through the accretion of much smaller satellite galaxies with more extended star formation. It is noteworthy that the apparent gradients in age and metallicity indicators across the galaxy are entirely consistent with the radially-varying contributions of galaxy and halo components, which individually display no gradients. The success of this study is promising for its application to a larger sample of cD galaxies that are currently being observed by IFU surveys.

  19. Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)

    NASA Astrophysics Data System (ADS)

    De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda

    2017-06-01

    The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.

  20. Search for Close-in Planets around Evolved Stars with Phase-curve variations and Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki

    2016-10-01

    Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.

  1. Imaging of Stellar Surfacess Using Radio Facilities Including ALMA

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon

    2018-04-01

    Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.

  2. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  3. Measuring the Relationship between Stellar Scintillation and Altitude: A Simple Discovery-Based Observational Exercise Used in College Level Non-Major Astronomy Classes

    ERIC Educational Resources Information Center

    Sampson, Russell D.

    2013-01-01

    A simple naked eye observational exercise is outlined that teaches non-major astronomy students basic observational and critical thinking skills but does not require complex equipment or extensive knowledge of the night sky. Students measure the relationship between stellar scintillation and the altitude of a set of stars. Successful observations…

  4. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  5. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  6. Dynamical Model for Spindown of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.

  7. A novel look at energy equipartition in globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; van de Ven, G.; Norris, M. A.; Schinnerer, E.; Varri, A. L.

    2016-06-01

    Two-body interactions play a major role in shaping the structural and dynamical properties of globular clusters (GCs) over their long-term evolution. In particular, GCs evolve towards a state of partial energy equipartition that induces a mass dependence in their kinematics. By using a set of Monte Carlo cluster simulations evolved in quasi-isolation, we show that the stellar mass dependence of the velocity dispersion σ(m) can be described by an exponential function σ2 ∝ exp (-m/meq), with the parameter meq quantifying the degree of partial energy equipartition of the systems. This simple parametrization successfully captures the behaviour of the velocity dispersion at lower as well as higher stellar masses, that is, the regime where the system is expected to approach full equipartition. We find a tight correlation between the degree of equipartition reached by a GC and its dynamical state, indicating that clusters that are more than about 20 core relaxation times old, have reached a maximum degree of equipartition. This equipartition-dynamical state relation can be used as a tool to characterize the relaxation condition of a cluster with a kinematic measure of the meq parameter. Vice versa, the mass dependence of the kinematics can be predicted knowing the relaxation time solely on the basis of photometric measurements. Moreover, any deviations from this tight relation could be used as a probe of a peculiar dynamical history of a cluster. Finally, our novel approach is important for the interpretation of state-of-the-art Hubble Space Telescope proper motion data, for which the mass dependence of kinematics can now be measured, and for the application of modelling techniques which take into consideration multimass components and mass segregation.

  8. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  9. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  10. The IUE Mega Campaign. Modulated Structure in the Wind of HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Prinja, Raman K.; Massa, Derck; Fullerton, Alexander W.

    1995-01-01

    We highlight systematic variability in the stellar wind of the early B type supergiant, HD 64760, whose UV line profiles were monitored for almost 16 days in 1995 January as part of the IUE 'MEGA Campaign.' The extensive coverage reveals a pattern of rapidly evolving discrete optical depth changes which typically migrate from approx. - 200 km/s to approx. -1500 km/s in less than 12 hr. These features coexist with more slowly evolving structures lasting several days. Time-series analysis of the Si(IV), Si(III), and N(V) profile variations presents a clear 1.2 day periodicity, which is a quarter of the estimated maximum rotation period of HD 64760. The line profile changes are consistent with an interpretation in terms of a set of corotating wind features which occult the stellar disk at least 3 times during the observing run. These data are combined with UV observations collected in 1993 March to argue in favor of rotationally modulated wind variations in HD 64760. The basic result of very regular, large-scale optical depth variations points to a 'clock' whose origin is on the stellar surface, rather than a mechanism that is entirely intrinsic to the stellar wind.

  11. On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.

    2016-01-01

    IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  12. The different growth pathways of Brightest Cluster Galaxies and the Intra-Cluster Light

    NASA Astrophysics Data System (ADS)

    Contini, E.; Yi, S. K.; Kang, X.

    2018-06-01

    We study the growth pathways of Brightest Central Galaxies (BCGs) and Intra-Cluster Light (ICL) by means of a semi-analytic model. We assume that the ICL forms by stellar stripping of satellite galaxies and violent processes during mergers, and implement two independent models: (1) one considers both mergers and stellar stripping (named STANDARD model), and one considers only mergers (named MERGERS model). We find that BCGs and ICL form, grow and overall evolve at different times and with different timescales, but they show a clear co-evolution after redshift z ˜ 0.7 - 0.8. Around 90% of the ICL from stellar stripping is built-up in the innermost 150 Kpc from the halo centre and the dominant contribution comes from disk-like galaxies (B/T<0.4) through a large number of small/intermediate stripping events (Mstrip/Msat < 0.3). The fractions of stellar mass in BCGs and in ICL over the total stellar mass within the virial radius of the halo evolve differently with time. At high redshift, the BCG accounts for the bulk of the mass, but its contribution gradually decreases with time and stays constant after z ˜ 0.4 - 0.5. The ICL, instead, grows very fast and its contribution keeps increasing down to the present time. The STANDARD and the MERGERS models make very similar predictions in most of the cases, but predict different amounts of ICL associated to other galaxies within the virial radius of the group/cluster other than the BCG, at z = 0. We then suggest that this quantity is a valid observable that can shed light on the relative importance of mergers and stellar stripping for the formation of the ICL.

  13. Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew

    2018-06-01

    We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.

  14. Astronomy In Denver: Polarization of Stellar Wind Bow Shocks

    NASA Astrophysics Data System (ADS)

    Lin, Austin A.; Shrestha, Manisha; Wolfe, Tristan; Stencel, Robert E.; Hoffman, Jennifer L.

    2018-06-01

    When a star with stellar wind moves through the interstellar medium (ISM) at a relative supersonic velocity, an arch like structure known as a stellar wind bow shock is formed. Studying the characteristics of these structures can further our understanding of evolved stellar winds and the composition of the ISM. Observations of these structures have been performed for some time, but the recent discovery of many bow shock structures have opened more ways to study them. These stellar wind bow shocks display aspherical shapes, which cause light scattering through the dense shock material to become polarized. We selected a target star for observation using a catalog compiled from previous studies and observed it in polarized light with the University of Denver’s DUSTPol instrument. Our group has also simulated the polarization of stellar wind bow shocks using a Monte Carlo radiative transfer code. We present the data from our observations and compare them with the simulations. We also discuss the contribution of interstellar polarization to the data.

  15. Spatially-Resolved Observations of Giant Stars with SPHERE

    NASA Astrophysics Data System (ADS)

    Khouri, Theo

    2018-04-01

    SPHERE on the VLT is an extreme adaptive optics instrument that produces images with unprecedented angular resolution at visible and near-infrared wavelengths. Its primary goal is imaging, low-resolution spectroscopic, and polarimetric characterization of extra-solar planetary systems. Nonetheless, the high spatial resolution and the instrument design optimized for observations in a narrow field of view around bright targets make SPHERE the perfect instrument for obtaining spatially-resolved images of close-by giant, evolved stars. This is particularly true at the shortest wavelengths available with SPHERE, where the angular resolution is best (> 20 mas) and these stars appear larger (< 70 mas). In this talk, I will review how SPHERE has been used to study the surfaces and extended atmospheres of evolved stars and how these observations advance our understanding of the stellar pulsations and convective motions that shape these stars. Moreover, I will present recent results from a monitoring campaign of the star R Doradus using SPHERE with observations taken at twelve epochs over eight months that reveal features on the stellar disc varying on timescales of a few weeks. Finally, I will present quasi-simultaneous observations with SPHERE and ALMA that spatially resolve the stellar discs of two asymptotic giant branch stars, Mira and R Doradus, and discuss what such multi-wavelength observation campaigns can teach us about the processes that shape evolved stars.

  16. The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.

  17. On the Nature of Bright Infrared Sources in the Small Magellanic Cloud: Interpreting MSX through the Lens of Spitzer

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, G. C.

    2015-01-01

    We compare infrared observations of the Small Magellanic Cloud (SMC) by the Midcourse Space Experiment (MSX) and the Spitzer Space Telescope to better understand what components of a metal-poor galaxy dominate radiative processes in the infrared. The SMC, at a distance of ~60 kpc and with a metallicity of ~0.1-0.2 solar, can serve as a nearby proxy for metal-poor galaxies at high redshift. The MSX Point Source Catalog contains 243 objects in the SMC that were detected at 8.3 microns, the most sensitive MSX band. Multi-epoch, multi-band mapping with Spitzer, supplemented with observations from the Two-Micron All-Sky Survey (2MASS) and the Wide-field Infrared Survey Explorer (WISE), provides variability information, and, together with spectra from Spitzer for ~15% of the sample, enables us to determine what these luminous sources are. How many remain simple point sources? What fraction break up into multiple stars? Which are star forming regions, with both bright diffuse emission and point sources? How do evolved stars and stellar remnants contribute at these wavelengths? What role do young stellar objects and HII regions play? Answering these questions sets the stage for understanding what we will see with the James Webb Space Telescope (JWST).

  18. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.

    2016-09-01

    Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9344.

  19. Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Wong, Ka Tat

    2018-04-01

    Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.

  20. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  1. A Wide Area Survey for High-Redshift Massive Galaxies. II. Near-Infrared Spectroscopy of BzK-Selected Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Onodera, Masato; Arimoto, Nobuo; Daddi, Emanuele; Renzini, Alvio; Kong, Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ~2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (sime100 Myr) and large initial gas mass appear to be required if one wants to reproduce both relations simultaneously. Based on data collected at the Subaru telescope, which is operated by the National Astronomical Observatory of Japan (S04A-081, S05A-098), and on observations collected at the European Southern Observatory, Paranal, Chile (075.A-0439).

  2. The structure of protoplanetary discs around evolving young stars

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro

    2015-03-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org

  3. The necessity of feedback physics in setting the peak of the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Krumholz, Mark R.; Hopkins, Philip F.

    2016-05-01

    A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution dN/dM ∝ M-2 for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.

  4. The imprint of dark matter haloes on the size and velocity dispersion evolution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Posti, Lorenzo; Nipoti, Carlo; Stiavelli, Massimo; Ciotti, Luca

    2014-05-01

    Early-type galaxies (ETGs) are observed to be more compact, on average, at z ≳ 2 than at z ≃ 0, at fixed stellar mass. Recent observational works suggest that such size evolution could reflect the similar evolution of the host dark matter halo density as a function of the time of galaxy quenching. We explore this hypothesis by studying the distribution of halo central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and redshift z, in a cosmological Λ cold dark matter N-body simulation. In the range 0 ≲ z ≲ 2.5, we find σ0∝M0.31-0.37 and rh∝M0.28-0.32, close to the values expected for homologous virialized systems. At fixed M in the range 1011 M⊙ ≲ M ≲ 5.5 × 1014 M⊙ we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)-0.7. We show that such evolution of the halo scaling laws is driven by individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6, consistent with simple dissipationless merging models in which the encounter orbital energy is accounted for. We compare the N-body data with ETGs observed at 0 ≲ z ≲ 3 by populating the haloes with a stellar component under simple but justified assumptions: the resulting galaxies evolve consistently with the observed ETGs up to z ≃ 2, but the model has difficulty in reproducing the fast evolution observed at z ≳ 2. We conclude that a substantial fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshift of the dark matter haloes structural properties.

  5. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    NASA Astrophysics Data System (ADS)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  6. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  7. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  8. How fast can stellar death throes go?

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.

    2018-04-01

    Using evolving observing strategies and technologies we are catching supernovae closer and closer to the `b' of the `bang', thus unveiling new types of explosion mechanism that have not been studied in depth before.

  9. The Physics and Chemistry of Oxygen-Rich Circumstellar Envelopes as Traced by Simple Molecules

    NASA Astrophysics Data System (ADS)

    Wong, Ka Tat

    2018-04-01

    The physics and chemistry of the circumstellar envelopes (CSEs) of evolved stars are not fully understood despite decades of research. This thesis addresses two issues in the study of the CSEs of oxygen-rich (O-rich) evolved stars. In the first project, the ammonia (NH3) chemistry of O-rich stars is investigated with multi-wavelength observations; in the second project, the extended atmosphere and inner wind of the archetypal asymptotic giant branch (AGB) star o Ceti (Mira) is studied with high-angular resolution observations. One of the long-standing mysteries in circumstellar chemistry is the perplexing overabundance of the NH3 molecule. NH3 in O-rich evolved stars has been found in much higher abundance, by several orders of magnitude, than that expected in equilibrium chemistry. Several mechanisms have been suggested in the literature to explain this high NH3 abundance, including shocks in the inner wind, photodissociation of nitrogen by interstellar ultraviolet radiation, and nitrogen enrichment in stellar nucleosynthesis; however, none of these suggestions can fully explain the abundances of NH3 and various other molecular species in the CSEs of O-rich stars. In order to investigate the distribution of NH3 in O-rich CSEs, observations of the spectral lines of NH3 from a diverse sample of evolved stars and in different wavelength regimes are necessary. In this thesis, the NH3 line emission and absorption from four O-rich stars are studied. These targets include the AGB star IK Tauri, the pre-planetary nebula OH 231.8+4.2, the red supergiant VY Canis Majoris, and the yellow hypergiant IRC +10420. The amount of NH3 observational data has increased drastically thanks to the recent advancement of instrumentation. Observations of NH3 rotational line emission at submillimetre/far-infrared wavelengths were possible with the Herschel Space Observatory (2009–2013). The new wideband correlator in the upgraded Karl G. Janksy Very Large Array (VLA) provided data of multiple radio inversion lines of NH3. Furthermore, mid-infrared absorption of NH3 has been observed by the NASA Infrared Telescope Facility (IRTF) for IK Tau and VY CMa. Full radiative transfer modelling including mid-infrared pumping to the first vibrationally excited state (v2=1) has been carried out to reproduce the observed emission and absorption spectra and to retrieve the NH3 abundances in the targets. It is found that the NH3 emission in the CSEs of the targets arises from localised spatial-kinematic structures in which the gas density may be higher than in the surrounding gas. Circumstellar shocks may contribute to, but cannot fully account for, the formation of the molecule. Besides circumstellar chemistry, our understanding of the dust formation and wind-driving mechanisms of oxygen-rich evolved stars is still incomplete. One of the obstacles in the past was the difficulty in imaging the dust condensation and wind acceleration zones due to the lack of high-angular resolution instruments. Thanks to the Atacama Large Millimeter/submillimeter Array (ALMA), which has the longest baseline of about 15 km, we are now able to produce high-fidelity images at unprecedented angular resolutions of tens of milliarcseconds (mas) in the (sub)millimetre regime. Such angular resolutions, which are comparable to the stellar radii of nearby objects, are necessary to understand the gas dynamics and chemical evolution in the pulsating atmosphere and dust formation zone of nearby AGB stars. The eponymous Mira-type long-period variable, o Cet, was observed as a Science Verification target during the first ALMA Long Baseline Campaign that took place in 2014. The observations produced images of the stellar radio photosphere and the molecular transitions of SiO and H2O at an angular resolution of about 30 mas near 220 GHz (1.3 mm). The millimetre stellar disc of o Cet was resolved and modelled. More importantly, this is the first time that molecular line absorption against the background stellar continuum has been clearly imaged in the (sub)millimetre wavelength regime. Through radiative transfer modelling of the SiO and H2O line absorption and emission, it is found that during the ALMA observations, the extended atmosphere of the star exhibited infall motions in general with a shock front of velocity

  10. Mass loss in O-type stars - Parameters which affect it

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.

    1984-01-01

    Newly determined mass loss rates are presented for sixteen O-type stars in three open clusters. Combining the data with that already in the literature, no evidence is found that the rates are different in clusters with differing galactocentric distances and compositions, at least near the sun. There is still appreciable dispersion in the relationship between the mass loss rate and the stellar luminosity. It may be that the mass loss depends additionally on the stellar mass and/or radius, but these data cannot unequivocally indicate which physical dependence is correct. Evidence is found that a stellar wind increases as a massive star evolves from the zero-age main sequence.

  11. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  12. Estimating precise metallicity and stellar mass evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  13. Glimpsing the imprint of local environment on the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Tomczak, Adam R.; Lemaux, Brian C.; Lubin, Lori M.; Gal, Roy R.; Wu, Po-Feng; Holden, Bradford; Kocevski, Dale D.; Mei, Simona; Pelliccia, Debora; Rumbaugh, Nicholas; Shen, Lu

    2017-12-01

    We investigate the impact of local environment on the galaxy stellar mass function (SMF) spanning a wide range of galaxy densities from the field up to dense cores of massive galaxy clusters. Data are drawn from a sample of eight fields from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. Deep photometry allow us to select mass-complete samples of galaxies down to 109 M⊙. Taking advantage of >4000 secure spectroscopic redshifts from ORELSE and precise photometric redshifts, we construct three-dimensional density maps between 0.55 < z < 1.3 using a Voronoi tessellation approach. We find that the shape of the SMF depends strongly on local environment exhibited by a smooth, continual increase in the relative numbers of high- to low-mass galaxies towards denser environments. A straightforward implication is that local environment proportionally increases the efficiency of (a) destroying lower mass galaxies and/or (b) growth of higher mass galaxies. We also find a presence of this environmental dependence in the SMFs of star-forming and quiescent galaxies, although not quite as strongly for the quiescent subsample. To characterize the connection between the SMF of field galaxies and that of denser environments, we devise a simple semi-empirical model. The model begins with a sample of ≈106 galaxies at zstart = 5 with stellar masses distributed according to the field. Simulated galaxies then evolve down to zfinal = 0.8 following empirical prescriptions for star-formation, quenching and galaxy-galaxy merging. We run the simulation multiple times, testing a variety of scenarios with differing overall amounts of merging. Our model suggests that a large number of mergers are required to reproduce the SMF in dense environments. Additionally, a large majority of these mergers would have to occur in intermediate density environments (e.g. galaxy groups).

  14. Witnessing Atmospheric Motions in Cool Evolved Stars with VLTI/Amber

    NASA Astrophysics Data System (ADS)

    Ohnaka, Keiichi

    2018-04-01

    Studies of the mass loss from stars in late evolutionary stages are of utmost importance for improving our understanding of not only stellar evolution but also the chemical enrichment of galaxies. Despite such importance, the mass loss from cool evolved stars is one of the long-standing problems in stellar astrophysics. Milliarcsecond resolution achieved by optical/infrared long-baseline interferometry provides a unique opportunity to spatially resolve this innermost key region. We have recently succeeded not only in imaging the surface of the red supergiant Antares in the 2.3 micron CO lines in unprecedented detail but also in witnessing, for the first time, the complex gas dynamics over the surface and atmosphere of the star. Our 2-D velocity field map of Antares reveals vigorous upwelling and downdrafting motions of large gas clumps in the atmosphere extending out to 1.7 stellar radii. This suggests that the mass loss in red supergiants may be launched in a turbulent, clumpy manner. We will also present preliminary results of the velocity-resolved imaging of an AGB star. Our work opens an entirely new window to observe stars just like in observations of the Sun.

  15. THE EXTREMELY RED HOST GALAXY OF GRB 080207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Leslie; Cresci, Giovanni; Palazzi, Eliana

    2011-08-01

    We present optical, near-infrared, and Spitzer IRAC and MIPS observations of the host galaxy of the dark Swift gamma-ray burst GRB 080207. The host is faint, with extremely red optical-infrared colors (R - K = 6.3, 24 {mu}m/R-band flux {approx}1000) making it an extremely red object (ERO) and a dust-obscured galaxy (DOG). The spectral energy distribution (SED) shows the clear signature of the 1.6 {mu}m photometric 'bump', typical of evolved stellar populations. We use this bump to establish the photometric redshift z{sub phot} as 2.2{sup +0.2}{sub -0.3}, using a vast library of SED templates, including M 82. The star formationmore » rate (SFR) inferred from the SED fitting is {approx}119 M{sub sun} yr{sup -1}, the stellar mass 3 x 10{sup 11} M{sub sun}, and A{sub V} extinction from 1 to 2 mag. The ERO and DOG nature of the host galaxy of the dark GRB 080207 may be emblematic of a distinct class of dark GRB hosts, with high SFRs, evolved and metal-rich stellar populations, and significant dust extinction within the host galaxy.« less

  16. Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Montet, Benjamin T.; Johnson, John Asher

    2018-06-01

    Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]) but also on the mass ({M}\\star ). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns, we use HIRES spectra to perform a spectroscopic analysis on a sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a ‑0.12 {M}ȯ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with {M}\\star ≥slant 1.6 M ⊙ (the “retired A stars”) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M ⊙. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk {M}\\star {10}[{Fe/{{H}}]}. This correlation provides additional support for the core accretion mechanism of planet formation.

  17. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  18. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  19. The instantaneous radial growth rate of stellar discs

    NASA Astrophysics Data System (ADS)

    Pezzulli, G.; Fraternali, F.; Boissier, S.; Muñoz-Mateos, J. C.

    2015-08-01

    We present a new and simple method to measure the instantaneous mass and radial growth rates of the stellar discs of spiral galaxies, based on their star formation rate surface density (SFRD) profiles. Under the hypothesis that discs are exponential with time-varying scalelengths, we derive a universal theoretical profile for the SFRD, with a linear dependence on two parameters: the specific mass growth rate ν _ M ≡ dot{M}_⋆ /M_⋆ and the specific radial growth rate ν _ R ≡ dot{R}_⋆ /R_⋆ of the disc. We test our theory on a sample of 35 nearby spiral galaxies, for which we derive a measurement of νM and νR. 32/35 galaxies show the signature of ongoing inside-out growth (νR > 0). The typical derived e-folding time-scales for mass and radial growth in our sample are ˜10 and ˜30 Gyr, respectively, with some systematic uncertainties. More massive discs have a larger scatter in νM and νR, biased towards a slower growth, both in mass and size. We find a linear relation between the two growth rates, indicating that our galaxy discs grow in size at ˜0.35 times the rate at which they grow in mass; this ratio is largely unaffected by systematics. Our results are in very good agreement with theoretical expectations if known scaling relations of disc galaxies are not evolving with time.

  20. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jieun; Conroy, Charlie; Moustakas, John

    2014-09-10

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.1 < z < 0.7 from the Sloan Digital Sky Survey (SDSS) and the AGN and Galaxy Evolution Survey (AGES). We examine how the stellar ages and abundance patterns of galaxies evolve over time as a function of stellar mass from 10{sup 9.6}-10{sup 11.8} M {sub ☉}. Galaxy spectra are stacked in bins of mass and redshift and modeled over a wavelength range from 4000 Å to 5500 Å. Full spectrum stellar population synthesis modeling provides estimates of the age and the abundances ofmore » the elements Fe, Mg, C, N, and Ca. We find negligible evolution in elemental abundances at fixed stellar mass over roughly 7 Gyr of cosmic time. In addition, the increase in stellar ages with time for massive galaxies is consistent with passive evolution since z = 0.7. Taken together, these results favor a scenario in which the inner ∼0.3-3 R {sub e} of massive quiescent galaxies have been passively evolving over the last half of cosmic time. Interestingly, the derived stellar ages are considerably younger than the age of the universe at all epochs, consistent with an equivalent single-burst star formation epoch of z ≲ 1.5. These young stellar population ages coupled with the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z ≲ 0.7 quiescent population. The data also permit the addition of newly quenched galaxies at masses below ∼10{sup 10.5} M {sub ☉} at z < 0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z = 0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In the Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N (∼20 Å{sup –1}) and/or low spectral resolution (R ∼ 500).« less

  1. Multiple stellar populations in Magellanic Cloud clusters - III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.

    2015-07-01

    Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.

  2. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  3. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  4. Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Riebel, David

    2012-01-01

    I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.

  5. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, M.; Elbaz, D.; Daddi, E.

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less

  6. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  7. Know the Star, Know the Planet. V. Characterization of the Stellar Companion to the Exoplanet Host Star HD 177830

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Oppenheimer, Rebecca; Crepp, Justin R.; Baranec, Christoph; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G.; Nilsson, Ricky; Parry, Ian R.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Rémi; Rice, Emily L.; Veicht, Aaron; Vasisht, Gautam; Zhai, Chengxing; Zimmerman, Neil T.

    2015-10-01

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.

  8. KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Lewis C. Jr.; Beichman, Charles; Burruss, Rick

    2015-10-15

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determinedmore » that the binary star has a likely period of approximately 800 years with a semimajor axis of 100–200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5–10 years.« less

  9. Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.

    2007-12-01

    The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.

  10. Talks also presented at the Symposium

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.

    2017-11-01

    Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.

  11. CFHTLenS: co-evolution of galaxies and their dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Gillis, Bryan R.; Coupon, Jean; Hildebrandt, Hendrik; Erben, Thomas; Heymans, Catherine; Hoekstra, Henk; Kitching, Thomas D.; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Bonnett, Christopher; Fu, Liping; Kuijken, Konrad; Rowe, Barnaby; Schrabback, Tim; Semboloni, Elisabetta; van Uitert, Edo; Velander, Malin

    2015-02-01

    Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the Canada-France-Hawaii Telescope Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses (108.75 to 1011.3 M⊙) and redshifts (0.2 < z < 0.8) than previous weak lensing studies. At redshift z ˜ 0.5, the stellar-to-halo mass ratio (SHMR) reaches a maximum of 4.0 ± 0.2 per cent as a function of halo mass at ˜1012.25 M⊙. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from 4.5 ± 0.3 per cent at z ˜ 0.7 to 3.4 ± 0.2 per cent at z ˜ 0.3, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched `downsizes' with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well fitted by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.

  12. Characterizing the thermal distributions of warm molecular hydrogen in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2016-01-01

    Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. Recent studies done by Hoadley et al. 2015 and Banzatti & Pontipoddan 2015 suggest that gas in the inner disks of PPDs appear to "respond" to the loss of small dust grains with evolving PPD stage, and IR-CO emission may either be thermally or photo-excited by stellar UV radiation, depending on PPD evolutionary stage. Because far-UV H2 emission lines are dominantly photo-excited by stellar HI-Lyman alpha photons, we observe H2 absorption features against the stellar Lyman alpha wings in a large sample of PPDs at various evolutionary stages. We aim to characterize whether the inner disk H2 environment is in thermal equilibrium at various stages of PPD evolution. We use a sophisticated first-principles approach to fitting multiple absorption features along the red- and blue-wings of the observed stellar Lyman alpha profiles to extract column density estimates of H2 along the line of sight to the target. We find that the high kinetic energy H2 observed in absorption against the LyA wing may be described as a part of the thermal distribution with high kinetic temperature - a potential indication of an inner disk molecular hazy "envelope" around the cooler bulk disk. Ongoing research may help determine the state of the gas and whether it evolves with disk evolutionary stage.

  13. Relaxational effects in radiating stellar collapse

    NASA Astrophysics Data System (ADS)

    Govender, Megan; Maartens, Roy; Maharaj, Sunil D.

    1999-12-01

    Relaxational effects in stellar heat transport can in many cases be significant. Relativistic Fourier-Eckart theory is inherently quasi-stationary, and cannot incorporate these effects. The effects are naturally accounted for in causal relativistic thermodynamics, which provides an improved approximation to kinetic theory. Recent results, based on perturbations of a static star, show that relaxation effects can produce a significant increase in the central temperature and temperature gradient for a given luminosity. We use a simple stellar model that allows for non-perturbative deviations from staticity, and confirms qualitatively the predictions of the perturbative models.

  14. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  15. SuperMassive Blackholes grow from stellar BHs of star formation history?

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    The origin of the supermassive black hole masses M SMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of M SMBH with bulge luminosities L V , extended on several magnitude orders, confirms a common physical process linking small (<= 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass M sBH reach up to several 109M⊙, similar to M SMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation M SMBH -L V .

  16. Large granulation cells on the surface of the giant star π1 Gruis

    NASA Astrophysics Data System (ADS)

    Paladini, C.; Baron, F.; Jorissen, A.; Le Bouquin, J.-B.; Freytag, B.; van Eck, S.; Wittkowski, M.; Hron, J.; Chiavassa, A.; Berger, J.-P.; Siopis, C.; Mayer, A.; Sadowski, G.; Kravchenko, K.; Shetye, S.; Kerschbaum, F.; Kluska, J.; Ramstedt, S.

    2018-01-01

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun—a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 1011 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  17. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a samplemore » of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.« less

  18. Size matters: abundance matching, galaxy sizes, and the Tully-Fisher relation in EAGLE

    NASA Astrophysics Data System (ADS)

    Ferrero, Ismael; Navarro, Julio F.; Abadi, Mario G.; Sales, Laura V.; Bower, Richard G.; Crain, Robert A.; Frenk, Carlos S.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-02-01

    The Tully-Fisher relation (TFR) links the stellar mass of a disc galaxy, Mstr, to its rotation speed: it is well approximated by a power law, shows little scatter, and evolves weakly with redshift. The relation has been interpreted as reflecting the mass-velocity scaling (M ∝ V3) of dark matter haloes, but this interpretation has been called into question by abundance-matching (AM) models, which predict the galaxy-halo mass relation to deviate substantially from a single power law and to evolve rapidly with redshift. We study the TFR of luminous spirals and its relation to AM using the EAGLE set of Λ cold dark matter (ΛCDM) cosmological simulations. Matching both relations requires disc sizes to satisfy constraints given by the concentration of haloes and their response to galaxy assembly. EAGLE galaxies approximately match these constraints and show a tight mass-velocity scaling that compares favourably with the observed TFR. The TFR is degenerate to changes in galaxy formation efficiency and the mass-size relation; simulations that fail to match the galaxy stellar mass function may fit the observed TFR if galaxies follow a different mass-size relation. The small scatter in the simulated TFR results because, at fixed halo mass, galaxy mass and rotation speed correlate strongly, scattering galaxies along the main relation. EAGLE galaxies evolve with lookback time following approximately the prescriptions of AM models and the observed mass-size relation of bright spirals, leading to a weak TFR evolution consistent with observation out to z = 1. ΛCDM models that match both the abundance and size of galaxies as a function of stellar mass have no difficulty reproducing the observed TFR and its evolution.

  19. Large granulation cells on the surface of the giant star π1 Gruis.

    PubMed

    Paladini, C; Baron, F; Jorissen, A; Le Bouquin, J-B; Freytag, B; Van Eck, S; Wittkowski, M; Hron, J; Chiavassa, A; Berger, J-P; Siopis, C; Mayer, A; Sadowski, G; Kravchenko, K; Shetye, S; Kerschbaum, F; Kluska, J; Ramstedt, S

    2018-01-18

    Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity. Deriving the characteristic properties of convection (such as granule size and contrast) for the most evolved giant and supergiant stars is challenging because their photospheres are obscured by dust, which partially masks the convective patterns. These properties can be inferred from geometric model fitting, but this indirect method does not provide information about the physical origin of the convective cells. Here we report interferometric images of the surface of the evolved giant star π 1 Gruis, of spectral type S5,7. Our images show a nearly circular, dust-free atmosphere, which is very compact and only weakly affected by molecular opacity. We find that the stellar surface has a complex convective pattern with an average intensity contrast of 12 per cent, which increases towards shorter wavelengths. We derive a characteristic horizontal granule size of about 1.2 × 10 11 metres, which corresponds to 27 per cent of the diameter of the star. Our measurements fall along the scaling relations between granule size, effective temperature and surface gravity that are predicted by simulations of stellar surface convection.

  20. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by themore » slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.« less

  1. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  2. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  3. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  4. COUPLED EVOLUTIONS OF THE STELLAR OBLIQUITY, ORBITAL DISTANCE, AND PLANET'S RADIUS DUE TO THE OHMIC DISSIPATION INDUCED IN A DIAMAGNETIC HOT JUPITER AROUND A MAGNETIC T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less

  5. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  6. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centeredmore » SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.« less

  7. Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Lester, Daniel F.

    1988-01-01

    A multicolor analysis of new near-infrared line and continuum measurements indicates that nebular recombination emission and photospheric radiation from young blue stars produce most of the near-infrared continuum emission in the central 6 arcsec of the dwarf galaxy II Zw 40. The derived nebular recombination level is in excellent agreement with independent observations of the radio free-free continuum. It is found that evolved stars, which dominate the near-infrared emission from normal galaxies, contribute no more than 25 percent of the total 2.2 micron flux in the central region of II Zw 40. It is concluded that the total mass of the evolved stellar population in the central 400 pc of the galaxy is less than about two hundred million solar. The total mass of recently formed stars is about two million solar, and the stellar mass ratio is exceptionally large. Thus, II Zw 40 is a quintessential starburst galaxy.

  8. A Pan-Carina Young Stellar Object Catalog: Intermediate-mass Young Stellar Objects in the Carina Nebula Identified Via Mid-infrared Excess Emission

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo

    2011-05-01

    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.

  9. Evolved stars in the Local Group galaxies - II. AGB, RSG stars and dust production in IC10

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; Di Criscienzo, M.; Ventura, P.; Limongi, M.; García-Hernández, D. A.; Marini, E.; Rossi, C.

    2018-06-01

    We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate. To this aim, we use evolutionary sequences of low- and intermediate-mass (M < 8 M⊙) stars, evolved through the asymptotic giant branch phase, with the inclusion of the description of dust formation. We also use models of higher mass stars. From the analysis of the distribution of stars in the observational planes obtained with IR bands, we find that the reddening and distance of IC10 are E(B - V) = 1.85 mag and d = 0.77 Mpc, respectively. The evolved stellar population is dominated by carbon stars, that account for 40% of the sources brighter than the tip of the red giant branch. Most of these stars descend from ˜1.1 - 1.3 M⊙ progenitors, formed during the major epoch of star formation, which occurred ˜2.5 Gyr ago. The presence of a significant number of bright stars indicates that IC10 has been site of significant star formation in recent epochs and currently hosts a group of massive stars in the core helium-burning phase. Dust production in this galaxy is largely dominated by carbon stars; the overall dust production rate estimated is 7 × 10-6 M⊙/yr.

  10. Towards a coherent view of mass loss in Betelgeuse from the photosphere to the interstellar medium

    NASA Astrophysics Data System (ADS)

    Montarges, Miguel; Kervella, Pierre; Perrin, Guy

    2013-06-01

    Massive evolved stars contribute to the chemical enrichment of the interstellar medium (ISM), the Galaxy and ultimately the Universe through their mass loss. From the photosphere to the ISM, large convective motions, low surface gravity and high brightness combine to trigger an intense stellar wind. The released material evolves chemically as the distance from the star increases, and eventually forms dust particles. The involved physical and chemical processes are central to apprehend the cosmic impact of massive evolved stars, but they are poorly understood: the surface convection remains essentially uncharacterized, as the composition of the wind, and the role of the magnetic field is unknown. Betelgeuse is the closest red supergiant and therefore it stands out as the best candidate to obtain detailed observations of the close circumstellar environment of a massive evolved star. We are currently running a high angular resolution observations program to obtain a multi-wavelength and multi-epoch characterisation of this star. Using the IOTA interferometer, Haubois et al. reconstructed an image of the photosphere of the star. Within 1 to 100 stellar radii, the VLT and VLTI allowed us to probe the compact molecular envelope of Betelgeuse (the MOLsphere) in the near-infrared, and the extended dusty envelope in the thermal infrared domain. They were recently completed with HST/STIS observations of the chromosphere in the UV, whose location is surprisingly coincident with the MOLsphere. We will present a brief review of our recent results and of our ongoing work on Betelgeuse.

  11. Revealing the Location of the Mixing Layer in a Hot Bubble

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Fang, X.; Chu, Y.-H.; Toalá, J. A.; Gruendl, R. A.

    2017-10-01

    The fast stellar winds can blow bubbles in the circumstellar material ejected from previous phases of stellar evolution. These are found at different scales, from planetary nebulae (PNe) around stars evolving to the white dwarf stage, to Wolf-Rayet (WR) bubbles and up to large-scale bubbles around massive star clusters. In all cases, the fast stellar wind is shock-heated and a hot bubble is produced. Processes of mass evaporation and mixing of nebular material and heat conduction occurring at the mixing layer between the hot bubble and the optical nebula are key to determine the thermal structure of these bubbles and their evolution. In this contribution we review our current understanding of the X-ray observations of hot bubbles in PNe and present the first spatially-resolved study of a mixing layer in a PN.

  12. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  13. The First Stars: A Low-Mass Formation Mode

    NASA Technical Reports Server (NTRS)

    Stacy, Athena; Bromm, Volker

    2014-01-01

    We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as approx. 1 AU, corresponding to gas densities of 10(exp 16)/cu cm. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1Stellar Mass to approx. 5 Stellar Mass by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.

  14. THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.

    2016-04-20

    We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less

  15. The great escape - III. Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Evans, N. Wyn; Wyatt, Mark C.; Tout, Christopher A.

    2014-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galenvironment before, during and after asymptotic giant branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass-loss, Galactic tidal perturbations and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass-loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass-loss will shrink a planetary system's Hill ellipsoid axes by about 20 to 40 per cent, Oort clouds orbiting WDs are likely to be more depleted and dynamically excited than on the MS.

  16. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  17. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  18. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  19. DUST-CORRECTED COLORS REVEAL BIMODALITY IN THE HOST-GALAXY COLORS OF ACTIVE GALACTIC NUCLEI AT z {approx} 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Megan Urry, C.; Brammer, Gabriel

    2010-09-20

    Using new, highly accurate photometric redshifts from the MUSYC medium-band survey in the Extended Chandra Deep Field-South (ECDF-S), we fit synthetic stellar population models to compare active galactic nucleus (AGN) host galaxies to inactive galaxies at 0.8 {<=} z {<=} 1.2. We find that AGN host galaxies are predominantly massive galaxies on the red sequence and in the green valley of the color-mass diagram. Because both passive and dusty galaxies can appear red in optical colors, we use rest-frame near-infrared colors to separate passively evolving stellar populations from galaxies that are reddened by dust. As with the overall galaxy population,more » {approx}25% of the 'red' AGN host galaxies and {approx}75% of the 'green' AGN host galaxies have colors consistent with young stellar populations reddened by dust. The dust-corrected rest-frame optical colors are the blue colors of star-forming galaxies, which imply that these AGN hosts are not passively aging to the red sequence. At z {approx} 1, AGN activity is roughly evenly split between two modes of black hole growth: the first in passively evolving host galaxies, which may be heating up the galaxy's gas and preventing future episodes of star formation, and the second in dust-reddened young galaxies, which may be ionizing the galaxy's interstellar medium and shutting down star formation.« less

  20. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  1. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA is part of the NuGrid chemical evolution package and is publicly available online at http://nugrid.github.io/NuPyCEE.

  2. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  3. A multiphysics and multiscale software environment for modeling astrophysical systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; Harfst, Stefan; Groen, Derek; Fujii, Michiko; Nualláin, Breanndán Ó.; Glebbeek, Evert; Heggie, Douglas; Lombardi, James; Hut, Piet; Angelou, Vangelis; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Gaburov, Evghenii; Izzard, Rob; Jurić, Mario; Justham, Stephen; Sottoriva, Andrea; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    2009-05-01

    We present MUSE, a software framework for combining existing computational tools for different astrophysical domains into a single multiphysics, multiscale application. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for studying generalized stellar systems. We have now reached a "Noah's Ark" milestone, with (at least) two available numerical solvers for each domain. MUSE can treat multiscale and multiphysics systems in which the time- and size-scales are well separated, like simulating the evolution of planetary systems, small stellar associations, dense stellar clusters, galaxies and galactic nuclei. In this paper we describe three examples calculated using MUSE: the merger of two galaxies, the merger of two evolving stars, and a hybrid N-body simulation. In addition, we demonstrate an implementation of MUSE on a distributed computer which may also include special-purpose hardware, such as GRAPEs or GPUs, to accelerate computations. The current MUSE code base is publicly available as open source at http://muse.li.

  4. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbinot, E.

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  6. Stellar nucleosynthesis and chemical evolution of the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    Current theoretical models of nucleosynthesis (N) in stars are reviewed, with an emphasis on their implications for Galactic chemical evolution. Topics addressed include the Galactic population II red giants and early N; N in the big bang; star formation, stellar evolution, and the ejection of thermonuclearly evolved debris; the chemical evolution of an idealized disk galaxy; analytical solutions for a closed-box model with continuous infall; and nuclear burning processes and yields. Consideration is given to shell N in massive stars, N related to degenerate cores, and the types of observational data used to constrain N models. Extensive diagrams, graphs, and tables of numerical data are provided.

  7. New method to design stellarator coils without the winding surface

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  8. How animals follow the stars

    PubMed Central

    Smolka, Jochen; Nilsson, Dan-Eric; Dacke, Marie

    2018-01-01

    Throughout history, the stars have provided humans with ever more information about our world, enabling increasingly accurate systems of navigation in addition to fuelling some of the greatest scientific controversies. What information animals have evolved to extract from a starry sky and how they do so, is a topic of study that combines the practical and theoretical challenges faced by both astronomers and field biologists. While a number of animal species have been demonstrated to use the stars as a source of directional information, the strategies that these animals use to convert this complex and variable pattern of dim-light points into a reliable ‘stellar orientation’ cue have been more difficult to ascertain. In this review, we assess the stars as a visual stimulus that conveys directional information, and compare the bodies of evidence available for the different stellar orientation strategies proposed to date. In this context, we also introduce new technologies that may aid in the study of stellar orientation, and suggest how field experiments may be used to characterize the mechanisms underlying stellar orientation. PMID:29367394

  9. How animals follow the stars.

    PubMed

    Foster, James J; Smolka, Jochen; Nilsson, Dan-Eric; Dacke, Marie

    2018-01-31

    Throughout history, the stars have provided humans with ever more information about our world, enabling increasingly accurate systems of navigation in addition to fuelling some of the greatest scientific controversies. What information animals have evolved to extract from a starry sky and how they do so, is a topic of study that combines the practical and theoretical challenges faced by both astronomers and field biologists. While a number of animal species have been demonstrated to use the stars as a source of directional information, the strategies that these animals use to convert this complex and variable pattern of dim-light points into a reliable 'stellar orientation' cue have been more difficult to ascertain. In this review, we assess the stars as a visual stimulus that conveys directional information, and compare the bodies of evidence available for the different stellar orientation strategies proposed to date. In this context, we also introduce new technologies that may aid in the study of stellar orientation, and suggest how field experiments may be used to characterize the mechanisms underlying stellar orientation. © 2018 The Author(s).

  10. TRACING REJUVENATION EVENTS IN NEARBY S0 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Antonietta; Bianchi, Luciana; Thilker, David A.

    2011-08-01

    With the aim of characterizing rejuvenation processes in early-type galaxies, we analyzed five barred S0 galaxies showing a prominent outer ring in ultraviolet (UV) imaging. We analyzed Galaxy Evolution Explorer far-UV (FUV) and near-UV (NUV), and optical data using stellar population models and estimated the age and the stellar mass of the entire galaxies and the UV-bright ring structures. Outer rings consist of young ({approx}<200 Myr old) stellar populations, accounting for up to 70% of the FUV flux but containing only a few percent of the total stellar mass. Integrated photometry of the whole galaxies places four of these objectsmore » on the green valley, indicating a globally evolving nature. We suggest such galaxy evolution is likely driven by bar-induced instabilities, i.e., inner secular evolution, that conveys gas to the nucleus and the outer rings. At the same time, H I observations of NGC 1533 and NGC 2962 suggest external gas re-fueling can play a role in the rejuvenation processes of such galaxies.« less

  11. Spectroscopy Made Easy: Evolution

    NASA Astrophysics Data System (ADS)

    Piskunov, Nikolai; Valenti, Jeff A.

    2017-01-01

    Context. The Spectroscopy Made Easy (SME) package has become a popular tool for analyzing stellar spectra, often in connection with large surveys or exoplanet research. SME has evolved significantly since it was first described in 1996, but many of the original caveats and potholes still haunt users. The main drivers for this paper are complexity of the modeling task, the large user community, and the massive effort that has gone into SME. Aims: We do not intend to give a comprehensive introduction to stellar atmospheres, but will describe changes to key components of SME: the equation of state, opacities, and radiative transfer. We will describe the analysis and fitting procedure and investigate various error sources that affect inferred parameters. Methods: We review the current status of SME, emphasizing new algorithms and methods. We describe some best practices for using the package, based on lessons learned over two decades of SME usage. We present a new way to assess uncertainties in derived stellar parameters. Results: Improvements made to SME, better line data, and new model atmospheres yield more realistic stellar spectra, but in many cases systematic errors still dominate over measurement uncertainty. Future enhancements are outlined.

  12. Testing stellar evolution models with detached eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Higl, J.; Weiss, A.

    2017-12-01

    Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.

  13. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  14. Photometric detection of high proper motions in dense stellar fields using difference image analysis

    NASA Astrophysics Data System (ADS)

    Eyer, L.; Woźniak, P. R.

    2001-10-01

    The difference image analysis (DIA) of the images obtained by the Optical Gravitational Lensing Experiment (OGLE-II) revealed a peculiar artefact in the sample of stars proposed as variable by Woźniak in one of the Galactic bulge fields: the occurrence of pairs of candidate variables showing anti-correlated light curves monotonic over a period of 3yr. This effect can be understood, quantified and related to the stellar proper motions. DIA photometry supplemented with a simple model offers an effective and easy way to detect high proper motion stars in very dense stellar fields, where conventional astrometric searches are extremely inefficient.

  15. Stellar Mass and 3.4 μm M/L Ratio Evolution of Brightest Cluster Galaxies in COSMOS since z ∼ 1.0

    NASA Astrophysics Data System (ADS)

    Cooke, Kevin C.; Fogarty, Kevin; Kartaltepe, Jeyhan S.; Moustakas, John; O’Dea, Christopher P.; Postman, Marc

    2018-04-01

    We investigate the evolution of star formation rates (SFRs), stellar masses, and M/L 3.4 μm ratios of brightest cluster galaxies (BCGs) in the COSMOS survey since z ∼ 1 to determine the contribution of star formation to the growth-rate of BCG stellar mass over time. Through the spectral energy density (SED) fitting of the GALEX, CFHT, Subaru, Vista, Spitzer, and Herschel photometric data available in the COSMOS2015 catalog, we estimate the stellar mass and SFR of each BCG. We use a modified version of the iSEDfit package to fit the SEDs of our sample with both stellar and dust emission models, as well as constrain the impact of star formation history assumptions on our results. We find that in our sample of COSMOS BCGs, star formation evolves similarly to that in BCGs in samples of more massive galaxy clusters. However, compared to the latter, the magnitude of star formation in our sample is lower by ∼1 dex. Additionally, we find an evolution of BCG baryonic mass-to-light ratio (M/L 3.4 μm) with redshift which is consistent with a passively aging stellar population. We use this to build upon Wen et al.'s low-redshift νL 3.4 μm–M Stellar relation, quantifying a correlation between νL 3.4 μm and M Stellar to z ∼ 1. By comparing our results to BCGs in Sunyaev–Zel’dovich and X-ray-selected samples of galaxy clusters, we find evidence that the normalization of star formation evolution in a cluster sample is driven by the mass range of the sample and may be biased upwards by cool cores.

  16. The FMOS-COSMOS survey of star-forming galaxies at z ∼ 1.6. II. The mass-metallicity relation and the dependence on star formation rate and dust extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Sanders, D. B.; Chu, J.

    We investigate the relationships between stellar mass, gas-phase oxygen abundance (metallicity), star formation rate (SFR), and dust content of star-forming galaxies at z ∼ 1.6 using Subaru/FMOS spectroscopy in the COSMOS field. The mass-metallicity (MZ) relation at z ∼ 1.6 is steeper than the relation observed in the local universe. The steeper MZ relation at z ∼ 1.6 is mainly due to evolution in the stellar mass where the MZ relation begins to turnover and flatten. This turnover mass is 1.2 dex larger at z ∼ 1.6. The most massive galaxies at z ∼ 1.6 (∼10{sup 11} M {sub ☉})more » are enriched to the level observed in massive galaxies in the local universe. The MZ relation we measure at z ∼ 1.6 supports the suggestion of an empirical upper metallicity limit that does not significantly evolve with redshift. We find an anti-correlation between metallicity and SFR for galaxies at a fixed stellar mass at z ∼ 1.6, which is similar to trends observed in the local universe. We do not find a relation between stellar mass, metallicity, and SFR that is independent of redshift; rather, our data suggest that there is redshift evolution in this relation. We examine the relation between stellar mass, metallicity, and dust extinction, and find that at a fixed stellar mass, dustier galaxies tend to be more metal rich. From examination of the stellar masses, metallicities, SFRs, and dust extinctions, we conclude that stellar mass is most closely related to dust extinction.« less

  17. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  18. Probing the galaxy-halo connection in UltraVISTA to z ˜ 2

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.

    2015-05-01

    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.

  19. Mosfire Spectroscopy Of Galaxies In Cosmic Noon

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Themiya

    2017-07-01

    The recent development of sensitive, multiplexed near infra-red instruments has presented astronomers the unique opportunity to survey mass/magnitude complete samples of galaxies at Cosmic Noon, a time period where ˜ 80% of the observed baryonic mass is generated and galaxies are actively star-forming and evolving rapidly. This thesis takes advantage of the recently commissioned MOSFIRE spectrograph on Keck, to conduct a survey (ZFIRE) of galaxies at 1.5 < z < 2.5 to measure accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The majority of the thesis work involved survey planning, observing, data reduction, and catalogue preparation of the ZFIRE survey and is described in detail in this thesis. Using the ZFIRE spectroscopic redshifts, I show why spectroscopy is instrumental to determine fundamental galaxy properties via SED fitting techniques and to probe gravitationally bound structures in the early universe. The thesis further presents basic properties of the ZFIRE data products publicly released for the benefit of the astronomy community. The high mass-completeness of the ZFIRE spectroscopic data at z ˜ 2 makes it ideal to study fundamental galaxy properties such as, star formation rates, metallicities, interstellar medium properties, galaxy kinematics, and the stellar initial mass functions in unbiased star-forming galaxies. This thesis focuses on one such aspect, the IMF. By using a mass-complete (log10(M∗/M) ˜ 9.3) sample of 102 galaxies at z = 2.1 in the COSMOS field from ZFIRE, I investigate the IMF of star-forming galaxies by revisiting the classical Kennicutt (1983) technique of using the Hα equivalent widths and rest-frame optical colours. I present a thorough analysis of stellar population properties of the ZFIRE sample via multiple synthetic stellar population models and stellar libraries. Due to an excess of high Hα-EW galaxies that are up to 0.3-0.5 dex above the Salpeter locus, the Hα-EW distribution is much broader (10-500˚A) than can be explained by a simple monotonic SFH with a standard Salpeter-slope IMF. This result is robust against uncertainties in dust correction and observational bias, and no single IMF (i.e. non-Salpeter slope) can explain the distribution. Starburst models cannot explain the Hα-EW distribution because: 1) spectral stacking still shows an excess Hα-EW in composite populations and 2) Monte Carlo burst models show that the timescale for high Hα-EW is too short to explain their abundance in the ZFIRE sample. Other possible physical mechanisms that could produce excess ionising photons for a given star-formation rate, and hence high equivalent widths, including models with variations in stellar rotation, binary star evolution, metallicity, and upper mass cutoff of the IMF are investigated and ruled out. IMF variation is one possible explanation for the high Hα-EWs. However, the highest Hα-EW values would require very shallow slopes (Γ > -1.0) and no single IMF change can explain the large variation in Hα-EWs. Instead the IMF would have to vary stochastically. Therefore, currently there is no simple physical model to explain the large variation in Hα-EWs at z ˜ 2, but the distinct differences of the z ˜ 2 sample with that of local galaxies are found to be intriguing. Further study is required to fully constrain the stellar population parameters of actively star-forming galaxies at the epoch of maximum star-formation. Probing multiple rest-frame UV and optical features of galaxies simultaneously along with galaxy dynamical studies via integral field spectroscopy will be vital to understand stellar and ionized gas properties of these galaxies. Furthermore, low-z analogues of galaxies at z ˜ 2 will provide vital clues to constrain galaxy evolution models aided by the ability to probe galaxies in high resolution to low surface brightness limits.

  20. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  1. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  2. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  3. Stellar and gaseous disc structures in cosmological galaxy equilibrium models

    NASA Astrophysics Data System (ADS)

    Rathaus, Ben; Sternberg, Amiel

    2016-05-01

    We present `radially resolved equilibrium models' for the growth of stellar and gaseous discs in cosmologically accreting massive haloes. Our focus is on objects that evolve to redshifts z ˜ 2. We solve the time-dependent equations that govern the radially dependent star formation rates, inflows and outflows from and to the inter- and circumgalactic medium, and inward radial gas flows within the discs. The stellar and gaseous discs reach equilibrium configurations on dynamical time-scales much shorter than variations in the cosmological dark matter halo growth and baryonic accretions rates. We show analytically that mass and global angular momentum conservation naturally give rise to exponential gas and stellar discs over many radial length-scales. As expected, the gaseous discs are more extended as set by the condition Toomre Q < 1 for star formation. The discs rapidly become baryon dominated. For massive, 5 × 1012 M⊙ haloes at redshift z = 2, we reproduced the typical observed star formation rates of ˜100 M⊙ yr-1, stellar masses ˜9 × 1010 M⊙, gas contents ˜1011 M⊙, half-mass sizes of 4.5 and 5.8 kpc for the stars and gas, and characteristic surface densities of 500 and 400 M⊙ pc-2 for the stars and gas.

  4. ON THE INCORPORATION OF METALLICITY DATA INTO MEASUREMENTS OF STAR FORMATION HISTORY FROM RESOLVED STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com

    The combination of spectroscopic stellar metallicities and resolved star color–magnitude diagrams (CMDs) has the potential to constrain the entire star formation history (SFH) of a galaxy better than fitting CMDs alone (as is most common in SFH studies using resolved stellar populations). In this paper, two approaches to incorporating external metallicity information into CMD-fitting techniques are presented. Overall, the joint fitting of metallicity and CMD information can increase the precision of measured age–metallicity relationships (AMRs) and star formation rates by 10% over CMD fitting alone. However, systematics in stellar isochrones and mismatches between spectroscopic and photometric determinations of metallicity canmore » reduce the accuracy of the recovered SFHs. I present a simple mitigation of these systematics that can reduce their amplitude to the level obtained from CMD fitting alone, while ensuring that the AMR is consistent with spectroscopic metallicities. As is the case in CMD-fitting analysis, improved stellar models and calibrations between spectroscopic and photometric metallicities are currently the primary impediment to gains in SFH precision from jointly fitting stellar metallicities and CMDs.« less

  5. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.

    2009-08-20

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget;more » (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass galaxies. The discrepancy at the high-mass end is susceptible to uncertainties in the models and the data, but the discrepancy at the low-mass end may be more difficult to explain.« less

  6. Two peculiar fast transients in a strongly lensed host galaxy

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Balestra, I.; Bradac, M.; Brammer, G.; Broadhurst, T.; Caminha, G. B.; Chirivı, G.; Diego, J. M.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Grillo, C.; Hemmati, S.; Hjorth, J.; Hoag, A.; Jauzac, M.; Jha, S. W.; Kawamata, R.; Kelly, P. L.; McCully, C.; Mobasher, B.; Molino, A.; Oguri, M.; Richard, J.; Riess, A. G.; Rosati, P.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Strolger, L.-G.; Suyu, S. H.; Treu, T.; Weiner, B. J.; Williams, L. L. R.; Zitrin, A.

    2018-04-01

    A massive galaxy cluster can serve as a magnifying glass for distant stellar populations, as strong gravitational lensing magnifies background galaxies and exposes details that are otherwise undetectable. In time-domain astronomy, imaging programmes with a short cadence are able to detect rapidly evolving transients, previously unseen by surveys designed for slowly evolving supernovae. Here, we describe two unusual transient events discovered in a Hubble Space Telescope programme that combined these techniques with high-cadence imaging on a field with a strong-lensing galaxy cluster. These transients were faster and fainter than any supernovae, but substantially more luminous than a classical nova. We find that they can be explained as separate eruptions of a luminous blue variable star or a recurrent nova, or as an unrelated pair of stellar microlensing events. To distinguish between these hypotheses will require clarification of the cluster lens models, along with more high-cadence imaging of the field that could detect related transient episodes. This discovery suggests that the intersection of strong lensing with high-cadence transient surveys may be a fruitful path for future astrophysical transient studies.

  7. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  8. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  9. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  10. Star Formation and Gas Dynamics in Galactic Disks: Physical Processes and Numerical Models

    NASA Astrophysics Data System (ADS)

    Ostriker, Eve C.

    2011-04-01

    Star formation depends on the available gaseous ``fuel'' as well as galactic environment, with higher specific star formation rates where gas is predominantly molecular and where stellar (and dark matter) densities are higher. The partition of gas into different thermal components must itself depend on the star formation rate, since a steady state distribution requires a balance between heating (largely from stellar UV for the atomic component) and cooling. In this presentation, I discuss a simple thermal and dynamical equilibrium model for the star formation rate in disk galaxies, where the basic inputs are the total surface density of gas and the volume density of stars and dark matter, averaged over ~kpc scales. Galactic environment is important because the vertical gravity of the stars and dark matter compress gas toward the midplane, helping to establish the pressure, and hence the cooling rate. In equilibrium, the star formation rate must evolve until the gas heating rate is high enough to balance this cooling rate and maintain the pressure imposed by the local gravitational field. In addition to discussing the formulation of this equilibrium model, I review the current status of numerical simulations of multiphase disks, focusing on measurements of quantities that characterize the mean properties of the diffuse ISM. Based on simulations, turbulence levels in the diffuse ISM appear relatively insensitive to local disk conditions and energetic driving rates, consistent with observations. It remains to be determined, both from observations and simulations, how mass exchange processes control the ratio of cold-to-warm gas in the atomic ISM.

  11. The KMOS Deep Survey (KDS) - I. Dynamical measurements of typical star-forming galaxies at z ≃ 3.5

    NASA Astrophysics Data System (ADS)

    Turner, O. J.; Cirasuolo, M.; Harrison, C. M.; McLure, R. J.; Dunlop, J. S.; Swinbank, A. M.; Johnson, H. L.; Sobral, D.; Matthee, J.; Sharples, R. M.

    2017-10-01

    We present dynamical measurements from the KMOS (K-band multi-object spectrograph) Deep Survey (KDS), which comprises 77 typical star-forming galaxies at z ≃ 3.5 in the mass range 9.0 < log (M⋆/M⊙) < 10.5. These measurements constrain the internal dynamics, the intrinsic velocity dispersions (σint) and rotation velocities (VC) of galaxies in the high-redshift Universe. The mean velocity dispersion of the galaxies in our sample is σ _int = 70.8^{+3.3}_{-3.1} km s^{-1}, revealing that the increasing average σint with increasing redshift, reported for z ≲ 2, continues out to z ≃ 3.5. Only 36 ± 8 per cent of our galaxies are rotation-dominated (VC/σint > 1), with the sample average VC/σint value much smaller than at lower redshift. After carefully selecting comparable star-forming samples at multiple epochs, we find that the rotation-dominated fraction evolves with redshift with a z-0.2 dependence. The rotation-dominated KDS galaxies show no clear offset from the local rotation velocity-stellar mass (I.e. VC-M⋆) relation, although a smaller fraction of the galaxies are on the relation due to the increase in the dispersion-dominated fraction. These observations are consistent with a simple equilibrium model picture, in which random motions are boosted in high-redshift galaxies by a combination of the increasing gas fractions, accretion efficiency, specific star formation rate and stellar feedback and which may provide significant pressure support against gravity on the galactic disc scale.

  12. Impact of Stellar Convection Criteria on the Nucleosynthetic Yields of Population III Supernovae.

    NASA Astrophysics Data System (ADS)

    Teffs, Jacob; Young, Tim; Lawlor, Tim

    2018-01-01

    A grid of 15-80 solar mass Z=0 stellar models are evolved to pre-core collapse using the stellar evolution code BRAHAMA. Each initial zero-age main sequence mass model star is evolved with two different convection criteria, Ledoux and Schwarzchild. The choice of convection produces significant changes in the evolutionary model tracks on the HR diagram, mass loss, and interior core and envelope structures. At onset of core collapse, a SNe explosion is initiated using a one-dimensional radiation-hydrodynamics code and followed for 400 days. The explosion energy is varied between 1-10 foes depending on the model as there are no observationally determined energies for population III supernovae. Due to structure differences, the Schwarzchild models resemble Type II-P SNe in their lightcurve while the Ledoux models resemble SN1987a, a Type IIpec. The nucleosynthesis is calculated using TORCH, a 3,208 isotope network, in a post process method using the hydrodynamic history. The Ledoux models have, on average, higher yields for elements above Fe compared to the Schwarzchild. Using a Salpeter IMF and other recently published population III IMF’s, the net integrated yields per solar mass are calculated and compared to published theoretical results and to published observations of extremely metal poor halo stars of [Fe/H] < -3. Preliminary results show the lower mass models of both criteria show similar trends to the extremely metal poor halo stars but more work and analysis is required.

  13. Stellar mass and velocity functions of galaxies. Backward evolution and the fate of Milky Way siblings

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Buat, V.; Ilbert, O.

    2010-11-01

    Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.

  14. New method to design stellarator coils without the winding surface

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2017-11-06

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less

  15. New method to design stellarator coils without the winding surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less

  16. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to themore » second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.« less

  17. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of accretion and the formation of giant planets.

  18. MUSEing about the SHAPE of eta Car's outer ejecta

    NASA Astrophysics Data System (ADS)

    Mehner, A.; Steffen, W.; Groh, J.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; de Wit, W. J.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.

    2017-11-01

    The role of episodic mass loss in evolved massive stars is one of the outstanding questions in stellar evolution theory. Integral field spectroscopy of nebulae around massive stars provide information on their recent mass-loss history. η Car is one of the most massive evolved stars and is surrounded by a complex circumstellar environment. We have conducted a three-dimensional morpho-kinematic analysis of η Car's ejecta outside its famous Homunculus nebula. SHAPE modelling of VLT MUSE data establish unequivocally the spatial cohesion of the outer ejecta and the correlation of ejecta with the soft X-ray emission.

  19. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. VI. The role of bars in quenching star formation from z = 3 to the present epoch

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.

    2015-08-01

    A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epochs, we determine a refined star formation versus stellar mass relation in the local Universe. To this end we use the Hα narrow-band imaging follow-up survey (Hα3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z = 3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass Mknee that evolves with redshift as ∝ (1 + z)2. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above Mknee. We test this hypothesis using a simple but physically motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for Mknee. Our study highlights how the formation of strong bars in massive galaxies is an important mechanism in regulating the redshift evolution of the sSFR for field main-sequence galaxies. Based on observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.

  20. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  1. The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake

    2017-12-01

    Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.

  2. Shedding light on baryonic dark matter.

    PubMed

    Silk, J

    1991-02-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.

  3. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  4. Revealing the Formation Mechanism of Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2017-09-01

    Recently a population of large, very low optical surface brightness galaxies, so called ultra-diffuse galaxies (UDGs), were discovered in the outskirts of Coma clusters. Stellar line-of-sight velocity dispersions suggest large dark matter halo masses of 10^12 M_sun with very low baryon fractions ( 1%). The outstanding question waiting to be answered is: How do UDGs form and evolve? One theory is that UDGs are related to bright galaxies, however they are prevented from building a normal stellar population through various violent processes, such as gas stripping. We propose to observe Dragonfly 44, the most massive UDG known, for 100 ks with ACIS-I to test some of the formation theories.

  5. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  6. Schwarzschild, Martin (1912-97)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astrophysicist, born in Potsdam, Germany, the son of KARL SCHWARZSCHILD, left Germany, became professor at Princeton University. Working with John von Neumann, Schwarzschild used the powers of the newly developed electronic digital computers to work on the theory of stellar structure and evolution. He uncovered phenomena in red giant stars, including how they evolve off the main sequence in the H...

  7. A Panchromatic View of Star-Forming Regions in the Magellanic Clouds: Characterizing Physical and Evolutionary Parameters of 1,000 Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Carlson, Lynn R.

    2010-01-01

    I discuss newly discovered Young Stellar Objects (YSOs) in several star-forming regions in the Magellanic Clouds. I exploit the synergy between infrared photometry from the Spitzer SAGE (Surveying the Agents of Galaxy Evolution) legacy programs, near-infrared and optical photometry from ground-based surveys, and HST imaging to characterize young stellar populations. This reveals a variety of Main Sequence Stars and Proto-Stars over a wide range of evolutionary stages. Through SED fitting, I characterize the youngest, embedded, infrared-bright YSOs. Complementary color-Magnitude analysis and isochrone fitting of optical data allows a statistical description of more evolved, unembedded stellar and protostellar populations within these same regions. I examine the early evolution of Magellanic star clusters, including propagating and triggered star formation, and take a step toward characterizing evolutionary timescales for YSOs. In this talk, I present an overview of the project and exemplify the analysis by focusing on NGC 602 in the SMC and Henize 206 in the LMC as examples. The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.

  8. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-05-01

    The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  9. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2012-06-01

    (Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  10. The Stellar Imager (SI) project: a deep space UV/Optical Interferometer (UVOI) to observe the Universe at 0.1 milli-arcsec angular resolution

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2009-04-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/

  11. The Stellar Imager (SI) Project: A Deep Space UV/Optical Interferometer (UVOI) to Observe the Universe at 0.1 Milli-Arcsec Angular Resolution

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2008-01-01

    The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  12. Unmixing the Galactic halo with RR Lyrae tagging

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Deason, A. J.; Koposov, S. E.; Catelan, M.; Erkal, D.; Drake, A. J.; Evans, N. W.

    2018-06-01

    We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggested by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halo's radial density profile at ˜25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behaviour. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.

  13. The two components of the evolved massive binary LZ Cephei. Testing the effects of binarity on stellar evolution

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Martins, F.; Machado, C.; Donati, J.-F.; Bouret, J.-C.

    2011-09-01

    Aims: We present an in-depth study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods: We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results: LZ Cep is a O 9III+ON 9.7V binary. It is as a semi-detached system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 M⊙ (primary) and 6.5 M⊙ (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON 9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain the observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  14. Evolution of massive stars in very young clusters and associations

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1985-01-01

    Statistics concerning the stellar content of young galactic clusters and associations which show well defined main sequence turnups have been analyzed in order to derive information about stellar evolution in high-mass galaxies. The analytical approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram together with the stars' apparent magnitudes. The new approach does not depend on absolute luminosities and requires only the most basic elements of stellar evolution theory. The following conclusions are offered on the basis of the statistical analysis: (1) O-tupe main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most O-type blue stragglers are newly formed massive stars burning core hydrogen; (3) supergiants lying redward of the main-sequence turnup are burning core helium; and most Wolf-Rayet stars are burning core helium and originally had masses greater than 30-40 solar mass. The statistics of the natural spectroscopic stars in young galactic clusters and associations are given in a table.

  15. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  16. The stellar masses of ˜ 40 000 UV selected Galaxies from the WiggleZ survey at 0.3

    NASA Astrophysics Data System (ADS)

    Banerji, Manda; Glazebrook, Karl; Blake, Chris; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croton, Darren J.; Croom, Scott; Davis, Tamara M.; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Jelliffe, Ben; Jurek, Russell J.; Li, I.-hui; Madore, Barry; Martin, D. Christopher; Pimbblet, Kevin; Poole, Gregory B.; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K.; Yee, H. K. C.

    2013-05-01

    We characterize the stellar masses and star formation rates in a sample of ˜40 000 spectroscopically confirmed UV-luminous galaxies at 0.3 < z < 1.0 selected from within the WiggleZ Dark Energy Survey. In particular, we match this UV bright population to wide-field infrared surveys such as the near-infrared (NIR) UKIDSS Large Area Survey (LAS) and the mid-infrared Wide-Field Infrared Survey Explorer (WISE) All-Sky Survey. We find that ˜30 per cent of the UV-luminous WiggleZ galaxies, corresponding to the brightest and reddest subset, are detected at >5σ in the UKIDSS-LAS at all redshifts. An even more luminous subset of 15 per cent are also detected in the WISE 3.4 and 4.6 μm bands. In addition, 22 of the WiggleZ galaxies are extremely luminous at 12 and 22 μm and have colours consistent with being star formation dominated. We compute stellar masses for this very large sample of extremely blue galaxies and quantify the sensitivity of the stellar mass estimates to various assumptions made during the spectral energy distribution (SED) fitting. The median stellar masses are log10(M*/M⊙) = 9.6 ± 0.7, 10.2 ± 0.5 and 10.4 ± 0.4 for the IR undetected, UKIDSS detected and UKIDSS+WISE detected galaxies, respectively. We demonstrate that the inclusion of NIR photometry can lead to tighter constraints on the stellar masses by bringing down the upper bound on the stellar mass estimate. The mass estimates are found to be most sensitive to the inclusion of secondary bursts of star formation as well as changes in the stellar population synthesis models, both of which can lead to median discrepancies of the order of 0.3 dex in the stellar masses. We conclude that even for these extremely blue galaxies, different SED fitting codes therefore produce extremely robust stellar mass estimates. We find, however, that the best-fitting M/LK is significantly lower than that predicted by simple optical colour-based estimators for many of the WiggleZ galaxies. The simple colour-based estimator overpredicts M/LK by ˜0.4 dex on average. The effect is more pronounced for bluer galaxies with younger best-fitting ages. The WiggleZ galaxies have star formation rates of 3-10 M⊙ yr-1 and mostly lie at the upper end of the main sequence of star-forming galaxies at these redshifts. Their rest-frame UV luminosities and stellar masses are comparable to both local compact UV-luminous galaxies as well as Lyman break galaxies at z ˜ 2-3. The stellar masses from this paper will be made publicly available with the next WiggleZ data release.

  17. Contribution of Proton Capture Reactions to the Ascertained Abundance of Fluorine in the Evolved Stars of Globular Cluster M4, M22, 47 Tuc and NGC 6397

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Goswami, Aruna; Duorah, H. L.; Duorah, K.

    2017-12-01

    The origin of the abundance pattern and also the (anti)correlation present among the elements found in stars of globular clusters (GCs) remains unimproved until date. The proton-capture reactions are presently recognised in concert of the necessary candidates for that sort of observed behaviour in the second generation stars. We tend to propose a reaction network of a nuclear cycle namely carbon-nitrogen-oxygen-fluorine (CNOF) at evolved stellar condition since fluorine (^{19}F) is one such element which gets plagued by proton capture reactions. The stellar temperature thought about here ranges from 2× 107 to 10× 107 K and there has been an accretion occuring, with material density being 102 g/cm3 and 103 g/cm3. Such kind of temperature density conditions are probably going to be prevailing within the H-burning shell of evolved stars. The estimated abundances of ^{19}F are then matched with the info that has been determined for a few some metal-poor giants of GC M4, M22, 47 Tuc as well as NGC 6397. As far as the comparison between the observed and calculated abundances is concerned, it is found that the abundance of ^{19}F have shown an excellent agreement with the observed abundances with a correlation coefficent above 0.9, supporting the incidence of that nuclear cycle at the adopted temperature density conditions.

  18. The statistical mechanics of relativistic orbits around a massive black hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Alexander, Tal

    2014-12-01

    Stars around a massive black hole (MBH) move on nearly fixed Keplerian orbits, in a centrally-dominated potential. The random fluctuations of the discrete stellar background cause small potential perturbations, which accelerate the evolution of orbital angular momentum by resonant relaxation. This drives many phenomena near MBHs, such as extreme mass-ratio gravitational wave inspirals, the warping of accretion disks, and the formation of exotic stellar populations. We present here a formal statistical mechanics framework to analyze such systems, where the background potential is described as a correlated Gaussian noise. We derive the leading order, phase-averaged 3D stochastic Hamiltonian equations of motion, for evolving the orbital elements of a test star, and obtain the effective Fokker-Planck equation for a general correlated Gaussian noise, for evolving the stellar distribution function. We show that the evolution of angular momentum depends critically on the temporal smoothness of the background potential fluctuations. Smooth noise has a maximal variability frequency {{ν }max }. We show that in the presence of such noise, the evolution of the normalized angular momentum j=\\sqrt{1-{{e}2}} of a relativistic test star, undergoing Schwarzschild (in-plane) general relativistic precession with frequency {{ν }GR}/{{j}2}, is exponentially suppressed for j\\lt {{j}b}, where {{ν }GR}/jb2˜ {{ν }max }, due to the adiabatic invariance of the precession against the slowly varying random background torques. This results in an effective Schwarzschild precession-induced barrier in angular momentum. When jb is large enough, this barrier can have significant dynamical implications for processes near the MBH.

  19. On the Origin of the Wind Variability of 55 Cyg

    NASA Astrophysics Data System (ADS)

    Haucke, M.; Kraus, M.; Venero, R. O. J.; Tomić, S.; Cidale, L. S.; Nickeler, D. H.; Curé, M.

    2014-10-01

    The early B-type supergiant 55 Cygni exhibits pronounced night-to-night variations in its Hα P-Cygni line profile, probably related to a strong variable stellar wind. In this work we studied a sample of spectroscopic observations, taken at the Observatory of Ondřejov (Czech Republic), in order to analyze the variations in the stellar and wind parameters. The observations were modeled using FASTWIND code (Santolaya-Rey, Puls & Herrero 1997, A&A 323, 488-512). Although we were not able to find an exact period from the Hα line profile variations, the same pattern (shape and intensity) seems to have a cyclic behaviour of about 17 days. The values for the wind and stellar parameters suggest changes of the mass loss rate by a factor of three during a cycle of variability. On the other hand, Kraus et al. (Precision Asteroseismology Proceedings, IAU Symposium 301, 2014) found that the HeI λ 6678 photospheric absorption line presents a 1.09 day period, which could be superimposed over a longer period. From the analysis of our theoretical parameters we found that a gravitational mode of pulsation could not be the only agent responsible for the observed variations. As the stars evolving from the main sequence to the red supergiant stage (RSG) have different pulsation properties than those evolving back to the blue supergiant region (Saio, Georgy & Meynet, 2013, MNRAS, 433, 1246), we conclude that 55 Cygni could be in a post-RSG phase with multiperiodic pulsation modes. The variable mass loss could be attributed to the coupling of the oscillation modes.

  20. Radio Imaging of Envelopes of Evolved Stars

    NASA Astrophysics Data System (ADS)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  1. Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013).

    PubMed

    Tajitsu, Akito; Sadakane, Kozo; Naito, Hiroyuki; Arai, Akira; Aoki, Wako

    2015-02-19

    The origin of lithium (Li) and its production process have long been uncertain. Li could be produced by Big Bang nucleosynthesis, interactions of energetic cosmic rays with interstellar matter, evolved low-mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half the Li may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. No direct evidence, however, for the supply of Li from evolved stellar objects to the Galactic medium has hitherto been found. Here we report the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, (7)Be, in the near-ultraviolet spectra of the classical nova V339 Del (Nova Delphini 2013) 38 to 48 days after the explosion. (7)Be decays to form (7)Li within a short time (half-life of 53.22 days). The (7)Be was created during the nova explosion via the alpha-capture reaction (3)He(α,γ)(7)Be (ref. 5). This result supports the theoretical prediction that a significant amount of (7)Li is produced in classical nova explosions.

  2. Distinguishing between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  3. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2017-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of binary black holes in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of binary-black-hole populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ~90% of binaries formed either dynamically or in isolation have eccentricities measurable by LISA. Finally, we note how measured eccentricities of low-mass binary black holes evolved in isolation could provide detailed constraints on the physics of black-hole natal kicks and common-envelope evolution.

  4. An Evolving Trio of Hybrid Stars: C 111

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2004-01-01

    Our goal is to understand the behavior of the outer atmosphere in this intermediate stage to create a comprehensive picture of atmospheric evolution. In the hybrid phase, the large-scale magnetic dynamo activity decays and hydrodynamic processes assume importance. Some hot plasma is still confined close to the star by magnetic loops, yet the confining field is breaking open, the atmosphere can escape through these open field lines, and the diffuse corona may be warm. There may well be a more extended and variable transition process. It remains for FUSE to identify the controlling parameters of the hybrid stars. It shows the positions of our 3 targets in the color-magnitude diagram where it is seen that they are at the extreme end of the hybrid region. Originally we had been awarded the hybrid star Iota Aur, but due to newly imposed pointing constraints of FUSE, that target was not accessible. And so we substituted Iota Dra, a giant of mass similar to our other targets but less evolved. In addition, Iota Dra was recently found to harbor a sub-stellar objects, possibly a planet, and so it could reveal the stellar environment of the planet. This substitution was accepted.

  5. Understanding the Early Evolution of M dwarf Extreme Ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya

    2015-11-01

    The chemistry and evolution of planetary atmospheres depends on the evolution of high-energy radiation emitted by its host star. High levels of extreme ultraviolet (EUV) radiation can drastically alter the atmospheres of terrestrial planets through ionizing, heating, expanding, chemically modifying and eroding them during the first few billion years of a planetary lifetime. While there is evidence that stars emit their highest levels of far and near ultraviolet (FUV; NUV) radiation in the earliest stages of their evolution, we are currently unable to directly measure the EUV radiation. Most previous stellar atmosphere models under-predict FUV and EUV emission from M dwarfs; here we present new models for M stars that include prescriptions for the hot, lowest density atmospheric layers (chromosphere, transition region and corona), from which this radiation is emitted. By comparing our model spectra to GALEX near and far ultraviolet fluxes, we are able to predict the evolution of EUV radiation for M dwarfs from 10 Myr to a few Gyr. This research is the next major step in the HAZMAT (HAbitable Zones and M dwarf Activity across Time) project to analyze how the habitable zone evolves with the evolving properties of stellar and planetary atmospheres.

  6. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less

  7. Three-dimensional analysis of tokamaks and stellarators

    PubMed Central

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  8. A model for the wind of the M supergiant VX Sagittarii

    NASA Astrophysics Data System (ADS)

    Pijpers, F. P.

    1990-11-01

    The velocity distribution of the stellar wind from the M supergiant VX Sgr deduced from interferometric measurements of maser lines by Chapman and Cohen (1986) has been modeled using the linearized theory of stellar winds driven by short period sound waves proposed by Pijpers and Hearn (1989) and the theory of stellar winds driven by short period shocks proposed by Pijpers and Habing (1989). The effect of the radiative forces on the dust formed in the wind is included in a simple way. Good agreement with the observations is obtained by a range of parameters in the theory. A series of observations of the maser lines at invervals of one or a few days may provide additional constraints on the interpretation.

  9. Shedding light on baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  10. Dynamical evolution of dense star clusters in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Haas, Jaroslav; Šubr, Ladislav

    2014-05-01

    By means of direct numerical N-body modeling, we investigate the orbital evolution of an initially thin, central mass dominated stellar disk. We include the perturbative gravitational influence of an extended spherically symmetric star cluster and the mutual gravitational interaction of the stars within the disk. Our results show that the two-body relaxation of the disk leads to significant changes of its radial density profile. In particular, the disk naturally evolves, for a variety of initial configurations, a similar broken power-law surface density profile. Hence, it appears that the single power-law surface density profile ∝R -2 suggested by various authors to describe the young stellar disk observed in the Sgr A* region does not match theoretical expectations.

  11. Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; McNeil, Joseph T.

    The transit method, employed by Microvariability and Oscillation of Stars ( MOST ), Kepler , and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients thatmore » are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50–100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.« less

  12. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Changshuo; Wang Jianmin, E-mail: wangjm@ihep.ac.c

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the H{alpha}, H{beta}, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can bemore » intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to {approx}1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of {approx}10{sup 8} yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as {approx}100 km s{sup -1} in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of H{alpha}, H{beta}, [O III], and [N II], and H{alpha} brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive rings independently evolving are able to reproduce the main dynamical and emission properties of the two galaxies, such as the Baldwin-Phillips-Terlevich diagram, the relation between line ratios, and H{alpha} brightness. The observed relation between turbulent velocity and the H{alpha} brightness can be explained by the present model. High viscosity excited by SNexp is able to efficiently transport the gas into a bulge to maintain high SFRs or to form a stellar ring close enough to the bulge so that it immigrates into the bulge of its host galaxy. This leads to a fast growing bulge. Implications and future work of the present models have been extensively discussed for galaxy formation in high-z universe.« less

  14. Evolved stars and the origin of abundance trends in planet hosts

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2016-04-01

    Context. Detailed chemical abundance studies have revealed different trends between samples of planet and non-planet hosts. Whether these trends are related to the presence of planets or not is strongly debated. At the same time, tentative evidence that the properties of evolved stars with planets may be different from what we know for main-sequence hosts has recently been reported. Aims: We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. Methods: In a consistent way, we determine the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and main-sequence stars that are with and without known planetary companions, and discuss their metallicity distribution and trends. Our methodology is based on the analysis of high-resolution échelle spectra (R ≳ 57 000) from 2-3 m class telescopes. It includes the calculation of the fundamental stellar parameters, as well as individual abundances of C, O , Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. Results: No differences in the ⟨[X/Fe]⟩ vs. condensation temperature (TC) slopes are found between the samples of planet and non-planet hosts when all elements are considered. However, if the analysis is restricted to only refractory elements, differences in the TC-slopes between stars with and without known planets are found. This result is found to be dependent on the stellar evolutionary stage, as it holds for main-sequence and subgiant stars, while there seems to be no difference between planet and non-planet hosts among the sample of giants. A search for correlations between the TC-slope and the stellar properties reveals significant correlations with the stellar mass and the stellar age. The data also suggest that differences in terms of mass and age between main-sequence planet and non-planet hosts may be present. Conclusions: Our results are well explained by radial mixing in the Galaxy. The sample of giants contains stars that are more massive and younger than their main-sequence counterparts. This leads to a sample of stars that are possibly less contaminated by stars that were not born in the solar neighbourhood, leading to no chemical differences between planet and non-planet hosts. The sample of main-sequence stars may contain more stars from the outer disc (specially the non-planet host sample) which might lead to the differences observed in the chemical trends. Based on observations made with the Mercator Telescope; on observations made with the Nordic Optical Telescope; on observations made with the Italian Telescopio Nazionale Galileo; on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto; and on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0488(E), 080.D-0347(A), 081.D-0870(A), 087.C-0831(A), and 183.C-0972(A).Tables B.1-B.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A98

  15. Are the gyro-ages of field stars underestimated?

    NASA Astrophysics Data System (ADS)

    Kovács, Géza

    2015-09-01

    By using the current photometric rotational data on eight galactic open clusters, we show that the evolutionary stellar model (isochrone) ages of these clusters are tightly correlated with the period shifts applied to the (B - V)0-Prot ridges that optimally align these ridges to the one defined by Praesepe and the Hyades. On the other hand, when the traditional Skumanich-type multiplicative transformation is used, the ridges become far less aligned due to the age-dependent slope change introduced by the period multiplication. Therefore, we employ our simple additive gyro-age calibration on various datasets of Galactic field stars to test its applicability. We show that, in the overall sense, the gyro-ages are systematically greater than the isochrone ages. The difference could exceed several giga years, depending on the stellar parameters. Although the age overlap between the open clusters used in the calibration and the field star samples is only partial, the systematic difference indicates the limitation of the currently available gyro-age methods and suggests that the rotation of field stars slows down with a considerably lower speed than we would expect from the simple extrapolation of the stellar rotation rates in open clusters.

  16. Assisted stellar suicide in V617 Sagittarii

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Oliveira, A. S.; Cieslinski, D.; Ricci, T. V.

    2006-02-01

    Context: .V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. Aims: .To check this hypothesis, we measured the time derivative of its orbital period. Methods: .Observed timings of eclipse minima spanning over 30 000 orbital cycles are presented. Results: .We found that the orbital period evolves quite rapidly: P/dot{P} = 1.1×106 years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia. Conclusions: .

  17. THE HERCULES SATELLITE: A STELLAR STREAM IN THE MILKY WAY HALO?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Jin, Shoko, E-mail: martin@mpia.d, E-mail: shoko@ari.uni-heidelberg.d

    2010-10-01

    We investigate the possibility that the recently discovered Hercules Milky Way (MW) satellite is in fact a stellar stream in formation, thereby explaining its very elongated shape with an axis ratio of 3:1. Under the assumption that Hercules is a stellar stream and that its stars are flowing along the orbit of its progenitor, we find an orbit that would have recently brought the system close enough to the MW to induce its disruption and transformation from a bound dwarf galaxy into a stellar stream. The application of simple analytical techniques to the tentative radial velocity gradient observed in themore » satellite provides tight constraints on the tangential velocity of the system (v{sub t} = -16{sup +6}{sub -22} km s{sup -1} in the Galactic standard of rest). Combined with its large receding velocity, the determined tangential velocity yields an orbit with a small pericentric distance (R{sub peri} = 6{sup +9}{sub -2} kpc). Tidal disruption is therefore a valid scenario for explaining the extreme shape of Hercules. The increase in the mean flattening of dwarf galaxies as one considers fainter systems could therefore be the impact of a few of these satellites not being bound stellar systems dominated by dark matter but, in fact, stellar streams in formation, shedding their stars in the MW's stellar halo.« less

  18. Kinematic structure of the 30 Doradus giant H II region

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kennicutt, Robert C., Jr.

    1994-01-01

    We have used the echelle CCD spectrograph on the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope to map the nebular velocity field in the 30 Doradus giant H II region. The kinematics of 30 Dor are very complex. The outer regions are charaterized by a smooth velocity field, but its turbulent velocity, 30-40 km/s Full Width Half Maximum (FWHM), is considerably higher than those in most smaller H II regions. In the central 9 min core, multiple velocity components are observed at most positions. The velocity field is dominated by a large number of expanding structures, ranging in size from 1 to 100 pc and expansion velocities of 20-200 km/s, and often organized into large hierarchical networks. The integral of these complex expanding structures in 30 Dor produces a surprisingly simple profile with a broad Gaussian core and faint extended wings. Several fast-expanding shells, with diameters of 2-20 pc, expansion velocities of 100-300 km/s, and kinetic energies of 0.5-10 x 10(exp 50) ergs have been identified. The large fast-expanding shells and networks are coincident with extended X-ray sources and are probably associated with supernova remnants embedded in supershells produced by the combined effects of stellar winds and supernovae from OB associations. We have used the intensity-calibrated echelle spectra to determine the basic physical and dynamical properties of the kinematic features in 30 Dor. The expanding shells contain roughly half of the kinetic energy in the 30 Dor complex, and this energy is several times higher than the gravitational binding energy of the region. The energetic requirements of the gas are consistent with the observed stellar content of 30 Dor, if the gas is accelerated by a combination of stellar winds and supernovae. Extrapolating the current energy injection rate in the nebula over the lifetime of the OB complex suggest that 30 Dor and its vicinity will evolve into a supergiant shell as seen in the LMC and other nearby galaxies.

  19. Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trappitsch, Reto; Stephan, Thomas; Savina, Michael R.

    Aside from recording stellar nucleosynthesis, a few elements in presolar grains can also provide insights into the galactic chemical evolution (GCE) of nuclides. We have studied the carbon, silicon, iron, and nickel isotopic compositions of presolar silicon carbide (SiC) grains from asymptotic giant branch (AGB) stars to better understand GCE. Since only the neutron-rich nuclides in these grains have been heavily in uenced by the parent star, the neutron-poor nuclides serve as GCE proxies. Using CHILI, a new resonance ionization mass spectrometry (RIMS) instrument, we measured 74 presolar SiC grains for all iron and nickel isotopes. With the CHARISMA instrument,more » 13 presolar SiC grains were analyzed for iron isotopes. All grains were also measured by NanoSIMS for their carbon and silicon isotopic compositions. A comparison of the measured neutron-rich isotopes with models for AGB star nucleosynthesis shows that our measurements are consistent with AGB star predictions for low-mass stars between half-solar and solar metallicity. Furthermore, our measurements give an indication on the 22Ne( ,n) 25Mg reaction rate. In terms of GCE, we nd that the GCE-dominated iron and nickel isotope ratios, 54Fe/56Fe and 60Ni/ 58Ni, correlate with their GCE-dominated counterpart in silicon, 29Si/ 28Si. The measured GCE trends include the Solar System composition, showing that the Solar System is not a special case. However, as seen in silicon and titanium, many presolar SiC grains are more evolved for iron and nickel than the Solar System. This con rms prior ndings and agrees with observations of large stellar samples that a simple age-metallicity relationship for GCE cannot explain the composition of the solar neighborhood.« less

  20. The origin of compact galaxies with anomalously high black hole masses

    NASA Astrophysics Data System (ADS)

    Barber, Christopher; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-07-01

    Observations of local galaxies harbouring supermassive black holes (BH) of anomalously high mass, MBH, relative to their stellar mass, M*, appear to be at odds with simple models of the co-evolution between galaxies and their central BHs. We study the origin of such outliers in a Λ cold dark matter context using the EAGLE cosmological, hydrodynamical simulation. We find 15 `MBH(M*)-outlier' galaxies, defined as having MBH more than 1.5 dex above the median MBH(M*) relation in the simulation, MBH, med(M*). All MBH(M*)-outliers are satellite galaxies, typically with M* ˜ 1010 M⊙ and MBH ˜ 108 M⊙. They have all become outliers due to a combination of tidal stripping of their outer stellar component acting over several Gyr and early formation times leading to rapid BH growth at high redshift, with the former mechanism being most important for 67 per cent of these outliers. The same mechanisms also cause the MBH(M*)-outlier satellites to be amongst the most compact galaxies in the simulation, making them ideal candidates for ultracompact dwarf galaxy progenitors. The 10 most extreme central galaxies found at z = 0 (with log10(MBH/MBH, med(M*)) ∈ [1.2, 1.5]) grow rapidly in MBH to lie well above the present-day MBH - M* relation at early times (z ≳ 2), and either continue to evolve parallel to the z = 0 relation or remain unchanged until the present day, making them `relics' of the high-redshift universe. This high-z formation mechanism may help to explain the origin of observed MBH(M*)-outliers with extended dark matter haloes and undisturbed morphologies.

  1. Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains

    DOE PAGES

    Trappitsch, Reto; Stephan, Thomas; Savina, Michael R.; ...

    2018-01-01

    Aside from recording stellar nucleosynthesis, a few elements in presolar grains can also provide insights into the galactic chemical evolution (GCE) of nuclides. We have studied the carbon, silicon, iron, and nickel isotopic compositions of presolar silicon carbide (SiC) grains from asymptotic giant branch (AGB) stars to better understand GCE. Since only the neutron-rich nuclides in these grains have been heavily in uenced by the parent star, the neutron-poor nuclides serve as GCE proxies. Using CHILI, a new resonance ionization mass spectrometry (RIMS) instrument, we measured 74 presolar SiC grains for all iron and nickel isotopes. With the CHARISMA instrument,more » 13 presolar SiC grains were analyzed for iron isotopes. All grains were also measured by NanoSIMS for their carbon and silicon isotopic compositions. A comparison of the measured neutron-rich isotopes with models for AGB star nucleosynthesis shows that our measurements are consistent with AGB star predictions for low-mass stars between half-solar and solar metallicity. Furthermore, our measurements give an indication on the 22Ne( ,n) 25Mg reaction rate. In terms of GCE, we nd that the GCE-dominated iron and nickel isotope ratios, 54Fe/56Fe and 60Ni/ 58Ni, correlate with their GCE-dominated counterpart in silicon, 29Si/ 28Si. The measured GCE trends include the Solar System composition, showing that the Solar System is not a special case. However, as seen in silicon and titanium, many presolar SiC grains are more evolved for iron and nickel than the Solar System. This con rms prior ndings and agrees with observations of large stellar samples that a simple age-metallicity relationship for GCE cannot explain the composition of the solar neighborhood.« less

  2. A Simple Evolutional Model of the UV Habitable Zone and the Possibility of the Persistent Life Existence: The Effects of Mass and Metallicity

    NASA Astrophysics Data System (ADS)

    Oishi, Midori; Kamaya, Hideyuki

    2016-12-01

    In addition to the habitable zone (HZ), the UV habitable zone (UV-HZ) is important when considering the existence of persistent life in the universe. The UV-HZ is defined as the area where the UV radiation field from a host star is moderate for persistent life existence. This is because UV is necessary for the synthesis of biochemical compounds. The UV-HZ must overlap the HZ when life appears and evolves. In this paper, following our previous study of the HZ, we examine the UV-HZ in cases with a stellar mass range from 0.08 to 4.00 M ⊙ with various metallicities during the main sequence phase. This mass range was chosen because we are interested in an environment similar to that of Earth. The effect of metallicity is reflected in the spectrum of the host stars, and we reexamine it in the context of the UV-HZ. The present work shows the effect of metallicity when that in the UV-HZ is less than that in the HZ. Furthermore, we find that the chance of persistent life existence declines as the metallicity decreases, as long as the UV radiation is not protected and/or boosted by any mechanisms. This is because the overlapped region of a persistent HZ and UV-HZ decreases. We find that the most appropriate stellar mass for the persistence of life existence is from 1.0 to 1.5 M ⊙ with metallicity Z = 0.02, and only about 1.2 M ⊙ with Z = 0.002. When Z = 0.0002, the chance of persistent life existence is very low, assuming that the ocean does not protect the life from UV radiation.

  3. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.

  4. Characterizing the evolving K -band luminosity function using the UltraVISTA, CANDELS and HUDF surveys

    NASA Astrophysics Data System (ADS)

    Mortlock, Alice; McLure, Ross J.; Bowler, Rebecca A. A.; McLeod, Derek J.; Mármol-Queraltó, Esther; Parsa, Shaghayegh; Dunlop, James S.; Bruce, Victoria A.

    2017-02-01

    We present the results of a new study of the K-band galaxy luminosity function (KLF) at redshifts z ≤ 3.75, based on a nested combination of the UltraVISTA, Cosmic Assembly Near-infrared Deep Legacy Extragalactic Survey and HUDF surveys. The large dynamic range in luminosity spanned by this new data set (3-4 dex over the full redshift range) is sufficient to clearly demonstrate for the first time that the faint-end slope of the KLF at z ≥ 0.25 is relatively steep (-1.3 ≤ α ≤ -1.5 for a single Schechter function), in good agreement with recent theoretical and phenomenological models. Moreover, based on our new data set, we find that a double Schechter function provides a significantly improved description of the KLF at z ≤ 2. At redshifts z ≥ 0.25, the evolution of the KLF is remarkably smooth, with little or no evolution evident at faint (MK ≥ -20.5) or bright magnitudes (MK ≤ -24.5). Instead, the KLF is seen to evolve rapidly at intermediate magnitudes, with the number density of galaxies at MK ≃-23 dropping by a factor of ≃5 over the redshift interval 0.25 ≤ z ≤ 3.75. Motivated by this, we explore a simple description of the evolving KLF based on a double Schechter function with fixed faint-end slopes (α1 = -0.5, α2 = -1.5) and a shared characteristic magnitude (MK^{star }). According to this parametrization, the normalization of the component which dominates the faint end of the KLF remains approximately constant, with φ ^{star }2 decreasing by only a factor of ≃2 between z ≃0 and 3.25. In contrast, the component which dominates the bright end of the KLF at low redshifts evolves dramatically, becoming essentially negligible by z ≃3. Finally, we note that within this parametrization, the observed evolution of MK^{star } between z ≃0 and 3.25 is entirely consistent with MK^{star } corresponding to a constant stellar mass of M⋆ ≃5 × 1010 M⊙ at all redshifts.

  5. Solar-stellar Coffee: A Model For Informal Interdisciplinary Professional Development

    NASA Astrophysics Data System (ADS)

    Metcalfe, Travis S.

    2007-12-01

    Initiated at NCAR more than two years ago, solar-stellar coffee is a weekly informal discussion of recent papers that are relevant to solar and stellar physics. The purpose is to generate awareness of new papers, to discuss their connections to past and current work, and to encourage a broader and more interdisciplinary view of solar physics. The discussion is local, but traffic to the website (http://coffee.solar-stellar.org/) is global -- suggesting that solar and stellar astronomers around the world find value in this intelligent pre-filter for astro-ph and other sources (papers are selected by local participants). In addition to enhancing the preprint posting and reading habits of solar physicists (with the associated boost in citation rates), the weekly discussion also provides an interdisciplinary professional development opportunity for graduate students, postdocs, and early career scientists. The web page is driven by a simple set of scripts (available on request), so this interaction model can easily be replicated at other institutions for topics of local interest. The concept of solar-stellar coffee began with support from an NSF Astronomy & Astrophysics Postdoctoral Fellowship under award AST-0401441. The National Center for Atmospheric Research is a federally funded research and development center sponsored by the National Science Foundation.

  6. Stellarator Coil Design and Plasma Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are givenmore » that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.« less

  7. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.

  8. Co-formation of the disc and the stellar halo

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Erkal, D.; Evans, N. W.; Koposov, S. E.; Deason, A. J.

    2018-07-01

    Using a large sample of main sequence stars with 7D measurements supplied by Gaia and SDSS, we study the kinematic properties of the local (within ˜10 kpc from the Sun) stellar halo. We demonstrate that the halo's velocity ellipsoid evolves strongly with metallicity. At the low-[Fe/H] end, the orbital anisotropy (the amount of motion in the radial direction compared with the tangential one) is mildly radial, with 0.2 <β< 0.4. For stars with [Fe/H] > -1.7, however, we measure extreme values of β˜ 0.9. Across the metallicity range considered, namely-3 < [Fe/H] < -1, the stellar halo's spin is minimal, at the level of 20< \\bar{v}_{θ }(kms^{-1}) < 30. Using a suite of cosmological zoom-in simulations of halo formation, we deduce that the observed acute anisotropy is inconsistent with the continuous accretion of dwarf satellites. Instead, we argue, the stellar debris in the inner halo was deposited in a major accretion event by a satellite with Mvir > 1010M⊙ around the epoch of the Galactic disc formation, between 8 and 11 Gyr ago. The radical halo anisotropy is the result of the dramatic radialization of the massive progenitor's orbit, amplified by the action of the growing disc.

  9. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  10. THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.

    Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explainedmore » in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.« less

  11. Self-gravity, Resonances, and Orbital Diffusion in Stellar Disks

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Binney, James; Pichon, Christophe

    2015-06-01

    Fluctuations in a stellar system's gravitational field cause the orbits of stars to evolve. The resulting evolution of the system can be computed with the orbit-averaged Fokker-Planck equation once the diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor from a given source of noise in the gravitational field when the system's dynamical response to that noise is included. In the case of a cool stellar disk we are able to reduce the computation of the diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disk that is exposed to shot noise and find that we are able to explain analytically the principal features of a numerical simulation of such a disk. In particular the formation of narrow ridges of enhanced density in action space is recovered. As the disk's value of Toomre's Q is reduced and the disk becomes more responsive, there is a transition from a regime of heating in the inner regions of the disk through the inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance in the intermediate regions of the disk. The formalism developed here provides the ideal framework in which to study the long-term evolution of all kinds of stellar disks.

  12. Weighing in on the masses of retired A stars with asteroseismology: K2 observations of the exoplanet-host star HD 212771

    NASA Astrophysics Data System (ADS)

    Campante, Tiago L.; Veras, Dimitri; North, Thomas S. H.; Miglio, Andrea; Morel, Thierry; Johnson, John A.; Chaplin, William J.; Davies, Guy R.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Elsworth, Yvonne P.; Rodrigues, Thaíse S.; Vanderburg, Andrew

    2017-08-01

    Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observations than their main-sequence progenitors. However, it has been hypothesized that the masses of subgiant and low-luminosity red-giant stars targeted by these surveys - typically derived from a combination of spectroscopy and isochrone fitting - may be systematically overestimated. Here, we test this hypothesis for the particular case of the exoplanet-host star HD 212771 using K2 asteroseismology. The benchmark asteroseismic mass (1.45^{+0.10}_{-0.09} M_{⊙) is significantly higher than the value reported in the discovery paper (1.15 ± 0.08 M⊙), which has been used to inform the stellar mass-planet occurrence relation. This result, therefore, does not lend support to the above hypothesis. Implications for the fates of planetary systems are sensitively dependent on stellar mass. Based on the derived asteroseismic mass, we predict the post-main-sequence evolution of the Jovian planet orbiting HD 212771 under the effects of tidal forces and stellar mass-loss.

  13. The XXL survey XV: evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters

    NASA Astrophysics Data System (ADS)

    Lavoie, S.; Willis, J. P.; Démoclès, J.; Eckert, D.; Gastaldello, F.; Smith, G. P.; Lidman, C.; Adami, C.; Pacaud, F.; Pierre, M.; Clerc, N.; Giles, P.; Lieu, M.; Chiappetti, L.; Altieri, B.; Ardila, F.; Baldry, I.; Bongiorno, A.; Desai, S.; Elyiv, A.; Faccioli, L.; Gardner, B.; Garilli, B.; Groote, M. W.; Guennou, L.; Guzzo, L.; Hopkins, A. M.; Liske, J.; McGee, S.; Melnyk, O.; Owers, M. S.; Poggianti, B.; Ponman, T. J.; Scodeggio, M.; Spitler, L.; Tuffs, R. J.

    2016-11-01

    The growth of brightest cluster galaxies (BCGs) is closely related to the properties of their host cluster. We present evidence for dry mergers as the dominant source of BCG mass growth at z ≲ 1 in the XXL 100 brightest cluster sample. We use the global red sequence, Hα emission and mean star formation history to show that BCGs in the sample possess star formation levels comparable to field ellipticals of similar stellar mass and redshift. XXL 100 brightest clusters are less massive on average than those in other X-ray selected samples such as LoCuSS or HIFLUGCS. Few clusters in the sample display high central gas concentration, rendering inefficient the growth of BCGs via star formation resulting from the accretion of cool gas. Using measures of the relaxation state of their host clusters, we show that BCGs grow as relaxation proceeds. We find that the BCG stellar mass corresponds to a relatively constant fraction 1 per cent of the total cluster mass in relaxed systems. We also show that, following a cluster scale merger event, the BCG stellar mass lags behind the expected value from the Mcluster-MBCG relation but subsequently accretes stellar mass via dry mergers as the BCG and cluster evolve towards a relaxed state.

  14. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  15. Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run

    NASA Astrophysics Data System (ADS)

    Mathur, Savita; Huber, Daniel; Batalha, Natalie M.; Ciardi, David R.; Bastien, Fabienne A.; Bieryla, Allyson; Buchhave, Lars A.; Cochran, William D.; Endl, Michael; Esquerdo, Gilbert A.; Furlan, Elise; Howard, Andrew; Howell, Steve B.; Isaacson, Howard; Latham, David W.; MacQueen, Phillip J.; Silva, David R.

    2017-04-01

    The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1–17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1–16 catalog by Huber et al., the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29,000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ∼27% in radius, ∼17% in mass, and ∼51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved {log}g constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars.

  16. Feedback Driven Chemical Evolution in Simulations of Low Mass Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Emerick, Andrew; Bryan, Greg; Mac Low, Mordecai-Mark

    2018-06-01

    Galaxy chemical properties place some of the best constraints on models of galaxy evolution. Both gas and stellar metal abundances in galaxies depend upon the integrated star formation history of the galaxy, gas accretion, outflows, and the effectiveness of metal mixing within the interstellar medium (ISM). Capturing the physics that governs these processes in detail, however, is challenging, in part due to the difficulty in self-consistently modelling stellar feedback physics that impacts each of these processes. Using high resolution hydrodynamics simulations of isolated dwarf galaxies where we follow stars as individual star particles, we examine the role of feedback in driving dwarf galaxy chemical evolution. This star-by-star method allows us to directly follow feedback from stellar winds from massive and AGB stars, stellar ionizing radiation and photoelectric heating, and supernovae. Additionally, we track 15 individual metal species yields from these stars as they pollute the ISM and enrich new stellar populations. I will present initial results from these simulations in the context of observational constraints on the retention/ejection of metals from Local Group dwarf galaxies. In addition, I will discuss the variations with which individual elements evolve in the various phases of the ISM, as they progress from hot, ionized gas down to cold, star forming regions. I will conclude by outlining the implications of these results on interpretations of observed chemical abundances in dwarf galaxies and on standard assumptions made in semi-analytic chemical evolution models of these galaxies.

  17. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  18. VizieR Online Data Catalog: A framework for empirical galaxy phenomenology (Munoz+, 2015)

    NASA Astrophysics Data System (ADS)

    Munoz, J. A.; Peeples, M. S.

    2017-11-01

    In this study, we develop a cohesive theoretical formalism for translating empirical relations into an understanding of the variations in galactic star formation histories. We achieve this goal by incorporating into the Main Sequence Integration (MSI) method the scatter suggested by the evolving fraction of quiescent galaxies and the spread in the observed stellar mass-star formation rate relation. (2 data files).

  19. The X-Ray View of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Guedel, Manuel

    2007-08-01

    X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.

  20. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  1. Extending the capability of GYRE to calculate tidally forced stellar oscillations

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.

    2016-01-01

    Tidally forced oscillations have been observed in many eccentric binary systems, such as KOI-54 and many other 'heart beat stars'. The tidal response of the star can be calculated by solving a revised stellar oscillations equations.The open-source stellar oscillation code GYRE (Townsend & Teitler 2013) can be used to solve the free stellar oscillation equations in both adiabatic and non-adiabatic cases. It uses a novel matrix exponential method which avoids many difficulties of the classical shooting and relaxation method. The new version also includes the effect of rotation in traditional approximation.After showing the code flow of GYRE, we revise its subroutines and extend its capability to calculate tidallyforced oscillations in both adiabatic and non-adiabatic cases following the procedure in the CAFein code (Valsecchi et al. 2013). In the end, we compare the tidal eigenfunctions with those calculated from CAFein.More details of the revision and a simple version of the code in MATLAB can be obtained upon request.

  2. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.

    1984-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  3. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven

    1986-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  4. Luminosity effect of O I 7771-5 triplet and atmospheric microturbulence in evolved A-, F-, and G-type stars

    NASA Astrophysics Data System (ADS)

    Takeda, Yoichi; Jeong, Gwanghui; Han, Inwoo

    2018-01-01

    It is known that the strength of neutral oxygen triplet lines at 7771-5 Å shows a luminosity effect in evolved A through G stars. However, its general behavior across the HR diagram is not yet well understood, since the applicability limit of the relations proposed by various previous work (tending to be biased toward supergiants) still remains unclear. Besides, our understanding on the nature of atmospheric micro-scale turbulence, which is considered to play a significant role (along with the non-LTE line intensification) for the cause of this effect, is still insufficient. Towards clarifying these problems, we carried out an extensive non-LTE spectrum-fitting analysis of O I 7771-5 lines for unbiased sample of 75 evolved A-, F,- and G-type stars over wide luminosity classes (from subgiants through supergiants) including rapid rotators, from which the total equivalent width (W77) was derived and the microturbulence (ξ) was determined by two different (profile- and abundance-based) methods for each star. While we confirmed that W77 tends to increase in the global sense as a star's absolute magnitude (MV) becomes more luminous, distinctly different trends were found between lower-gravity (log g ≲ 2.5) and higher-gravity (log g ≳ 2.5) stars, in the sense that the MV vs. W77 formulas proposed by past studies are applicable only to the former supergiant group. In case of using W77 for empirical MV evaluation by such simple formulas, it is recommended to confine only to supergiants of -5 ≳ MV ≳ -10. Regarding the microturbulence significantly controlling W77, it roughly shows an increasing tendency with a decrease in surface gravity. However, the trend is not monotonic but rather intricate (e.g., hump, stagnation, or discontinuously large increase) depending on the stellar type and evolutionary stage.

  5. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  6. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  7. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  8. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part ofmore » the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.« less

  9. The Intrinsic Characteristics of Galaxies on the SFR–M ∗ Plane at 1.2 < z < 4: I. The Correlation between Stellar Age, Central Density, and Position Relative to the Main Sequence

    NASA Astrophysics Data System (ADS)

    Lee, Bomee; Giavalisco, Mauro; Whitaker, Katherine; Williams, Christina C.; Ferguson, Henry C.; Acquaviva, Viviana; Koekemoer, Anton M.; Straughn, Amber N.; Guo, Yicheng; Kartaltepe, Jeyhan S.; Lotz, Jennifer; Pacifici, Camilla; Croton, Darren J.; Somerville, Rachel S.; Lu, Yu

    2018-02-01

    We use the deep CANDELS observations in the GOODS North and South fields to revisit the correlations between stellar mass (M *), star formation rate (SFR) and morphology, and to introduce a fourth dimension, the mass-weighted stellar age, in galaxies at 1.2< z< 4. We do this by making new measures of M *, SFR, and stellar age thanks to an improved SED fitting procedure that allows various star formation history for each galaxy. Like others, we find that the slope of the main sequence (MS) of star formation in the ({M}* ;{SFR}) plane bends at high mass. We observe clear morphological differences among galaxies across the MS, which also correlate with stellar age. At all redshifts, galaxies that are quenching or quenched, and thus old, have high {{{Σ }}}1 (the projected density within the central 1 kpc), while younger, star-forming galaxies span a much broader range of {{{Σ }}}1, which includes the high values observed for quenched galaxies, but also extends to much lower values. As galaxies age and quench, the stellar age and the dispersion of {{{Σ }}}1 for fixed values of M * shows two different regimes: one at the low-mass end, where quenching might be driven by causes external to the galaxies; the other at the high-mass end, where quenching is driven by internal causes, very likely the mass given the low scatter of {{{Σ }}}1 (mass quenching). We suggest that the monotonic increase of central density as galaxies grow is one manifestation of a more general phenomenon of structural transformation that galaxies undergo as they evolve.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. Themore » precision of the relations is not as well constrained for giant stars as it is for less evolved stars.« less

  11. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  12. EzGal: A Flexible Interface for Stellar Population Synthesis Models

    NASA Astrophysics Data System (ADS)

    Mancone, Conor L.; Gonzalez, Anthony H.

    2012-06-01

    We present EzGal, a flexible Python program designed to easily generate observable parameters (magnitudes, colors, and mass-to-light ratios) for arbitrary input stellar population synthesis (SPS) models. As has been demonstrated by various authors, for many applications the choice of input SPS models can be a significant source of systematic uncertainty. A key strength of EzGal is that it enables simple, direct comparison of different model sets so that the uncertainty introduced by choice of model set can be quantified. Its ability to work with new models will allow EzGal to remain useful as SPS modeling evolves to keep up with the latest research (such as varying IMFs). EzGal is also capable of generating composite stellar population models (CSPs) for arbitrary input star-formation histories and reddening laws, and it can be used to interpolate between metallicities for a given model set. To facilitate use, we have created an online interface to run EzGal and quickly generate magnitude and mass-to-light ratio predictions for a variety of star-formation histories and model sets. We make many commonly used SPS models available from the online interface, including the canonical Bruzual & Charlot models, an updated version of these models, the Maraston models, the BaSTI models, and the Flexible Stellar Population Synthesis (FSPS) models. We use EzGal to compare magnitude predictions for the model sets as a function of wavelength, age, metallicity, and star-formation history. From this comparison we quickly recover the well-known result that the models agree best in the optical for old solar-metallicity models, with differences at the level. Similarly, the most problematic regime for SPS modeling is for young ages (≲2 Gyr) and long wavelengths (λ ≳ 7500 Å), where thermally pulsating AGB stars are important and scatter between models can vary from 0.3 mag (Sloan i) to 0.7 mag (Ks). We find that these differences are not caused by one discrepant model set and should therefore be interpreted as general uncertainties in SPS modeling. Finally, we connect our results to a more physically motivated example by generating CSPs with a star-formation history matching the global star-formation history of the universe. We demonstrate that the wavelength and age dependence of SPS model uncertainty translates into a redshift-dependent model uncertainty, highlighting the importance of a quantitative understanding of model differences when comparing observations with models as a function of redshift.

  13. An improved probabilistic approach for linking progenitor and descendant galaxy populations using comoving number density

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul

    2017-06-01

    Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.

  14. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    NASA Astrophysics Data System (ADS)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  15. The Arduous Journey to Black Hole Formation in Potential Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D.

    2012-07-01

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity—objects that are proposed as likely progenitors of long-duration γ-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.

  16. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; hide

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  17. THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D., E-mail: Luc.Dessart@oamp.fr, E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu

    2012-07-20

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity-objects that are proposed as likely progenitors of long-duration {gamma}-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black holemore » formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.« less

  18. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  19. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  20. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  1. Direct Reactions at the Facility for Experiments on Nuclear Reactions in Stars (FENRIS)

    NASA Astrophysics Data System (ADS)

    Longland, Richard; Kelley, John; Marshall, Caleb; Portillo, Federico; Setoodehnia, Kiana

    2017-09-01

    Nuclear cross sections are a key ingredient in stellar models designed to understand how stars evolve. Determining these cross sections, therefore, is critical for obtaining reliable predictions from stellar models. While many charged-particle reaction cross sections can be measured in the laboratory, the Coulomb barrier means that they cannot always be measured at the low energies relevant to astrophysics. In other cases, radioactive targets make the measurements unfeasible. Radioactive ion beam experiments in inverse kinematics are one solution, but low beam intensities mean that cross sections plague these attempts further. Direct measurements, particularly particle transfer experiments, are one tool in our inventory that provides us with the necessary information to infer reaction cross sections at stellar energies. I will present an overview of one facility: the Facility for Experiments on Nuclear Reactions in Stars (FENRIS), which is dedicated to performing particle transfer measurements for astrophysical cross sections. Over the past few years, FENRIS has been fully upgraded and characterized. I will show highlights of our upgrade activities and current capabilities. I will also highlight our recent experimental results and discuss current upgrade efforts.

  2. Featured Image: Orbiting Stars Share an Envelope

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  3. The Evolution of the Type Ia Supernova Luminosity Function

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Toonen, Silvia; Graur, Or

    2017-12-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity–stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the > 1 {Gyr} old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.

  4. Random forest classification of stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  5. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  6. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less

  7. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  8. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  9. Mass and Environment as Drivers of Galaxy Evolution: Simplicity and its Consequences

    NASA Astrophysics Data System (ADS)

    Peng, Yingjie

    2012-01-01

    The galaxy population appears to be composed of infinitely complex different types and properties at first sight, however, when large samples of galaxies are studied, it appears that the vast majority of galaxies just follow simple scaling relations and similar evolutional modes while the outliers represent some minority. The underlying simplicities of the interrelationships among stellar mass, star formation rate and environment are seen in SDSS and zCOSMOS. We demonstrate that the differential effects of mass and environment are completely separable to z 1, indicating that two distinct physical processes are operating, namely the "mass quenching" and "environment quenching". These two simple quenching processes, plus some additional quenching due to merging, then naturally produce the Schechter form of the galaxy stellar mass functions and make quantitative predictions for the inter-relationships between the Schechter parameters of star-forming and passive galaxies in different environments. All of these detailed quantitative relationships are indeed seen, to very high precision, in SDSS, lending strong support to our simple empirically-based model. The model also offers qualitative explanations for the "anti-hierarchical" age-mass relation and the alpha-enrichment patterns for passive galaxies and makes some other testable predictions such as the mass function of the population of transitory objects that are in the process of being quenched, the galaxy major- and minor-merger rates, the galaxy stellar mass assembly history, star formation history and etc. Although still purely phenomenological, the model makes clear what the evolutionary characteristics of the relevant physical processes must in fact be.

  10. A conformally flat realistic anisotropic model for a compact star

    NASA Astrophysics Data System (ADS)

    Ivanov, B. V.

    2018-04-01

    A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

  11. AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models

    NASA Astrophysics Data System (ADS)

    Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor

    2014-06-01

    Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame

  12. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  13. Secular Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Falcón-Barroso, Jesús; Knapen, Johan H.

    2013-10-01

    Preface; 1. Secular evolution in disk galaxies John Kormendy; 2. Galaxy morphology Ronald J. Buta; 3. Dynamics of secular evolution James Binney; 4. Bars and secular evolution in disk galaxies: theoretical input E. Athanassoula; 5. Stellar populations Reynier F. Peletier; 6. Star formation rate indicators Daniela Calzetti; 7. The evolving interstellar medium Jacqueline van Gorkom; 8. Evolution of star formation and gas Nick Z. Scoville; 9. Cosmological evolution of galaxies Isaac Shlosman.

  14. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  15. Dating the Tidal Disruption of Globular Clusters with GAIA Data on Their Stellar Streams

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Ginsburg, Idan; Loeb, Abraham

    2018-05-01

    The Gaia mission promises to deliver precision astrometry at an unprecedented level, heralding a new era for discerning the kinematic and spatial coordinates of stars in our Galaxy. Here, we present a new technique for estimating the age of tidally disrupted globular cluster streams using the proper motions and parallaxes of tracer stars. We evolve the collisional dynamics of globular clusters within the evolving potential of a Milky Way-like halo extracted from a cosmological ΛCDM simulation and analyze the resultant streams as they would be observed by Gaia. The simulations sample a variety of globular cluster orbits, and account for stellar evolution and the gravitational influence of the disk of the Milky Way. We show that a characteristic timescale, obtained from the dispersion of the proper motions and parallaxes of stars within the stream, is a good indicator for the time elapsed since the stream has been freely expanding away due to the tidal disruption of the globular cluster. This timescale, in turn, places a lower limit on the age of the cluster. The age can be deduced from astrometry using a modest number of stars, with the error on this estimate depending on the proximity of the stream and the number of tracer stars used.

  16. SHARDS: Survey for High-z Absorption Red & Dead Sources

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  17. Surface Compositions of Red Giant Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Cheng, Eric; Lau, Marie; Smith, Graeme; Chen, Brian

    2018-01-01

    Globular clusters (GCs) are excellent “laboratories” to study the formation and evolution of our galaxy. In order to understand, more specifically, the chemical compositions and stellar evolution of the stars in GCs, we ask whether or not deep internal mixing occurs in red giants or if in fact the compositions come from the primordial interstellar medium or previous generations of stars. It has been discovered that as a star evolves up the red giant branch, the surface carbon abundance decreases, which is evidence of deep internal mixing. We questioned whether these processes also affect O or Na abundance as a star evolves. We collected measurement data of red giants from GCs out of academic journals and sorted the data into catalogs. Then, we plotted the catalogs into figures, comparing surface O and Na each with stellar luminosity. Statistical tests were ran to quantify the amount of correlation between the variables. Out of 27 GCs, we concluded that eight show a positive correlation between Na and luminosity, and two show a negative correlation between O and luminosity. Properties of GCs were compared to determine if chemical distribution in stars depends on GCs as the self-enrichment scenario suggests. We created histograms of sodium distribution to test for bimodality to examine if there are separate trends in each GC. In six GCs, two different sequences of red giants appear for Na versus luminosity, suggesting evidence that the depth of mixing may differ among each red giant in a GC. This study has provided new evidence that the changing chemical abundances on the surfaces of red giants can be due to stellar evolutionary effects and deep internal mixing, which may not necessarily depend on the GC and may differ in depth among each red giant. Through this study, we learn more about stellar evolution which will eventually help us understand the origins of our universe. Most of this work was carried out by high school students working under the auspices of the Science Internship Program (SIP) at UC Santa Cruz.

  18. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A120Appendices are available in electronic form at http://www.aanda.org

  19. Evolving R Coronae Borealis Stars with MESA

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to being a WD. Solving the mystery of how the RCB stars evolve will lead to a better understanding of other important types of stellar merger events such as Type Ia SNe.

  20. New and updated stellar parameters for 71 evolved planet hosts. On the metallicity-giant planet connection

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Santos, N. C.; Sousa, S. G.; Adibekyan, V. Zh.; Delgado Mena, E.; Tsantaki, M.; Israelian, G.; Mayor, M.

    2013-09-01

    Context. It is still being debated whether the well-known metallicity-giant planet correlation for dwarf stars is also valid for giant stars. For this reason, having precise metallicities is very important. Precise stellar parameters are also crucial to planetary research for several other reasons. Different methods can provide different results that lead to discrepancies in the analysis of planet hosts. Aims: To study the impact of different analyses on the metallicity scale for evolved stars, we compare different iron line lists to use in the atmospheric parameter derivation of evolved stars. Therefore, we use a sample of 71 evolved stars with planets. With these new homogeneous parameters, we revisit the metallicity-giant planet connection for evolved stars. Methods: A spectroscopic analysis based on Kurucz models in local thermodynamic equilibrium (LTE) was performed through the MOOG code to derive the atmospheric parameters. Two different iron line list sets were used, one built for cool FGK stars in general, and the other for giant FGK stars. Masses were calculated through isochrone fitting, using the Padova models. Kolmogorov-Smirnov tests (K-S tests) were then performed on the metallicity distributions of various different samples of evolved stars and red giants. Results: All parameters compare well using a line list set, designed specifically for cool and solar-like stars to provide more accurate temperatures. All parameters derived with this line list set are preferred and are thus adopted for future analysis. We find that evolved planet hosts are more metal-poor than dwarf stars with giant planets. However, a bias in giant stellar samples that are searched for planets is present. Because of a colour cut-off, metal-rich low-gravity stars are left out of the samples, making it hard to compare dwarf stars with giant stars. Furthermore, no metallicity enhancement is found for red giants with planets (log g < 3.0 dex) with respect to red giants without planets. The data presented here are based on observations collected at the La Silla Paranal Observatory, ESO (Chile) with the FEROS spectrograph at the 2.2 m telescope (ESO runs ID 70.C-0084, 088.C-0892, 089.C-0444, and 090.C-0146) and the HARPS spectrograph at the 3.6 m telescope (ESO run ID 72.C-0488); at the Paranal Observatory, ESO (Chile) with the UVES spectrograph at the VLT Kueyen telescope (ESO runs ID 074.C-0134, 079.C-0131, 380.C-0083, and 083.C-0174); at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with the FIES spectrograph at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden (program ID 44-210); and at the Observatoire de Haute-Provence (OHP, CNRS/OAMP), France with the SOPHIE spectrographs at the 1.93 m telescope (program ID 11B.DISC.SOUS).Tables 1, 5, 6 and Appendix A are available in electronic form at http://www.aanda.orgTables 5, 6, and A.1 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A70

  1. Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García, L.; Ochando, M. A.; Hidalgo, C.

    2016-06-15

    In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of themore » instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.« less

  2. Convection in Cool Stars, as Seen Through Kepler's Eyes

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.

    2015-01-01

    Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve ``flicker.'' We show that ``flicker'' not only yields a simple measurement of surface gravity with a precision of ˜0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.

  3. Grey Milky Way extinction from SDSS stellar photometry

    NASA Astrophysics Data System (ADS)

    Gorbikov, Evgeny; Brosch, Noah

    2010-01-01

    We report results concerning the distribution and properties of galactic extinction at high galactic latitudes derived from stellar statistics using the Sloan Digital Sky Survey (SDSS). We use the classical Wolf diagram method to identify regions with extinction, and derive the extinction and the extinction law of the dust using all five SDSS spectral bands. We estimate the distance to the extinguishing medium using simple assumptions about the stellar populations in the line of sight. We report the identification of three extinguishing clouds, each a few tens of pc wide, producing 0.2-0.4 mag of g'-band extinction, located 1-2 kpc away or 0.5-1 kpc above the Galactic plane. All clouds exhibit grey extinction, i.e. almost wavelength independent in the limited spectral range of the SDSS. We discuss the implication of this finding on general astrophysical questions.

  4. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    NASA Astrophysics Data System (ADS)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  5. The relationship between galaxy and dark matter halo size from z ˜ 3 to the present

    NASA Astrophysics Data System (ADS)

    Somerville, Rachel S.; Behroozi, Peter; Pandya, Viraj; Dekel, Avishai; Faber, S. M.; Fontana, Adriano; Koekemoer, Anton M.; Koo, David C.; Pérez-González, P. G.; Primack, Joel R.; Santini, Paola; Taylor, Edward N.; van der Wel, Arjen

    2018-01-01

    We explore empirical constraints on the statistical relationship between the radial size of galaxies and the radius of their host dark matter haloes from z ∼ 0.1-3 using the Galaxy And Mass Assembly (GAMA) and Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey (CANDELS) surveys. We map dark matter halo mass to galaxy stellar mass using relationships from abundance matching, applied to the Bolshoi-Planck dissipationless N-body simulation. We define SRHR ≡ re/Rh as the ratio of galaxy radius to halo virial radius, and SRHRλ ≡ re/(λRh) as the ratio of galaxy radius to halo spin parameter times halo radius. At z ∼ 0.1, we find an average value of SRHR ≃ 0.018 and SRHRλ ≃ 0.5 with very little dependence on stellar mass. Stellar radius-halo radius (SRHR) and SRHRλ have a weak dependence on cosmic time since z ∼ 3. SRHR shows a mild decrease over cosmic time for low-mass galaxies, but increases slightly or does not evolve for more massive galaxies. We find hints that at high redshift (z ∼ 2-3), SRHRλ is lower for more massive galaxies, while it shows no significant dependence on stellar mass at z ≲ 0.5. We find that for both the GAMA and CANDELS samples, at all redshifts from z ∼ 0.1-3, the observed conditional size distribution in stellar mass bins is remarkably similar to the conditional distribution of λRh. We discuss the physical interpretation and implications of these results.

  6. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Adamo, A.

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less

  7. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  8. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  9. Designing stellarator coils by a modified Newton method using FOCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  10. Designing stellarator coils by a modified Newton method using FOCUS

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  11. Designing stellarator coils by a modified Newton method using FOCUS

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2018-03-22

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  12. Messages from the Reversing Layer: Clues to Planet Formation in Spectral Abundances

    NASA Astrophysics Data System (ADS)

    Brewer, John Michael; Fischer, Debra; Basu, Sarbani

    2017-01-01

    The abundances of elements in the protoplanetary disk evolve over time, but stellar abundances will reflect the initial chemical composition of the disk and this can provide constraints on the range of possible outcomes for planet interiors. Rocky planet habitability depends not just on the availability of liquid water, but also on volcansim and plate tectonics that can stabilize the climate on long timescales. The slow evolution of abundances in stellar photospheres, particularly abundance ratios between elements, makes them ideal laboratories to study primordial disk compositions.In my thesis work, I developed a new spectroscopic analysis procedure that derives gravities consistent with asteroseismology to within 0.05 dex as well as abundances for 15 elements. Using this procedure, we analyzed and published a catalog of accurate stellar parameters and precise abundances for more than 1600 stars and used those to investigate questions of planet formation. The C/O and Mg/Si ratios in the solar neighborhood could affect rocky planet habitability. For lucky cases where planet atmosphereic abundances can be measured, the stellar host C/O and [O/H] ratios carry information about the formation site and migration of hot Jupiters. I will present results on both rocky planet compositions and hot Jupiter migration and discuss how they can help us identify potentially habitable systems and discriminate between different planet formation models.

  13. Spiral Structure Dynamics in Pure Stellar Disk Models

    NASA Astrophysics Data System (ADS)

    Valencia-Enríquez, D.; Puerari, I.

    2014-03-01

    In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion (σR,0) and the disk scale height (zd). We analyzed the growth of spiral structures using 1D and 2D Fourier Transform (FT1D and FT2D respectively). The FT1D was used to obtain the angular velocities of non-axisymmetric structures which grow in the stellar disks. In all of our simulations the measured angular velocity of spiral patterns are well confined by the resonances given by the curves Ω±κ/m. The FT2D gives the amplitude of a particular spiral structure represented by two Fourier frequencies: m, number of arms; and p, related to the pitch angle as atan(-m/p). We present, for the first time, plots of the Fourier amplitude |A(p,m)| as a function of time which clearly demonstrates the swing amplification mechanism in the simulated stellar disks. In our simulations, the spiral waves appear as leading spiral structures evolving towards open trailing patterns and fade out as tightly wound spirals.

  14. Revealing Black Holes with Gaia

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Chatterjee, Sourav; Larson, Shane L.

    2017-11-01

    We estimate the population of black holes with luminous stellar companions (BH-LCs) in the Milky Way (MW) observable by Gaia. We evolve a realistic distribution of BH-LC progenitors from zero-age to the current epoch taking into account relevant physics, including binary stellar evolution, BH-formation physics, and star formation rate, in order to estimate the BH-LC population in the MW today. We predict that Gaia will discover between 3800 and 12,000 BH-LCs by the end of its 5 {years} mission, depending on BH natal kick strength and observability constraints. We find that the overall yield, and distributions of eccentricities and masses of observed BH-LCs, can provide important constraints on the strength of BH natal kicks. Gaia-detected BH-LCs are expected to have very different orbital properties compared to those detectable via radio, X-ray, or gravitational-wave observations.

  15. Giant star seismology

    NASA Astrophysics Data System (ADS)

    Hekker, S.; Christensen-Dalsgaard, J.

    2017-06-01

    The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.

  16. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.

  17. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  18. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less

  19. Optical hydrogen absorption consistent with a bow shock around the hot Jupiter HD 189733 b

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.

    Hot Jupiters, i.e., Jupiter-mass planets with orbital semi major axes of <10 stellar radii, can interact strongly with their host stars. If the planet is moving supersonically through the stellar wind, a bow shock will form ahead of the planet where the planetary magnetosphere slams into the the stellar wind or where the planetary outflow and stellar wind meet. Here we present high resolution spectra of the hydrogen Balmer lines for a single transit of the hot Jupiter HD 189733 b. Transmission spectra of the Balmer lines show strong absorption ~70 minutes before the predicted optical transit, implying a significant column density of excited hydrogen orbiting ahead of the planet. We show that a simple geometric bow shock model is able to reproduce the important features of the absorption time series while simultaneously matching the line profile morphology. Our model suggests a large planetary magnetic field strength of ~28 G. Follow-up observations are needed to confirm the pre-transit signal and investigate any variability in the measurement.

  20. Improved methods for the measurement and analysis of stellar magnetic fields

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  1. Introduction to Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  2. Collision Tomography: Physical Properties of Possible Progenitors of the Andromeda Stellar Stream

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Mori, Masao; Rich, R. Michael

    2016-08-01

    To unveil a progenitor of the Andromeda Giant Stellar Stream, we investigate the interaction between an accreting satellite galaxy and the Andromeda Galaxy using an N-body simulation. We perform a comprehensive exploration of the properties of the progenitor dwarf galaxy, using 247 models of varying mass, mass distribution, and size. We show that the binding energy of the progenitor is the crucial parameter in reproducing the Andromeda Giant Stellar Stream and the shell-like structures surrounding the Andromeda Galaxy. As a result of the simulations, the progenitor must satisfy a simple scaling relation between the core radius, the total mass and the tidal radius. Using this relation, we successfully constrain the physical properties of the progenitors to have masses ranging from 5× {10}8{M}⊙ to 5× {10}9{M}⊙ and central surface densities around {10}3 {M}⊙ {{pc}}-2. A detailed comparison between our result and the nearby observed galaxies indicates that possible progenitors of the Andromeda Giant Stellar Stream include a dwarf elliptical galaxy, a dwarf irregular galaxy, and a small spiral galaxy.

  3. Research on the Application of Fast-steering Mirror in Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.

    2017-07-01

    For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.

  4. An Astrophysical Laboratory: Understanding and Exploiting the Young Massive Cluster Westerlund 1

    NASA Astrophysics Data System (ADS)

    Clark, S.; Negueruela, I.; Ritchie, B.; Najarro, P.; Langer, N.; Crowther, P.; Bartlett, L.; Fenech, D.; González-Fernández, C.; Goodwin, S.; Lohr, M.; Prinja, R.

    2015-03-01

    Westerlund 1 provides a unique opportunity to probe the physics of massive stars, from birth to death and beyond, as well as the formation and evolution of a super star cluster that appears destined to evolve into a globular cluster. We highlight the result of current studies of this cluster, its diverse stellar constituents and immediate environment, concluding with a summary of future research avenues enabled by ESO facilities.

  5. Multiwavelength observations of magnetic fields and related activity on XI Bootis A

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.; Huovelin, J.; Linsky, Jeffrey L.; Giampapa, Mark S.; Jordan, Carole

    1988-01-01

    Preliminary results of coordinated observations of magnetic fields and related activity on the active dwarf, Xi Boo A, are presented. Combining the magnetic fluxes with the linear polarization data, a simple map of the stellar active regions is constructed.

  6. On stellar encounters and their effect on cometary orbits in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Serafin, R. A.; Grothues, H.-G.

    2002-03-01

    We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.

  7. Age Spread in W3 Main: Large Binocular Telescope/LUCI Near-infrared Spectroscopy of the Massive Stellar Content

    NASA Astrophysics Data System (ADS)

    Bik, A.; Henning, Th.; Stolte, A.; Brandner, W.; Gouliermis, D. A.; Gennaro, M.; Pasquali, A.; Rochau, B.; Beuther, H.; Ageorges, N.; Seifert, W.; Wang, Y.; Kudryavtseva, N.

    2012-01-01

    We present near-infrared multi-object spectroscopy and JHK s imaging of the massive stellar content of the Galactic star-forming region W3 Main, obtained with LUCI at the Large Binocular Telescope. We confirm 15 OB stars in W3 Main and derive spectral types between O5V and B4V from their absorption line spectra. Three massive young stellar objects are identified by their emission line spectra and near-infrared excess. The color-color diagram of the detected sources allows a detailed investigation of the slope of the near-infrared extinction law toward W3 Main. Analysis of the Hertzsprung-Russell diagram suggests that the Nishiyama extinction law fits the stellar population of W3 Main best (E(J - H)/E(H - K s) = 1.76 and R_{{K_s}} = 1.44). From our spectrophotometric analysis of the massive stars and the nature of their surrounding H II regions, we derive the evolutionary sequence of W3 Main and we find evidence of an age spread of at least 2-3 Myr. While the most massive star (IRS2) is already evolved, indications for high-mass pre-main-sequence evolution are found for another star (IRS N1), deeply embedded in an ultracompact H II (UCH II) region, in line with the different evolutionary phases observed in the corresponding H II regions. We derive a stellar mass of W3 Main of (4 ± 1) × 103 M ⊙ by extrapolating from the number of OB stars using a Kroupa initial mass function and correcting for our spectroscopic incompleteness. We have detected the photospheres of OB stars from the more evolved diffuse H II region to the much younger UCH II regions, suggesting that these stars have finished their formation and cleared away their circumstellar disks very fast. Only in the hyper-compact H II region (IRS5) do the early-type stars seem to be still surrounded by circumstellar material. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy, and the United States. LBT Corporation partners are LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of Arizona on behalf of the Arizona university system; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  8. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8

  9. An isochrone data base and a rapid model for stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-06-01

    We first presented an isochrone data base that can be widely used for stellar population synthesis studies and colour-magnitude diagram (CMD) fitting. The data base consists of the isochrones of both single-star and binary-star simple stellar populations (ss-SSPs and bs-SSPs). The ranges for the age and metallicity of populations are 0-15 Gyr and 0.0001-0.03, respectively. All data are available for populations with two widely used initial mass functions (IMFs), that is, Salpeter IMF and Chabrier IMF. The uncertainty caused by the data base (about 0.81 per cent) is designed to be smaller than those caused by the Hurley code and widely used stellar spectra libraries (e.g. BaSeL 3.1) when it is used for stellar population synthesis. Based on the isochrone data base, we then built a rapid stellar population synthesis (RPS) model and calculated the high-resolution (0.3-Å) integrated spectral energy distributions, Lick indices and colour indices for bs-SSPs and ss-SSPs. In particular, we calculated the UBVRIJHKLM colours, ugriz colours and some composite colours that consist of magnitudes on different systems. These colours are useful for disentangling the well-known stellar age-metallicity degeneracy according to our previous work. As an example for applying the isochrone data base for CMD fitting, we fitted the CMDs of two star clusters (M67 and NGC1868) and obtained their distance moduli, colour excesses, stellar metallicities and ages. The results showed that the isochrones of bs-SSPs are closer to those of real star clusters. It suggests that we should take the effects of binary interactions into account in stellar population synthesis. We also discussed on the limitations of the application of the isochrone data base and the results of the RPS model. All the data are available at the CDS or on request to the authors. E-mail: zhongmu.li@gmail.com

  10. Accretion onto stellar mass black holes

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  11. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species, provide insight into possible molecular structure details of newly formed hydrocarbon-rich interstellar dust and its transformation into aged material that becomes resident in the interstellar medium. Specifically the presence of naphthalene-like and butadiene-like conjugated structures as chromophores for the 2175 angstroms ultraviolet extinction feature is indicated.

  12. Age and Mass for 920 Large Magellanic Cloud Clusters Derived from 100 Million Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan; Hanson, M. M.; Elmegreen, Bruce G.

    2012-06-01

    We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d 2 N/dMdtvpropM α t β, the distribution of observed clusters is described by α = -1.5 to -1.6 and β = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a χ2 minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional χ2 minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log (age/yr) = [7.0, 7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.

  13. Near-IR spectral evolution of dusty starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ˜ 102 ionising stars). We show that room is left for IMFs extending to 120 M⊙, rather than truncated at ˜ 60 M⊙ as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s-1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions. Catherine J. Cesarsky

  14. Evidence of Fanning in the Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir; Price-Whelan, Adrian M.; Cohen, Judith G.; Rix, Hans-Walter; Pearson, Sarah; Johnston, Kathryn V.; Bernard, Edouard J.; Ferguson, Annette M. N.; Martin, Nicolas F.; Slater, Colin T.; Chambers, Kenneth C.; Flewelling, Heather; Wainscoat, Richard J.; Waters, Christopher

    2016-01-01

    The Ophiuchus stellar stream presents a dynamical puzzle: its old stellar populations (˜12 Gyr) cannot be reconciled with (1) its orbit in a simple model for the Milky Way potential and (2) its short angular extent, both of which imply that the observed stream formed within the last \\lt 1 {{Gyr}}. Recent theoretical work has shown that streams on chaotic orbits may abruptly fan out near their apparent ends; stars in these fans are dispersed in both position and velocity and may be difficult to associate with the stream. Here we present the first evidence of such stream-fanning in the Ophiuchus stream, traced by four blue horizontal branch stars beyond the apparent end of the stream. These stars stand out from the background by their high velocities ({v}{{los}}\\gt 230 km s-1) against ˜40 other stars: their velocities are comparable to those of the stream, but would be exceptional if they were unrelated halo stars. Their positions and velocities are, however, inconsistent with simple extrapolation of the observed cold, high-density portion of the stream. These observations suggest that stream-fanning may be a real, observable effect and, therefore, that Ophiuchus may be on a chaotic orbit. They also show that the Ophiuchus stream is more extended and hence dynamically older than previously thought, easing the stellar population versus dynamical age tension.

  15. ALMA sub-mm maser and dust distribution of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.

    2014-12-01

    Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org

  16. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    NASA Astrophysics Data System (ADS)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-06-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution that can include a filamentary structure in addition to gas surrounding the stellar sub-clusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young protostar clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  17. A binary origin for 'blue stragglers' in globular clusters.

    PubMed

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  18. Non-radial oscillation modes with long lifetimes in giant stars.

    PubMed

    De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali

    2009-05-21

    Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.

  19. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroralmore » radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.« less

  20. Kepler sheds new and unprecedented light on the variability of a blue supergiant: Gravity waves in the O9.5Iab star HD 188209

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.

    2017-06-01

    Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic Telescope (AST) operated by Tennessee State University at the Fairborn Observatory, and the Hertzsprung SONG telescope operated on the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias, Spain.

  1. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurzem, R.; Giersz, M.; Heggie, D. C.

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less

  3. The Global and Radial Stellar Mass Assembly of Milky Way-sized Galaxies

    NASA Astrophysics Data System (ADS)

    Avila-Reese, Vladimir; González-Samaniego, Alejandro; Colín, Pedro; Ibarra-Medel, Héctor; Rodríguez-Puebla, Aldo

    2018-02-01

    We study the global and radial stellar mass assembly of eight zoomed-in Milky Way (MW)-sized galaxies produced in hydrodynamics cosmological simulations. The disk-dominated galaxies (four) show a fast initial stellar mass growth in the innermost parts, driven mostly by in situ star formation (SF), but since z ∼ 2‑1, the SF has entered a long-term quenching phase. The outer regions follow this trend but more gently, as they are more external. As a result, the radial stellar mass growth is highly inside-out due to both inside-out structural growth and inside-out SF quenching. The half-mass radius evolves fast; for instance, {R}0.5(z = 1) < 0.5 {R}0.5 (z = 0). Two other runs resemble lenticular galaxies. One also shows a pronounced inside-out growth, and the other one presents a nearly uniform radial mass assembly. The other two galaxies suffered late major mergers. Their normalized radial mass growth histories (MGHs) are very close, but with periods of outside-in assembly during or after the mergers. For all of the simulations, the archaeological radial MGHs calculated from the z = 0 stellar particle age distribution are similar to current MGHs, which shows that the mass assembly by ex situ stars and the radial mass transport do not significantly change their radial mass distributions. Our results agree qualitatively with observational inferences from the fossil record method applied to a survey of local galaxies and from look-back observations of progenitors of MW-sized galaxies. However, the inside-out growth mode is more pronounced, and the {R}0.5 growth is faster in simulations than in observational inferences.

  4. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  5. A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.

    2015-01-01

    DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.

  6. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  7. IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steven R.; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2017-08-01

    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high-resolution near-infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ˜2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (v r ). The young stellar population remains kinematically associated with the molecular gas, following a ˜ 10 {km} {{{s}}}-1 gradient along the filament. However, near the center of the region, the v r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in the foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of colocated stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion {σ }v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for ongoing expansion, from a v r -extinction correlation. In the southern filament, {σ }v is ˜2-3 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar subpopulations, detached from the gas. In contrast, {σ }v decreases toward L1641S, where the population is again in agreement with a virial state.

  8. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  9. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  10. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less

  11. Delivery of complex organic compounds from evolved stars to the solar system.

    PubMed

    Kwok, Sun

    2011-12-01

    Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.

  12. Theoretical Developments in Understanding Massive Star Formation

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter

    2007-01-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors.

  13. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that theymore » are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.« less

  14. MUFASA: galaxy formation simulations with meshless hydrodynamics

    NASA Astrophysics Data System (ADS)

    Davé, Romeel; Thompson, Robert; Hopkins, Philip F.

    2016-11-01

    We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.

  15. SHARDS: a spectro-photometric analysis of distant red and dead massive galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.; The Shards Team

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey carried out with GTC/OSIRIS and designed to select and study massive passively evolving galaxies at z= 1.0--2.5 in the GOODS-N field. The survey uses a set of 24 medium band filters (FWHM ˜15 nm) covering the 500--950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ˜280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) construct for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Δ z/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  16. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  17. The Interaction Between Accretion from the Interstellar Medium and Accretion from the Evolved Binary Component in Barium Stars

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yushchenko, Alexander V.; Doikov, Dmytry N.

    2018-03-01

    The reanalysis of the previously published abundance pattern of mild barium star HD202109 (ζ Cyg) and the chemical compositions of 129 thin disk barium stars facilitated the search for possible correlations of different stellar parameters with second ionization potentials of chemical elements. Results show that three valuable correlations exist in the atmospheres of barium stars. The first is the relationship between relative abundances and second ionization potentials. The second is the age dependence of mean correlation coefficients of relative abundances vs. second ionization potentials, and the third one is the changes in correlation coefficients of relative abundances vs. second ionization potentials as a function of stellar spatial velocities and overabundances of s-process elements. These findings demonstrate the possibility of hydrogen and helium accretion from the interstellar medium on the atmospheres of barium stars.

  18. SNR-shock impact on star formation

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Dincel, B.

    2016-06-01

    While stars form out of cores of molecular clouds due to gravitational collapse of the clouds, external pressure caused by shock waves of stellar winds or supernovae are believed to be responsible for triggering star formation. However, since massive stars evolve fast and their supernova remnants (SNRs) can only be observed up to an age of around 10^5 years, SNRs found near star-forming regions have most likely resulted from the same generation of stars as the young stellar objects (YSOs). Shock waves of these SNRs might show interaction with the existing YSOs and change their nature. We study YSO candidates in Galactic SNRs CTB 109, IC 443 and HB21, which are known to show interaction with molecular clouds and have associated infrared emission. By photometric and spectroscopic studies of YSOs in the optical and the near-infrared, we aim to find clear observational evidences for an interaction of SNR-shocks with YSOs.

  19. Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papatheodore, Thomas L.; Messer, Bronson

    Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less

  20. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    NASA Astrophysics Data System (ADS)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  1. Data trove helps pin down the shape of the Milky Way

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-04-01

    On 25 April, hundreds of astronomers around the world got their hands on one of the biggest data dumps in the history of astronomy: the exact positions, motions, brightnesses, and colors of 1.3 billion stars in and around the Milky Way, gathered during the first 2 years of operation by the European Space Agency's €750 million Gaia satellite, launched in 2013. The data—Gaia's second release—will fuel an explosion of studies about the structure of the Milky Way. The trove of stellar positions from Gaia will sharpen our picture of the galaxy's spiral structures, and the data on stellar motions will allow astronomers to wind the clock backward and see how the galaxy evolved over the past 13 billion years. Gaia's color and brightness information, meanwhile, will help astronomers classify stars by composition and pin down where different types are born.

  2. Predicting stellar angular diameters from V, IC, H and K photometry

    NASA Astrophysics Data System (ADS)

    Adams, Arthur D.; Boyajian, Tabetha S.; von Braun, Kaspar

    2018-01-01

    Determining the physical properties of microlensing events depends on having accurate angular sizes of the source star. Using long baseline optical interferometry, we are able to measure the angular sizes of nearby stars with uncertainties ≤2 per cent. We present empirically derived relations of angular diameters which are calibrated using both a sample of dwarfs/subgiants and a sample of giant stars. These relations are functions of five colour indices in the visible and near-infrared, and have uncertainties of 1.8-6.5 per cent depending on the colour used. We find that a combined sample of both main-sequence and evolved stars of A-K spectral types is well fitted by a single relation for each colour considered. We find that in the colours considered, metallicity does not play a statistically significant role in predicting stellar size, leading to a means of predicting observed sizes of stars from colour alone.

  3. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real variation in stellar parameters that have been observed in nearby stars.

  4. MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Knud; Cisternas, Mauricio; Inskip, Katherine

    2009-12-01

    We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 active galactic nuclei (AGNs) in the COSMOS survey at 1 < z < 2. For 10 AGNs at mean redshift z approx 1.4 with both Hubble Space Telescope (HST)/ACS and HST/NICMOS imaging data, we are able to compute the total stellar mass M {sub *,total}, based on rest-frame UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial M {sub BH} estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find within errors zero difference between the M {sub BH}-M {sub *,total}more » relation at z approx 1.4 and the M {sub BH}-M {sub *,bulge} relation in the local universe. Our interpretation is (1) if our objects were purely bulge-dominated, the M {sub BH}-M {sub *,bulge} relation has not evolved since z approx 1.4. However, (2) since we have evidence for substantial disk components, the bulges of massive galaxies (M {sub *,total} = 11.1 +- 0.3 or log M {sub BH} approx 8.3 +- 0.2) must have grown over the last 9 Gyr predominantly by redistribution of the disk into the bulge mass. Since all necessary stellar mass exists in galaxies at z = 1.4, no star formation or addition of external stellar material is required, but only a redistribution, e.g., induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M {sub BH}/M {sub *,bulge} ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge formation in massive galaxies is independent of any strong BH feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.« less

  5. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  6. Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

    NASA Technical Reports Server (NTRS)

    Nordon, R.; Behar, E.; Drake, S. A.

    2013-01-01

    Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae.

  7. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  8. Yunnan-III models for evolutionary population synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands or on other systems (e.g. HST F439W - F555W colour on AB system) can also be obtained on request.

  9. Type II Migration and Giant Planet Survival

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    2003-01-01

    Type II migration, in which a newly formed large planet opens a gap in its precursor circumstellar nebula and subsequently evolves with it, has been implicated as a delivery mechanism responsible for close stellar companions. Large scale migration is possible in a viscously spreading disk of surface density sigma (r,t) when most of it is sacrificed to the primary in order to promote a small portion of the disk to much higher angular momentum orbits. Embedded planets generally follow its evolution unless their own angular momentum is comparable to that of the disk. The fraction of the starting disk mass, M (sub d) = 2pi integral rsigma(r,0)dr, that is consumed by the star depends on the distance at which material escapes the disk's outer boundary. If the disk is allowed to expand indefinitely, virtually all of the disk will fall into the primary in order to send a vanishingly small portion to infinity. For such a case, it is difficult to explain the survival of any giant planets, including Jupiter and Saturn. Realistically, however, there are processes that could truncate a disk at a finite distance, r(sub d). Recent numerical modeling has illustrated that planets can survive in this case. We show here that much of these results can be understood by simple conservation arguments.

  10. The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna

    2013-12-01

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* \\propto M_*^{0.30+/- 0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M * = 1012 M ⊙. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  12. SPATIALLY RESOLVED SPECTROSCOPY AND CHEMICAL HISTORY OF STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: THE EFFECTS OF THE ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.

    2011-06-10

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep H{alpha} survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxiesmore » using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be 'newcomers' to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local environment has been found to be a key parameter in understanding the chemical history of galaxies.« less

  13. Fun and Interdisciplinary Daytime Astrophysical Activities

    ERIC Educational Resources Information Center

    Aroca, S. C.; Schiel, D.; Silva, C. C.

    2008-01-01

    The present article describes some activities performed with high-school students in the "Solar Physics" course developed in a Brazilian science centre. The topics of chemical composition, temperature and stellar evolution were taught in a room totally dedicated to study of the Sun, a solar room, designed with simple and inexpensive…

  14. STELLAR DYNAMOS AND CYCLES FROM NUMERICAL SIMULATIONS OF CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubé, Caroline; Charbonneau, Paul, E-mail: dube@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    We present a series of kinematic axisymmetric mean-field αΩ dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations of solar/stellar convection, so that the resulting dynamo models end up involving only one free parameter, namely, the turbulent magnetic diffusivity in the convecting layers. Even though the αΩ dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relativelymore » well the observationally inferred relationship between cycle period and rotation rate. On the other hand, they fail in capturing the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic α-quenching formula as the sole amplitude-limiting nonlinearity. This suggests that α-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection.« less

  15. A SIMPLE EVOLUTIONAL MODEL OF THE UV HABITABLE ZONE AND THE POSSIBILITY OF PERSISTENT LIFE EXISTENCE: THE EFFECTS OF MASS AND METALLICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Midori; Kamaya, Hideyuki

    In addition to the habitable zone (HZ), the UV habitable zone (UV-HZ) is important when considering the existence of persistent life in the universe. The UV-HZ is defined as the area where the UV radiation field from a host star is moderate for persistent life existence. This is because UV is necessary for the synthesis of biochemical compounds. The UV-HZ must overlap the HZ when life appears and evolves. In this paper, following our previous study of the HZ, we examine the UV-HZ in cases with a stellar mass range from 0.08 to 4.00 M {sub ☉} with various metallicities during the main sequencemore » phase. This mass range was chosen because we are interested in an environment similar to that of Earth. The effect of metallicity is reflected in the spectrum of the host stars, and we reexamine it in the context of the UV-HZ. The present work shows the effect of metallicity when that in the UV-HZ is less than that in the HZ. Furthermore, we find that the chance of persistent life existence declines as the metallicity decreases, as long as the UV radiation is not protected and/or boosted by any mechanisms. This is because the overlapped region of a persistent HZ and UV-HZ decreases. We find that the most appropriate stellar mass for the persistence of life existence is from 1.0 to 1.5 M {sub ☉} with metallicity Z  = 0.02, and only about 1.2 M {sub ☉} with Z  = 0.002. When Z  = 0.0002, the chance of persistent life existence is very low, assuming that the ocean does not protect the life from UV radiation.« less

  16. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individualmore » MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.« less

  18. The most massive galaxies in clusters are already fully grown at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Oldham, L. J.; Houghton, R. C. W.; Davies, Roger L.

    2017-02-01

    By constructing scaling relations for galaxies in the massive cluster MACSJ0717.5 at z = 0.545 and comparing with those of Coma, we model the luminosity evolution of the stellar populations and the structural evolution of the galaxies. We calculate magnitudes, surface brightnesses and effective radii using Hubble Space Telescope (HST)/ACS images and velocity dispersions using Gemini/GMOS spectra, and present a catalogue of our measurements for 17 galaxies. We also generate photometric catalogues for ˜3000 galaxies from the HST imaging. With these, we construct the colour-magnitude relation, the Fundamental Plane, the mass-to-light versus mass relation, the mass-size relation and the mass-velocity dispersion relation for both clusters. We present a new, coherent way of modelling these scaling relations simultaneously using a simple physical model in order to infer the evolution in luminosity, size and velocity dispersion as a function of redshift, and show that the data can be fully accounted for with this model. We find that (a) the evolution in size and velocity dispersion undergone by these galaxies between z ˜ 0.5 and z ˜ 0 is mild, with Re(z) ˜ (1 + z)-0.40 ± 0.32 and σ(z) ˜ (1 + z)0.09 ± 0.27, and (b) the stellar populations are old, ˜10 Gyr, with a ˜3 Gyr dispersion in age, and are consistent with evolving purely passively since z ˜ 0.5 with Δ log M/L_B = -0.55_{-0.07}^{+0.15} z. The implication is that these galaxies formed their stars early and subsequently grew dissipationlessly so as to have their mass already in place by z ˜ 0.5, and suggests a dominant role for dry mergers, which may have accelerated the growth in these high-density cluster environments.

  19. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  20. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-08-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the {}13{{C}} pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

  1. THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, M. S.; Baba, J.; Saitoh, T. R.

    2011-04-01

    It has been believed that spiral arms in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here, we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional N-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3 x 10{sup 6}, multi-armmore » spirals developed in an isolated disk can survive for more than 10 Gyr. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's Q of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by Q, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms and that the self-regulating mechanism in pure stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3 x 10{sup 5}, spiral arms grow faster in the beginning of the simulation (while Q is small) and they cause a rapid increase of Q. As a result, the spiral arms become faint in several Gyr.« less

  2. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024more » cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.« less

  3. Blue stragglers in the core of the globular cluster 47 Tucanae

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Meylan, G.; Shara, M.; Baxter, D.; Greenfield, P.

    1991-01-01

    High-resolution observations of the core of the globular cluster 47 Tucanae with the Faint Object Camera on the Hubble Space Telescope reveal a high density of 'blue straggler' stars, occupying the upper end of the main sequence from which all stars in the cluster should have long since evolved. Their presence in the dense core supports the hypothesis that they formed by stellar collision and coalescence, and, as the heaviest objects in the cluster, have drifted to the core.

  4. The Potential of ESO for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Aerts, Conny

    2017-08-01

    The research field of asteroseismology is currently undergoing its first revolution. We start with a brief history of how this field of stellar physics evolved from dream to reality, including ESO's role in it. Subsequently, we highlight how asteroseismology can serve various topics in astrophysics and focus on the current status. We discuss recent findings on the rotation and chemical mixing inside stars. Finally, we look at the perspectives of the second and third revolution in this area and highlight how ESO can play an optimal role in it.

  5. AGB and post-AGB objects in the outer Galaxy

    NASA Astrophysics Data System (ADS)

    Szczerba, Ryszard; Yung, Bosco H. K.; Sewiło, Marta; Siódmiak, Natasza; Karska, Agata

    2017-10-01

    We present the results of our search for low- and intermediate mass evolved stars in the outer Galaxy using AllWISE catalogue photometry. We show that the [3.4]-[12] vs. [4.6]-[22] colour-colour diagram is most suitable for separating C-rich/O-rich AGB and post-AGB star candidates. We are able to select 2,510 AGB and 24,821 post-AGB star candidates. However, the latter are severely mixed with the known young stellar objects in this diagram.

  6. The Turbulent Origin of Spin-Orbit Misalignment in Planetary Systems

    DOE PAGES

    Fielding, Drummond B.; McKee, Christopher F.; Socrates, Aristostle; ...

    2015-05-13

    The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disk. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rathermore » than tidal dissipation of the star-planet interaction.« less

  7. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili

    PubMed Central

    Rudall, Paula J.; Bateman, Richard M.

    2010-01-01

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867

  8. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili.

    PubMed

    Rudall, Paula J; Bateman, Richard M

    2010-02-12

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.

  9. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  10. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  11. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org

  12. The Hercules Satellite: A Stellar Stream in the Milky Way Halo?

    NASA Astrophysics Data System (ADS)

    Jin, S.; Martin, N. F.

    2011-07-01

    We investigate the possibility that Hercules, a recently discovered Milky Way satellite, is a stellar stream in the process of formation. This hypothesis is motivated by Hercules' highly elongated shape as well as the measurement of a tentative radial velocity gradient along its body (Adén et al. 2009a). The application of simple analytical techniques (Jin & Lynden-Bell 2007) on radial velocity data of its member stars provides tight constraints on the tangential velocity of the system (-16-22+6 kms-1, relative to the Galactic Standard of Rest). Combining this with its large receding velocity (145 km s-1) and distance (138 kpc) yields an orbit that would have taken Hercules to within 6-2+9 kpc of the Galactic centre approximately 0.6 Gyr ago. This very small perigalacticon can naturally explain the violent tidal destruction of the dwarf galaxy in the Milky Way's gravitational potential, inducing its transformation into a stellar stream.

  13. A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter

    2018-02-01

    We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.

  14. STREAMFINDER - I. A new algorithm for detecting stellar streams

    NASA Astrophysics Data System (ADS)

    Malhan, Khyati; Ibata, Rodrigo A.

    2018-07-01

    We have designed a powerful new algorithm to detect stellar streams in an automated and systematic way. The algorithm, which we call the STREAMFINDER, is well suited for finding dynamically cold and thin stream structures that may lie along any simple or complex orbits in Galactic stellar surveys containing any combination of positional and kinematic information. In the present contribution, we introduce the algorithm, lay out the ideas behind it, explain the methodology adopted to detect streams, and detail its workings by running it on a suite of simulations of mock Galactic survey data of similar quality to that expected from the European Space Agency/Gaia mission. We show that our algorithm is able to detect even ultra-faint stream features lying well below previous detection limits. Tests show that our algorithm will be able to detect distant halo stream structures >10° long containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia data set.

  15. pacce: Perl algorithm to compute continuum and equivalent widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-08-01

    We present Perl Algorithm to Compute continuum and Equivalent Widths ( pacce). We describe the methods used in the computations and the requirements for its usage. We compare the measurements made with pacce and "manual" ones made using iraf splot task. These tests show that for synthetic simple stellar population (SSP) models the equivalent widths strengths are very similar (differences ≲0.2 Å) for both measurements. In real stellar spectra, the correlation between both values is still very good, but with differences of up to 0.5 Å. pacce is also able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies. In addition, it is also able to compute the uncertainties in the equivalent widths using photon statistics. The code is made available for the community through the web at http://www.if.ufrgs.br/~riffel/software.html .

  16. Recovering Galaxy Properties Using Gaussian Process SED Fitting

    NASA Astrophysics Data System (ADS)

    Iyer, Kartheik; Awan, Humna

    2018-01-01

    Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.

  17. The evolving magnetic topology of τ Boötis

    NASA Astrophysics Data System (ADS)

    Mengel, M. W.; Fares, R.; Marsden, S. C.; Carter, B. D.; Jeffers, S. V.; Petit, P.; Donati, J.-F.; Folsom, C. P.; BCool Collaboration

    2016-07-01

    We present six epochs of spectropolarimetric observations of the hot-Jupiter-hosting star τ Boötis that extend the exceptional previous multiyear data set of its large-scale magnetic field. Our results confirm that the large-scale magnetic field of τ Boötis varies cyclicly, with the observation of two further magnetic reversals; between 2013 December and 2014 May and between 2015 January and March. We also show that the field evolves in a broadly solar-type manner in contrast to other F-type stars. We further present new results which indicate that the chromospheric activity cycle and the magnetic activity cycles are related, which would indicate a very rapid magnetic cycle. As an exemplar of long-term magnetic field evolution, τ Boötis and this long-term monitoring campaign presents a unique opportunity for studying stellar magnetic cycles.

  18. Stellar physics. Observing the onset of outflow collimation in a massive protostar.

    PubMed

    Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F

    2015-04-03

    The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.

  19. SP_Ace: a new code to derive stellar parameters and elemental abundances

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters. A simple Web front end of SP_Ace can be found at http://dc.g-vo.org/SP_ACE while the source code will be published soon. Full Tables D.1-D.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A2

  20. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  1. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  2. Obscured Activity and Stellar Mass in z~0.7 Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Rieke, George; Diamond-Stanic, Aleks; Moustakas, John; Tremonti, Christy

    2008-03-01

    We are proposing 3.6-24 micron imaging of a sample of z~0.7 post-starburst galaxies. These galaxies are presumed to be late-stage mergers that have evolved past their ULIRG/quasar phase and are in transition to becoming early-type galaxies. We have detected outflowing winds with velocities ranging from 500-2200 km/s for 2/3 of the sample, so it is tempting to conclude that these spectacular outflows are the result of feedback from an AGN that has expelled cold gas quenched star formation. However, it is not clear that the existing near-UV and optical data are telling the full story. With Spitzer, we can verify whether or not these 'post-starburst' galaxies are truly quiescent by measuring the amount obscured star formation and black hole activity. We will also be able to determine how significant the recent starburst event was by accurately measuring stellar mass using the red end of the stellar SED. If these galaxies do have non-negligible dust emission, we will be able to use broad-band colors as blunt tools to measure spectral features and compare to known star-forming galaxies, AGNs, and LIRGs. If not, we will have strong evidence that the feedback event has been able to halt galaxy-wide star formation.

  3. Evolution of the Interstellar Gas Fraction Over Cosmic Time

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy; CANDELS

    2018-01-01

    Galaxies evolve by transforming gas into stars. The gas is acquired through accretion and mergers and is a highly intricate process where feed-back processes play an important role. Directly measuring the gas content in distant galaxies is, however, both complicated and time consuming. A direct observations involves either observing neutral hydrogen using the 21cm line or observing the molecular gas component using tracer molecules such as CO. The former method is impeded by man-made radio interference, and the latter is time consuming even with sensitive instruments such s ALMA. An indirect method is to observe the Raleigh-Jeans part of the dust SED and from this infer the gas mass. Here we present the results from a project using ALMA to measure the RJ part of the dust SED in a carefully selected sample of 70 galaxies at redshifts z=2-5. The galaxies are selected solely based on their redshift and stellar mass and therefore represents an unbiased sample. The stellar masses are selected using the MEAM method and thus the sample corresponds to progenitors of a z=0 galaxy of a particular stellar mass. Preliminary results show that the average gas fraction increases with redshift over the range z=2-3 in accordance with theoretical models, but at z≥4 the observed gas fraction is lower.

  4. The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Daddi, E.; Magdis, G.; Bournaud, F.; Sargent, M.; Martig, M.; Jin, S.; Finoguenov, A.; Béthermin, M.; Hwang, H. S.; Renzini, A.; Wilson, G. W.; Aretxaga, I.; Yun, M.; Strazzullo, V.; Valentino, F.

    2018-03-01

    Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of 5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5-10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

  5. N-body simulations of star clusters

    NASA Astrophysics Data System (ADS)

    Engle, Kimberly Anne

    1999-10-01

    We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.

  6. A dusty, normal galaxy in the epoch of reionization.

    PubMed

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  7. A Clue to the Extent of Convective Mixing Inside Massive Stars: The Surface Hydrogen Abundances of Luminous Blue Variables and Hydrogen-Poor Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen

    1999-01-01

    Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.

  8. A single population of red globular clusters around the massive compact galaxy NGC 1277

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  9. A single population of red globular clusters around the massive compact galaxy NGC 1277.

    PubMed

    Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-22

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  10. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  11. INTER- AND INTRA-CLUSTER AGE GRADIENTS IN MASSIVE STAR FORMING REGIONS AND INDIVIDUAL NEARBY STELLAR CLUSTERS REVEALED BY MYStIX

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric; Kuhn, Michael A.; Broos, Patrick S; Townsley, Leisa K.; Naylor, Tim; Povich, Matthew S.; Luhman, Kevin; Garmire, Gordon

    2014-08-01

    The MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) project seeks to characterize 20 OB-dominated young star forming regions (SFRs) at distances <4 kpc using photometric catalogs from the Chandra X-ray Observatory, Spitzer Space Telescope, UKIRT and 2MASS surveys. As part of the MYStIX project, we developed a new stellar chronometer that employs near-infrared and X-ray photometry data, AgeJX. Computing AgeJX averaged over MYStIX (sub)clusters reveals previously unknown age gradients across most of the MYStIX regions as well as within some individual rich clusters. Within the SFRs, the inferred AgeJX ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed stellar populations. Noticeable intra-cluster gradients are seen in the NGC 2024 (Flame Nebula) star cluster and the Orion Nebula Cluster (ONC): stars in cluster cores appear younger and thus were formed later than stars in cluster halos. The latter result has two important implications for the formation of young stellar clusters. Clusters likely form slowly: they do not arise from a single nearly-instantaneous burst of star formation. The simple models where clusters form inside-out are likely incorrect, and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  12. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    NASA Astrophysics Data System (ADS)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  13. MASSCLEANCOLORS-MASS-DEPENDENT INTEGRATED COLORS FOR STELLAR CLUSTERS DERIVED FROM 30 MILLION MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Bogdan; Hanson, M. M.

    2010-04-10

    We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, M {sub cluster} {>=} 10{sup 6} M {sub sun}. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictionsmore » and is less red, in the first 10{sup 7} to 10{sup 8} years in UBV colors, and for all ages in (V - K). Second, the 1{sigma} dispersion of observed colors increases significantly with lower cluster mass. We attribute the former to the reduced number of red luminous stars in most of the lower mass clusters and the latter to the increased stochastic effect of a few of these stars on lower mass clusters. This latter point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.« less

  14. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  15. Investigation of shear damage considering the evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Kweon, S.

    2013-12-01

    The damage that occurs in shear deformations in view of anisotropy evolution is investigated. It is widely believed in the mechanics research community that damage (or porosity) does not evolve (increase) in shear deformations since the hydrostatic stress in shear is zero. This paper proves that the above statement can be false in large deformations of simple shear. The simulation using the proposed anisotropic ductile fracture model (macro-scale) in this study indicates that hydrostatic stress becomes nonzero and (thus) porosity evolves (increases or decreases) in the simple shear deformation of anisotropic (orthotropic) materials. The simple shear simulation using a crystal plasticity based damage model (meso-scale) shows the same physics as manifested in the above macro-scale model that porosity evolves due to the grain-to-grain interaction, i.e., due to the evolution of anisotropy. Through a series of simple shear simulations, this study investigates the effect of the evolution of anisotropy, i.e., the rotation of the orthotropic axes onto the damage (porosity) evolution. The effect of the evolutions of void orientation and void shape onto the damage (porosity) evolution is investigated as well. It is found out that the interaction among porosity, the matrix anisotropy and void orientation/shape plays a crucial role in the ductile damage of porous materials.

  16. Dark matter and MOND dynamical models of the massive spiral galaxy NGC 2841

    NASA Astrophysics Data System (ADS)

    Samurović, S.; Vudragović, A.; Jovanović, M.

    2015-08-01

    We study dynamical models of the massive spiral galaxy NGC 2841 using both the Newtonian models with Navarro-Frenk-White (NFW) and isothermal dark haloes, as well as various MOND (MOdified Newtonian Dynamics) models. We use the observations coming from several publicly available data bases: we use radio data, near-infrared photometry as well as spectroscopic observations. In our models, we find that both tested Newtonian dark matter approaches can successfully fit the observed rotational curve of NGC 2841. The three tested MOND models (standard, simple and, for the first time applied to another spiral galaxy than the Milky Way, Bekenstein's toy model) provide fits of the observed rotational curve with various degrees of success: the best result was obtained with the standard MOND model. For both approaches, Newtonian and MOND, the values of the mass-to-light ratios of the bulge are consistent with the predictions from the stellar population synthesis (SPS) based on the Salpeter initial mass function (IMF). Also, for Newtonian and simple and standard MOND models, the estimated stellar mass-to-light ratios of the disc agree with the predictions from the SPS models based on the Kroupa IMF, whereas the toy MOND model provides too low a value of the stellar mass-to-light ratio, incompatible with the predictions of the tested SPS models. In all our MOND models, we vary the distance to NGC 2841, and our best-fitting standard and toy models use the values higher than the Cepheid-based distance to the galaxy NGC 2841, and the best-fitting simple MOND model is based on the lower value of the distance. The best-fitting NFW model is inconsistent with the predictions of the Λ cold dark matter cosmology, because the inferred concentration index is too high for the established virial mass.

  17. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  18. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  19. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  20. GAMA/G10-COSMOS/3D-HST: the 0 < z < 5 cosmic star formation history, stellar-mass, and dust-mass densities

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Andrews, Stephen K.; da Cunha, Elisabete; Davies, Luke J.; Lagos, Claudia; Robotham, Aaron S. G.; Vinsen, Kevin; Wright, Angus H.; Alpaslan, Mehmet; Bland-Hawthorn, Joss; Bourne, Nathan; Brough, Sarah; Bremer, Malcolm N.; Cluver, Michelle; Colless, Matthew; Conselice, Christopher J.; Dunne, Loretta; Eales, Steve A.; Gomez, Haley; Holwerda, Benne; Hopkins, Andrew M.; Kafle, Prajwal R.; Kelvin, Lee S.; Loveday, Jon; Liske, Jochen; Maddox, Steve J.; Phillipps, Steven; Pimbblet, Kevin; Rowlands, Kate; Sansom, Anne E.; Taylor, Edward; Wang, Lingyu; Wilkins, Stephen M.

    2018-04-01

    We use the energy-balance code MAGPHYS to determine stellar and dust masses, and dust corrected star formation rates for over 200 000 GAMA galaxies, 170 000 G10-COSMOS galaxies, and 200 000 3D-HST galaxies. Our values agree well with previously reported measurements and constitute a representative and homogeneous data set spanning a broad range in stellar-mass (108-1012 M⊙), dust-mass (106-109 M⊙), and star formation rates (0.01-100 M⊙yr-1), and over a broad redshift range (0.0 < z < 5.0). We combine these data to measure the cosmic star formation history (CSFH), the stellar-mass density (SMD), and the dust-mass density (DMD) over a 12 Gyr timeline. The data mostly agree with previous estimates, where they exist, and provide a quasi-homogeneous data set using consistent mass and star formation estimators with consistent underlying assumptions over the full time range. As a consequence our formal errors are significantly reduced when compared to the historic literature. Integrating our CSFH we precisely reproduce the SMD with an interstellar medium replenishment factor of 0.50 ± 0.07, consistent with our choice of Chabrier initial mass function plus some modest amount of stripped stellar mass. Exploring the cosmic dust density evolution, we find a gradual increase in dust density with lookback time. We build a simple phenomenological model from the CSFH to account for the dust-mass evolution, and infer two key conclusions: (1) For every unit of stellar mass which is formed 0.0065-0.004 units of dust mass is also formed. (2) Over the history of the Universe approximately 90-95 per cent of all dust formed has been destroyed and/or ejected.

  1. Calibration of Post-AGB Supergiants as Standard Extragalactic Candles for HST

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1998-01-01

    This report summarizes activities carried out with support from the NASA Ultraviolet, Visible, and Gravitational Astrophysics Research and Analysis Program. The aim of the program is to calibrate the absolute magnitudes of post-asymptotic-giant-branch (post-AGB or PAGB) stars, which we believe will be an excellent new "standard candle" for measuring extragalactic distances. The reason for this belief is that in old populations, the stars that are evolving through the PAGB region of the HR (Hertzsprung-Russell) diagram arise from only a single main-sequence turnoff mass. In addition, the theoretical PAGB evolutionary tracks show that they evolve through this region at constant luminosity; hence the PAGB stars should have an extremely narrow luminosity function. Moreover, as the PAGB stars evolve through spectral types F and A (en route from the AGB to hot stellar remnants and white dwarfs), they have the highest luminosities attained by old stars (both bolometrically and in the visual band). Finally, the PAGB stars of these spectral types are very easily identified, due to their large Balmer jumps, which are due to their very low surface gravities.

  2. The Evolution of the Stellar Mass Function of Galaxies from z = 4.0 and the First Comprehensive Analysis of its Uncertainties: Evidence for Mass-Dependent Evolution

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Labbé, Ivo; Wuyts, Stijn

    2009-08-01

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ~0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ~17+7 -10 since z = 4.0, mostly driven by a change in the normalization Φsstarf. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 M sun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high-mass galaxies. The discrepancy at the high-mass end is susceptible to uncertainties in the models and the data, but the discrepancy at the low-mass end may be more difficult to explain. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under NASA contract 1407. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. Based on observations collected at the European Southern Observatories, Chile (ESO Programme LP164.O-0612, 168.A-0485, 170.A-0788, 074.A-0709, 275.A-5060, and 171.A-3045). Based on observations obtained at the Cerro Tololo Inter-American Observatory, a division of the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

  3. The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Hathi, N. P.; Schaerer, D.; Ilbert, O.; Zamorani, G.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Paltani, S.; Ribeiro, B.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-09-01

    We study the evolution of the star formation rate (SFR) - stellar mass (M⋆) relation and specific star formation rate (sSFR) of star-forming galaxies (SFGs) since a redshift z ≃ 5.5 using 2435 (4531) galaxies with highly reliable spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log (SFR) - log (M⋆) relation for SFGs remains roughly linear all the way up to z = 5, but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M⋆ ≥ 3.2 × 109M⊙ the SFR increases by a factor of ~13 between z = 0.4 and z = 2.3. Weextend this relation up to z = 5, finding an additional increase in SFR by a factor of 1.7 from z = 2.3 to z = 4.8 for masses M⋆ ≥ 1010M⊙. We observe a turn-off in the SFR-M⋆ relation at the highest mass end up to a redshift z ~ 3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z ~ 2, but it grows much less rapidly in 2

  4. Comparing the birth rate of stellar black holes in binary black hole mergers and long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Atteia, J.-L.; Dezalay, J.-P.; Godet, O.; Klotz, A.; Turpin, D.; Bernardini, M. G.

    2018-02-01

    Context. Gravitational wave interferometers have proven the existence of a new class of binary black hole (BBH) weighing tens of solar masses, and have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local Universe. Furthermore, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar-mass BHs, providing a measure of the rate of these events across the history of the Universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. Aim. We compare the birth rates of BHs found in BBH mergers and in long GRBs. Methods: We construct a simple model that makes reasonable assumptions on the history of GRB formation, and takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. Results: We find that in our reference model the birth rate of stellar BHs in BBH mergers represents a significant fraction of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. These numbers, however, do not consider subluminous GRBs, which may represent another population of sources associated with the birth of stellar mass BHs. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and BBH mergers with the same assumptions.

  5. Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-01-01

    Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where 8Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known 12C resonance at 7.6 MeV. This resonance is necessary because 8Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200-300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium (∼100 keV) would allow 8Be to be stable. A stable isotope with A = 8 would obviate the need for the triple alpha process in general, and the 12C resonance in particular, for carbon production. This paper explores the possibility that 8Be can be stable in other universes. Simple nuclear considerations indicate that bound states can be realized, with binding energy ∼ 0.1 - 1 MeV, if the fundamental constants vary by a ∼ few - 10 %. In such cases, 8Be can be synthesized through helium burning, and 12C can be produced later through nuclear burning of beryllium. This paper focuses on stellar models that burn helium into beryllium; once the universe in question has a supply of stable beryllium, carbon production can take place during subsequent evolution in the same star or in later stellar generations. Using both a semi-analytic stellar structure model as well as a state-of-the-art stellar evolution code, we find that viable stellar configurations that produce beryllium exist over a wide range of parameter space. Finally, we demonstrate that carbon can be produced during later evolutionary stages.

  6. WINGS-SPE II: A catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Poggianti, B. M.; Cava, A.; Valentinuzzi, T.; Moretti, A.; Bettoni, D.; Bressan, A.; Couch, W. J.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Moles, M.; Omizzolo, A.; Varela, J.

    2011-02-01

    Context. The WIde-field Nearby Galaxy clusters Survey (wings) is a project whose primary goal is to study the galaxy populations in clusters in the local universe (z < 0.07) and of the influence of environment on their stellar populations. This survey has provided the astronomical community with a high quality set of photometric and spectroscopic data for 77 and 48 nearby galaxy clusters, respectively. Aims: In this paper we present the catalog containing the properties of galaxies observed by the wings SPEctroscopic (wings-spe) survey, which were derived using stellar populations synthesis modelling approach. We also check the consistency of our results with other data in the literature. Methods: Using a spectrophotometric model that reproduces the main features of observed spectra by summing the theoretical spectra of simple stellar populations of different ages, we derive the stellar masses, star formation histories, average age and dust attenuation of galaxies in our sample. Results: ~ 5300 spectra were analyzed with spectrophotometric techniques, and this allowed us to derive the star formation history, stellar masses and ages, and extinction for the wings spectroscopic sample that we present in this paper. Conclusions: The comparison with the total mass values of the same galaxies derived by other authors based on sdss data, confirms the reliability of the adopted methods and data. Based on observations taken at the Anglo Australian Telescope (3.9 m- AAT), and at the William Herschel Telescope (4.2 m- WHT).Full Table 2 is available in electronic form both at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A45, and by querying the wings database at http://web.oapd.inaf.it/wings/new/index.html

  7. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  8. First results of the multi-purpose real-time processing video camera system on the Wendelstein 7-X stellarator and implications for future devices

    NASA Astrophysics Data System (ADS)

    Zoletnik, S.; Biedermann, C.; Cseh, G.; Kocsis, G.; König, R.; Szabolics, T.; Szepesi, T.; Wendelstein 7-X Team

    2018-01-01

    A special video camera has been developed for the 10-camera overview video system of the Wendelstein 7-X (W7-X) stellarator considering multiple application needs and limitations resulting from this complex long-pulse superconducting stellarator experiment. The event detection intelligent camera (EDICAM) uses a special 1.3 Mpixel CMOS sensor with non-destructive read capability which enables fast monitoring of smaller Regions of Interest (ROIs) even during long exposures. The camera can perform simple data evaluation algorithms (minimum/maximum, mean comparison to levels) on the ROI data which can dynamically change the readout process and generate output signals. Multiple EDICAM cameras were operated in the first campaign of W7-X and capabilities were explored in the real environment. Data prove that the camera can be used for taking long exposure (10-100 ms) overview images of the plasma while sub-ms monitoring and even multi-camera correlated edge plasma turbulence measurements of smaller areas can be done in parallel. These latter revealed that filamentary turbulence structures extend between neighboring modules of the stellarator. Considerations emerging for future upgrades of this system and similar setups on future long-pulse fusion experiments such as ITER are discussed.

  9. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.

  10. Testing the uniqueness of mass models using gravitational lensing

    NASA Astrophysics Data System (ADS)

    Walls, Levi; Williams, Liliya L. R.

    2018-06-01

    The positions of images produced by the gravitational lensing of background-sources provide insight to lens-galaxy mass distributions. Simple elliptical mass density profiles do not agree well with observations of the population of known quads. It has been shown that the most promising way to reconcile this discrepancy is via perturbations away from purely elliptical mass profiles by assuming two super-imposed, somewhat misaligned mass distributions: one is dark matter (DM), the other is a stellar distribution. In this work, we investigate if mass modelling of individual lenses can reveal if the lenses have this type of complex structure, or simpler elliptical structure. In other words, we test mass model uniqueness, or how well an extended source lensed by a non-trivial mass distribution can be modeled by a simple elliptical mass profile. We used the publicly-available lensing software, Lensmodel, to generate and numerically model gravitational lenses and “observed” image positions. We then compared “observed” and modeled image positions via root mean square (RMS) of their difference. We report that, in most cases, the RMS is ≤0.05‧‧ when averaged over an extended source. Thus, we show it is possible to fit a smooth mass model to a system that contains a stellar-component with varying levels of misalignment with a DM-component, and hence mass modelling cannot differentiate between simple elliptical versus more complex lenses.

  11. Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1980-01-01

    The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.

  12. Forming H-shaped and barrel-shaped nebulae with interacting jets

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  13. The Mass of the Milky Way via HST Proper Motions of Satellite Objects

    NASA Astrophysics Data System (ADS)

    Sohn, Sangmo Tony; van der Marel, Roeland

    2018-01-01

    The Universe evolves hierarchically with small structures merging and falling in to form bigger structures. Due to its proximity, the Milky Way (MW) is the best place to witness and study these hierarchical processes in action as evidenced by e.g., the many stellar streams found in MW halo. Stellar systems in the MW halo have therefore become the benchmark for testing many aspects of cosmological theories. Despite the advances in both observational and theoretical areas in the last decade or so, the total mass and mass profile of the MW still remain poorly constrained, mainly due to the limited information on the transverse motions of satellite objects in the MW halo. As part of our HSTPROMO collaboration, we have been measuring proper motions of stars, globular clusters, and satellite galaxies in the MW halo to remedy this situation. In this contribution, I will present results from our recent studies, and report our progress of ongoing projects.

  14. The Thick Disk in the Galaxy NGC 4244 from S4G Imaging

    NASA Astrophysics Data System (ADS)

    Comerón, Sébastien; Knapen, Johan H.; Sheth, Kartik; Regan, Michael W.; Hinz, Joannah L.; Gil de Paz, Armando; Menéndez-Delmestre, Karín; Muñoz-Mateos, Juan-Carlos; Seibert, Mark; Kim, Taehyun; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Elmegreen, Bruce G.; Ho, Luis C.; Holwerda, Benne W.; Laurikainen, Eija; Salo, Heikki; Schinnerer, Eva

    2011-03-01

    If thick disks are ubiquitous and a natural product of disk galaxy formation and/or evolution processes, all undisturbed galaxies that have evolved during a significant fraction of a Hubble time should have a thick disk. The late-type spiral galaxy NGC 4244 has been reported as the only nearby edge-on galaxy without a confirmed thick disk. Using data from the Spitzer Survey of Stellar Structure in Galaxies (S4G) we have identified signs of two disk components in this galaxy. The asymmetries between the light profiles on both sides of the mid-plane of NGC 4244 can be explained by a combination of the galaxy not being perfectly edge-on and a certain degree of opacity of the thin disk. We argue that the subtlety of the thick disk is a consequence of either a limited secular evolution in NGC 4244, a small fraction of stellar material in the fragments which built the galaxy, or a high amount of gaseous accretion after the formation of the galaxy.

  15. Kepler Beyond Planets: Finding Exploding Stars (Type Felt Supernova)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a kind of stellar explosion called a Fast-Evolving Luminous Transient. In this case, a giant star "burps" out a shell of gas and dust about a year before exploding. Most of the energy from the supernova turns into light when it hits this previously ejected material, resulting in a short, but brilliant burst of radiation. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22351

  16. The Zodiacal Exoplanets in Time (ZEIT) Survey

    NASA Astrophysics Data System (ADS)

    Mann, Andrew; Gaidos, Eric; Newton, Elisabeth R.; Rizzuto, Aaron C.; Vanderburg, Andrew; Mace, Gregory N.; Kraus, Adam L.

    2017-01-01

    Planets and their host stars evolve with time, and the first few hundred million years are thought to be the most formative. However, the majority of known exoplanets orbit stars older than the timescales of interest (>1 Gyr). We have launched the Zodiacal Exoplanets in Time (ZEIT) survey with the goal of identifying and characterizing young (<1 Gyr) transiting planets. To this end, we have utilized high-precision photometry of nearby young clusters and stellar associations taken as part of the K2 mission. Thus far we have discovered transiting planets in the Hyades and Praesepe clusters (˜800 Myr), and the Upper Scorpius OB association (˜11 Myr), but interestingly none in the Pleiades (˜125 Myr). These discoveries can be used to set limits on the migration timescale, estimate atmosphere loss around young planets, and provide independent tests of pre-main sequence stellar models. Here I overview some key science results from our survey and briefly discuss our plans to identify more young planetary systems.

  17. Pre-supernova models for massive stars produced with large nuclear reaction network by MESA

    NASA Astrophysics Data System (ADS)

    Park, Byeongchan; Kwak, Kyujin

    2018-04-01

    Core-collapsed Supernova (CCSN) is one of violent phenomena in the universe. CCSN generates heavy elements and leaves a neutron star behind. It has been known that the physical properties of CCSN depend on those of pre-supernova such as mass, metallicities including distribution of elements, and the density and temperature profile which are obtained from the stellar evolution calculation. In particular, the production of heavy elements in CCSN is sensitive to the abundance profiles in the pre-supernova models. In this study, we evolve a massive main sequence star with 15Msun and solar metallicity to the pre-supernova stage by using two different networks, small and large. The large nuclear reaction network includes more than four times isotopes than the small network. Our calculations were done by MESA (Modules for Experiments in Stellar Astrophysics) which allowed us to use the large network containing about a hundred isotopes. We compare the results obtained with two networks.

  18. MONET, HET and SALT and asteroseismological observations and theory in Göttingen

    NASA Astrophysics Data System (ADS)

    Schuh, S.; Hessman, F. V.; Dreizler, S.; Kollatschny, W.; Glatzel, W.

    2007-06-01

    The Göttingen stellar astrophysics group, headed by Stefan Dreizler, conducts research on extrasolar planets and their host stars, on lower-main sequence stars, and on evolved compact objects, in particular hot white dwarfs (including PG 1159 objects, magnetic WDs and cataclysmic variables), and subdwarf B stars. In addition to sophisticated NLTE spectral analyses of these stars, which draw on the extensive stellar atmosphere modelling experience of the group, we actively develop and apply a variety of photometric monitoring and time-resolved spectroscopic techniques to address time-dependent phenomena. With the new instrumentational developments described below, we plan to continue the study of variable white dwarfs (GW Vir, DB and ZZ Ceti variables) and in particular sdB EC 14026 and PG 1617 pulsators which already constitute a main focus, partly within the Whole Earth Telescope (WET/DARC), http://www.physics.udel.edu/~jlp/darc/) collaboration, on a new level. Additional interest is directed towards strange mode instabilities in Wolf Rayet stars.

  19. Constraining the evolution of the Hubble Parameter using cosmic chronometer

    NASA Astrophysics Data System (ADS)

    Scarlata, Claudia; Dickinson, Hugh

    2018-01-01

    The Lambda-CDM model of Big Bang cosmology relies heavily on the assumption that two components - dark energy and dark matter - encompass 95% of the energy density of the Universe. Despite the dominant influence of these components, their nature is still entirely unknown.We present the initial results from a project that aims to provide new insights regarding the Dark Energy component. We do this by deriving independent constraints on the time-evolution of the Hubble parameter (H_0) using the “cosmic chronometer” method.By analyzing the HST NIR spectra from a large archival sample of passively evolving galaxies in distinct redshift bins between 1.3 and 2 we measure the typical stellar population ages (A) for the galaxies in each bin. The differential evolution of stellar population age with redshift (dA/dz) can be used to infer the corresponding evolution of H_0 which will provide important constraints on the nature of Dark Energy and its equation of state.

  20. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  1. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  2. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    2014-01-01

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are sensitive to changes in opacity which are in response to adjustments to the metallicity and helium abundance. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of alpha-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance. Improving the treatment of convection in stellar models remains one of the primary applications of RHD simulations. A simple and direct way to introduce the effect of 3D convection into 1D stellar models is through the surface boundary condition. Usually the atmospheric structure of a stellar model is defined beforehand in the form of a T-tau relation, and is kept fixed at chemical compositions and stages of evolution. Extracting mean atmospheric stratifications from simulations provides a means of introducing surface boundary conditions to stellar models that self-consistently include the effects of realistic convection and overshoot. We apply data from simulations to stellar models in this manner to measure how realistic atmospheric stratifications relate to the value of the mixing length parameter in calibrated stellar models. Moving beyond improving the surface boundary condition, we also explore a method for calibrating the mixing length parameter, which is relevant for improving the adiabatic structure of sub-photospheric convection. Since the MLT treatment of convection defines the thermal structure of the atmosphere and SAL arbitrarily, one strategy for calibrating the mixing length parameter is to tune it so that it matches the thermodynamics of the simulations. In particular, we consider adjusting the mixing length parameter such that the specific entropy of the model matches that of an equivalent simulation eliminates the need to arbitrarily set the parameter, and in principle will produce stellar models with more accurate radii. By examining simulations along contours in the log(g)-log(Teff) plane that correspond to the convective envelope adiabats, the variation in convective properties can be reduced to a simplified form that is more convenient for use in stellar models.

  3. Wolf-Rayet stars in the central region of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  4. Extrasolar comets: The origin of dust in exozodiacal disks?

    NASA Astrophysics Data System (ADS)

    Marboeuf, U.; Bonsor, A.; Augereau, J.-C.

    2016-11-01

    Comets have been invoked in numerous studies as a potentially important source of dust and gas around stars, but none has studied the thermo-physical evolution, out-gassing rate, and dust ejection of these objects in such stellar systems. In this paper we investigate the thermo-physical evolution of comets in exo-planetary systems in order to provide valuable theoretical data required to interpret observations of gas and dust. We use a quasi-3D model of cometary nucleus to study the thermo-physical evolution of comets evolving around a single star from 0.1 to 50 AU, whose homogeneous luminosity varies from 0.1 to 70L⊙. This paper provides thermal evolution, physical alteration, mass ejection, lifetimes, and the rate of dust and water gas mass productions for comets as a function of the distance to the star and stellar luminosity. Results show significant physical changes to comets at high stellar luminosities. The mass loss per revolution and the lifetime of comets depend on their initial size, orbital parameters and follow a power law with stellar luminosity. The models are presented in such a manner that they can be readily applied to any planetary system. By considering the examples of the Solar System, Vega and HD 69830, we show that dust grains released from sublimating comets have the potential to create the observed (exo)zodiacal emission. We show that observations can be reproduced by 1 to 2 massive comets or by a large number of comets whose orbits approach close to the star. Our conclusions depend on the stellar luminosity and the uncertain lifetime of the dust grains. We find, as in previous studies, that exozodiacal dust disks can only survive if replenished by a population of typically sized comets renewed from a large and cold reservoir of cometary bodies beyond the water ice line. These comets could reach the inner regions of the planetary system following scattering by a (giant) planet.

  5. Cas A and the Crab were not stellar binaries at death

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.

  6. The Metal Abundances across Cosmic Time (MACT) Survey. II. Evolution of the Mass-metallicity Relation over 8 Billion Years, Using [OIII]4363AA-based Metallicities

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, Matthew A.; Rigby, Jane R.; Nagao, Tohru

    2016-09-01

    We present the first results from MMT and Keck spectroscopy for a large sample of 0.1≤slant z≤slant 1 emission-line galaxies selected from our narrowband imaging in the Subaru Deep Field. We measured the weak [O III] λ4363 emission line for 164 galaxies (66 with at least 3σ detections, and 98 with significant upper limits). The strength of this line is set by the electron temperature for the ionized gas. Because the gas temperature is regulated by the metal content, the gas-phase oxygen abundance is inversely correlated with [O III] λ4363 line strength. Our temperature-based metallicity study is the first to span ≈ 8 Gyr of cosmic time and ≈ 3 dex in stellar mass for low-mass galaxies, {log}({M}\\star /{M}⊙ )≈ 6.0-9.0. Using extensive multi-wavelength photometry, we measure the evolution of the stellar mass-gas metallicity relation and its dependence on dust-corrected star formation rate (SFR). The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at z≤slant 0.3, and evolves toward lower abundances at a given stellar mass, {log}{({{O/H}})\\propto (1+z)}-{2.32-0.26+0.52}. We find that galaxies with lower metallicities have higher SFRs at a given stellar mass and redshift, although the scatter is large (≈ 0.3 dex) and the trend is weaker than seen in local studies. We also compare our mass-metallicity relation against predictions from high-resolution galaxy formation simulations, and find good agreement with models that adopt energy- and momentum-driven stellar feedback. We identified 16 extremely metal-poor galaxies with abundances of less than a tenth of solar; our most metal-poor galaxy at z≈ 0.84 is similar to I Zw 18.

  7. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunitomo, M.; Ikoma, M.; Sato, B.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (ormore » the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.« less

  8. The Ages of Passive Galaxies in a z = 1.62 Protocluster

    NASA Astrophysics Data System (ADS)

    Lee-Brown, Donald B.; Rudnick, Gregory H.; Momcheva, Ivelina G.; Papovich, Casey; Lotz, Jennifer M.; Tran, Kim-Vy H.; Henke, Brittany; Willmer, Christopher N. A.; Brammer, Gabriel B.; Brodwin, Mark; Dunlop, James; Farrah, Duncan

    2017-07-01

    We present a study of the relation between galaxy stellar age and mass for 14 members of the z = 1.62 protocluster IRC 0218, using multiband imaging and HST G102 and G141 grism spectroscopy. Using UVJ colors to separate galaxies into star-forming and quiescent populations, we find that, at stellar masses {M}* ≥slant {10}10.85 {M}⊙ , the quiescent fraction in the protocluster is {f}Q={1.0}-0.37+0.00, consistent with a ˜ 2× enhancement relative to the field value, {f}Q={0.45}-0.03+0.03. At masses {10}10.2 {M}⊙ ≤slant {M}* ≤slant {10}10.85 {M}⊙ , f Q in the cluster is {f}Q={0.40}-0.18+0.20, consistent with the field value of {f}Q={0.28}-0.02+0.02. Using galaxy {D}n(4000) values derived from the G102 spectroscopy, we find no relation between galaxy stellar age and mass. These results may reflect the impact of merger-driven mass redistribution—which is plausible, as this cluster is known to host many dry mergers. Alternately, they may imply that the trend in f Q in IRC 0218 was imprinted over a short timescale in the protocluster’s assembly history. Comparing our results with those of other high-redshift studies and studies of clusters at z˜ 1, we determine that our observed relation between f Q and stellar mass only mildly evolves between z˜ 1.6 and z˜ 1, and only at stellar masses {M}* ≤slant {10}10.85 {M}⊙ . Both the z˜ 1 and z˜ 1.6 results are in agreement that the red sequence in dense environments was already populated at high redshift, z≳ 3, placing constraints on the mechanism(s) responsible for quenching in dense environments at z≥slant 1.5.

  9. Dust clouds around red giant stars - Evidence of sublimating comet disks?

    NASA Technical Reports Server (NTRS)

    Matese, John J.; Whitmire, Daniel P.; Reynolds, Ray T.

    1989-01-01

    The dust production by disk comets around intermediate mass stars evolving into red giants is studied, focusing on AGB supergiants. The model of Iben and Renzini (1983) is used to study the observed dust mass loss for AGB stars. An expression is obtained for the comet disk net dust production rate and values of the radius and black body temperature corresponding to peak sublimation are calculated for a range of stellar masses. Also, the fractional amount of dust released from a cometesimal disk during a classical nova outburst is estimated.

  10. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    PubMed

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  11. The Characterization of Galaxy Structure

    NASA Astrophysics Data System (ADS)

    Zaritsky, Dennis

    There is no all-encompassing intuitive physical understanding of galactic structure. We cannot predict the size, surface brightness, or luminosity of an individual galaxy based on the mass of its halo, or other physical characteristics, from simple first principles or even empirical guidelines. We have come to believe that such an understanding is possible because we have identified a simple scaling relation that applies to all gravitationally bound stellar systems,from giant ellipticals to dwarf spheroidals, from spiral galaxies to globular clusters. The simplicity (and low scatter) of this relationship testifies to an underlying order. In this proposal, we outline what we have learned so far about this scaling relationship, what we need to do to refine it so that it has no free parameters and provides the strongest possible test of galaxy formation and evolution models, and several ways in which we will exploit the relationship to explore other issues. Primarily, the proposed work involves a study of the uniform IR surface photometry of several thousand stellar systems using a single data source (the Spitzer S4G survey) to address shortcomings posed by the current heterogeneous sample and combining these data with the GALEX database to study how excursions from this relationship are related to current or on-going star formation. This relationship, like its antecedents the Fundamental Plane or Tully-Fisher relationship, can also be used to estimate distances and stellar mass-to-light ratios. We will describe the key advantages our relationship has relative to the existing work and how we will exploit those using archival NASA data from the Spitzer, GALEX, and WISE missions.

  12. The Puzzlingly Small Ca II Triplet Absorption in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Saglia, R. P.; Maraston, Claudia; Thomas, Daniel; Bender, Ralf; Colless, Matthew

    2002-11-01

    We measure the central values (within Re/8) of the Ca II triplet line indices CaT* and CaT and the Paschen index PaT at 8600 Å for a 93% complete sample of 75 nearby early-type galaxies with BT<12 mag and Vgal<2490 km s-1. We find that the values of CaT* are constant to within 5% over the range of central velocity dispersions 100 km s-1<=σ<=340 km s-1, while the PaT (and CaT) values are mildly anticorrelated with σ. Using simple and composite stellar population models, we show the following: (1) The measured CaT* and CaT are lower than expected from simple stellar population (SSP) models with Salpeter initial mass functions (IMFs) and with metallicities and ages derived from optical Lick (Fe, Mg, and Hβ) indices. Uncertainties in the calibration, the fitting functions, and the SSP modeling taken separately cannot explain the discrepancy. On average, the observed PaT values are within the range allowed by the models and the large uncertainties in the fitting functions. (2) The steepening of the IMF at low masses required to lower the CaT* and CaT indices to the observed values is incompatible with the measured FeH index at 9916 Å and the dynamical mass-to-light ratios of elliptical galaxies. (3) Composite stellar populations with a low-metallicity component reduce the disagreement, but rather artificial metallicity distributions are needed. Another explanation may be that calcium is indeed underabundant in elliptical galaxies.

  13. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  14. RAPIDLY ROTATING, X-RAY BRIGHT STARS IN THE KEPLER FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a processmore » believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.« less

  15. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  16. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser environments, which suggests environmental effects as a likely cause for the existence of line-less galaxies on the red sequence. In the second part of this dissertation I focus on the study of resolved chemical abundances by characterising the gas phase oxygen and nitrogen abundance gradients in a large sample of star forming galaxies. I analyse the deviations from an exponential profile at small and large radii and the dependence of the gradients on stellar mass. These findings are interpreted in the context of the inside-out paradigm of disc growth. I then demonstrate the necessity of gas flows, which are responsible for the observed flattening of the metallicity and N/O ratio gradients at large radii. Finally, I present a case study based on one nearby galaxy (NGC 628), in which I combine IFS and cold gas data to derive a spatially resolved metal bud- get and estimate the mass of metals lost by the galaxy throughout its lifetime. By using simple physically-motivated models of chemical evolution I infer the average outflow loading factor to be of order unity.

  17. A First Robust Measurement of the Aging of Field Low Mass X-ray Binary Populations from Hubble and Chandra

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret

    Our understanding of X-ray binary (XRB) formation and evolution have been revolutionized by HST and Chandra by allowing us to study in detail XRBs in extragalactic environments. Theoretically, XRB formation is sensitive to parent stellar population properties like metallicity and stellar age. These dependencies not only make XRBs promising populations for aiding in the measurement of galaxy properties themselves, but also have important astrophysical implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that XRBs were more luminous than today and played a significant role in the heating of the intergalactic medium. Unlocking the potential of XRBs as useful probes of galaxy properties and understanding in detail their evolutionary pathways critically requires empirical constraints using well-studied galaxies that span a variety of evolutionary stages. In this ADAP, we will use the combined power of archival observations from Hubble and Chandra data of 16 nearby early-type galaxies to study how low-mass XRBs (LMXBs) populations evolve with age. LMXBs are critically important since they are the most numerous XRBs in the MW and are expected to dominate the normal galaxy Xray emissivity of the Universe out to z ~ 2. Understanding separately LMXBs that form via dynamical interactions (e.g., in globular clusters; GCs) versus those that form in-situ in galactic fields is an important poorly constrained area of XRB astrophysics. We are guided by the following key questions: 1. How does the shape and normalization of the field LMXB X-ray luminosity function (XLF) evolve as parent stellar populations age? Using theoretical population synthesis models, what can we learn about the evolution of contributions from various LMXB donor stars (e.g., red-giant, main-sequence, and white dwarf donors)? 2. Is there any evidence that globular cluster (GC) LMXBs seeded field LMXB populations through the dissolving of GCs or LMXBs being kicked out of their parent GCs? 3. What implications do our results have for the evolution of LMXBs throughout cosmic history and X-ray emission observed in distant galaxy populations (e.g., in the Chandra Deep Field surveys)? The combination of HST and Chandra are critical for addressing these questions, as HST can be used to decipher between GC and field LMXBs and Chandra can detect the sources. We will make public HST and Chandra data and catalogs of X-ray sources and GCs, and will include basic properties (eg.., GC sizes, colors, LMXB spectral shapes, fluxes, luminosities).

  18. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  19. Galaxy And Mass Assembly (GAMA): a deeper view of the mass, metallicity and SFR relationships

    NASA Astrophysics Data System (ADS)

    Lara-López, M. A.; Hopkins, A. M.; López-Sánchez, A. R.; Brough, S.; Gunawardhana, M. L. P.; Colless, M.; Robotham, A. S. G.; Bauer, A. E.; Bland-Hawthorn, J.; Cluver, M.; Driver, S.; Foster, C.; Kelvin, L. S.; Liske, J.; Loveday, J.; Owers, M. S.; Ponman, T. J.; Sharp, R. G.; Steele, O.; Taylor, E. N.; Thomas, D.

    2013-09-01

    A full appreciation of the role played by gas metallicity (Z), star formation rate (SFR) and stellar mass (M*) is fundamental to understanding how galaxies form and evolve. The connections between these three parameters at different redshifts significantly affect galaxy evolution, and thus provide important constraints for galaxy evolution models. Using data from the Sloan Digital Sky Survey-Data Release 7 (SDSS-DR7) and the Galaxy and Mass Assembly (GAMA) surveys, we study the relationships and dependences between SFR, Z and M*, as well as the Fundamental Plane for star-forming galaxies. We combine both surveys using volume-limited samples up to a redshift of z ≈ 0.36. The GAMA and SDSS surveys complement each other when analysing the relationships between SFR, M* and Z. We present evidence for SFR and metallicity evolution to z ˜ 0.2. We study the dependences between SFR, M*, Z and specific SFR (SSFR) on the M*-Z, M*-SFR, M*-SSFR, Z-SFR and Z-SSFR relations, finding strong correlations between all. Based on those dependences, we propose a simple model that allows us to explain the different behaviour observed between low- and high-mass galaxies. Finally, our analysis allows us to confirm the existence of a Fundamental Plane, for which M* = f(Z, SFR) in star-forming galaxies.

  20. Stellar mass buildup in galaxies in the first 1.5 Gyr of the universe

    NASA Astrophysics Data System (ADS)

    Gonzalez, Valentino

    In this thesis we have made extensive use of the deepest optical and infrared images currently available from the Hubble Space Telescope (HST) and the Spitzer Space Telescope to study the properties of the stellar populations and the stellar mass buildup in galaxies in the first 1.5 Gyr after the Big Bang. The star formation Rates (SFRs) estimated for LBGs at z ≳ 4 are generally in the range 1 -- 100 M⊙ yr--1. The stellar mass estimates are most robust for sources with good Spitzer/IRAC detections, corresponding to galaxies with stellar masses ≳ 108.5 M⊙ at z ˜ 4 ( ≳ 109.5 M⊙ at z ˜ 7). For sources with lower rest-frame optical luminosities, that, as a result, are individually undetected in IRAC, their average stellar masses have been studied in a stacking analysis of a large number of sources. This enables us to reach stellar masses ˜ 10 7.8 M⊙ at z ˜ 4. The stellar masses show a fairly tight correlation with UV luminosity or SFR, and the zeropoint of the relation does not seem to evolve strongly with redshift. We have taken advantage of the UV luminosity vs. stellar mass relation observed in LBGs at z ≳ 4 -- 7 to derive the stellar mass function (SMF) of galaxies at these redshifts. The method uses a combination of the UV LF and the mean UV vs. stellar mass relation (including the scatter, estimated to be ˜ 0.5 dex at bright luminosities at z ˜ 4). This method allows an analytic estimate of the low mass slope of the SMF. This slope (the power-law exponent of the SMF at low masses), is estimated to be in the --1.44 -- --1.55, range which is flatter than the UV LF faint end slope at these redshifts ( ≲ --1.74). This means that low mass systems contribute less to the total stellar mass density (SMD) of the Universe than would have been estimated assuming a constant mass-to-UV-light ratio. We show that this is also much flatter than the theoretical predictions from simulations, which generally over-predict the number density of low mass systems at these redshifts. The UV luminosity vs. stellar mass relation indicates only a small variation of the mass-to-light ratio as a function of UV luminosity. This is confirmed in a stacking analysis of a large number of sources from the HUDF and the Early Release Science fields (˜ 400 z ˜ 4, ˜ 120 z ˜ 5, ˜ 60 z ˜ 6, 36 at z ˜ 7). Interestingly, the stacked SEDs at z ≳ 5 in the rest-frame optical shows a color [3.6] -- [4.5] ˜ 0.3 mag. This color is hard to reproduce by synthetic stellar population models that only include stellar continua, and it probably indicates the presence of moderately strong emission lines (Halpha EWrest ˜ 300 A). The contribution from such emission lines in the IRAC fluxes indicates that the stellar masses and ages could both be over-estimated by a factor ˜ 2. One of the most interesting results presented in this thesis is the apparent plateau of the specific SFR (sSFR = SFR / stellar mass). In early results, the similarity in the SEDs of galaxies at a given UV luminosity in the z ˜ 4 -- 7 redshift range resulted in very similar estimates of the SFR and stellar masses of these galaxies. Furthermore, we find that the reported sSFR estimates at z ˜ 2 are also very similar to the ones in the z ˜ 4 -- 7 redshift range (˜ 2 Gyr--1 for ˜ 5 x 109 M⊙ galaxies). A puzzle arises from the fact that the dark matter accretion rate onto halos is predicted to decrease monotonically and rather fast as a function of cosmic time (approximately ∝ (1 + z) 2.5). If gas and star formation follow the inflow of dark matter, the sSFR at a constant mass should also decrease monotonically with time, which is contrary to the indication from these observations. When we include the possible effects of emission lines, the stellar masses decrease by a factor ˜ 2x at z ≳ 5. The revised stellar masses may favor a slowly rising sSFR at z ≳ 2, but the rise as a function of redshift is still much slower (sSFR(z) ∝ (1 + z)0.7) than that of specific dark matter accretion rate. This suggests that the stellar mass buildup is somehow decoupled from the dark matter buildup at early times. (Abstract shortened by UMI.)

  1. VizieR Online Data Catalog: NuGrid stellar data set I. Yields from H to Bi (Pignatari+, 2016)

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-10-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z=0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the 13C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced. (12 data files).

  2. Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.

    2005-12-01

    The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.

  3. Hierarchical star formation across the grand-design spiral NGC 1566

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Cignoni, Michele; Gallagher, John S., III; Kennicutt, Robert C.; Klessen, Ralf S.; Sabbi, Elena; Thilker, David; Ubeda, Leonardo; Aloisi, Alessandra; Adamo, Angela; Cook, David O.; Dale, Daniel; Grasha, Kathryn; Grebel, Eva K.; Johnson, Kelsey E.; Sacchi, Elena; Shabani, Fayezeh; Smith, Linda J.; Wofford, Aida

    2017-06-01

    We investigate how star formation is spatially organized in the grand-design spiral NGC 1566 from deep Hubble Space Telescope photometry with the Legacy ExtraGalactic UV Survey. Our contour-based clustering analysis reveals 890 distinct stellar conglomerations at various levels of significance. These star-forming complexes are organized in a hierarchical fashion with the larger congregations consisting of smaller structures, which themselves fragment into even smaller and more compact stellar groupings. Their size distribution, covering a wide range in length-scales, shows a power law as expected from scale-free processes. We explain this shape with a simple 'fragmentation and enrichment' model. The hierarchical morphology of the complexes is confirmed by their mass-size relation that can be represented by a power law with a fractional exponent, analogous to that determined for fractal molecular clouds. The surface stellar density distribution of the complexes shows a lognormal shape similar to that for supersonic non-gravitating turbulent gas. Between 50 and 65 per cent of the recently formed stars, as well as about 90 per cent of the young star clusters, are found inside the stellar complexes, located along the spiral arms. We find an age difference between young stars inside the complexes and those in their direct vicinity in the arms of at least 10 Myr. This time-scale may relate to the minimum time for stellar evaporation, although we cannot exclude the in situ formation of stars. As expected, star formation preferentially occurs in spiral arms. Our findings reveal turbulent-driven hierarchical star formation along the arms of a grand-design galaxy.

  4. The Preferential Tidal Stripping of Dark Matter versus Stars in Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Rory; Choi, Hoseung; Lee, Jaehyun; Rhee, Jinsu; Sanchez-Janssen, Ruben; Yi, Sukyoung K.

    2016-12-01

    Using high-resolution hydrodynamical cosmological simulations, we conduct a comprehensive study of how tidal stripping removes dark matter and stars from galaxies. We find that dark matter is always stripped far more significantly than the stars—galaxies that lose ˜80% of their dark matter, typically lose only 10% of their stars. This is because the dark matter halo is initially much more extended than the stars. As such, we find that the stellar-to-halo size-ratio (measured using r eff/r vir) is a key parameter controlling the relative amounts of dark matter and stellar stripping. We use simple fitting formulae to measure the relation between the fraction of bound dark matter and the fraction of bound stars. We measure a negligible dependence on cluster mass or galaxy mass. Therefore, these formulae have general applicability in cosmological simulations, and are ideal to improve stellar stripping recipes in semi-analytical models, and/or to estimate the impact that tidal stripping would have on galaxies when only their halo mass evolution is known.

  5. Stellar Death by Black Hole: How Tidal Disruption Events Unveil the High Energy Universe

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert

    2017-08-01

    When a star comes very close to a supermassive black hole, the tidal field of the hole can be strong enough to deform and stretch the star into a stream of debris. Half of this stellar debris stream returns to the black hole and forms an accretion disk, briefly lighting up the black hole and, in the most extreme cases, launching relativistic jets. These ``tidal disruption events,'' from the initial stellar destruction to the eventual jet production, are the focus of my thesis, and during this talk I will describe some of the theoretical advances we have made in understanding them. I will also discuss more recent work that shows how this relatively simple picture can be more complicated when the disrupting black hole is part of a binary system. Despite the added complexity, I will argue that there is a timescale over which one expects to see variation in the luminosity of a tidal disruption event from a binary supermassive black hole system. Using these predictions and a set of simulations, I will motivate such an interpretation for the superluminous supernova ASASSN-15lh.

  6. Evolving virtual creatures and catapults.

    PubMed

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  7. The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of z˜ 2 galaxies

    NASA Astrophysics Data System (ADS)

    Tiret, O.; Salucci, P.; Bernardi, M.; Maraston, C.; Pforr, J.

    2011-03-01

    We analyse a sample of 23 supermassive elliptical galaxies (central velocity dispersion larger than 330 km s-1) drawn from the Sloan Digital Sky Survey. For each object, we estimate the dynamical mass from the light profile and central velocity dispersion, and compare it with the stellar mass derived from stellar population models. We show that these galaxies are dominated by luminous matter within the radius for which the velocity dispersion is measured. We find that the sizes and stellar masses are tightly correlated, with Re∝M1.1*, making the mean density within the de Vaucouleurs radius a steeply declining function of M*: ρe∝M-2.2*. These scalings are easily derived from the virial theorem if one recalls that this sample has essentially fixed (but large) σ0. In contrast, the mean density within 1 kpc is almost independent of M*, at a value that is in good agreement with recent studies of z˜ 2 galaxies. The fact that the mass within 1 kpc has remained approximately unchanged suggests assembly histories that were dominated by minor mergers - but we discuss why this is not the unique way to achieve this. Moreover, the total stellar mass of the objects in our sample is typically a factor of ˜5 larger than that in the high-redshift (z˜ 2) sample, an amount which seems difficult to achieve. If our galaxies are the evolved objects of the recent high-redshift studies, then we suggest that major mergers are required at z≳ 1.5 and that minor mergers become the dominant growth mechanism for massive galaxies at z≲ 1.5.

  8. The Mass, Color, and Structural Evolution of Today’s Massive Galaxies Since z ˜ 5

    NASA Astrophysics Data System (ADS)

    Hill, Allison R.; Muzzin, Adam; Franx, Marijn; Clauwens, Bart; Schreiber, Corentin; Marchesini, Danilo; Stefanon, Mauro; Labbe, Ivo; Brammer, Gabriel; Caputi, Karina; Fynbo, Johan; Milvang-Jensen, Bo; Skelton, Rosalind E.; van Dokkum, Pieter; Whitaker, Katherine E.

    2017-03-01

    In this paper, we use stacking analysis to trace the mass growth, color evolution, and structural evolution of present-day massive galaxies ({log}({M}* /{M}⊙ )=11.5) out to z = 5. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by ≈ 1.5 {dex} since z = 5. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by z˜ 2, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build-up at r< 3 {kpc} beyond z> 4 probing an era of significant mass assembly in the interiors of present-day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with z at r< 3 {kpc}. We identify z˜ 1.5 as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in situ star formation in disks to a period of efficient growth in r e consistent with the minor merger scenario.

  9. Characterization of Omega-WINGS galaxy clusters. I. Stellar light and mass profiles

    NASA Astrophysics Data System (ADS)

    Cariddi, S.; D'Onofrio, M.; Fasano, G.; Poggianti, B. M.; Moretti, A.; Gullieuszik, M.; Bettoni, D.; Sciarratta, M.

    2018-02-01

    Context. Galaxy clusters are the largest virialized structures in the observable Universe. Knowledge of their properties provides many useful astrophysical and cosmological information. Aims: Our aim is to derive the luminosity and stellar mass profiles of the nearby galaxy clusters of the Omega-WINGS survey and to study the main scaling relations valid for such systems. Methods: We merged data from the WINGS and Omega-WINGS databases, sorted the sources according to the distance from the brightest cluster galaxy (BCG), and calculated the integrated luminosity profiles in the B and V bands, taking into account extinction, photometric and spatial completeness, K correction, and background contribution. Then, by exploiting the spectroscopic sample we derived the stellar mass profiles of the clusters. Results: We obtained the luminosity profiles of 46 galaxy clusters, reaching r200 in 30 cases, and the stellar mass profiles of 42 of our objects. We successfully fitted all the integrated luminosity growth profiles with one or two embedded Sérsic components, deriving the main clusters parameters. Finally, we checked the main scaling relation among the clusters parameters in comparison with those obtained for a selected sample of early-type galaxies (ETGs) of the same clusters. Conclusions: We found that the nearby galaxy clusters are non-homologous structures such as ETGs and exhibit a color-magnitude (CM) red-sequence relation very similar to that observed for galaxies in clusters. These properties are not expected in the current cluster formation scenarios. In particular the existence of a CM relation for clusters, shown here for the first time, suggests that the baryonic structures grow and evolve in a similar way at all scales.

  10. The first all-sky view of the Milky Way stellar halo with Gaia+2MASS RR Lyrae

    NASA Astrophysics Data System (ADS)

    Iorio, G.; Belokurov, V.; Erkal, D.; Koposov, S. E.; Nipoti, C.; Fraternali, F.

    2018-02-01

    We exploit the first Gaia data release to study the properties of the Galactic stellar halo as traced by RR Lyrae. We demonstrate that it is possible to select a pure sample of RR Lyrae using only photometric information available in the Gaia+2MASS catalogue. The final sample contains about 21 600 RR Lyrae covering an unprecedented fraction ( ˜ 60 per cent) of the volume of the Galactic inner halo (R < 28 kpc). We study the morphology of the stellar halo by analysing the RR Lyrae distribution with parametric and non-parametric techniques. Taking advantage of the uniform all-sky coverage, we test halo models more sophisticated than usually considered in the literature, such as those with varying flattening, tilts and/or offset of the halo with respect to the Galactic disc. A consistent picture emerges: the inner halo is well reproduced by a smooth distribution of stars settled on triaxial density ellipsoids. The shortest axis is perpendicular to the Milky Way's disc, while the longest axis forms an angle of ˜70° with the axis connecting the Sun and the Galactic Centre. The elongation along the major axis is mild (p = 1.27), and the vertical flattening is shown to evolve from a squashed state with q ≈ 0.57 in the centre to a more spherical q ≈ 0.75 at the outer edge of our data set. Within the radial range probed, the density profile of the stellar halo is well approximated by a single power law with exponent α = -2.96. We do not find evidence of tilt or offset of the halo with respect to the Galaxy's disc.

  11. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  12. The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2017-05-01

    This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.

  13. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  14. Young Nearby Suns and Stellar Jitter Dependence on Age

    NASA Astrophysics Data System (ADS)

    Cabrera, Nicole; White, Russel; Delfosse, Xavier; Noah Quinn, Samuel; Latham, David W.

    2015-01-01

    Finding the nearest young planets offers the most direct way to improve our understanding of how planets form, how they migrate, and how they evolve. However, most radial velocity (RV) surveys have avoided young stars because of their problematic characteristics, including high levels of stellar activity. Recent advancements in infrared (IR) detectors as well as wavelength calibration methods have provided new ways of pursuing high-precision RV measurements of young stars. While this work has been successfully applied to many young late-K and M dwarfs, much less RV work has been done on young Sun-like stars, with the very recent exception of adolescent stars (~600 Myr) in open clusters. In order to better understand the dynamical and structural forces that shaped our own Solar system, we must begin to explore the more massive realm of Sun-like stars.We present precision optical radial velocity data of 5 young, nearby, Sun-like stars in AB Dor and assess our ability to detect young planets with current spectroscopic methods. The data were obtained with the TRES spectrograph on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory and with SOPHIE on the 1.95 m Telescope at the Observatoire de Haute Provence. We obtained a RV precision of ~8 m/s with TRES and ~7 m/s precision with SOPHIE; average observed dispersions are 38 m/s and 33 m/s, respectively. We combine our results with spectroscopic data of Sun-like stars spanning a broad range of youthful ages (< 1 Gyr) from the literature to investigate the relationship between stellar jitter and stellar age. The results suggest that the jitter of Sun-like stars decreases below 100 m/s for stars older than ~30 Myr, which would enable the discovery of hot Jupiters orbiting these adolescent age stars.

  15. The MYStIX Infrared-Excess Source Catalog

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Kuhn, Michael A.; Getman, Konstantin V.; Busk, Heather A.; Feigelson, Eric D.; Broos, Patrick S.; Townsley, Leisa K.; King, Robert R.; Naylor, Tim

    2013-12-01

    The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes.

  16. A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong

    2018-05-01

    Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.

  17. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  18. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars.

    PubMed

    van Saders, Jennifer L; Ceillier, Tugdual; Metcalfe, Travis S; Aguirre, Victor Silva; Pinsonneault, Marc H; García, Rafael A; Mathur, Savita; Davies, Guy R

    2016-01-14

    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can--unlike existing models--reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.

  19. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  20. Interacting Supernovae: Types IIn and Ibn

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.

  1. The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project

    NASA Astrophysics Data System (ADS)

    Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration

    2013-06-01

    The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.

  2. The Origin of Hot Subluminous Horizontal-Branch Stars in (omega) Centauri and NGC 2808

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.; Brown, Thomas M.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan

    2001-01-01

    Hot subluminous stars lying up to 0.7 mag below the extreme horizontal branch (EHB) are found in the ultraviolet (UV) color magnitude diagrams of both (omega) Cen and NGC 2808. In order to explore the evolutionary status of these subluminous stars, we have evolved a set of low-mass stars continuously from the main sequence through the helium-core flash to the HB (horizontal branch) for a wide range in the mass loss along the red-giant branch (RGB). Stars with the largest mass loss evolve off the RGB to high effective temperatures before igniting helium in their cores. Our results indicate that the subluminous EHB stars, as well as the gap within the EHB of NGC 2808, can be explained if these stars undergo a late helium-core flash while descending the white-dwarf cooling curve. Under these conditions the convection zone produced by the helium flash will penetrate into the stellar envelope, thereby mixing most, if not all, of the envelope hydrogen into the hot helium-burning interior, where it is rapidly consumed. This phenomenon is analogous to the 'born-again' scenario for producing hydrogen-deficient stars following a very late helium-shell flash. This 'flash mixing' of the stellar envelope greatly enhances the envelope helium and carbon abundances and, as a result, leads to a discontinuous jump in the HB effective temperature. We argue that the EHB gap in NGC 2808 is associated with this theoretically predicted dichotomy in the HB morphology. Using new helium- and carbon-rich stellar atmospheres, we show that these changes in the envelope abundances of the flash-mixed stars will suppress the UV flux by the amount needed to explain the hot subluminous EHB stars in (omega) Cen and NGC 2808. Moreover, we demonstrate that models without flash mixing lie, at most, only approximately 0.1 mag below the EHB, and hence fail to explain the observations. Flash mixing may also provide a new evolutionary channel for producing the high gravity, helium-rich sdO and sdB stars.

  3. Kepler-432: A Red Giant Interacting with One of its Two Long-period Giant Planets

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Timothy. R.; Latham, David W.; Chaplin, William J.; Handberg, Rasmus; Huber, Daniel; Kipping, David M.; Payne, Matthew J.; Jiang, Chen; Silva Aguirre, Victor; Stello, Dennis; Sliski, David H.; Ciardi, David R.; Buchhave, Lars A.; Bedding, Timothy R.; Davies, Guy R.; Hekker, Saskia; Kjeldsen, Hans; Kuszlewicz, James S.; Everett, Mark E.; Howell, Steve B.; Basu, Sarbani; Campante, Tiago L.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P.; Karoff, Christoffer; Kawaler, Steven D.; Lund, Mikkel N.; Lundkvist, Mia; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry

    2015-04-01

    We report the discovery of Kepler-432b, a giant planet ({{M}b}=5.41-0.18+0.32 {{M}Jup}, {{R}b}=1.145-0.039+0.036 {{R}Jup}) transiting an evolved star ({{M}\\star }=1.32-0.07+0.10 {{M}⊙ },{{R}\\star }=4.06-0.08+0.12 {{R}⊙ }) with an orbital period of {{P}b}=52.501129-0.000053+0.000067 days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of e=0.5134-0.0089+0.0098, which we also measure independently with asterodensity profiling (AP; e=0.507-0.114+0.039), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; {{M}c}sin {{i}c}=2.43-0.24+0.22 {{M}Jup}, {{P}c}=406.2-2.5+3.9 days), and adaptive optics imaging revealed a nearby (0\\buildrel{\\prime\\prime}\\over{.} 87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise ratio asteroseismic oscillations, which enable precise measurements of the stellar mass, radius, and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5 day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.

  4. SiO maser polarization in evolved stars: magnetic field

    NASA Astrophysics Data System (ADS)

    Herpin, F.; Baudry, A.; Thum, C.; Morris, D.; Wiesemeyer, H.

    The maser theory still needs to be improved, in particular in terms of polarization. The study of the maser geometry inside the circumstellar envelopes can also be achieved through polarization studies (e.g., VLBI observations). But the most exciting point is the determination of the magnetic field that can be made from polarization measurements: this is definitively a new field of investigation for these evolved objects. The magnetic field probably plays an important role in the AGB star's life and can be a major factor (magnetic rotator theory) on the origin of the high mass loss rates observed in evolved objects. Measurement of the magnetic field is thus essential to study the mass loss mechanisms and also the Alfven waves. During its transition most quasi spherical AGB stars (i.e. envelopes) become complicated aspherical objects. This shaping is well explained by the Interacting Stellar Winds theory (Kwok works), but the ISW model fails to reproduce very complicated structures with jets and ansae. A new model (Magnetized Wind Blown Bubble theory) was thus developed by Blackman et al. (2001) and A. Franck: a weak toroidal magnetic field, embedded in the stellar wind, acts as a collimating agent (cf. Garcia-Segura 1997) and can produce such structures. Three molecules can show polarized maser emission in the circumstellar envelopes: - OH traces the envelope far from the central star (1000-10000 AU) - H2O at intermediate distances (a few 100 AU) - SiO in the inner circumstellar layers (5-10 AU) Measurement of the polarization rate of the maser radiation emitted by these molecules can give us the averaged value B// of the magnetic field along the line of sight (for a single dish observation). We present here the first complete study of the SiO maser polarization in a large sample of evolved stars (more than 100). The 4 Stokes parameters I, U, Q, V were simultaneously measured with the polarimeter on the IRAM-30m telescope. From the Stokes parameters values we derive the linear (pL) and circular (pC) polarization rates and polarization angle. The circular polarization rate gives us directly the magnetic field B//: B// varies from 1 to 32 Gauss depending on the source, with an average value of 9 Gauss.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi

    The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of themore » spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.« less

  6. Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273

    NASA Astrophysics Data System (ADS)

    Campante, T. L.; Handberg, R.; Mathur, S.; Appourchaux, T.; Bedding, T. R.; Chaplin, W. J.; García, R. A.; Mosser, B.; Benomar, O.; Bonanno, A.; Corsaro, E.; Fletcher, S. T.; Gaulme, P.; Hekker, S.; Karoff, C.; Régulo, C.; Salabert, D.; Verner, G. A.; White, T. R.; Houdek, G.; Brandão, I. M.; Creevey, O. L.; Doǧan, G.; Bazot, M.; Christensen-Dalsgaard, J.; Cunha, M. S.; Elsworth, Y.; Huber, D.; Kjeldsen, H.; Lundkvist, M.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Stello, D.; Clarke, B. D.; Girouard, F. R.; Hall, J. R.

    2011-10-01

    Context. The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the Sun. Aims: We aimed mainly at extracting estimates of p-mode frequencies - as well as of other individual mode parameters - from the power spectra of the light curves of both stars, thus providing scope for a full seismic characterization. Methods: The light curves were corrected for instrumental effects in a manner independent of the Kepler science pipeline. Estimation of individual mode parameters was based both on the maximization of the likelihood of a model describing the power spectrum and on a classic prewhitening method. Finally, we employed a procedure for selecting frequency lists to be used in stellar modeling. Results: A total of 30 and 21 modes of degree l = 0,1,2 - spanning at least eight radial orders - have been identified for KIC 10273246 and KIC 10920273, respectively. Two avoided crossings (l = 1 ridge) have been identified for KIC 10273246, whereas one avoided crossing plus another likely one have been identified for KIC 10920273. Good agreement is found between observed and predicted mode amplitudes for the F-type star KIC 10273246, based on a revised scaling relation. Estimates are given of the rotational periods, the parameters describing stellar granulation and the global asteroseismic parameters Δν and νmax.

  7. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafikov, Roman R., E-mail: rrr@ias.edu

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1%more » level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.« less

  8. Quantifying tidal stream disruption in a simulated Milky Way

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg

    2017-09-01

    Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.

  9. Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.

    2016-12-01

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  10. The fate of the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  11. Revealing the Host Galaxy of a Quasar 2175 Å Dust Absorber at z =  2.12

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Brammer, Gabriel; Ge, Jian; Prochaska, J. Xavier; Lundgren, Britt

    2018-04-01

    We report the first detection of the host galaxy of a strong 2175 Å dust absorber at z = 2.12 toward the background quasar SDSS J121143.42+083349.7 using Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3) IR F140W direct imaging and G141 grism spectroscopy. The spectroscopically confirmed host galaxy is located at a small impact parameter of ∼5.5 kpc (∼0.″65). The F140W image reveals a disk-like morphology with an effective radius of 2.24 ± 0.08 kpc. The extracted 1D spectrum is dominated by a continuum with weak emission lines ([O III] and [O II]). The [O III]-based unobscured star formation rate (SFR) is 9.4 ± 2.6 M ⊙ yr‑1, assuming an [O III]/Hα ratio of 1. The moderate 4000 Å break (Dn(4000) index ∼1.3) and Balmer absorption lines indicate that the host galaxy contains an evolved stellar population with an estimated stellar mass M * of (3–7) × 1010 M ⊙. The SFR and M * of the host galaxy are comparable to, though slightly lower than, those of typical emission-selected galaxies at z ∼ 2. As inferred from our absorption analysis in Ma et al., the host galaxy is confirmed to be a chemically enriched, evolved, massive, and star-forming disk-like galaxy that is likely in the transition from a blue star-forming galaxy to a red quiescent galaxy.

  12. Introduction

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.

    2018-06-01

    Dwarf galaxies are excellent laboratories of chemical evolution. Many dwarf galaxies have simple star formation histories with very low average star formation rates. These conditions simplify models of chemical evolution and facilitate the identification of sites of nucleosynthesis. Dwarf galaxies also host extremely metal-poor stars, which sample the ejecta of the first generations of supernovae in the universe. This meeting-in-a-meeting, "Stellar Abundances in Dwarf Galasxies," will recognize the importance of dwarf galaxies in learning about the creation and evolution of the elements. Topics include: * the most metal-poor stars * the connection between dwarf galaxies and the Milky Way halo * dwarf galaxies as the paragons of r-process nucleosynthesis * modern techniques in stellar abundance measurements * recent advances in chemical evolution modelingI will give a very brief introduction to set the stage for the meeting.

  13. Habitable Zone Evolution

    NASA Astrophysics Data System (ADS)

    Waltham, D.; Lota, J.

    2012-12-01

    The location of the habitable zone around a star depends upon stellar luminosity and upon the properties of a potentially habitable planet such as its mass and near-surface volatile inventory. Stellar luminosity generally increases as a star ages whilst planetary properties change through time as a consequence of biological and geological evolution. Hence, the location of the habitable zone changes through time as a result of both stellar evolution and planetary evolution. Using the Earth's Phanerozoic temperature history as a constraint, it is shown that changes in our own habitable zone over the last 540 My have been dominated by planetary evolution rather than solar evolution. Furthermore, sparse data from earlier times suggests that planetary evolution may have dominated habitable zone development throughout our biosphere's history. Hence, the existence of a continuously habitable zone depends upon accidents of complex bio-geochemical evolution more than it does upon relatively simple stellar-evolution. Evolution of the inner margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations. Evolution of the outer margin of the habitable zone through time using three different estimates for climate sensitivity. The dashed line shows a typical predicted evolution assuming this was driven simply by a steady increase in solar luminosity. Solar evolution does not account for the observations.

  14. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  15. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-05-30

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.

  16. Selective Attention and Control of Action: Comparative Psychology of an Artificial, Evolved Agent and People

    ERIC Educational Resources Information Center

    Ward, Robert; Ward, Ronnie

    2008-01-01

    This study examined the selective attention abilities of a simple, artificial, evolved agent and considered implications of the agent's performance for theories of selective attention and action. The agent processed two targets in continuous time, catching one and then the other. This task required many cognitive operations, including prioritizing…

  17. A Deep Look at the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42

  18. Evolution of Supernova Remnants Near the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, A.; Piran, T.; Sari, R.

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less

  19. Advanced Spectral Library (ASTRAL): Atomic Fluorescence in Cool, Evolved Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, Ken G.; Nielsen, Krister E.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres) collected a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality STIS UV echelle spectra are available from the HST archive and from the Univ. of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/) and will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years. In this paper, we extend our study of the very rich emission-line spectra of the four evolved K-M stars in the sample, Beta Gem (K0 IIIb), Gamma Dra (K5 III), Gamma Cru (M3.4 III), and Alpha Ori (M2 Iab), to study the atomic fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work (e.g. Carpenter 1988, etc.) and newly identified in our current, on-going analysis of these extraordinary ASTRAL STIS spectra.

  20. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum veiling is r(sub k) is greater than or equal to 4.6. Its low luminosity (2 solar masses) and high veiling dictate that its central protostar is very low mass, M is approx. 0.1 solar masses. We also evaluate multi-epoch X ray data along with these spectra and conclude that the X ray variabilities of these sources are not directly related to their protostellar rotation velocities.

  1. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  2. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  3. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  4. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4

  6. Optical and Near-Infrared Observations of SN 2013DX Associated with GRB 130702A

    NASA Technical Reports Server (NTRS)

    Toy, V. L.; Cenko, S. B.; Silverman, J. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Bersier, D.; Perley, D. A.; Margutti, R.; Bellm, E.; hide

    2016-01-01

    We present optical and near-infrared (NIR) light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be E(sub gamma, iso) = 6.4(+1.3/-1.0) x 10(exp 50) erg (1 keV to 10 MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed g'r'i'z' light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves approx. 20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined SNe Ic, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of approx. 21,000 km/s. We construct a quasi-bolometric (g'r'z'yJ) light curve for SN 2013dx, only the fifth GRB-associated SN with extensive NIR coverage and the third with a bolometric light curve extending beyond (Delta)t > 40 days. Together with the measured photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a Ni-56 mass of M(sub Ni) = 0.37+/- 0.01 Stellar Mass, an ejecta mass of M(sub ej) = 3.1+/- 0.1 Stellar Mass, and a kinetic energy of E(sub K) = (8.2+/- 0.43) x 10(exp 51) erg (statistical uncertainties only), consistent with previous GRB-associated supernovae. When considering the ensemble population of GRB-associated supernovae, we find no correlation between the mass of synthesized Ni-56 and high-energy properties, despite clear predictions from numerical simulations that M(sub Ni) should correlate with the degree of asymmetry. On the other hand, M(sub Ni) clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events.

  7. 25 Orionis: A Kinematically Distinct 10 Myr Old Group in Orion OB1a

    NASA Astrophysics Data System (ADS)

    Briceño, César; Hartmann, Lee; Hernández, Jesús; Calvet, Nuria; Vivas, A. Katherina; Furesz, Gabor; Szentgyorgyi, Andrew

    2007-06-01

    We report here on the photometric and kinematic properties of a well-defined group of nearly 200 low-mass pre-main-sequence stars, concentrated within ~1° of the early-B star 25 Ori, in the Orion OB1a subassociation. We refer to this stellar aggregate as the 25 Orionis group. The group also harbors the Herbig Ae/Be star V346 Ori and a dozen other early-type stars with photometry, parallaxes, and some with IR excess emission, indicative of group membership. The number of high- and low-mass stars is in agreement with expectations from a standard initial mass function. The velocity distribution for the low-mass stars shows a narrow peak at 19.7 km s-1, offset ~-10 km s-1 from the velocity characterizing the younger stars of the Ori OB1b subassociation, and -4 km s-1 from the velocity of widely spread young stars of the Ori OB1a population; this result provides new and compelling evidence that the 25 Ori group is a distinct kinematic entity, and that considerable space and velocity structure is present in the Ori OB1a subassociation. The low-mass members follow a well-defined band in the color-magnitude diagram, consistent with an isochronal age of ~7-10 Myr. The ~2 time drop in the overall Li I equivalent widths and accretion fraction between the younger Ori OB1b and the 25 Ori group is consistent with the latter being significantly older. In a simple-minded kinematic evolution scenario, the 25 Ori group may represent the evolved counterpart of the younger σ Ori cluster. The 25 Ori stellar aggregate is the most populous ~10 Myr sample yet known within 500 pc, setting it as an excellent laboratory to study the evolution of solar-like stars and protoplanetary disks. Based on observations obtained at the Llano del Hato National Astronomical Observatory of Venezuela, operated by CIDA for the Ministerio de Ciencia y Tecnología the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona; and the Fred Lawrence Whipple Observatory of the Smithsonian Institution.

  8. RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.

    2014-12-01

    RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z ≈ 2 clusters.« less

  9. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  10. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize any real planetary systems of interest.

  11. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda; Young, Patrick A.

    2017-01-01

    For my dissertation under the supervision of Dr. Young, I investigate how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of the classical HZ - the range of distances from a star over which liquid water could exist on a planet's surface - determined primarily by the host star's luminosity and spectral characteristics. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a more complete understanding of what factors play a role in creating the “habitable” conditions of a planet. I discuss how stellar evolution is integral to how we define a HZ, and how this work will apply to the search for habitable Earth-like planets in the future.I developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements (and not just total metallicity) can impact evolutionary lifetime. The time-dependent HZ boundaries have also been calculated for each stellar track. Additionally, I recently created a grid of models for M-dwarfs, and I am currently working to make preliminary estimates of stellar activity vs. age for each representative star in the catalog.My results indicate that to gauge the habitability potential of a given system, both the evolutionary history as well as the detailed chemical characterization of the host star must be considered. This work can be used to assess whether a planet discovered in the HZ of its star has had sufficient time to develop a biosphere capable of producing detectable biosignatures. The catalog is designed for use by the astrobiology and exoplanet communities to characterize stars and their surrounding HZs for real planetary candidates of interest.

  12. Symposium Summary

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.

    2017-11-01

    This proceeding summarizes the highlights of IAU 329, ``The Lives and Death-Throes of Massive Stars'', held in Auckland, NZ from 28 Nov - 2 Dec. I consider the progress that has been made in the field over the course of these ``beach symposia'', outline the overall content of the conference, and discuss how the current subfields in massive stellar astrophysics have evolved in recent years. I summarize some of the new results and innovative approaches that were presented during the symposium, and conclude with a discussion of how current and future resources in astronomy can serve as valuable tools for studying massive stars in the coming years.

  13. Chemical enrichment in Ultra-Faint Dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Romano, Donatella

    2016-08-01

    Our view of the Milky Way's satellite population has radically changed after the discovery, ten years ago, of the first Ultra-Faint Dwarf galaxies (UFDs). These extremely faint, dark-matter dominated, scarcely evolved stellar systems are found in ever-increasing number in our cosmic neighbourhood and constitute a gold-mine for studies of early star formation conditions and early chemical enrichment pathways. Here we show what can be learned from the measurements of chemical abundances in UFD stars read through the lens of chemical evolution studies, point out the limitations of the classic approach, and discuss the way to go to improve the models.

  14. 3D Simulations of Convection: From the Sun Toward Evolved Stars

    NASA Astrophysics Data System (ADS)

    Höfner, Susanne

    2018-04-01

    Basic physical considerations and detailed numerical simulations predict a dramatic increase in the sizes of convection cells during late phases of stellar evolution. The recent progress in high-angular-resolution techniques has made it possible to observe surface structures on several nearby giants and supergiants for a wide range of wavelengths. Such observations provide much-needed checkpoints for convection theory, in addition to the detailed comparisons of models and observations for the sun. In this talk I will give an overview of current 3D convection models for different types of stars and discuss related observable phenomena.

  15. Galaxy evolution in clusters since z~1

    NASA Astrophysics Data System (ADS)

    Aragon-Salamanca, Alfonso

    2010-09-01

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  16. Galaxy Evolution in Clusters Since z ~ 1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  17. REVIEWS OF TOPICAL PROBLEMS: Neutrinos from stellar core collapses: present status of experiments

    NASA Astrophysics Data System (ADS)

    Ryazhskaya, Ol'ga G.

    2006-10-01

    The responses of the existing underground detectors to neutrino bursts from collapsing stars evolving in accordance with various models are considered. The interpretation of the results of detecting neutrino radiation from the SN1987A supernova explosion is discussed. A combination of large scintillation counters interlayered with iron slabs (as a target for the electron neutrino interaction) is suggested as a detector for core collapse neutrinos. Bounds for the galactic rate of core collapses based on 28 years of observations by neutrino telescopes of RAS INR, LSD, and LVD detectors are presented.

  18. Special-purpose computing for dense stellar systems

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    2007-08-01

    I'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.

  19. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less

  20. Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation

    NASA Astrophysics Data System (ADS)

    Su, Kung-Yi; Hopkins, Philip F.; Hayward, Christopher C.; Faucher-Giguère, Claude-André; Kereš, Dušan; Ma, Xiangcheng; Robles, Victor H.

    2017-10-01

    Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback In Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological 'zoom-in' simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modelled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being overpredicted by factors of ˜10-100. Without feedback, neither galactic winds nor volume-filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scaleheights with unphysically dense clumps congregating at the galactic centre. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 1010-1013 M⊙, the additional physics investigated here (magnetohydrodynamic, conduction, viscosity, metal diffusion) have only weak (˜10 per cent-level) effects on regulating SFR and altering the balance of phases, outflows or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities and feedback. We add the caveat that active galactic nucleus feedback is not included in the present work.

  1. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less

  2. Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting; Kudritzki, Rolf-Peter; Kewley, Lisa J.; Zahid, H. Jabran; Dopita, Michael A.; Bresolin, Fabio; Rupke, David S. N.

    2015-04-01

    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [O III]/Hβ, [N II]/Hα, and [N II]/[O II] line ratios. The two derived metallicity gradients are usually in good agreement within ± 0.14 dex R_{25}^{-1} (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionization parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8 < log (M*/M⊙) < 11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex kpc-1, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex R_{25}^{-1}, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disc under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (≫0.3). These models imply low current mass accretion rates ( ≲ 0.3 × SFR), and low-mass outflow rates ( ≲ 3 × SFR) in local field star-forming galaxies.

  3. UV observations of blue stragglers and population 2 K dwarfs

    NASA Technical Reports Server (NTRS)

    Carney, B. W.; Bond, H. E.

    1986-01-01

    Blue stragglers are stars, found usually in either open or globular clusters, that appear to lie on the main sequence, but are brighter and bluer than the cluster turn-off. Currently, two rival models are invoked to explain this apparently pathological behavior: internal mixing (so that fresh fuel is brought into the stellar core); and mass transfer (by which a normal main sequence star acquires mass from an evolving nearby companion and so moves up the main sequence). The latter model predicts that in the absence of complete mass transfer (i.e., coalescence), blue stragglers should be binary systems with the fainter star in a post-main sequence evolutionary state. It is important to ascertain the cause of this phenomenon since stellar evolution models of main sequence stars play such a vital role in astronomy. If mass transfer is involved, one may easily exclude binaries from age determinations of clusters, but if mixing is the cause, our age determinations will be much less accurate unless we can determine whether all stars or only some mix, and what causes the mixing to occur at all.

  4. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  5. Spin Dependence in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert

    2018-01-01

    A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.

  6. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.edu

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute tomore » the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.« less

  7. Planetary nebulae: 20 years of Hubble inquiry

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  8. The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Kane, Stephen R.

    2017-12-01

    The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1's planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the star’s activity and its effect on the planets. We analyze previously published space- and ground-based light curves and show the photometrically determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the “cosmic shoreline” to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.

  9. Star clusters in evolving galaxies

    NASA Astrophysics Data System (ADS)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  10. Discoveries, Achievements, and Personalities of the Women Who Evolved the Harvard Classification of Stellar Spectra: Williamina Fleming, Antonia Maury, and Annie Jump Cannon.

    NASA Astrophysics Data System (ADS)

    Welther, Barbara L.

    2010-01-01

    In 1915, the year in which Cannon (1863-1941) completed her work of classifying stars for The Henry Draper Catalogue, she published a popular article entitled, "Pioneering in the Classification of Stellar Spectra.” In it she gave a historical overview of the field in nineteenth-century Europe. She also detailed the context for the structured and routine work she and her colleagues had been engaged in for several years in America. The motivators that kept Cannon and the other women working diligently were the exciting prospect of making new discoveries, the reward of publicity, and their own personal pride. Usually, the discoveries consisted of finding a peculiar type of spectrum and identifying the star as a nova or variable. Such a discovery often resulted in a newspaper headline about the star and a story about the discoverer. This paper will outline the contributions each woman made to the classification system, her style of working, the papers she wrote and published, and the rewards she reaped for her dedication to the field.

  11. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  12. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  13. Early dynamical evolution of young substructured clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  14. Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study.

    PubMed

    Chernetsov, Nikita; Kishkinev, Dmitry; Kosarev, Vladislav; Bolshakov, Casimir V

    2011-08-01

    Migratory birds are able to use the sun and associated polarised light patterns, stellar cues and the geomagnetic field for orientation. No general agreement has been reached regarding the hierarchy of orientation cues. Recent data from naturally migrating North American Catharus thrushes suggests that they calibrate geomagnetic information daily from twilight cues. Similar results have been shown in caged birds in a few studies but not confirmed in others. We report that free-flying European migrants, song thrushes Turdus philomelos, released after pre-exposure to a horizontally rotated magnetic field, do not recalibrate their magnetic compass from solar cues, but rather show a simple domination of either the magnetic or the stellar compass. We suggest that different songbird species possess different hierarchies of orientation cues, depending on the geographic and ecological challenges met by the migrants.

  15. On the Chemical Mixing Induced by Internal Gravity Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; McElwaine, J. N.

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less

  16. Interactive spectral analyzer and comparator (ISAAC)

    NASA Astrophysics Data System (ADS)

    Latković, O.; Cséki, A.; Vince, I.

    2003-10-01

    We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.

  17. Cellular packing, mechanical stress and the evolution of multicellularity

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  18. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved stars, we may learn more about the later parts of the life of stardust; e.g., its residence in the interstellar medium, its time spent in molecular clouds, and its inclusion into solid bodies in future planetary systems.

  19. Hot-Jupiter Breakfasts Realign Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near the star (where they have periods of ~2 days) and get stranded as the gas disk evaporates around them. Tidal interactions can cause these planets to become ingested by the host star within 1 Gyr. Using Monte Carlo simulations, the authors model these star-planet tidal interactions and evolve a total of 10^6 systems: half with hot (Teff = 6400 K), main-sequence hosts, and half with cool (Teff = 5500 K), solar-type hosts. The initial obliquities — the angle between the stellar spin and the planets' orbital angular momentum vectors — are randomly distributed between 0° and 180°. The authors find that early stellar ingestion of planets might be very common: to match observations, roughly half of all stellar hosts must ingest an HJ early in their lifetimes! This scenario results in a good match with observational data: about 50% of cool hosts' spins become roughly aligned with the orbital plane of their planets after they absorb the orbital angular momentum of the HJ they ingest. Hot stars, on the other hand, generally retain their random distributions of obliquity, because their angular momentum is typically higher than the orbital angular momentum of the ingested planet. Citation: Titos Matsakos and Arieh Königl 2015, ApJ, 809, L20. doi: 10.1088/2041-8205/809/2/L20

  20. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocvirk, P.

    2010-01-20

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us tomore » define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations is impossible with current and planned telescopes.« less

Top