Sample records for evolving artificial neural

  1. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  2. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  3. Autonomous evolution of topographic regularities in artificial neural networks.

    PubMed

    Gauci, Jason; Stanley, Kenneth O

    2010-07-01

    Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.

  4. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  5. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  6. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  7. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  8. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  10. ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION

    PubMed Central

    Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.

    2012-01-01

    Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561

  11. Investigation of rat exploratory behavior via evolving artificial neural networks.

    PubMed

    Costa, Ariadne de Andrade; Tinós, Renato

    2016-09-01

    Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  13. Nature vs Nurture: Effects of Learning on Evolution

    NASA Astrophysics Data System (ADS)

    Nagrani, Nagina

    In the field of Evolutionary Robotics, the design, development and application of artificial neural networks as controllers have derived their inspiration from biology. Biologists and artificial intelligence researchers are trying to understand the effects of neural network learning during the lifetime of the individuals on evolution of these individuals by qualitative and quantitative analyses. The conclusion of these analyses can help develop optimized artificial neural networks to perform any given task. The purpose of this thesis is to study the effects of learning on evolution. This has been done by applying Temporal Difference Reinforcement Learning methods to the evolution of Artificial Neural Tissue controller. The controller has been assigned the task to collect resources in a designated area in a simulated environment. The performance of the individuals is measured by the amount of resources collected. A comparison has been made between the results obtained by incorporating learning in evolution and evolution alone. The effects of learning parameters: learning rate, training period, discount rate, and policy on evolution have also been studied. It was observed that learning delays the performance of the evolving individuals over the generations. However, the non zero learning rate throughout the evolution process signifies natural selection preferring individuals possessing plasticity.

  14. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    PubMed Central

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826

  15. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    PubMed

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.

  16. QSRR using evolved artificial neural network for 52 common pharmaceuticals and drugs of abuse in hair from UPLC-TOF-MS.

    PubMed

    Noorizadeh, Hadi; Farmany, Abbas; Narimani, Hojat; Noorizadeh, Mehrab

    2013-05-01

    A quantitative structure-retention relationship (QSRR) study based on an artificial neural network (ANN) was carried out for the prediction of the ultra-performance liquid chromatography-Time-of-Flight mass spectrometry (UPLC-TOF-MS) retention time (RT) of a set of 52 pharmaceuticals and drugs of abuse in hair. The genetic algorithm was used as a variable selection tool. A partial least squares (PLS) method was used to select the best descriptors which were used as input neurons in neural network model. For choosing the best predictive model from among comparable models, square correlation coefficient R(2) for the whole set calculated based on leave-group-out predicted values of the training set and model-derived predicted values for the test set compounds is suggested to be a good criterion. Finally, to improve the results, structure-retention relationships were followed by a non-linear approach using artificial neural networks and consequently better results were obtained. This also demonstrates the advantages of ANN. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Overview of artificial neural networks.

    PubMed

    Zou, Jinming; Han, Yi; So, Sung-Sau

    2008-01-01

    The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.

  18. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    NASA Astrophysics Data System (ADS)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  19. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    PubMed

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  20. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems

    DTIC Science & Technology

    1991-12-01

    neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input

  2. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Evolutionary robotics simulations help explain why reciprocity is rare in nature

    PubMed Central

    André, Jean-Baptiste; Nolfi, Stefano

    2016-01-01

    The relative rarity of reciprocity in nature, contrary to theoretical predictions that it should be widespread, is currently one of the major puzzles in social evolution theory. Here we use evolutionary robotics to solve this puzzle. We show that models based on game theory are misleading because they neglect the mechanics of behavior. In a series of experiments with simulated robots controlled by artificial neural networks, we find that reciprocity does not evolve, and show that this results from a general constraint that likely also prevents it from evolving in the wild. Reciprocity can evolve if it requires very few mutations, as is usually assumed in evolutionary game theoretic models, but not if, more realistically, it requires the accumulation of many adaptive mutations. PMID:27616139

  4. Evolving a Neural Olfactorimotor System in Virtual and Real Olfactory Environments

    PubMed Central

    Rhodes, Paul A.; Anderson, Todd O.

    2012-01-01

    To provide a platform to enable the study of simulated olfactory circuitry in context, we have integrated a simulated neural olfactorimotor system with a virtual world which simulates both computational fluid dynamics as well as a robotic agent capable of exploring the simulated plumes. A number of the elements which we developed for this purpose have not, to our knowledge, been previously assembled into an integrated system, including: control of a simulated agent by a neural olfactorimotor system; continuous interaction between the simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and background odor; the systematic use of artificial evolution driven by olfactorimotor performance (e.g., time to locate a plume source) to specify parameter values; the incorporation of the realities of an imperfect physical robot using a hybrid model where a physical robot encounters a simulated plume. We close by describing ongoing work toward engineering a high dimensional, reversible, low power electronic olfactory sensor which will allow olfactorimotor neural circuitry evolved in the virtual world to control an autonomous olfactory robot in the physical world. The platform described here is intended to better test theories of olfactory circuit function, as well as provide robust odor source localization in realistic environments. PMID:23112772

  5. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.

  6. CI Controls for Energy and Environment

    NASA Technical Reports Server (NTRS)

    Biondo, Samuel J.

    1996-01-01

    Computational intelligence (CI) is a rapidly evolving field that utilizes life imitating metaphors for guiding model building including, but not limited to neural networks, fuzzy logic, genetic algorithms, artificial life, and hybrid CI paradigms. Although the boundaries between artificial intelligence (AI) and CI are not distinct, their research communities are separate and distinct. CI researchers tend to focus on processing numerical data from sensors, while the AI community generally relies on symbolic computing to capture human knowledge. In both areas, there is a great deal of interest and activity in hybrid systems that can offset the limitations of individual methods, extend their capabilities, and create new capabilities. Examples of the benefits that can accrue from hybrid systems are contained.

  7. The rise of deep learning in drug discovery.

    PubMed

    Chen, Hongming; Engkvist, Ola; Wang, Yinhai; Olivecrona, Marcus; Blaschke, Thomas

    2018-06-01

    Over the past decade, deep learning has achieved remarkable success in various artificial intelligence research areas. Evolved from the previous research on artificial neural networks, this technology has shown superior performance to other machine learning algorithms in areas such as image and voice recognition, natural language processing, among others. The first wave of applications of deep learning in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity predictions and has shown promise in addressing diverse problems in drug discovery. Examples will be discussed covering bioactivity prediction, de novo molecular design, synthesis prediction and biological image analysis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  9. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the linear regression model. This demonstrates the suitability of neural networks to perform such modeling.

  10. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  11. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.

  12. Methodological approaches of health technology assessment.

    PubMed

    Goodman, C S; Ahn, R

    1999-12-01

    In this era of evolving health care systems throughout the world, technology remains the substance of health care. Medical informatics comprises a growing contribution to the technologies used in the delivery and management of health care. Diverse, evolving technologies include artificial neural networks, computer-assisted surgery, computer-based patient records, hospital information systems, and more. Decision-makers increasingly demand well-founded information to determine whether or how to develop these technologies, allow them on the market, acquire them, use them, pay for their use, and more. The development and wider use of health technology assessment (HTA) reflects this demand. While HTA offers systematic, well-founded approaches for determining the value of medical informatics technologies, HTA must continue to adapt and refine its methods in response to these evolving technologies. This paper provides a basic overview of HTA principles and methods.

  13. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  14. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  15. Artificial neural networks in models of specialization, guild evolution and sympatric speciation.

    PubMed

    Holmgren, Noél M A; Norrström, Niclas; Getz, Wayne M

    2007-03-29

    Sympatric speciation can arise as a result of disruptive selection with assortative mating as a pleiotropic by-product. Studies on host choice, employing artificial neural networks as models for the host recognition system in exploiters, illustrate how disruptive selection on host choice coupled with assortative mating can arise as a consequence of selection for specialization. Our studies demonstrate that a generalist exploiter population can evolve into a guild of specialists with an 'ideal free' frequency distribution across hosts. The ideal free distribution arises from variability in host suitability and density-dependent exploiter fitness on different host species. Specialists are less subject to inter-phenotypic competition than generalists and to harmful mutations that are common in generalists exploiting multiple hosts. When host signals used as cues by exploiters coevolve with exploiter recognition systems, our studies show that evolutionary changes may be continuous and cyclic. Selection changes back and forth between specialization and generalization in the exploiters, and weak and strong mimicry in the hosts, where non-defended hosts use the host investing in defence as a model. Thus, host signals and exploiter responses are engaged in a red-queen mimicry process that is ultimately cyclic rather then directional. In one phase, evolving signals of exploitable hosts mimic those of hosts less suitable for exploitation (i.e. the model). Signals in the model hosts also evolve through selection to escape the mimic and its exploiters. Response saturation constraints in the model hosts lead to the mimic hosts finally perfecting its mimicry, after which specialization in the exploiter guild is lost. This loss of exploiter specialization provides an opportunity for the model hosts to escape their mimics. Therefore, this cycle then repeats. We suggest that a species can readily evolve sympatrically when disruptive selection for specialization on hosts is the first step. In a sexual reproduction setting, partial reproductive isolation may first evolve by mate choice being confined to individuals on the same host. Secondly, this disruptive selection will favour assortative mate choice on genotype, thereby leading to increased reproductive isolation.

  16. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  17. Classification of Respiratory Sounds by Using An Artificial Neural Network

    DTIC Science & Technology

    2001-10-28

    CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is

  18. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  19. Trimaran Resistance Artificial Neural Network

    DTIC Science & Technology

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  20. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  1. Angle of Arrival Detection Through Artificial Neural Network Analysis of Optical Fiber Intensity Patterns

    DTIC Science & Technology

    1990-12-01

    ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance

  2. Using artificial neural networks to constrain the halo baryon fraction during reionization

    NASA Astrophysics Data System (ADS)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  3. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  4. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    PubMed

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  5. Artificial Neural Network Analysis System

    DTIC Science & Technology

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  6. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis

    DTIC Science & Technology

    1993-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California 0- I 1 ’(ft ADV "’r-"A THESIS AN EVALUATION OF ARTIFICIAL NEURAL NETWORK MODELING FOR MANPOWER...AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September, 1993 4. TITLE AND SUBTITLE An Evaluation Of Artificial Neural Network 5...unlimited. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis by Brian J. Byrne Captain, United States Marine Corps B.S

  7. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL

  8. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  9. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    PubMed

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling.

    PubMed

    Witkowski, Olaf; Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds' boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other's signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents' ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals.

  11. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  12. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  13. Application of Artificial Neural Network to Optical Fluid Analyzer

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Nishida, Katsuhiko

    1994-04-01

    A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).

  14. Patterns recognition of electric brain activity using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  15. International experience on the use of artificial neural networks in gastroenterology.

    PubMed

    Grossi, E; Mancini, A; Buscema, M

    2007-03-01

    In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.

  16. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  17. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  18. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  19. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  20. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  2. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  3. Implementations of back propagation algorithm in ecosystems applications

    NASA Astrophysics Data System (ADS)

    Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed

    2015-05-01

    Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.

  4. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  5. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  6. NASA JSC neural network survey results

    NASA Technical Reports Server (NTRS)

    Greenwood, Dan

    1987-01-01

    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc.

  7. Automation of Some Operations of a Wind Tunnel Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Buggele, Alvin E.

    1996-01-01

    Artificial neural networks were used successfully to sequence operations in a small, recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings and mach numbers for conditions occurring shortly after startup and extending to fully developed flow. Artificial neural networks were trained and tested for estimating: sensor readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle exit. These results support the thesis that artificial neural networks can be combined with current workstation technology to automate wind tunnel operations.

  8. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  9. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  10. Setup of a Parameterized FE Model for the Die Roll Prediction in Fine Blanking using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.

    2017-09-01

    Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.

  11. Application of artificial neural network to search for gravitational-wave signals associated with short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Harry, Ian W.; Hodge, Kari A.; Kim, Young-Min; Lee, Chang-Hwan; Lee, Hyun Kyu; Oh, John J.; Oh, Sang Hoon; Son, Edwin J.

    2015-12-01

    We apply a machine learning algorithm, the artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts (GRBs). The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability (FAP) is improved by the artificial neural network in comparison to the conventional detection statistic. Specifically, the distance at 50% detection probability at a fixed false positive rate is increased about 8%-14% for the considered waveform models. We also evaluate a few seconds of the gravitational-wave data segment using the trained networks and obtain the FAP. We suggest that the artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short GRBs.

  12. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  13. Calibration of a shock wave position sensor using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    1993-01-01

    This report discusses the calibration of a shock wave position sensor. The position sensor works by using artificial neural networks to map cropped CCD frames of the shadows of the shock wave into the value of the shock wave position. This project was done as a tutorial demonstration of method and feasibility. It used a laboratory shadowgraph, nozzle, and commercial neural network package. The results were quite good, indicating that artificial neural networks can be used efficiently to automate the semi-quantitative applications of flow visualization.

  14. Proceedings of the Organization of 1990 Meeting of International Neural Network Society Jointed with IEEE Held in Washington, DC on January 15 - 19, 1990. Volume 2. Applications Track.

    DTIC Science & Technology

    1990-11-30

    Simonotto Universita’ di Genova Learning from Natural Selection in an Artificial Environment ...................................................... 1...11-92 Ethem Alpaydin Swiss Federal Institute of Technology Framework for Distributed Artificial Neural System Simulation...11-129 David Y. Fong Lockheed Missiles and Space Co. and Christopher Tocci Raytheon Co. Simulation of Artificial Neural

  15. Brain states recognition during visual perception by means of artificial neural network in the different EEG frequency ranges

    NASA Astrophysics Data System (ADS)

    Musatov, V. Yu.; Runnova, A. E.; Andreev, A. V.; Zhuravlev, M. O.

    2018-04-01

    In the present paper, the possibility of classification by artificial neural networks of a certain architecture of ambiguous images is investigated using the example of the Necker cube from the experimentally obtained EEG recording data of several operators. The possibilities of artificial neural network classification of ambiguous images are investigated in the different frequency ranges of EEG recording signals.

  16. Advances in Artificial Neural Networks - Methodological Development and Application

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  17. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  18. Forecasting solar proton event with artificial neural network

    NASA Astrophysics Data System (ADS)

    Gong, J.; Wang, J.; Xue, B.; Liu, S.; Zou, Z.

    Solar proton event (SPE), relatively rare but popular in solar maximum, can bring hazard situation to spacecraft. As a special event, SPE always accompanies flare, which is also called proton flare. To produce such an eruptive event, large amount energy must be accumulated within the active region. So we can investigate the character of the active region and its evolving trend, together with other such as cm radio emission and soft X-ray background to evaluate the potential of SEP in chosen area. In order to summarize the omen of SPEs in the active regions behind the observed parameters, we employed AI technology. Full connecting neural network was chosen to fulfil this job. After constructing the network, we train it with 13 parameters that was able to exhibit the character of active regions and their evolution trend. More than 80 sets of event parameter were defined to teach the neural network to identify whether an active region was potential of SPE. Then we test this model with a data base consisting SPE and non-SPE cases that was not used to train the neural network. The result showed that 75% of the choice by the model was right.

  19. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  20. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  1. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  2. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    PubMed Central

    Adak, M. Fatih; Yumusak, Nejat

    2016-01-01

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124

  3. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    PubMed

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  4. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.

  5. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  6. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior

    PubMed Central

    2012-01-01

    Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685

  7. A Neural Relevance Model for Feature Extraction from Hyperspectral Images, and Its Application in the Wavelet Domain

    DTIC Science & Technology

    2006-08-01

    Nikolas Avouris. Evaluation of classifiers for an uneven class distribution problem. Applied Artificial Intellegence , pages 1-24, 2006. Draft manuscript...data by a hybrid artificial neural network so we may evaluate the classification capabilities of the baseline GRLVQ and our improved GRLVQI. Chapter 4...performance of GRLVQ(I), we compare the results against a baseline classification of the 23-class problem with a hybrid artificial neural network (ANN

  8. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  9. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  10. Does Artificial Neural Network Support Connectivism's Assumptions?

    ERIC Educational Resources Information Center

    AlDahdouh, Alaa A.

    2017-01-01

    Connectivism was presented as a learning theory for the digital age and connectivists claim that recent developments in Artificial Intelligence (AI) and, more specifically, Artificial Neural Network (ANN) support their assumptions of knowledge connectivity. Yet, very little has been done to investigate this brave allegation. Does the advancement…

  11. David Palchak | NREL

    Science.gov Websites

    Electrical load forecasting with artificial neural networks Demand-side management optimization with Matlab -58491. D. Palchak, S. Suryanarayanan, and D. Zimmerle. "An Artificial Neural Network in Short-Term

  12. Neural networks to predict exosphere temperature corrections

    NASA Astrophysics Data System (ADS)

    Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe

    2013-10-01

    Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.

  13. Machinery Monitoring and Diagnostics Using Pseudo Wigner-Ville Distribution and Backpropagation Neural Network

    DTIC Science & Technology

    1993-09-01

    frequency, which when used as an input to an artificial neural network will aide in the detection of location and severity of machinery faults...Research is presented where the union of an artificial neural network , utilizing the highly successful backpropagation paradigm, and the pseudo wigner

  14. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  15. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    NASA Astrophysics Data System (ADS)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  16. The Evolutionary Origins of Hierarchy

    PubMed Central

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  17. The Evolutionary Origins of Hierarchy.

    PubMed

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  18. Artificial and Bayesian Neural Networks

    PubMed

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License

  19. Artificial neural network in cosmic landscape

    NASA Astrophysics Data System (ADS)

    Liu, Junyu

    2017-12-01

    In this paper we propose that artificial neural network, the basis of machine learning, is useful to generate the inflationary landscape from a cosmological point of view. Traditional numerical simulations of a global cosmic landscape typically need an exponential complexity when the number of fields is large. However, a basic application of artificial neural network could solve the problem based on the universal approximation theorem of the multilayer perceptron. A toy model in inflation with multiple light fields is investigated numerically as an example of such an application.

  20. A critical review on the applications of artificial neural networks in winemaking technology.

    PubMed

    Moldes, O A; Mejuto, J C; Rial-Otero, R; Simal-Gandara, J

    2017-09-02

    Since their development in 1943, artificial neural networks were extended into applications in many fields. Last twenty years have brought their introduction into winery, where they were applied following four basic purposes: authenticity assurance systems, electronic sensory devices, production optimization methods, and artificial vision in image treatment tools, with successful and promising results. This work reviews the most significant approaches for neural networks in winemaking technologies with the aim of producing a clear and useful review document.

  1. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  2. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  3. Reconstruction of magnetic configurations in W7-X using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team

    2018-05-01

    It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.

  4. Application of artificial neural network for heat transfer in porous cone

    NASA Astrophysics Data System (ADS)

    Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.

  5. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  6. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  7. Modeling Career Counselor Decisions with Artificial Neural Networks: Predictions of Fit across a Comprehensive Occupational Map.

    ERIC Educational Resources Information Center

    Carson, Andrew D.; Bizot, Elizabeth B.; Hendershot, Peggy E.; Barton, Margaret G.; Garvin, Mary K.; Kraemer, Barbara

    1999-01-01

    Career recommendations were made based on aptitude scores of 335 high school freshmen. Artificial neural networks were used to map recommendations to 12 occupational clusters. Overall accuracy of neural networks (.80) approached that of discriminant function analysis (.84). The two methods had different strengths and weaknesses. (SK)

  8. Application of artificial neural networks to the design optimization of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  9. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  10. Doubly stochastic Poisson processes in artificial neural learning.

    PubMed

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  11. Artificial intelligence: Deep neural reasoning

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  12. Basic emotions and adaptation. A computational and evolutionary model.

    PubMed

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions.

  13. Applying artificial neural networks to predict communication risks in the emergency department.

    PubMed

    Bagnasco, Annamaria; Siri, Anna; Aleo, Giuseppe; Rocco, Gennaro; Sasso, Loredana

    2015-10-01

    To describe the utility of artificial neural networks in predicting communication risks. In health care, effective communication reduces the risk of error. Therefore, it is important to identify the predictive factors of effective communication. Non-technical skills are needed to achieve effective communication. This study explores how artificial neural networks can be applied to predict the risk of communication failures in emergency departments. A multicentre observational study. Data were collected between March-May 2011 by observing the communication interactions of 840 nurses with their patients during their routine activities in emergency departments. The tools used for our observation were a questionnaire to collect personal and descriptive data, level of training and experience and Guilbert's observation grid, applying the Situation-Background-Assessment-Recommendation technique to communication in emergency departments. A total of 840 observations were made on the nurses working in the emergency departments. Based on Guilbert's observation grid, the output variables is likely to influence the risk of communication failure were 'terminology'; 'listening'; 'attention' and 'clarity', whereas nurses' personal characteristics were used as input variables in the artificial neural network model. A model based on the multilayer perceptron topology was developed and trained. The receiver operator characteristic analysis confirmed that the artificial neural network model correctly predicted the performance of more than 80% of the communication failures. The application of the artificial neural network model could offer a valid tool to forecast and prevent harmful communication errors in the emergency department. © 2015 John Wiley & Sons Ltd.

  14. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less

  15. The image recognition based on neural network and Bayesian decision

    NASA Astrophysics Data System (ADS)

    Wang, Chugege

    2018-04-01

    The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.

  16. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea.

    PubMed

    Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie

    2014-01-01

    Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.

  17. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  18. Hierarchical Process Control of Chemical Vapor Infiltration.

    DTIC Science & Technology

    1995-05-31

    convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.

  19. Combined Use of Tissue Morphology, Neural Network Analysis of Chromatin Texture and Clinical Variables to Predict Prostate Cancer Agressiveness from Biopsy Water

    DTIC Science & Technology

    2000-10-01

    Purpose: To combine clinical, serum, pathologic and computer derived information into an artificial neural network to develop/validate a model to...Development of an artificial neural network (year 02). Prospective validation of this model (projected year 03). All models will be tested and

  20. Combined Use of Tissue Morphology, Neural Network Analysis of Chromatin Texture & Clinical Variables to Predict Prostate Cancer Agressiveness from Biopsy Material

    DTIC Science & Technology

    1999-10-01

    THE PURPOSE OF THIS REPORT IS TO COMBINE CLINICAL, SERUM, PATHOLOGICAL AND COMPUTER DERIVED INFORMATION INTO AN ARTIFICIAL NEURAL NETWORK TO DEVELOP...01). Development of a artificial neural network model (year 02). Prospective validation of this model (projected year 03). All models will be tested

  1. Cotton genotypes selection through artificial neural networks.

    PubMed

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  2. A comparison of polynomial approximations and artificial neural nets as response surfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.; Barthelemy, Jean-Francois M.

    1992-01-01

    Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net, and the number of designs needed to train an approximation is discussed.

  3. Optimization Study of Hydrogen Gas Adsorption on Zig-zag Single-walled Carbon Nanotubes: The Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Nasruddin; Lestari, M.; Supriyadi; Sholahudin

    2018-03-01

    The use of hydrogen gas in fuel cell technology has a huge opportunity to be applied in upcoming vehicle technology. One of the most important problems in fuel cell technology is the hydrogen storage. The adsorption of hydrogen in carbon-based materials attracts a lot of attention because of its reliability. This study investigated the adsorption of hydrogen gas in Single-walled Carbon Nano Tubes (SWCNT) with chilarity of (0, 12), (0, 15), and (0, 18) to find the optimum chilarity. Artificial Neural Networks (ANN) can be used to predict the hydrogen storage capacity at different pressure and temperature conditions appropriately, using simulated series of data. The Artificial Neural Network is modeled as a predictor of the hydrogen adsorption capacity which provides solutions to some deficiencies in molecular dynamics (MD) simulations. In a previous study, ANN configurations have been developed for 77k, 233k, and 298k temperatures in hydrogen gas storage. To prepare this prediction, ANN is modeled to find out the configurations that exist in the set of training and validation of specified data selection, the distance between data, and the number of neurons that produce the smallest error. This configuration is needed to make an accurate artificial neural network. The configuration of neural network was then applied to this research. The neural network analysis results show that the best configuration of artificial neural network in hydrogen storage is at 233K temperature i.e. on SWCNT with chilarity of (0.12).

  4. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    DOT National Transportation Integrated Search

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  5. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  6. Artificial neural networks in evaluation and optimization of modified release solid dosage forms.

    PubMed

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-10-18

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms.

  7. Artificial Neural Networks in Evaluation and Optimization of Modified Release Solid Dosage Forms

    PubMed Central

    Ibrić, Svetlana; Djuriš, Jelena; Parojčić, Jelena; Djurić, Zorica

    2012-01-01

    Implementation of the Quality by Design (QbD) approach in pharmaceutical development has compelled researchers in the pharmaceutical industry to employ Design of Experiments (DoE) as a statistical tool, in product development. Among all DoE techniques, response surface methodology (RSM) is the one most frequently used. Progress of computer science has had an impact on pharmaceutical development as well. Simultaneous with the implementation of statistical methods, machine learning tools took an important place in drug formulation. Twenty years ago, the first papers describing application of artificial neural networks in optimization of modified release products appeared. Since then, a lot of work has been done towards implementation of new techniques, especially Artificial Neural Networks (ANN) in modeling of production, drug release and drug stability of modified release solid dosage forms. The aim of this paper is to review artificial neural networks in evaluation and optimization of modified release solid dosage forms. PMID:24300369

  8. Computational properties of networks of synchronous groups of spiking neurons.

    PubMed

    Dayhoff, Judith E

    2007-09-01

    We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.

  9. Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks

    PubMed Central

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480

  10. Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks.

    PubMed

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.

  11. Artificial neural network classification using a minimal training set - Comparison to conventional supervised classification

    NASA Technical Reports Server (NTRS)

    Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin

    1990-01-01

    Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.

  12. The genotype-phenotype map of an evolving digital organism.

    PubMed

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  13. The genotype-phenotype map of an evolving digital organism

    PubMed Central

    Zaman, Luis; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039

  14. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  15. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  16. Are artificial neural networks black boxes?

    PubMed

    Benitez, J M; Castro, J L; Requena, I

    1997-01-01

    Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.

  17. A review of evidence of health benefit from artificial neural networks in medical intervention.

    PubMed

    Lisboa, P J G

    2002-01-01

    The purpose of this review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in the medical domains of oncology, critical care and cardiovascular medicine. The primary source of publications is PUBMED listings under Randomised Controlled Trials and Clinical Trials. The rĵle of neural networks is introduced within the context of advances in medical decision support arising from parallel developments in statistics and artificial intelligence. This is followed by a survey of published Randomised Controlled Trials and Clinical Trials, leading to recommendations for good practice in the design and evaluation of neural networks for use in medical intervention.

  18. Multispectral confocal microscopy images and artificial neural nets to monitor the photosensitizer uptake and degradation in Candida albicans cells

    NASA Astrophysics Data System (ADS)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Guimarães, Francisco E. G.

    2017-07-01

    This study clearly demonstrates that multispectral confocal microscopy images analyzed by artificial neural networks provides a powerful tool to real-time monitoring photosensitizer uptake, as well as photochemical transformations occurred.

  19. Nanophotonic particle simulation and inverse design using artificial neural networks.

    PubMed

    Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin

    2018-06-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.

  20. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    NASA Astrophysics Data System (ADS)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  1. Analysis Resilient Algorithm on Artificial Neural Network Backpropagation

    NASA Astrophysics Data System (ADS)

    Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy

    2017-12-01

    Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.

  2. Quantitative Analysis of Ca, Mg, and K in the Roots of Angelica pubescens f. biserrata by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.

    2018-03-01

    Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.

  3. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network development. The changes were to include evaluation tools that can be applied to neural networks at each phase of the software engineering life cycle. The result was a formal evaluation approach to increase the product quality of systems that use neural networks for their implementation.

  4. Brain potentials predict learning, transmission and modification of an artificial symbolic system.

    PubMed

    Lumaca, Massimo; Baggio, Giosuè

    2016-12-01

    It has recently been argued that symbolic systems evolve while they are being transmitted across generations of learners, gradually adapting to the relevant brain structures and processes. In the context of this hypothesis, little is known on whether individual differences in neural processing capacity account for aspects of 'variation' observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing. We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences: as in previous oddball studies, an mismatch negativity (MMN) was elicited by deviant tones. On day 2, participants learned an artificial signaling system from a trained confederate of the experimenters in a coordination game in which five-tone sequences were associated to affective meanings (emotion-laden pictures of human faces). In a subsequent game with identical structure, participants transmitted and occasionally changed the signaling system learned during the first game. The MMN latency from day 1 predicted learning, transmission and structural modification of signaling systems on day 2. Our study introduces neurophysiological methods into research on cultural transmission and evolution, and relates aspects of variation in symbolic systems to individual differences in neural information processing. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. A CFBPN Artificial Neural Network Model for Educational Qualitative Data Analyses: Example of Students' Attitudes Based on Kellerts' Typologies

    ERIC Educational Resources Information Center

    Yorek, Nurettin; Ugulu, Ilker

    2015-01-01

    In this study, artificial neural networks are suggested as a model that can be "trained" to yield qualitative results out of a huge amount of categorical data. It can be said that this is a new approach applied in educational qualitative data analysis. In this direction, a cascade-forward back-propagation neural network (CFBPN) model was…

  6. Predictive models in urology.

    PubMed

    Cestari, Andrea

    2013-01-01

    Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.

  7. Evolving autonomous learning in cognitive networks.

    PubMed

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  8. Self-organisation and communication in groups of simulated and physical robots.

    PubMed

    Trianni, Vito; Dorigo, Marco

    2006-09-01

    In social insects, both self-organisation and communication play a crucial role for the accomplishment of many tasks at a collective level. Communication is performed with different modalities, which can be roughly classified into three classes: indirect (stigmergic) communication, direct interactions and direct communication. The use of stigmergic communication is predominant in social insects (e.g. the pheromone trails in ants), where, however, direct interactions (e.g. antennation in ants) and direct communication (e.g. the waggle dance in honey bees) can also be observed. Taking inspiration from insect societies, we present an experimental study of self-organising behaviours for a group of robots, which exploit communication to coordinate their activities. In particular, the robots are placed in an arena presenting holes and open borders, which they should avoid while moving coordinately. Artificial evolution is responsible for the synthesis in a simulated environment of the robot's neural controllers, which are subsequently tested on physical robots. We study different communication strategies among the robots: no direct communication, handcrafted signalling and a completely evolved approach. We show that the latter is the most efficient, suggesting that artificial evolution can produce behaviours that are more adaptive than those obtained with conventional design methodologies. Moreover, we show that the evolved controllers produce a self-organising system that is robust enough to be tested on physical robots, notwithstanding the huge gap between simulation and reality.

  9. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2001-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  10. Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup

    DTIC Science & Technology

    2011-02-25

    Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1

  11. Artificial Neural Networks for Modeling Knowing and Learning in Science.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2000-01-01

    Advocates artificial neural networks as models for cognition and development. Provides an example of how such models work in the context of a well-known Piagetian developmental task and school science activity: balance beam problems. (Contains 59 references.) (Author/WRM)

  12. Automatic Exposure Control Device for Digital Mammography

    DTIC Science & Technology

    2004-08-01

    developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neocleous, C.C.; Esat, I.I.; Schizas, C.N.

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  14. Self Improving Methods for Materials and Process Design

    DTIC Science & Technology

    1998-08-31

    using inductive coupling techniques. The first phase of the work focuses on developing an artificial neural network learning for function approximation...developing an artificial neural network learning algorithm for time-series prediction. The third phase of the work focuses on model selection. We have

  15. Back propagation artificial neural network for community Alzheimer's disease screening in China.

    PubMed

    Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao

    2013-01-25

    Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868-0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community.

  16. Back propagation artificial neural network for community Alzheimer's disease screening in China★

    PubMed Central

    Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao

    2013-01-01

    Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868–0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community. PMID:25206598

  17. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    NASA Technical Reports Server (NTRS)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  18. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  19. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  20. Nanophotonic particle simulation and inverse design using artificial neural networks

    PubMed Central

    Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max

    2018-01-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640

  1. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

    PubMed

    de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2018-03-01

    Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

  2. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  3. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  4. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  5. Learning Perfectly Secure Cryptography to Protect Communications with Adversarial Neural Cryptography

    PubMed Central

    2018-01-01

    Researches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one. PMID:29695066

  6. Learning Perfectly Secure Cryptography to Protect Communications with Adversarial Neural Cryptography.

    PubMed

    Coutinho, Murilo; de Oliveira Albuquerque, Robson; Borges, Fábio; García Villalba, Luis Javier; Kim, Tai-Hoon

    2018-04-24

    Researches in Artificial Intelligence (AI) have achieved many important breakthroughs, especially in recent years. In some cases, AI learns alone from scratch and performs human tasks faster and better than humans. With the recent advances in AI, it is natural to wonder whether Artificial Neural Networks will be used to successfully create or break cryptographic algorithms. Bibliographic review shows the main approach to this problem have been addressed throughout complex Neural Networks, but without understanding or proving the security of the generated model. This paper presents an analysis of the security of cryptographic algorithms generated by a new technique called Adversarial Neural Cryptography (ANC). Using the proposed network, we show limitations and directions to improve the current approach of ANC. Training the proposed Artificial Neural Network with the improved model of ANC, we show that artificially intelligent agents can learn the unbreakable One-Time Pad (OTP) algorithm, without human knowledge, to communicate securely through an insecure communication channel. This paper shows in which conditions an AI agent can learn a secure encryption scheme. However, it also shows that, without a stronger adversary, it is more likely to obtain an insecure one.

  7. Identification of Stimulated Sites Using Artificial Neural Networks Based on Transcranial Magnetic Stimulation-Elicited Motor Evoked Potentials and Finger Forces

    NASA Astrophysics Data System (ADS)

    Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu

    Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) vary in their amplitude from trial to trial. To investigate the functions of motor cortex by TMS, it is necessary to confirm the causal relationship between stimulated sites and variable MEPs. We created artificial neural networks to classify sets of variable MEP signals and finger forces into the corresponding stimulated sites. We conducted TMS at three different positions over M1 and measured MEPs of hand and forearm muscles and forces of the index finger in four subjects. We estimated the sites within motor cortex stimulated by TMS based on cortical columnar structure and nerve excitation properties. Finally, we tried to classify the various MEPs and finger forces into three groups using artificial neural networks. MEPs and finger forces varied from trial to trial, even if the stimulating coil was fixed on the subject's head. Our proposed neural network was able to identify the MEPs and finger forces with the corresponding stimulated sites in M1. We proposed the artificial neural networks to confirm the TMS-stimulated sites using various MEPs and evoked finger forces.

  8. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  9. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  10. [The Identification of the Origin of Chinese Wolfberry Based on Infrared Spectral Technology and the Artificial Neural Network].

    PubMed

    Li, Zhong; Liu, Ming-de; Ji, Shou-xiang

    2016-03-01

    The Fourier Transform Infrared Spectroscopy (FTIR) is established to find the geographic origins of Chinese wolfberry quickly. In the paper, the 45 samples of Chinese wolfberry from different places of Qinghai Province are to be surveyed by FTIR. The original data matrix of FTIR is pretreated with common preprocessing and wavelet transform. Compared with common windows shifting smoothing preprocessing, standard normal variation correction and multiplicative scatter correction, wavelet transform is an effective spectrum data preprocessing method. Before establishing model through the artificial neural networks, the spectra variables are compressed by means of the wavelet transformation so as to enhance the training speed of the artificial neural networks, and at the same time the related parameters of the artificial neural networks model are also discussed in detail. The survey shows even if the infrared spectroscopy data is compressed to 1/8 of its original data, the spectral information and analytical accuracy are not deteriorated. The compressed spectra variables are used for modeling parameters of the backpropagation artificial neural network (BP-ANN) model and the geographic origins of Chinese wolfberry are used for parameters of export. Three layers of neural network model are built to predict the 10 unknown samples by using the MATLAB neural network toolbox design error back propagation network. The number of hidden layer neurons is 5, and the number of output layer neuron is 1. The transfer function of hidden layer is tansig, while the transfer function of output layer is purelin. Network training function is trainl and the learning function of weights and thresholds is learngdm. net. trainParam. epochs=1 000, while net. trainParam. goal = 0.001. The recognition rate of 100% is to be achieved. It can be concluded that the method is quite suitable for the quick discrimination of producing areas of Chinese wolfberry. The infrared spectral analysis technology combined with the artificial neural networks is proved to be a reliable and new method for the identification of the original place of Traditional Chinese Medicine.

  11. Introducing Artificial Neural Networks through a Spreadsheet Model

    ERIC Educational Resources Information Center

    Rienzo, Thomas F.; Athappilly, Kuriakose K.

    2012-01-01

    Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…

  12. Artificial-neural-network-based failure detection and isolation

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.

    1998-03-01

    This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.

  13. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  14. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  15. Non-Invasive Detection of CH-46 AFT Gearbox Faults Using Digital Pattern Recognition and Classification Techniques

    DTIC Science & Technology

    1999-05-05

    processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research

  16. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  17. Discovery Learning in Autonomous Agents Using Genetic Algorithms

    DTIC Science & Technology

    1993-12-01

    Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: Prom Dolphin Echoloc-Ation to Artificial Neural Networks." In Meyer and...34 In Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: From Dolphin Echolocation to Artificial Neural Networks." In

  18. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  19. Grandmothering and cognitive resources are required for the emergence of menopause and extensive post-reproductive lifespan.

    PubMed

    Aimé, Carla; André, Jean-Baptiste; Raymond, Michel

    2017-07-01

    Menopause, the permanent cessation of ovulation, occurs in humans well before the end of the expected lifespan, leading to an extensive post-reproductive period which remains a puzzle for evolutionary biologists. All human populations display this particularity; thus, it is difficult to empirically evaluate the conditions for its emergence. In this study, we used artificial neural networks to model the emergence and evolution of allocation decisions related to reproduction in simulated populations. When allocation decisions were allowed to freely evolve, both menopause and extensive post-reproductive life-span emerged under some ecological conditions. This result allowed us to test various hypotheses about the required conditions for the emergence of menopause and extensive post-reproductive life-span. Our findings did not support the Maternal Hypothesis (menopause has evolved to avoid the risk of dying in childbirth, which is higher in older women). In contrast, results supported a shared prediction from the Grandmother Hypothesis and the Embodied Capital Model. Indeed, we found that extensive post-reproductive lifespan allows resource reallocation to increase fertility of the children and survival of the grandchildren. Furthermore, neural capital development and the skill intensiveness of the foraging niche, rather than strength, played a major role in shaping the age profile of somatic and cognitive senescence in our simulated populations. This result supports the Embodied Capital Model rather than the Grand-Mother Hypothesis. Finally, in simulated populations where menopause had already evolved, we found that reduced post-reproductive lifespan lead to reduced children's fertility and grandchildren's survival. The results are discussed in the context of the evolutionary emergence of menopause and extensive post-reproductive life-span.

  20. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  1. Simulation of short-term electric load using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Ivanin, O. A.

    2018-01-01

    While solving the task of optimizing operation modes and equipment composition of small energy complexes or other tasks connected with energy planning, it is necessary to have data on energy loads of a consumer. Usually, there is a problem with obtaining real load charts and detailed information about the consumer, because a method of load-charts simulation on the basis of minimal information should be developed. The analysis of work devoted to short-term loads prediction allows choosing artificial neural networks as a most suitable mathematical instrument for solving this problem. The article provides an overview of applied short-term load simulation methods; it describes the advantages of artificial neural networks and offers a neural network structure for electric loads of residential buildings simulation. The results of modeling loads with proposed method and the estimation of its error are presented.

  2. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  3. Optimum Design of Aerospace Structural Components Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  4. THE CHOICE OF OPTIMAL STRUCTURE OF ARTIFICIAL NEURAL NETWORK CLASSIFIER INTENDED FOR CLASSIFICATION OF WELDING FLAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikora, R.; Chady, T.; Baniukiewicz, P.

    2010-02-22

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less

  5. The Choice of Optimal Structure of Artificial Neural Network Classifier Intended for Classification of Welding Flaws

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.

    2010-02-01

    Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.

  6. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  7. Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.

    PubMed

    Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido

    2014-10-01

    The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.

  8. Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.

    2013-11-01

    Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.

  9. Overcoming rule-based rigidity and connectionist limitations through massively-parallel case-based reasoning

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1990-01-01

    Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version.

  10. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  11. Estimating tree bole volume using artificial neural network models for four species in Turkey.

    PubMed

    Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V

    2010-01-01

    Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.

  12. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  13. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  14. Basic emotions and adaptation. A computational and evolutionary model

    PubMed Central

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual “sensations” based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual’s life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior to a genetically selected pattern in order to maximize the possible reward. We also prove the determinant presence of an internal time perception unit for the robots to achieve the highest performance and survivability across all conditions. PMID:29107988

  15. A neural network approach to burst detection.

    PubMed

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  16. Neural manufacturing: a novel concept for processing modeling, monitoring, and control

    NASA Astrophysics Data System (ADS)

    Fu, Chi Y.; Petrich, Loren; Law, Benjamin

    1995-09-01

    Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.

  17. Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri

    1997-01-01

    Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.

  18. [Artificial neural networks for decision making in urologic oncology].

    PubMed

    Remzi, M; Djavan, B

    2007-06-01

    This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis.

  19. Challenges to the Use of Artificial Neural Networks for Diagnostic Classifications with Student Test Data

    ERIC Educational Resources Information Center

    Briggs, Derek C.; Circi, Ruhan

    2017-01-01

    Artificial Neural Networks (ANNs) have been proposed as a promising approach for the classification of students into different levels of a psychological attribute hierarchy. Unfortunately, because such classifications typically rely upon internally produced item response patterns that have not been externally validated, the instability of ANN…

  20. Evaluation of Physiologically-Based Artificial Neural Network Models to Detect Operator Workload in Remotely Piloted Aircraft Operations

    DTIC Science & Technology

    2016-07-13

    to a computer via Bluetooth . Respiration is captured as a breathing waveform signal using a capacitive pressure sensor, sampled at 18 Hz. The...dropouts in the Bluetooth signal and artifacts caused by body movement. Workload models. Four artificial neural network models were created using

  1. Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.

    ERIC Educational Resources Information Center

    Perkins, Kyle; And Others

    1995-01-01

    This article reports the results of using a three-layer back propagation artificial neural network to predict item difficulty in a reading comprehension test. Three classes of variables were examined: text structure, propositional analysis, and cognitive demand. Results demonstrate that the networks can consistently predict item difficulty. (JL)

  2. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  3. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    USDA-ARS?s Scientific Manuscript database

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  4. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models

    PubMed Central

    de Jesus, Karla; Ayala, Helon V. H.; de Jesus, Kelly; Coelho, Leandro dos S.; Medeiros, Alexandre I.A.; Abraldes, José A.; Vaz, Mário A.P.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo

    2018-01-01

    Abstract Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances. PMID:29599857

  5. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  6. Classification of Acousto-Optic Correlation Signatures of Spread Spectrum Signals Using Artificial Neural Networks

    DTIC Science & Technology

    1989-12-01

    Ohio ’aPw iorlipuab muo i 0I2, AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL...ENG/89D- 10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION SIGNATURES OF SPREAD SPECTRUM SIGNALS USING ARTIFICIAL NEURAL NETWORKS THESIS John W. DeBerry...Captain, USAF AFIT/GE/ENG/89D- 10 Approved for public release; distribution unlimited. AFIT/GE/ENG/89D-10 CLASSIFICATION OF ACOUSTO - OPTIC CORRELATION

  7. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  8. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  9. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  10. Linear genetic programming application for successive-station monthly streamflow prediction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit

    2014-09-01

    In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.

  11. An emergentist perspective on the origin of number sense

    PubMed Central

    2018-01-01

    The finding that human infants and many other animal species are sensitive to numerical quantity has been widely interpreted as evidence for evolved, biologically determined numerical capacities across unrelated species, thereby supporting a ‘nativist’ stance on the origin of number sense. Here, we tackle this issue within the ‘emergentist’ perspective provided by artificial neural network models, and we build on computer simulations to discuss two different approaches to think about the innateness of number sense. The first, illustrated by artificial life simulations, shows that numerical abilities can be supported by domain-specific representations emerging from evolutionary pressure. The second assumes that numerical representations need not be genetically pre-determined but can emerge from the interplay between innate architectural constraints and domain-general learning mechanisms, instantiated in deep learning simulations. We show that deep neural networks endowed with basic visuospatial processing exhibit a remarkable performance in numerosity discrimination before any experience-dependent learning, whereas unsupervised sensory experience with visual sets leads to subsequent improvement of number acuity and reduces the influence of continuous visual cues. The emergent neuronal code for numbers in the model includes both numerosity-sensitive (summation coding) and numerosity-selective response profiles, closely mirroring those found in monkey intraparietal neurons. We conclude that a form of innatism based on architectural and learning biases is a fruitful approach to understanding the origin and development of number sense. This article is part of a discussion meeting issue ‘The origins of numerical abilities'. PMID:29292348

  12. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.

    2016-02-01

    Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.

  14. Feasibility study of robotic neural controllers

    NASA Technical Reports Server (NTRS)

    Magana, Mario E.

    1990-01-01

    The results are given of a feasibility study performed to establish if an artificial neural controller could be used to achieve joint space trajectory tracking of a two-link robot manipulator. The study is based on the results obtained by Hecht-Nielsen, who claims that a functional map can be implemented to a desired degree of accuracy with a three layer feedforward artificial neural network. Central to this study is the assumption that the robot model as well as its parameters values are known.

  15. Self-organized network with a supervised training and its comparison with FALVQ in artificial odor recognition system

    NASA Astrophysics Data System (ADS)

    Kusumoputro, Benyamin; Rostiviani, Linda; Saptawijaya, Ari

    2000-07-01

    Artificial odor recognition system is developed in order to mimic the human sensory test in cosmetics, parfum and beverage industries. The developed system however, lacks of ability to recognize the unknown type of odor. To improve the system's capability, a hybrid neural system with a supervised learning paradigm is developed and used as a pattern classifier. In this paper, the performance of the hybrid neural system is investigated, together with that of FALVQ neural system.

  16. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  17. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    PubMed

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Inversion of quasi-3D DC resistivity imaging data using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Neyamadpour, Ahmad; Wan Abdullah, W. A. T.; Taib, Samsudin

    2010-02-01

    The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.

  19. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    PubMed Central

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  20. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation

    NASA Astrophysics Data System (ADS)

    Borders, William A.; Akima, Hisanao; Fukami, Shunsuke; Moriya, Satoshi; Kurihara, Shouta; Horio, Yoshihiko; Sato, Shigeo; Ohno, Hideo

    2017-01-01

    We demonstrate associative memory operations reminiscent of the brain using nonvolatile spintronics devices. Antiferromagnet-ferromagnet bilayer-based Hall devices, which show analogue-like spin-orbit torque switching under zero magnetic fields and behave as artificial synapses, are used. An artificial neural network is used to associate memorized patterns from their noisy versions. We develop a network consisting of a field-programmable gate array and 36 spin-orbit torque devices. An effect of learning on associative memory operations is successfully confirmed for several 3 × 3-block patterns. A discussion on the present approach for realizing spintronics-based artificial intelligence is given.

  1. Recurrent Artificial Neural Networks and Finite State Natural Language Processing.

    ERIC Educational Resources Information Center

    Moisl, Hermann

    It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…

  2. Achieving Consistent Near-Optimal Pattern Recognition Accuracy Using Particle Swarm Optimization to Pre-Train Artificial Neural Networks

    ERIC Educational Resources Information Center

    Nikelshpur, Dmitry O.

    2014-01-01

    Similar to mammalian brains, Artificial Neural Networks (ANN) are universal approximators, capable of yielding near-optimal solutions to a wide assortment of problems. ANNs are used in many fields including medicine, internet security, engineering, retail, robotics, warfare, intelligence control, and finance. "ANNs have a tendency to get…

  3. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  4. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  5. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  6. Predicting Final GPA of Graduate School Students: Comparing Artificial Neural Networking and Simultaneous Multiple Regression

    ERIC Educational Resources Information Center

    Anderson, Joan L.

    2006-01-01

    Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…

  7. Detection of different states of sleep in the rodents by the means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Musatov, Viacheslav; Dykin, Viacheslav; Pitsik, Elena; Pisarchik, Alexander

    2018-04-01

    This paper considers the possibility of classification of electroencephalogram (EEG) and electromyogram (EMG) signals corresponding to different phases of sleep and wakefulness of mice by the means of artificial neural networks. A feed-forward artificial neural network based on multilayer perceptron was created and trained on the data of one of the rodents. The trained network was used to read and classify the EEG and EMG data corresponding to different phases of sleep and wakefulness of the same mouse and other mouse. The results show a good recognition quality of all phases for the rodent on which the training was conducted (80-99%) and acceptable recognition quality for the data collected from the same mouse after a stroke.

  8. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    PubMed

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  9. A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks.

    PubMed

    Sarmanova, Olga E; Burikov, Sergey A; Dolenko, Sergey A; Isaev, Igor V; Laptinskiy, Kirill A; Prabhakar, Neeraj; Karaman, Didem Şen; Rosenholm, Jessica M; Shenderova, Olga A; Dolenko, Tatiana A

    2018-04-12

    In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks. However, the proposed method is applicable for optical imaging of any fluorescent nanoparticles used as theranostic agents in biological tissue. Copyright © 2018. Published by Elsevier Inc.

  10. Validation of artificial neural network models for predicting biochemical markers associated with male infertility.

    PubMed

    Vickram, A S; Kamini, A Rao; Das, Raja; Pathy, M Ramesh; Parameswari, R; Archana, K; Sridharan, T B

    2016-08-01

    Seminal fluid is the secretion from many glands comprised of several organic and inorganic compounds including free amino acids, proteins, fructose, glucosidase, zinc, and other scavenging elements like Mg(2+), Ca(2+), K(+), and Na(+). Therefore, in the view of development of novel approaches and proper diagnosis to male infertility, overall understanding of the biochemical and molecular composition and its role in regulation of sperm quality is highly desirable. Perhaps this can be achieved through artificial intelligence. This study was aimed to elucidate and predict various biochemical markers present in human seminal plasma with three different neural network models. A total of 177 semen samples were collected for this research (both fertile and infertile samples) and immediately processed to prepare a semen analysis report, based on the protocol of the World Health Organization (WHO [2010]). The semen samples were then categorized into oligoasthenospermia (n=35), asthenospermia (n=35), azoospermia (n=22), normospermia (n=34), oligospermia (n=34), and control (n=17). The major biochemical parameters like total protein content, fructose, glucosidase, and zinc content were elucidated by standard protocols. All the biochemical markers were predicted by using three different artificial neural network (ANN) models with semen parameters as inputs. Of the three models, the back propagation neural network model (BPNN) yielded the best results with mean absolute error 0.025, -0.080, 0.166, and -0.057 for protein, fructose, glucosidase, and zinc, respectively. This suggests that BPNN can be used to predict biochemical parameters for the proper diagnosis of male infertility in assisted reproductive technology (ART) centres. AAS: absorption spectroscopy; AI: artificial intelligence; ANN: artificial neural networks; ART: assisted reproductive technology; BPNN: back propagation neural network model; DT: decision tress; MLP: multilayer perceptron; PESA: percutaneous epididymal sperm spiration; RBFN: radical basis function network; SRNN: simple recurrent neural network; SVM: support vector machines; TSE: testicular sperm extraction; WHO: World Health Organization.

  11. Image object recognition based on the Zernike moment and neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu

    1998-03-01

    This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.

  12. An Intelligent Active Video Surveillance System Based on the Integration of Virtual Neural Sensors and BDI Agents

    NASA Astrophysics Data System (ADS)

    Gregorio, Massimo De

    In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.

  13. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    NASA Astrophysics Data System (ADS)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  14. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Technical Reports Server (NTRS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-01-01

    The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.

  15. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.

    PubMed

    Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan

    2013-04-01

    To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.

  16. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  17. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  18. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  19. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  20. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  1. Bioengineered nerve regeneration and muscle reinnervation

    PubMed Central

    Kingham, Paul J; Terenghi, Giorgio

    2006-01-01

    The peripheral nervous system has the intrinsic capacity to regenerate but the reinnervation of muscles is often suboptimal and results in limited recovery of function. Injuries to nerves that innervate complex organs such as the larynx are particularly difficult to treat. The many functions of the larynx have evolved through the intricate neural regulation of highly specialized laryngeal muscles. In this review, we examine the responses of nerves and muscles to injury, focusing on changes in the expression of neurotrophic factors, and highlight differences between the skeletal limb and laryngeal muscle systems. We also describe how artificial nerve conduits have become a useful tool for delivery of neurotrophic factors as therapeutic agents to promote peripheral nerve repair and might eventually be useful in the treatment of laryngeal nerve injury. PMID:17005023

  2. Study of electromechanical and mechanical properties of bacteria using force microscopy

    NASA Astrophysics Data System (ADS)

    Reukov, Vladimir; Thompson, Gary; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey

    2010-03-01

    The application of scanning probe microscopy (SPM) to biological systems has evolved over the past decade into a multimodal and spectroscopic instrument that provides multiple information channels at each spatial pixel acquired. Recently, functional recognition imaging based on differing electromechanical properties between Gram negative and Gram positive bacteria was achieved using artificial neural network analysis of band excitation piezoresponse force microscopy (BEPFM) data. The immediate goal of this project was to study mechanical and electromechanical properties of bacterial systems physiologically-relevant solutions using Band-width Excitation Piezoresponce Force Microscopy (BE PFM) in combination with Force Mapping. Electromechanical imaging in physiological environments will improve the versatility of functional recognition imaging and open the way for application of the rapid BEPFM line mode method to other living cell systems.

  3. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  4. Does EFL Readers' Lexical and Grammatical Knowledge Predict Their Reading Ability? Insights from a Perceptron Artificial Neural Network Study

    ERIC Educational Resources Information Center

    Aryadoust, Vahid; Baghaei, Purya

    2016-01-01

    This study aims to examine the relationship between reading comprehension and lexical and grammatical knowledge among English as a foreign language students by using an Artificial Neural Network (ANN). There were 825 test takers administered both a second-language reading test and a set of psychometrically validated grammar and vocabulary tests.…

  5. Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.

    ERIC Educational Resources Information Center

    Perkins, Kyle; And Others

    This paper reports the results of using a three-layer backpropagation artificial neural network to predict item difficulty in a reading comprehension test. Two network structures were developed, one with and one without a sigmoid function in the output processing unit. The data set, which consisted of a table of coded test items and corresponding…

  6. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  7. Nonlinear neural control with power systems applications

    NASA Astrophysics Data System (ADS)

    Chen, Dingguo

    1998-12-01

    Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.

  8. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    PubMed Central

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  9. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    PubMed

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  10. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  11. An auxiliary classification diagnosis software development of cervical cancer medical data based on various artificial neural networks

    NASA Astrophysics Data System (ADS)

    Qi, Yong; Lei, Kai; Zhang, Lizeqing; Xing, Ximing; Gou, Wenyue

    2018-06-01

    This paper introduced the development of a self-serving medical data assisted diagnosis software of cervical cancer on the basis of artificial neural network (SVN, FNN, KNN). The system is developed based on the idea of self-service platform, supported by the application and innovation of neural network algorithm in medical data identification. Furthermore, it combined the advanced methods in various fields to effectively solve the complicated and inaccurate problem of cervical canceration data in the traditional manual treatment.

  12. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    NASA Astrophysics Data System (ADS)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  13. Reliability analysis of C-130 turboprop engine components using artificial neural network

    NASA Astrophysics Data System (ADS)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.

  14. Application of artificial neural networks to chemostratigraphy

    NASA Astrophysics Data System (ADS)

    Malmgren, BjöRn A.; Nordlund, Ulf

    1996-08-01

    Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.

  15. Selective Attention and Control of Action: Comparative Psychology of an Artificial, Evolved Agent and People

    ERIC Educational Resources Information Center

    Ward, Robert; Ward, Ronnie

    2008-01-01

    This study examined the selective attention abilities of a simple, artificial, evolved agent and considered implications of the agent's performance for theories of selective attention and action. The agent processed two targets in continuous time, catching one and then the other. This task required many cognitive operations, including prioritizing…

  16. Biologically inspired intelligent decision making: a commentary on the use of artificial neural networks in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2014-01-01

    Artificial neural networks (ANNs) are a class of powerful machine learning models for classification and function approximation which have analogs in nature. An ANN learns to map stimuli to responses through repeated evaluation of exemplars of the mapping. This learning approach results in networks which are recognized for their noise tolerance and ability to generalize meaningful responses for novel stimuli. It is these properties of ANNs which make them appealing for applications to bioinformatics problems where interpretation of data may not always be obvious, and where the domain knowledge required for deductive techniques is incomplete or can cause a combinatorial explosion of rules. In this paper, we provide an introduction to artificial neural network theory and review some interesting recent applications to bioinformatics problems.

  17. Artificial neural network for normal, hypertensive, and preeclamptic pregnancy classification using maternal heart rate variability indexes.

    PubMed

    Tejera, Eduardo; Jose Areias, Maria; Rodrigues, Ana; Ramõa, Ana; Manuel Nieto-Villar, Jose; Rebelo, Irene

    2011-09-01

    A model construction for classification of women with normal, hypertensive and preeclamptic pregnancy in different gestational ages using maternal heart rate variability (HRV) indexes. In the present work, we applied the artificial neural network for the classification problem, using the signal composed by the time intervals between consecutive RR peaks (RR) (n = 568) obtained from ECG records. Beside the HRV indexes, we also considered other factors like maternal history and blood pressure measurements. The obtained result reveals sensitivity for preeclampsia around 80% that increases for hypertensive and normal pregnancy groups. On the other hand, specificity is around 85-90%. These results indicate that the combination of HRV indexes with artificial neural networks (ANN) could be helpful for pregnancy study and characterization.

  18. Incidents Prediction in Road Junctions Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed

    2018-05-01

    The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.

  19. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    PubMed

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Driving profile modeling and recognition based on soft computing approach.

    PubMed

    Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya

    2009-04-01

    Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.

  1. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  3. The application of hybrid artificial intelligence systems for forecasting

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  4. Signal acquisition and analysis for cortical control of neuroprosthetics.

    PubMed

    Tillery, Stephen I Helms; Taylor, Dawn M

    2004-12-01

    Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. However, recent studies are showing hints that these systems can be controlled effectively using only a few tens of neurons. Attempting to decode the pre-existing relationship between neural activity and natural behavior is not nearly as important as choosing a decoding scheme that can be more readily deployed and trained to generate the desired actions of the artificial system. These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.

  5. Artificial Neural Networks as an Architectural Design Tool-Generating New Detail Forms Based On the Roman Corinthian Order Capital

    NASA Astrophysics Data System (ADS)

    Radziszewski, Kacper

    2017-10-01

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.

  6. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  7. Large memory capacity in chaotic artificial neural networks: a view of the anti-integrable limit.

    PubMed

    Lin, Wei; Chen, Guanrong

    2009-08-01

    In the literature, it was reported that the chaotic artificial neural network model with sinusoidal activation functions possesses a large memory capacity as well as a remarkable ability of retrieving the stored patterns, better than the conventional chaotic model with only monotonic activation functions such as sigmoidal functions. This paper, from the viewpoint of the anti-integrable limit, elucidates the mechanism inducing the superiority of the model with periodic activation functions that includes sinusoidal functions. Particularly, by virtue of the anti-integrable limit technique, this paper shows that any finite-dimensional neural network model with periodic activation functions and properly selected parameters has much more abundant chaotic dynamics that truly determine the model's memory capacity and pattern-retrieval ability. To some extent, this paper mathematically and numerically demonstrates that an appropriate choice of the activation functions and control scheme can lead to a large memory capacity and better pattern-retrieval ability of the artificial neural network models.

  8. Preliminary results of investigations into the use of artificial neural networks for discriminating gas chromatograph mass spectra of remote samples

    NASA Technical Reports Server (NTRS)

    Geller, Harold A.; Norris, Eugene; Warnock, Archibald, III

    1991-01-01

    Neural networks trained using mass spectra data from the National Institute of Standards and Technology (NIST) are studied. The investigations also included sample data from the gas chromatograph mass spectrometer (GCMS) instrument aboard the Viking Lander, obtained from the National Space Science Data Center. The work performed to data and the preliminary results from the training and testing of neural networks are described. These preliminary results are presented for the purpose of determining the viability of applying artificial neural networks in discriminating mass spectra samples from remote instrumentation such as the Mars Rover Sample Return Mission and the Cassini Probe.

  9. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  10. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks | Center for Cancer Research

    Cancer.gov

    The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in

  11. An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks

    ERIC Educational Resources Information Center

    Kayri, Murat

    2015-01-01

    The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…

  12. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  13. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE PAGES

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...

    2017-09-28

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  14. Predictions on the Development Dimensions of Provincial Tourism Discipline Based on the Artificial Neural Network BP Model

    ERIC Educational Resources Information Center

    Yang, Yang; Hu, Jun; Lv, Yingchun; Zhang, Mu

    2013-01-01

    As the tourism industry has gradually become the strategic mainstay industry of the national economy, the scope of the tourism discipline has developed rigorously. This paper makes a predictive study on the development of the scope of Guangdong provincial tourism discipline based on the artificial neural network BP model in order to find out how…

  15. Supervised Learning in CINets

    DTIC Science & Technology

    2011-07-01

    supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property

  16. Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies

    Treesearch

    Daniel J. Leduc; Thomas G. Matney; Keith L. Belli; V. Clark Baldwin

    2001-01-01

    Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no assumptions about the form of a fitting function, they can free the modeler from reliance on parametric approximating functions that may or may not satisfactorily fit the observed data. To date there have been few applications in forestry science, but as better NN software...

  17. An Expert System for Processing Uncorrelated Satellite Tracks

    DTIC Science & Technology

    1992-12-17

    earthworms with much intellect e\\en though they routinely carry out this same function. One definition given artificial intelligence is "the study of mental...Networks: Benchmarking Studies ," Proceedings from the IEEE International Conference on Neural Networkv. pp. 64-65, 1988. 229 Lyddane, R., "Small...reverse if necessary and rdenqtl_ by block number, Field Group Subgroup Artificial Intelligence, Expert Systems, Neural Networks. Orbital Mechanics

  18. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.

  19. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    ERIC Educational Resources Information Center

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  20. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  1. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    DTIC Science & Technology

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  2. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  3. A neutron spectrum unfolding computer code based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.

  4. Advanced Aeroservoelastic Testing and Data Analysis (Les Essais Aeroservoelastiques et l’Analyse des Donnees).

    DTIC Science & Technology

    1995-11-01

    network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to

  5. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  6. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    PubMed Central

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  7. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    PubMed

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  8. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    PubMed

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  9. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Hemmat Esfe, Mohammad; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    The current paper first presents an empirical correlation based on experimental results for estimating thermal conductivity enhancement of MgO-water nanofluid using curve fitting method. Then, artificial neural networks (ANNs) with various numbers of neurons have been assessed by considering temperature and MgO volume fraction as the inputs variables and thermal conductivity enhancement as the output variable to select the most appropriate and optimized network. Results indicated that the network with 7 neurons had minimum error. Eventually, the output of artificial neural network was compared with the results of the proposed empirical correlation and those of the experiments. Comparisons revealed that ANN modeling was more accurate than curve-fitting method in the predicting the thermal conductivity enhancement of the nanofluid.

  10. Encoding of natural and artificial stimuli in the auditory midbrain

    NASA Astrophysics Data System (ADS)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  11. Forecasting the daily electricity consumption in the Moscow region using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Kryanev, A. V.; Osetrov, E. S.

    2017-07-01

    In [1] we demonstrated the possibility in principle for short-term forecasting of daily volumes of passenger traffic in the Moscow metro with the help of artificial neural networks. During training and predicting, a set of the factors that affect the daily passenger traffic in the subway is passed to the input of the neural network. One of these factors is the daily power consumption in the Moscow region. Therefore, to predict the volume of the passenger traffic in the subway, we must first to solve the problem of forecasting the daily energy consumption in the Moscow region.

  12. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe -decay searches

    NASA Astrophysics Data System (ADS)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.

    2015-07-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.

  13. Multimodal interactions in typically and atypically developing children: natural versus artificial environments.

    PubMed

    Giannopulu, Irini

    2013-11-01

    This review addresses the central role played by multimodal interactions in neurocognitive development. We first analyzed our studies of multimodal verbal and nonverbal cognition and emotional interactions within neuronal, that is, natural environments in typically developing children. We then tried to relate them to the topic of creating artificial environments using mobile toy robots to neurorehabilitate severely autistic children. By doing so, both neural/natural and artificial environments are considered as the basis of neuronal organization and reorganization. The common thread underlying the thinking behind this approach revolves around the brain's intrinsic properties: neuroplasticity and the fact that the brain is neurodynamic. In our approach, neural organization and reorganization using natural or artificial environments aspires to bring computational perspectives into cognitive developmental neuroscience.

  14. Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

    NASA Astrophysics Data System (ADS)

    Ilie, Iulia; Dittrich, Peter; Carvalhais, Nuno; Jung, Martin; Heinemeyer, Andreas; Migliavacca, Mirco; Morison, James I. L.; Sippel, Sebastian; Subke, Jens-Arne; Wilkinson, Matthew; Mahecha, Miguel D.

    2017-09-01

    Accurate model representation of land-atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising tool for uncovering new model structures for terrestrial ecology in the data-rich era, complementing more traditional modelling approaches.

  15. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.

    PubMed

    Legube, Bernard; Parinet, Bernard; Gelinet, Karine; Berne, Florence; Croue, Jean-Philippe

    2004-04-01

    The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.

  16. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242)

    PubMed Central

    Dülger, L. Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles. PMID:27610129

  17. [Study on artificial neural network combined with multispectral remote sensing imagery for forest site evaluation].

    PubMed

    Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long

    2013-10-01

    Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.

  18. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242).

    PubMed

    Almusawi, Ahmed R J; Dülger, L Canan; Kapucu, Sadettin

    2016-01-01

    This paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the applicability and the efficiency of the proposed approach in robotic motion control. The inclusion of current configuration of joint angles in ANN significantly increased the accuracy of ANN estimation of the joint angles output. The new controller design has advantages over the existing techniques for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot's joint angles.

  19. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    PubMed

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  20. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    PubMed Central

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  1. DATA MAYHEM VERSUS NIMBLE INFORMATION: TRANSFORMING HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS

    DTIC Science & Technology

    2017-10-01

    AU/ACSC/MORALES/AY17 AIR COMMAND AND STAFF COLLEGE DISTANCE LEARNING AIR UNIVERSITY DATA MAYHEM VERSUS NIMBLE INFORMATION : TRANSFORMING...HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS by Luis A. Morales, Major, USAF A Research...finding solutions to compliment and supplement human analysts’ capacity, so intelligence and information can reach operators and end-users at the

  2. Predictive control of intersegmental tarsal movements in an insect.

    PubMed

    Costalago-Meruelo, Alicia; Simpson, David M; Veres, Sandor M; Newland, Philip L

    2017-08-01

    In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.

  3. Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Pratap, Rana; Subadra, M.

    2011-10-01

    An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.

  4. Early driver fatigue detection from electroencephalography signals using artificial neural networks.

    PubMed

    King, L M; Nguyen, H T; Lal, S K L

    2006-01-01

    This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).

  5. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo; Hajela, Prabhat

    1990-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  6. Applications of artificial neural nets in structural mechanics

    NASA Technical Reports Server (NTRS)

    Berke, L.; Hajela, P.

    1992-01-01

    A brief introduction to the fundamental of Neural Nets is given, followed by two applications in structural optimization. In the first case, the feasibility of simulating with neural nets the many structural analyses performed during optimization iterations was studied. In the second case, the concept of using neural nets to capture design expertise was studied.

  7. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  8. Embodied artificial agents for understanding human social cognition.

    PubMed

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  9. Forecast the energetic electron flux on geosynchronous orbit with interplanetary parameters

    NASA Astrophysics Data System (ADS)

    Xue, B.; Ye, Z.

    The high flux of energetic electron on geo-synchronous orbit can cause many kinds of malfunction of the satellite there, within which the bulk charging is the most significant that several broadcast satellite failures were confirmed to be due to this effect. The electron flux on geo-synchronous orbit varies in a large range even up to three orders accompanied the passage of interplanetary magnetic cloud and the following geomagnetic disturbances. Upon investigating electron flux, interplanetary solar wind data, and geomagnetic data as well, we found that: (1) The enhancement of energetic flux on the geo-synchronous orbit exhibits periodic recurrence of 27days. (2)Significant increase of electron flux relates to interplanetary index and characters of their distribution. (3)The electron flux also has relation to solar activity index. In our research work, artificial neural network was employed and constructed according to the job. The neural network, we call it full connecting network, was proved to be a sufficient tool to analyze the character of the evolving parameters, remember the omen of "electron storm", and establish the relationship between interplanetary parameters etc., and the fluence of high energetic electrons. The neural network was carefully constructed and trained to do the job mentioned above. Preliminary result showed that the accuracy forecast of electron flux 1 day ahead can reach 80%, and 70% for 2 days ahead.

  10. Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network.

    PubMed

    Ziada, A M; Lisle, T C; Snow, P B; Levine, R F; Miller, G; Crawford, E D

    2001-04-15

    The advent of advanced computing techniques has provided the opportunity to analyze clinical data using artificial intelligence techniques. This study was designed to determine whether a neural network could be developed using preoperative prognostic indicators to predict the pathologic stage and time of biochemical failure for patients who undergo radical prostatectomy. The preoperative information included TNM stage, prostate size, prostate specific antigen (PSA) level, biopsy results (Gleason score and percentage of positive biopsy), as well as patient age. All 309 patients underwent radical prostatectomy at the University of Colorado Health Sciences Center. The data from all patients were used to train a multilayer perceptron artificial neural network. The failure rate was defined as a rise in the PSA level > 0.2 ng/mL. The biochemical failure rate in the data base used was 14.2%. Univariate and multivariate analyses were performed to validate the results. The neural network statistics for the validation set showed a sensitivity and specificity of 79% and 81%, respectively, for the prediction of pathologic stage with an overall accuracy of 80% compared with an overall accuracy of 67% using the multivariate regression analysis. The sensitivity and specificity for the prediction of failure were 67% and 85%, respectively, demonstrating a high confidence in predicting failure. The overall accuracy rates for the artificial neural network and the multivariate analysis were similar. Neural networks can offer a convenient vehicle for clinicians to assess the preoperative risk of disease progression for patients who are about to undergo radical prostatectomy. Continued investigation of this approach with larger data sets seems warranted. Copyright 2001 American Cancer Society.

  11. Machine learning topological states

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  12. Implications of behavioral architecture for the evolution of self-organized division of labor.

    PubMed

    Duarte, A; Scholtens, E; Weissing, F J

    2012-01-01

    Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.

  13. Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor

    PubMed Central

    Duarte, A.; Scholtens, E.; Weissing, F. J.

    2012-01-01

    Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization. PMID:22457609

  14. FIRST Quantum-(1980)-Computing DISCOVERY in Siegel-Rosen-Feynman-...A.-I. Neural-Networks: Artificial(ANN)/Biological(BNN) and Siegel FIRST Semantic-Web and Siegel FIRST ``Page''-``Brin'' ``PageRank'' PRE-Google Search-Engines!!!

    NASA Astrophysics Data System (ADS)

    Rosen, Charles; Siegel, Edward Carl-Ludwig; Feynman, Richard; Wunderman, Irwin; Smith, Adolph; Marinov, Vesco; Goldman, Jacob; Brine, Sergey; Poge, Larry; Schmidt, Erich; Young, Frederic; Goates-Bulmer, William-Steven; Lewis-Tsurakov-Altshuler, Thomas-Valerie-Genot; Ibm/Exxon Collaboration; Google/Uw Collaboration; Microsoft/Amazon Collaboration; Oracle/Sun Collaboration; Ostp/Dod/Dia/Nsa/W.-F./Boa/Ubs/Ub Collaboration

    2013-03-01

    Belew[Finding Out About, Cambridge(2000)] and separately full-decade pre-Page/Brin/Google FIRST Siegel-Rosen(Machine-Intelligence/Atherton)-Feynman-Smith-Marinov(Guzik Enterprises/Exxon-Enterprises/A.-I./Santa Clara)-Wunderman(H.-P.) [IBM Conf. on Computers and Mathematics, Stanford(1986); APS Mtgs.(1980s): Palo Alto/Santa Clara/San Francisco/...(1980s) MRS Spring-Mtgs.(1980s): Palo Alto/San Jose/San Francisco/...(1980-1992) FIRST quantum-computing via Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) in artificial-intelligence(A-I) artificial neural-networks(A-N-N) and biological neural-networks(B-N-N) and Siegel[J. Noncrystalline-Solids 40, 453(1980); Symp. on Fractals..., MRS Fall-Mtg., Boston(1989)-5-papers; Symp. on Scaling..., (1990); Symp. on Transport in Geometric-Constraint (1990)

  15. Artificial neural network predictions of lengths of stay on a post-coronary care unit.

    PubMed

    Mobley, B A; Leasure, R; Davidson, L

    1995-01-01

    To create and validate a model that predicts length of hospital unit stay. Ex post facto. Seventy-four independent admission variables in 15 general categories were utilized to predict possible stays of 1 to 20 days. Laboratory. Records of patients discharged from a post-coronary care unit in early 1993. An artificial neural network was trained on 629 records and tested on an additional 127 records of patients. The absolute disparity between the actual lengths of stays in the test records and the predictions of the network averaged 1.4 days per record, and the actual length of stay was predicted within 1 day 72% of the time. The artificial neural network demonstrated the capacity to utilize common patient admission characteristics to predict lengths of stay. This technology shows promise in aiding timely initiation of treatment and effective resource planning and cost control.

  16. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  17. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    PubMed Central

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487

  18. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    PubMed

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  19. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  20. Optimization of culture conditions and bench-scale production of L-asparaginase by submerged fermentation of Aspergillus terreus MTCC 1782.

    PubMed

    Gurunathan, Baskar; Sahadevan, Renganathan

    2012-07-01

    Optimization of culture conditions for L-asparaginase production by submerged fermentation of Aspergillus terreus MTCC 1782 was studied using a 3-level central composite design of response surface methodology and artificial neural network linked genetic algorithm. The artificial neural network linked genetic algorithm was found to be more efficient than response surface methodology. The experimental L-asparaginase activity of 43.29 IU/ml was obtained at the optimum culture conditions of temperature 35 degrees C, initial pH 6.3, inoculum size 1% (v/v), agitation rate 140 rpm, and incubation time 58.5 h of the artificial neural network linked genetic algorithm, which was close to the predicted activity of 44.38 IU/ml. Characteristics of L-asparaginase production by A. terreus MTCC 1782 were studied in a 3 L bench-scale bioreactor.

  1. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks

    NASA Astrophysics Data System (ADS)

    Vafaei, Masoud; Afrand, Masoud; Sina, Nima; Kalbasi, Rasool; Sourani, Forough; Teimouri, Hamid

    2017-01-01

    In this paper, the thermal conductivity ratio of MgO-MWCNTs/EG hybrid nanofluids has been predicted by an optimal artificial neural network at solid volume fractions of 0.05%, 0.1%, 0.15%, 0.2%, 0.4% and 0.6% in the temperature range of 25-50 °C. In this way, at the first, thirty six experimental data was presented to determine the thermal conductivity ratio of the hybrid nanofluid. Then, four optimal artificial neural networks with 6, 8, 10 and 12 neurons in hidden layer were designed to predict the thermal conductivity ratio of the nanofluid. The comparison between four optimal ANN results and experimental showed that the ANN with 12 neurons in hidden layer was the best model. Moreover, the results obtained from the best ANN indicated the maximum deviation margin of 0.8%.

  2. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  3. Use of artificial neural networks to identify the origin of green macroalgae

    NASA Astrophysics Data System (ADS)

    Żbikowski, Radosław

    2011-08-01

    This study demonstrates application of artificial neural networks (ANNs) for identifying the origin of green macroalgae ( Enteromorpha sp. and Cladophora sp.) according to their concentrations of Cd, Cu, Ni, Zn, Mn, Pb, Na, Ca, K and Mg. Earlier studies confirmed that algae can be used for biomonitoring surveys of metal contaminants in coastal areas of the Southern Baltic. The same data sets were classified with the use of different structures of radial basis function (RBF) and multilayer perceptron (MLP) networks. The selected networks were able to classify the samples according to their geographical origin, i.e. Southern Baltic, Gulf of Gdańsk and Vistula Lagoon. Additionally in the case of macroalgae from the Gulf of Gdańsk, the networks enabled the discrimination of samples according to areas of contrasting levels of pollution. Hence this study shows that artificial neural networks can be a valuable tool in biomonitoring studies.

  4. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  5. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    PubMed

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Artificial Neural Network for Total Laboratory Automation to Improve the Management of Sample Dilution.

    PubMed

    Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio

    2017-02-01

    Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.

  7. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhou, Wanmeng; Wang, Hua; Tang, Guojin; Guo, Shuai

    2016-09-01

    The time-consuming experimental method for handling qualities assessment cannot meet the increasing fast design requirements for the manned space flight. As a tool for the aircraft handling qualities research, the model-predictive-control structured inverse simulation (MPC-IS) has potential applications in the aerospace field to guide the astronauts' operations and evaluate the handling qualities more effectively. Therefore, this paper establishes MPC-IS for the manual-controlled rendezvous and docking (RVD) and proposes a novel artificial neural network inverse simulation system (ANN-IS) to further decrease the computational cost. The novel system was obtained by replacing the inverse model of MPC-IS with the artificial neural network. The optimal neural network was trained by the genetic Levenberg-Marquardt algorithm, and finally determined by the Levenberg-Marquardt algorithm. In order to validate MPC-IS and ANN-IS, the manual-controlled RVD experiments on the simulator were carried out. The comparisons between simulation results and experimental data demonstrated the validity of two systems and the high computational efficiency of ANN-IS.

  8. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  9. Artificial life and Piaget.

    PubMed

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  10. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    PubMed Central

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875

  11. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    PubMed

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  12. Predicting Time-to-Relapse in Breast Cancer Using Neural Networks

    DTIC Science & Technology

    1997-12-01

    CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 118. SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF...Lowell WE, and Davis GL. A neural network that predicts psychiatric length of stay. MD Computing 10:87-92, 1993. Ebell MH. Artificial neural netowrks

  13. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multilingual vocal emotion recognition and classification using back propagation neural network

    NASA Astrophysics Data System (ADS)

    Kayal, Apoorva J.; Nirmal, Jagannath

    2016-03-01

    This work implements classification of different emotions in different languages using Artificial Neural Networks (ANN). Mel Frequency Cepstral Coefficients (MFCC) and Short Term Energy (STE) have been considered for creation of feature set. An emotional speech corpus consisting of 30 acted utterances per emotion has been developed. The emotions portrayed in this work are Anger, Joy and Neutral in each of English, Marathi and Hindi languages. Different configurations of Artificial Neural Networks have been employed for classification purposes. The performance of the classifiers has been evaluated by False Negative Rate (FNR), False Positive Rate (FPR), True Positive Rate (TPR) and True Negative Rate (TNR).

  15. Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG.

    PubMed

    Tagluk, M Emin; Sezgin, Necmettin; Akin, Mehmet

    2010-08-01

    Analysis and classification of sleep stages is essential in sleep research. In this particular study, an alternative system which estimates sleep stages of human being through a multi-layer neural network (NN) that simultaneously employs EEG, EMG and EOG. The data were recorded through polisomnography device for 7 h for each subject. These collective variant data were first grouped by an expert physician and the software of polisomnography, and then used for training and testing the proposed Artificial Neural Network (ANN). A good scoring was attained through the trained ANN, so it may be put into use in clinics where lacks of specialist physicians.

  16. Livermore Big Artificial Neural Network Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  17. Neural coding using telegraphic switching of magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Dong Ik; Bae, Gi Yoon; Oh, Heong Sik

    2015-05-07

    In this work, we present a synaptic transmission representing neural coding with spike trains by using a magnetic tunnel junction (MTJ). Telegraphic switching generates an artificial neural signal with both the applied magnetic field and the spin-transfer torque that act as conflicting inputs for modulating the number of spikes in spike trains. The spiking probability is observed to be weighted with modulation between 27.6% and 99.8% by varying the amplitude of the voltage input or the external magnetic field. With a combination of the reverse coding scheme and the synaptic characteristic of MTJ, an artificial function for the synaptic transmissionmore » is achieved.« less

  18. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  19. Artificial neural network intelligent method for prediction

    NASA Astrophysics Data System (ADS)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  20. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-A.; Sokos, E.

    2012-01-01

    In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  1. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  2. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  3. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  4. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  5. Artificial Neural Network with Regular Graph for Maximum Air Temperature Forecasting:. the Effect of Decrease in Nodes Degree on Learning

    NASA Astrophysics Data System (ADS)

    Ghaderi, A. H.; Darooneh, A. H.

    The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.

  6. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks.

    PubMed

    Li, Can; Belkin, Daniel; Li, Yunning; Yan, Peng; Hu, Miao; Ge, Ning; Jiang, Hao; Montgomery, Eric; Lin, Peng; Wang, Zhongrui; Song, Wenhao; Strachan, John Paul; Barnell, Mark; Wu, Qing; Williams, R Stanley; Yang, J Joshua; Xia, Qiangfei

    2018-06-19

    Memristors with tunable resistance states are emerging building blocks of artificial neural networks. However, in situ learning on a large-scale multiple-layer memristor network has yet to be demonstrated because of challenges in device property engineering and circuit integration. Here we monolithically integrate hafnium oxide-based memristors with a foundry-made transistor array into a multiple-layer neural network. We experimentally demonstrate in situ learning capability and achieve competitive classification accuracy on a standard machine learning dataset, which further confirms that the training algorithm allows the network to adapt to hardware imperfections. Our simulation using the experimental parameters suggests that a larger network would further increase the classification accuracy. The memristor neural network is a promising hardware platform for artificial intelligence with high speed-energy efficiency.

  7. Multiprocessor Neural Network in Healthcare.

    PubMed

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  8. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  9. A microsensor array for quantification of lubricant contaminants using a back propagation artificial neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang

    2016-06-01

    We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g-1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.

  10. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy.

    PubMed

    Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko

    2012-06-01

    This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.

  11. Several necessary conditions for the evolution of complex forms of life in an artificial environment.

    PubMed

    Suzuki, Hideaki; Ono, Naoaki; Yuta, Kikuo

    2003-01-01

    In order for an artificial life (Alife) system to evolve complex creatures, an artificial environment prepared by a designer has to satisfy several conditions. To clarify this requirement, we first assume that an artificial environment implemented in the computational medium is composed of an information space in which elementary symbols move around and react with each other according to human-prepared elementary rules. As fundamental properties of these factors (space, symbols, transportation, and reaction), we present ten criteria from a comparison with the biochemical reaction space in the real world. Then, in the latter half of the article, we take several computational Alife systems one by one, and assess them in terms of the proposed criteria. The assessment can be used not only for improving previous Alife systems but also for devising new Alife models in which complex forms of artificial creatures can be expected to evolve.

  12. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, L.J.; Keller, P.E.

    1997-10-28

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.

  13. Artificial neural network cardiopulmonary modeling and diagnosis

    DOEpatents

    Kangas, Lars J.; Keller, Paul E.

    1997-01-01

    The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.

  14. Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE

    NASA Astrophysics Data System (ADS)

    Correa, R.; Chesta, M. A.; Morales, J. R.; Dinator, M. I.; Requena, I.; Vila, I.

    2006-08-01

    An artificial neural network (ANN) has been trained with real-sample PIXE (particle X-ray induced emission) spectra of organic substances. Following the training stage ANN was applied to a subset of similar samples thus obtaining the elemental concentrations in muscle, liver and gills of Cyprinus carpio. Concentrations obtained with the ANN method are in full agreement with results from one standard analytical procedure, showing the high potentiality of ANN in PIXE quantitative analyses.

  15. The Prediction of the Risk Level of Pulmonary Embolism and Deep Vein Thrombosis through Artificial Neural Network

    PubMed Central

    Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem

    2016-01-01

    Background: Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. Method: A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Results: Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. Conclusions: The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced. PMID:28077893

  16. The Prediction of the Risk Level of Pulmonary Embolism and Deep Vein Thrombosis through Artificial Neural Network.

    PubMed

    Agharezaei, Laleh; Agharezaei, Zhila; Nemati, Ali; Bahaadinbeigy, Kambiz; Keynia, Farshid; Baneshi, Mohammad Reza; Iranpour, Abedin; Agharezaei, Moslem

    2016-10-01

    Venous thromboembolism is a common cause of mortality among hospitalized patients and yet it is preventable through detecting the precipitating factors and a prompt diagnosis by specialists. The present study has been carried out in order to assist specialists in the diagnosis and prediction of the risk level of pulmonary embolism in patients, by means of artificial neural network. A number of 31 risk factors have been used in this study in order to evaluate the conditions of 294 patients hospitalized in 3 educational hospitals affiliated with Kerman University of Medical Sciences. Two types of artificial neural networks, namely Feed-Forward Back Propagation and Elman Back Propagation, were compared in this study. Through an optimized artificial neural network model, an accuracy and risk level index of 93.23 percent was achieved and, subsequently, the results have been compared with those obtained from the perfusion scan of the patients. 86.61 percent of high risk patients diagnosed through perfusion scan diagnostic method were also diagnosed correctly through the method proposed in the present study. The results of this study can be a good resource for physicians, medical assistants, and healthcare staff to diagnose high risk patients more precisely and prevent the mortalities. Additionally, expenses and other unnecessary diagnostic methods such as perfusion scans can be efficiently reduced.

  17. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  18. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  19. Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding.

    PubMed

    Millard, Daniel C; Whitmire, Clarissa J; Gollnick, Clare A; Rozell, Christopher J; Stanley, Garrett B

    2015-11-25

    Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing. Copyright © 2015 the authors 0270-6474/15/3515702-14$15.00/0.

  20. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  1. Toward the Development of an Artificial Brain on a Micropatterned and Material-Regulated Biochip by Guiding and Promoting the Differentiation and Neurite Outgrowth of Neural Stem/Progenitor Cells.

    PubMed

    Liu, Yung-Chiang; Lee, I-Chi; Lei, Kin Fong

    2018-02-14

    An in vitro model mimicking the in vivo environment of the brain must be developed to study neural communication and regeneration and to obtain an understanding of cellular and molecular responses. In this work, a multilayered neural network was successfully constructed on a biochip by guiding and promoting neural stem/progenitor cell differentiation and network formation. The biochip consisted of 3 × 3 arrays of cultured wells connected with channels. Neurospheroids were cultured on polyelectrolyte multilayer (PEM) films in the culture wells. Neurite outgrowth and neural differentiation were guided and promoted by the micropatterns and the PEM films. After 5 days in culture, a 3 × 3 neural network was constructed on the biochip. The function and the connections of the network were evaluated by immunocytochemistry and impedance measurements. Neurons were generated and produced functional and recyclable synaptic vesicles. Moreover, the electrical connections of the neural network were confirmed by measuring the impedance across the neurospheroids. The current work facilitates the development of an artificial brain on a chip for investigations of electrical stimulations and recordings of multilayered neural communication and regeneration.

  2. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  3. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor's average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively.

  4. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor’s average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively. PMID:26110412

  5. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  6. Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network

    NASA Astrophysics Data System (ADS)

    Saha, Dipendu

    2009-02-01

    The feasibility of drastically reducing the contactor size in mass transfer processes utilizing centrifugal field has generated a lot of interest in rotating packed bed (Higee). Various investigators have proposed correlations to predict mass transfer coefficients in Higee, but, none of the correlations was more than 20-30% accurate. In this work, artificial neural network (ANN) is employed for predicting mass transfer coefficient data. Results show that ANN provides better estimation of mass transfer coefficient with accuracy 5-15%.

  7. Effect of design selection on response surface performance

    NASA Technical Reports Server (NTRS)

    Carpenter, William C.

    1993-01-01

    Artificial neural nets and polynomial approximations were used to develop response surfaces for several test problems. Based on the number of functional evaluations required to build the approximations and the number of undetermined parameters associated with the approximations, the performance of the two types of approximations was found to be comparable. A rule of thumb is developed for determining the number of nodes to be used on a hidden layer of an artificial neural net and the number of designs needed to train an approximation is discussed.

  8. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  9. Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Hsiung; Cheng, Sheng-Tzong; Wang, Yi-Hsien; Peng, Jin-Tang

    2008-05-01

    This investigation integrates a novel hybrid asymmetric volatility approach into an Artificial Neural Networks option-pricing model to upgrade the forecasting ability of the price of derivative securities. The use of the new hybrid asymmetric volatility method can simultaneously decrease the stochastic and nonlinearity of the error term sequence, and capture the asymmetric volatility. Therefore, analytical results of the ANNS option-pricing model reveal that Grey-EGARCH volatility provides greater predictability than other volatility approaches.

  10. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  11. Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  12. Comparison of Computational, Model and Experimental, Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  13. Linear Vector Quantisation and Uniform Circular Arrays based decoupled two-dimensional angle of arrival estimation

    NASA Astrophysics Data System (ADS)

    Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.

    2017-05-01

    Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.

  14. Simple artificial neural networks that match probability and exploit and explore when confronting a multiarmed bandit.

    PubMed

    Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M

    2009-08-01

    The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice.

  15. A Novel Higher Order Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuxiang

    2010-05-01

    In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.

  16. High solar activity predictions through an artificial neural network

    NASA Astrophysics Data System (ADS)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  17. A tale of three bio-inspired computational approaches

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2014-05-01

    I will provide a high level walk-through for three computational approaches derived from Nature. First, evolutionary computation implements what we may call the "mother of all adaptive processes." Some variants on the basic algorithms will be sketched and some lessons I have gleaned from three decades of working with EC will be covered. Then neural networks, computational approaches that have long been studied as possible ways to make "thinking machines", an old dream of man's, and based upon the only known existing example of intelligence. Then, a little overview of attempts to combine these two approaches that some hope will allow us to evolve machines we could never hand-craft. Finally, I will touch on artificial immune systems, Nature's highly sophisticated defense mechanism, that has emerged in two major stages, the innate and the adaptive immune systems. This technology is finding applications in the cyber security world.

  18. Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest.

    PubMed

    Nagasawa, Shinji; Al-Naamani, Eman; Saeki, Akinori

    2018-05-17

    Owing to the diverse chemical structures, organic photovoltaic (OPV) applications with a bulk heterojunction framework have greatly evolved over the last two decades, which has produced numerous organic semiconductors exhibiting improved power conversion efficiencies (PCEs). Despite the recent fast progress in materials informatics and data science, data-driven molecular design of OPV materials remains challenging. We report a screening of conjugated molecules for polymer-fullerene OPV applications by supervised learning methods (artificial neural network (ANN) and random forest (RF)). Approximately 1000 experimental parameters including PCE, molecular weight, and electronic properties are manually collected from the literature and subjected to machine learning with digitized chemical structures. Contrary to the low correlation coefficient in ANN, RF yields an acceptable accuracy, which is twice that of random classification. We demonstrate the application of RF screening for the design, synthesis, and characterization of a conjugated polymer, which facilitates a rapid development of optoelectronic materials.

  19. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  20. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  1. Bias correction of temperature produced by the Community Climate System Model using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Moghim, S.; Hsu, K.; Bras, R. L.

    2013-12-01

    General Circulation Models (GCMs) are used to predict circulation and energy transfers between the atmosphere and the land. It is known that these models produce biased results that will have impact on their uses. This work proposes a new method for bias correction: the equidistant cumulative distribution function-artificial neural network (EDCDFANN) procedure. The method uses artificial neural networks (ANNs) as a surrogate model to estimate bias-corrected temperature, given an identification of the system derived from GCM models output variables. A two-layer feed forward neural network is trained with observations during a historical period and then the adjusted network can be used to predict bias-corrected temperature for future periods. To capture the extreme values this method is combined with the equidistant CDF matching method (EDCDF, Li et al. 2010). The proposed method is tested with the Community Climate System Model (CCSM3) outputs using air and skin temperature, specific humidity, shortwave and longwave radiation as inputs to the ANN. This method decreases the mean square error and increases the spatial correlation between the modeled temperature and the observed one. The results indicate the EDCDFANN has potential to remove the biases of the model outputs.

  2. Predicting Length of Stay in Intensive Care Units after Cardiac Surgery: Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy System.

    PubMed

    Maharlou, Hamidreza; Niakan Kalhori, Sharareh R; Shahbazi, Shahrbanoo; Ravangard, Ramin

    2018-04-01

    Accurate prediction of patients' length of stay is highly important. This study compared the performance of artificial neural network and adaptive neuro-fuzzy system algorithms to predict patients' length of stay in intensive care units (ICU) after cardiac surgery. A cross-sectional, analytical, and applied study was conducted. The required data were collected from 311 cardiac patients admitted to intensive care units after surgery at three hospitals of Shiraz, Iran, through a non-random convenience sampling method during the second quarter of 2016. Following the initial processing of influential factors, models were created and evaluated. The results showed that the adaptive neuro-fuzzy algorithm (with mean squared error [MSE] = 7 and R = 0.88) resulted in the creation of a more precise model than the artificial neural network (with MSE = 21 and R = 0.60). The adaptive neuro-fuzzy algorithm produces a more accurate model as it applies both the capabilities of a neural network architecture and experts' knowledge as a hybrid algorithm. It identifies nonlinear components, yielding remarkable results for prediction the length of stay, which is a useful calculation output to support ICU management, enabling higher quality of administration and cost reduction.

  3. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  4. Artificial neural network detects human uncertainty

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  5. Landslide Susceptibility Index Determination Using Aritificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.; Urai, M.

    2004-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.

  6. Biologically inspired toys using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2001-01-01

    Recent developments in electroactive polymers, so-called artificial muscles, could one day be used to make bionics possible. Meanwhile, as this technology evolves novel mechanisms are expected to emerge that are biologically inspired.

  7. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.

  8. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Maddah, Heydar; Ghasemi, Nahid

    2017-12-01

    In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.

  9. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean.

    PubMed

    de Gennaro, Gianluigi; Trizio, Livia; Di Gilio, Alessia; Pey, Jorge; Pérez, Noemi; Cusack, Michael; Alastuey, Andrés; Querol, Xavier

    2013-10-01

    An artificial neural network (ANN) was developed and tested to forecast PM10 daily concentration in two contrasted environments in NE Spain, a regional background site (Montseny), and an urban background site (Barcelona-CSIC), which was highly influenced by vehicular emissions. In order to predict 24-h average PM10 concentrations, the artificial neural network previously developed by Caselli et al. (2009) was improved by using hourly PM concentrations and deterministic factors such as a Saharan dust alert. In particular, the model input data for prediction were the hourly PM10 concentrations 1-day in advance, local meteorological data and information about air masses origin. The forecasted performance indexes for both sites were calculated and they showed better results for the regional background site in Montseny (R(2)=0.86, SI=0.75) than for urban site in Barcelona (R(2)=0.73, SI=0.58), influenced by local and sometimes unexpected sources. Moreover, a sensitivity analysis conducted to understand the importance of the different variables included among the input data, showed that local meteorology and air masses origin are key factors in the model forecasts. This result explains the reason for the improvement of ANN's forecasting performance at the Montseny site with respect to the Barcelona site. Moreover, the artificial neural network developed in this work could prove useful to predict PM10 concentrations, especially, at regional background sites such as those on the Mediterranean Basin which are primarily affected by long-range transports. Hence, the artificial neural network presented here could be a powerful tool for obtaining real time information on air quality status and could aid stakeholders in their development of cost-effective control strategies. © 2013 Elsevier B.V. All rights reserved.

  10. Artificial neural networks for stiffness estimation in magnetic resonance elastography.

    PubMed

    Murphy, Matthew C; Manduca, Armando; Trzasko, Joshua D; Glaser, Kevin J; Huston, John; Ehman, Richard L

    2018-07-01

    To investigate the feasibility of using artificial neural networks to estimate stiffness from MR elastography (MRE) data. Artificial neural networks were fit using model-based training patterns to estimate stiffness from images of displacement using a patch size of ∼1 cm in each dimension. These neural network inversions (NNIs) were then evaluated in a set of simulation experiments designed to investigate the effects of wave interference and noise on NNI accuracy. NNI was also tested in vivo, comparing NNI results against currently used methods. In 4 simulation experiments, NNI performed as well or better than direct inversion (DI) for predicting the known stiffness of the data. Summary NNI results were also shown to be significantly correlated with DI results in the liver (R 2  = 0.974) and in the brain (R 2  = 0.915), and also correlated with established biological effects including fibrosis stage in the liver and age in the brain. Finally, repeatability error was lower in the brain using NNI compared to DI, and voxel-wise modeling using NNI stiffness maps detected larger effects than using DI maps with similar levels of smoothing. Artificial neural networks represent a new approach to inversion of MRE data. Summary results from NNI and DI are highly correlated and both are capable of detecting biologically relevant signals. Preliminary evidence suggests that NNI stiffness estimates may be more resistant to noise than an algebraic DI approach. Taken together, these results merit future investigation into NNIs to improve the estimation of stiffness in small regions. Magn Reson Med 80:351-360, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Efficacy of an artificial neural network-based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses.

    PubMed

    Săftoiu, Adrian; Vilmann, Peter; Gorunescu, Florin; Janssen, Jan; Hocke, Michael; Larsen, Michael; Iglesias-Garcia, Julio; Arcidiacono, Paolo; Will, Uwe; Giovannini, Marc; Dietrich, Cristoph F; Havre, Roald; Gheorghe, Cristian; McKay, Colin; Gheonea, Dan Ionuţ; Ciurea, Tudorel

    2012-01-01

    By using strain assessment, real-time endoscopic ultrasound (EUS) elastography provides additional information about a lesion's characteristics in the pancreas. We assessed the accuracy of real-time EUS elastography in focal pancreatic lesions using computer-aided diagnosis by artificial neural network analysis. We performed a prospective, blinded, multicentric study at of 258 patients (774 recordings from EUS elastography) who were diagnosed with chronic pancreatitis (n = 47) or pancreatic adenocarcinoma (n = 211) from 13 tertiary academic medical centers in Europe (the European EUS Elastography Multicentric Study Group). We used postprocessing software analysis to compute individual frames of elastography movies recorded by retrieving hue histogram data from a dynamic sequence of EUS elastography into a numeric matrix. The data then were analyzed in an extended neural network analysis, to automatically differentiate benign from malignant patterns. The neural computing approach had 91.14% training accuracy (95% confidence interval [CI], 89.87%-92.42%) and 84.27% testing accuracy (95% CI, 83.09%-85.44%). These results were obtained using the 10-fold cross-validation technique. The statistical analysis of the classification process showed a sensitivity of 87.59%, a specificity of 82.94%, a positive predictive value of 96.25%, and a negative predictive value of 57.22%. Moreover, the corresponding area under the receiver operating characteristic curve was 0.94 (95% CI, 0.91%-0.97%), which was significantly higher than the values obtained by simple mean hue histogram analysis, for which the area under the receiver operating characteristic was 0.85. Use of the artificial intelligence methodology via artificial neural networks supports the medical decision process, providing fast and accurate diagnoses. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. [Lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in familial amyotrophic lateral sclerosis with L106V mutation in the SOD1 gene].

    PubMed

    Hineno, Akiyo; Oyanagi, Kiyomitsu; Nakamura, Akinori; Shimojima, Yoshio; Yoshida, Kunihiro; Ikeda, Shu-Ichi

    2016-01-01

    We report lower urinary tract dysfunction and neuropathological findings of the neural circuits controlling micturition in the patients with familial amyotrophic lateral sclerosis having L106V mutation in the SOD1 gene. Ten of 20 patients showed lower urinary tract dysfunction and 5 patients developed within 1 year after the onset of weakness. In 8 patients with an artificial respirator, 6 patients showed lower urinary tract dysfunction. Lower urinary tract dysfunction and respiratory failure requiring an artificial respirator occurred simultaneously in 3 patients. Neuronal loss and gliosis were observed in the neural circuits controlling micturition, such as frontal lobe, thalamus, hypothalamus, striatum, periaqueductal gray, ascending spinal tract, lateral corticospinal tract, intermediolateral nucleus and Onufrowicz' nucleus. Lower urinary tract dysfunction, especially storage symptoms, developed about 1 year after the onset of weakness, and the dysfunction occurred simultaneously with artificial respirator use in the patients.

  13. Numerical solution of differential equations by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1995-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  14. On-line Tool Wear Detection on DCMT070204 Carbide Tool Tip Based on Noise Cutting Audio Signal using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Prasetyo, T.; Amar, S.; Arendra, A.; Zam Zami, M. K.

    2018-01-01

    This study develops an on-line detection system to predict the wear of DCMT070204 tool tip during the cutting process of the workpiece. The machine used in this research is CNC ProTurn 9000 to cut ST42 steel cylinder. The audio signal has been captured using the microphone placed in the tool post and recorded in Matlab. The signal is recorded at the sampling rate of 44.1 kHz, and the sampling size of 1024. The recorded signal is 110 data derived from the audio signal while cutting using a normal chisel and a worn chisel. And then perform signal feature extraction in the frequency domain using Fast Fourier Transform. Feature selection is done based on correlation analysis. And tool wear classification was performed using artificial neural networks with 33 input features selected. This artificial neural network is trained with back propagation method. Classification performance testing yields an accuracy of 74%.

  15. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  16. River flow modeling using artificial neural networks in Kapuas river, West Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Herawati, Henny; Suripin, Suharyanto

    2017-11-01

    Kapuas River is located in the province of West Kalimantan. Kapuas river length is 1,086 km and river basin areas about 100,000 Km2. The availability of river flow data in the Long River and very wide catchments are difficult to obtain, while river flow data are essential for planning waterworks. To predict the water flow in the catchment area requires a lot of hydrology coefficient, so it is very difficult to predict and obtain results that closer to the real conditions. This paper demonstrates that artificial neural network (ANN) could be used to predict the water flow. The ANN technique can be used to predict the incidence of water discharge that occurs in the Kapuas River based on rainfall and evaporation data. With the data available to do training on the artificial neural network model is obtained mean square error (MSE) 0.00007. The river flow predictions could be carried out after the training. The results showed differences in water discharge measurement and prediction of about 4%.

  17. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    PubMed

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  18. A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.

    DTIC Science & Technology

    target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.

  19. Neural Networks for the Beginner.

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…

  20. A Survey of Neural Network Publications.

    ERIC Educational Resources Information Center

    Vijayaraman, Bindiganavale S.; Osyk, Barbara

    This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…

  1. Identifying apple surface defects using principal components analysis and artifical neural networks

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...

  2. Pruning artificial neural networks using neural complexity measures.

    PubMed

    Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F

    2008-10-01

    This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.

  3. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks.

    PubMed

    Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu

    2018-06-15

    Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.

  4. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.

    PubMed

    Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P

    2012-04-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  6. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  7. Using Artificial Neural Networks to Predict the Presence of Overpressured Zones in the Anadarko Basin, Oklahoma

    NASA Astrophysics Data System (ADS)

    Cranganu, Constantin

    2007-10-01

    Many sedimentary basins throughout the world exhibit areas with abnormal pore-fluid pressures (higher or lower than normal or hydrostatic pressure). Predicting pore pressure and other parameters (depth, extension, magnitude, etc.) in such areas are challenging tasks. The compressional acoustic (sonic) log (DT) is often used as a predictor because it responds to changes in porosity or compaction produced by abnormal pore-fluid pressures. Unfortunately, the sonic log is not commonly recorded in most oil and/or gas wells. We propose using an artificial neural network to synthesize sonic logs by identifying the mathematical dependency between DT and the commonly available logs, such as normalized gamma ray (GR) and deep resistivity logs (REID). The artificial neural network process can be divided into three steps: (1) Supervised training of the neural network; (2) confirmation and validation of the model by blind-testing the results in wells that contain both the predictor (GR, REID) and the target values (DT) used in the supervised training; and 3) applying the predictive model to all wells containing the required predictor data and verifying the accuracy of the synthetic DT data by comparing the back-predicted synthetic predictor curves (GRNN, REIDNN) to the recorded predictor curves used in training (GR, REID). Artificial neural networks offer significant advantages over traditional deterministic methods. They do not require a precise mathematical model equation that describes the dependency between the predictor values and the target values and, unlike linear regression techniques, neural network methods do not overpredict mean values and thereby preserve original data variability. One of their most important advantages is that their predictions can be validated and confirmed through back-prediction of the input data. This procedure was applied to predict the presence of overpressured zones in the Anadarko Basin, Oklahoma. The results are promising and encouraging.

  8. Planning Training Loads for the 400 M Hurdles in Three-Month Mesocycles using Artificial Neural Networks.

    PubMed

    Przednowek, Krzysztof; Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam

    2017-12-01

    This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes' training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period.

  9. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Planning Training Loads for the 400 M Hurdles in Three-Month Mesocycles using Artificial Neural Networks

    PubMed Central

    Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam

    2017-01-01

    Abstract This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes’ training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period. PMID:29339998

  11. Missileborne Artificial Vision System (MAVIS)

    NASA Technical Reports Server (NTRS)

    Andes, David K.; Witham, James C.; Miles, Michael D.

    1994-01-01

    Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be the only way to do high density neural computing. In the last five years, however, digital parallel processing chips capable of performing neural computation functions have evolved to the point of rough equality with analog chips in system level computational density. The Naval Air Warfare Center, China Lake, has developed a real time, hardware and software system designed to implement and evaluate biologically inspired retinal and cortical models. The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards. Each COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at 20 MHz in a SIMD configuration. Each COHO board has a companion board built to support a real time VSB interface to an imaging seeker, a NTSC camera, and to other COHO boards. The system is designed to have multiple SIMD machines each performing different corticomorphic functions. The system level software has been developed which allows a high level description of corticomorphic structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are those neural structures with a form similar to that of the retina, the lateral geniculate nucleus, or the visual cortex. This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical missiles. Initial versions of the software and hardware have been completed and are in the early stages of integration with a missile seeker.

  12. Intelligent Noninvasive Diagnosis of Aneuploidy: Raw Values and Highly Imbalanced Dataset.

    PubMed

    Neocleous, Andreas C; Nicolaides, Kypros H; Schizas, Christos N

    2017-09-01

    The objective of this paper is to introduce a noninvasive diagnosis procedure for aneuploidy and to minimize the social and financial cost of prenatal diagnosis tests that are performed for fetal aneuploidies in an early stage of pregnancy. We propose a method by using artificial neural networks trained with data from singleton pregnancy cases, while undergoing first trimester screening. Three different datasets 1 with a total of 122 362 euploid and 967 aneuploid cases were used in this study. The data for each case contained markers collected from the mother and the fetus. This study, unlike previous studies published by the authors for a similar problem differs in three basic principles: 1) the training of the artificial neural networks is done by using the markers' values in their raw form (unprocessed), 2) a balanced training dataset is created and used by selecting only a representative number of euploids for the training phase, and 3) emphasis is given to the financials and suggest hierarchy and necessity of the available tests. The proposed artificial neural networks models were optimized in the sense of reaching a minimum false positive rate and at the same time securing a 100% detection rate for Trisomy 21. These systems correctly identify other aneuploidies (Trisomies 13&18, Turner, and Triploid syndromes) at a detection rate greater than 80%. In conclusion, we demonstrate that artificial neural network systems can contribute in providing noninvasive, effective early screening for fetal aneuploidies with results that compare favorably to other existing methods.

  13. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  14. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    PubMed Central

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  15. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  16. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  17. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    DTIC Science & Technology

    2008-08-01

    Twentieth International Joint Conference on Artificial Intelli - gence, 2007. 304 Fumihide Tanaka and Masayuki Yamamura. Multitask reinforcement learning...Functions . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Instance-based...tures [Laird et al., 1986, Choi et al., 2007]. However, TL for RL tasks has only recently been gaining attention in the artificial intelligence

  18. Adaptive artificial neural network for autonomous robot control

    NASA Technical Reports Server (NTRS)

    Arras, Michael K.; Protzel, Peter W.; Palumbo, Daniel L.

    1992-01-01

    The topics are presented in viewgraph form and include: neural network controller for robot arm positioning with visual feedback; initial training of the arm; automatic recovery from cumulative fault scenarios; and error reduction by iterative fine movements.

  19. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    PubMed Central

    Wang, Changjian; Liu, Xiaohui; Jin, Shiyao

    2018-01-01

    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227

  20. Deep learning with coherent nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  1. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  2. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    PubMed

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  3. Usage of the back-propagation method for alphabet recognition

    NASA Astrophysics Data System (ADS)

    Shaila Sree, R. N.; Eswaran, Kumar; Sundararajan, N.

    1999-03-01

    Artificial Neural Networks play a pivotal role in the branch of Artificial Intelligence. They can be trained efficiently for a variety of tasks using different methods, of which the Back Propagation method is one among them. The paper studies the choosing of various design parameters of a neural network for the Back Propagation method. The study shows that when these parameters are properly assigned, the training task of the net is greatly simplified. The character recognition problem has been chosen as a test case for this study. A sample space of different handwritten characters of the English alphabet was gathered. A Neural net is finally designed taking many the design aspects into consideration and trained for different styles of writing. Experimental results are reported and discussed. It has been found that an appropriate choice of the design parameters of the neural net for the Back Propagation method reduces the training time and improves the performance of the net.

  4. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.

    PubMed

    Ding, Weifu; Zhang, Jiangshe; Leung, Yee

    2016-10-01

    In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.

  5. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  6. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    NASA Astrophysics Data System (ADS)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  7. Learning the Relationship between the Primary Structure of HIV Envelope Glycoproteins and Neutralization Activity of Particular Antibodies by Using Artificial Neural Networks

    PubMed Central

    Buiu, Cătălin; Putz, Mihai V.; Avram, Speranta

    2016-01-01

    The dependency between the primary structure of HIV envelope glycoproteins (ENV) and the neutralization data for given antibodies is very complicated and depends on a large number of factors, such as the binding affinity of a given antibody for a given ENV protein, and the intrinsic infection kinetics of the viral strain. This paper presents a first approach to learning these dependencies using an artificial feedforward neural network which is trained to learn from experimental data. The results presented here demonstrate that the trained neural network is able to generalize on new viral strains and to predict reliable values of neutralizing activities of given antibodies against HIV-1. PMID:27727189

  8. Pencil-and-Paper Neural Networks: An Undergraduate Laboratory Exercise in Computational Neuroscience

    PubMed Central

    Crisp, Kevin M.; Sutter, Ellen N.; Westerberg, Jacob A.

    2015-01-01

    Although it has been more than 70 years since McCulloch and Pitts published their seminal work on artificial neural networks, such models remain primarily in the domain of computer science departments in undergraduate education. This is unfortunate, as simple network models offer undergraduate students a much-needed bridge between cellular neurobiology and processes governing thought and behavior. Here, we present a very simple laboratory exercise in which students constructed, trained and tested artificial neural networks by hand on paper. They explored a variety of concepts, including pattern recognition, pattern completion, noise elimination and stimulus ambiguity. Learning gains were evident in changes in the use of language when writing about information processing in the brain. PMID:26557791

  9. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  10. Neural networks and MIMD-multiprocessors

    NASA Technical Reports Server (NTRS)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  11. An Intelligent Agent Approach for Teaching Neural Networks Using LEGO[R] Handy Board Robots

    ERIC Educational Resources Information Center

    Imberman, Susan P.

    2004-01-01

    In this article we describe a project for an undergraduate artificial intelligence class. The project teaches neural networks using LEGO[R] handy board robots. Students construct robots with two motors and two photosensors. Photosensors provide readings that act as inputs for the neural network. Output values power the motors and maintain the…

  12. Collective Computation of Neural Network

    DTIC Science & Technology

    1990-03-15

    Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model

  13. Application of Artificial Neural Networks and Singular-Spectral Analysis in Forecasting the Daily Traffic in the Moscow Metro

    NASA Astrophysics Data System (ADS)

    Ivanov, Victor; Osetrov, Evgenii

    2018-02-01

    In this paper, we investigate the possibility of applying various approaches to solving the problem of medium-term forecasting of daily passenger traffic volumes in the Moscow metro (MM): 1) on the basis of artificial neural networks (ANN); 2) using the singular-spectral analysis implemented in the package "Caterpillar"-SSA; 3) sharing the ANN and the "Caterpillar"-SSA approach. We demonstrate that the developed methods and algorithms allow us to conduct medium-term forecasting of passenger traffic in the MM with reasonable accuracy.

  14. Securing Digital Images Integrity using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  15. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  16. Digital Image Compression Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.

    1993-01-01

    The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.

  17. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  18. Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators

    NASA Astrophysics Data System (ADS)

    Iliadis, L. S.; Spartalis, S. I.

    2007-12-01

    This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.

  19. Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model

    DTIC Science & Technology

    2003-07-01

    hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency

  20. Artificial immune system algorithm in VLSI circuit configuration

    NASA Astrophysics Data System (ADS)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    In artificial intelligence, the artificial immune system is a robust bio-inspired heuristic method, extensively used in solving many constraint optimization problems, anomaly detection, and pattern recognition. This paper discusses the implementation and performance of artificial immune system (AIS) algorithm integrated with Hopfield neural networks for VLSI circuit configuration based on 3-Satisfiability problems. Specifically, we emphasized on the clonal selection technique in our binary artificial immune system algorithm. We restrict our logic construction to 3-Satisfiability (3-SAT) clauses in order to outfit with the transistor configuration in VLSI circuit. The core impetus of this research is to find an ideal hybrid model to assist in the VLSI circuit configuration. In this paper, we compared the artificial immune system (AIS) algorithm (HNN-3SATAIS) with the brute force algorithm incorporated with Hopfield neural network (HNN-3SATBF). Microsoft Visual C++ 2013 was used as a platform for training, simulating and validating the performances of the proposed network. The results depict that the HNN-3SATAIS outperformed HNN-3SATBF in terms of circuit accuracy and CPU time. Thus, HNN-3SATAIS can be used to detect an early error in the VLSI circuit design.

  1. Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free

    DTIC Science & Technology

    2015-06-11

    for Prediction Tasks in Spiking Neural Networks ." Artificial Neural Networks and Machine Learning–ICANN 2014. Springer, 2014. pp 635-642. Gibson, T...Henderson, JA and Wiles, J. "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays." IEEE...Adelaide (2014 Jan). Gibson, T and Wiles, J "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays" at

  2. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  3. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    PubMed Central

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  4. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  5. Analysis of Mars Express Ionogram Data via a Multilayer Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Wilkinson, Collin; Potter, Arron; Palmer, Greg; Duru, Firdevs

    2017-01-01

    Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), which is a low frequency radar on the Mars Express (MEX) Spacecraft, can provide electron plasma densities of the ionosphere local at the spacecraft in addition to densities obtained with remote sounding. The local electron densities are obtained, with a standard error of about 2%, by measuring the electron plasma frequencies with an electronic ruler on ionograms, which are plots of echo intensity as a function of time and frequency. This is done by using a tool created at the University of Iowa (Duru et al., 2008). This approach is time consuming due to the rapid accumulation of ionogram data. In 2013, results from an algorithm-based analysis of ionograms were reported by Andrews et al., but this method did not improve the human error. In the interest of fast, accurate data interpretation, a neural network (NN) has been created based on the Fast Artificial Neural Network C libraries. This NN consists of artificial neurons, with 4 layers of 12960, 10000, 1000 and 1 neuron(s) each, consecutively. This network was trained using 40 iterations of 1000 orbits. The algorithm-based method of Andrews et al. had a standard error of 40%, while the neural network has achieved error on the order of 20%.

  6. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    PubMed

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  7. A Compact Optical Instrument with Artificial Neural Network for pH Determination

    PubMed Central

    Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin

    2012-01-01

    The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668

  8. Correcting wave predictions with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Makarynskyy, O.; Makarynska, D.

    2003-04-01

    The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.

  9. Evolution of central pattern generators and rhythmic behaviours

    PubMed Central

    Katz, Paul S.

    2016-01-01

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733

  10. Evolution of central pattern generators and rhythmic behaviours.

    PubMed

    Katz, Paul S

    2016-01-05

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. © 2015 The Author(s).

  11. Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2010-11-01

    The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.

  12. [Prognosis of the IVF ICSI/ET procedure efficiency with the use of artificial neural networks among patients of the Department of Reproduction and Gynecological Endocrinology].

    PubMed

    Milewski, Robert; Jamiołkowski, Jacek; Milewska Anna, Justyna; Domitrz, Jan; Szamatowicz, Jacek; Wołczyński, Sławomir

    2009-12-01

    Prognosis of pregnancy for patients treated with IVF ICSI/ET methods, using artificial neural networks. Retrospective study of 1007 cycles of infertility treatment of 899 patients of Department of Reproduction and Gynecological Endocrinology in Bialystok. The subjects were treated with IVF ICSI/ET method from August 2005 to September 2008. Classifying artificial neural network is described in the paper Architecture of the network is three-layered perceptron consisting of 45 neurons in the input layer 14 neurons in the hidden layer and a single output neuron. The source data for the network are 36 variables. 24 of them are nominal variables and the rest are quantitative variables. Among non-pregnancy cases only 59 prognosis of the network were incorrect. The results of treatment were correctly forecast in 68.5% of cases. The pregnancy was accurately confirmed in 49.1% of cases and lack of pregnancy in 86.5% of cases. Treatment of infertility with the use of in vitro fertilization methods continues to have too low efficiency per one treatment cycle. To improve this indicator it is necessary to find dependencies, which describe the model of IVF treatment. The application of advanced methods of bioinformatics allows to predict the result of the treatment more effectively With the help of artificial neural networks, we are able to forecast the failure of the treatment using IFV ICSI/ET procedure with almost 90% probability of certainty These possibilities can be used to predict negative cases.

  13. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  14. Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network.

    PubMed

    Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik

    2008-09-01

    In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.

  15. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

    PubMed

    Baghapour, Mohammad Ali; Fadaei Nobandegani, Amir; Talebbeydokhti, Nasser; Bagherzadeh, Somayeh; Nadiri, Ata Allah; Gharekhani, Maryam; Chitsazan, Nima

    2016-01-01

    Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency. The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer. The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk. As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

  16. Analysis of Artificial Neural Network in Erosion Modeling: A Case Study of Serang Watershed

    NASA Astrophysics Data System (ADS)

    Arif, N.; Danoedoro, P.; Hartono

    2017-12-01

    Erosion modeling is an important measuring tool for both land users and decision makers to evaluate land cultivation and thus it is necessary to have a model to represent the actual reality. Erosion models are a complex model because of uncertainty data with different sources and processing procedures. Artificial neural networks can be relied on for complex and non-linear data processing such as erosion data. The main difficulty in artificial neural network training is the determination of the value of each network input parameters, i.e. hidden layer, momentum, learning rate, momentum, and RMS. This study tested the capability of artificial neural network application in the prediction of erosion risk with some input parameters through multiple simulations to get good classification results. The model was implemented in Serang Watershed, Kulonprogo, Yogyakarta which is one of the critical potential watersheds in Indonesia. The simulation results showed the number of iterations that gave a significant effect on the accuracy compared to other parameters. A small number of iterations can produce good accuracy if the combination of other parameters was right. In this case, one hidden layer was sufficient to produce good accuracy. The highest training accuracy achieved in this study was 99.32%, occurred in ANN 14 simulation with combination of network input parameters of 1 HL; LR 0.01; M 0.5; RMS 0.0001, and the number of iterations of 15000. The ANN training accuracy was not influenced by the number of channels, namely input dataset (erosion factors) as well as data dimensions, rather it was determined by changes in network parameters.

  17. Generalized in vitro-in vivo relationship (IVIVR) model based on artificial neural networks

    PubMed Central

    Mendyk, Aleksander; Tuszyński, Paweł K; Polak, Sebastian; Jachowicz, Renata

    2013-01-01

    Background The aim of this study was to develop a generalized in vitro-in vivo relationship (IVIVR) model based on in vitro dissolution profiles together with quantitative and qualitative composition of dosage formulations as covariates. Such a model would be of substantial aid in the early stages of development of a pharmaceutical formulation, when no in vivo results are yet available and it is impossible to create a classical in vitro-in vivo correlation (IVIVC)/IVIVR. Methods Chemoinformatics software was used to compute the molecular descriptors of drug substances (ie, active pharmaceutical ingredients) and excipients. The data were collected from the literature. Artificial neural networks were used as the modeling tool. The training process was carried out using the 10-fold cross-validation technique. Results The database contained 93 formulations with 307 inputs initially, and was later limited to 28 in a course of sensitivity analysis. The four best models were introduced into the artificial neural network ensemble. Complete in vivo profiles were predicted accurately for 37.6% of the formulations. Conclusion It has been shown that artificial neural networks can be an effective predictive tool for constructing IVIVR in an integrated generalized model for various formulations. Because IVIVC/IVIVR is classically conducted for 2–4 formulations and with a single active pharmaceutical ingredient, the approach described here is unique in that it incorporates various active pharmaceutical ingredients and dosage forms into a single model. Thus, preliminary IVIVC/IVIVR can be available without in vivo data, which is impossible using current IVIVC/IVIVR procedures. PMID:23569360

  18. Application of artificial neural networks to identify equilibration in computer simulations

    NASA Astrophysics Data System (ADS)

    Leibowitz, Mitchell H.; Miller, Evan D.; Henry, Michael M.; Jankowski, Eric

    2017-11-01

    Determining which microstates generated by a thermodynamic simulation are representative of the ensemble for which sampling is desired is a ubiquitous, underspecified problem. Artificial neural networks are one type of machine learning algorithm that can provide a reproducible way to apply pattern recognition heuristics to underspecified problems. Here we use the open-source TensorFlow machine learning library and apply it to the problem of identifying which hypothetical observation sequences from a computer simulation are “equilibrated” and which are not. We generate training populations and test populations of observation sequences with embedded linear and exponential correlations. We train a two-neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that this simple network is good enough for > 98% accuracy in identifying exponentially-decaying energy trajectories from molecular simulations.

  19. Science of the science, drug discovery and artificial neural networks.

    PubMed

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  20. Investigation of an artificial intelligence technology--Model trees. Novel applications for an immediate release tablet formulation database.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    This study has investigated an artificial intelligence technology - model trees - as a modelling tool applied to an immediate release tablet formulation database. The modelling performance was compared with artificial neural networks that have been well established and widely applied in the pharmaceutical product formulation fields. The predictability of generated models was validated on unseen data and judged by correlation coefficient R(2). Output from the model tree analyses produced multivariate linear equations which predicted tablet tensile strength, disintegration time, and drug dissolution profiles of similar quality to neural network models. However, additional and valuable knowledge hidden in the formulation database was extracted from these equations. It is concluded that, as a transparent technology, model trees are useful tools to formulators.

  1. Prediction of hearing loss among the noise-exposed workers in a steel factory using artificial intelligence approach.

    PubMed

    Aliabadi, Mohsen; Farhadian, Maryam; Darvishi, Ebrahim

    2015-08-01

    Prediction of hearing loss in noisy workplaces is considered to be an important aspect of hearing conservation program. Artificial intelligence, as a new approach, can be used to predict the complex phenomenon such as hearing loss. Using artificial neural networks, this study aims to present an empirical model for the prediction of the hearing loss threshold among noise-exposed workers. Two hundred and ten workers employed in a steel factory were chosen, and their occupational exposure histories were collected. To determine the hearing loss threshold, the audiometric test was carried out using a calibrated audiometer. The personal noise exposure was also measured using a noise dosimeter in the workstations of workers. Finally, data obtained five variables, which can influence the hearing loss, were used for the development of the prediction model. Multilayer feed-forward neural networks with different structures were developed using MATLAB software. Neural network structures had one hidden layer with the number of neurons being approximately between 5 and 15 neurons. The best developed neural networks with one hidden layer and ten neurons could accurately predict the hearing loss threshold with RMSE = 2.6 dB and R(2) = 0.89. The results also confirmed that neural networks could provide more accurate predictions than multiple regressions. Since occupational hearing loss is frequently non-curable, results of accurate prediction can be used by occupational health experts to modify and improve noise exposure conditions.

  2. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  3. Neuromorphic Computing for Very Large Test and Evaluation Data Analysis

    DTIC Science & Technology

    2014-05-01

    analysis and utilization of newly available hardware- based artificial neural network chips. These two aspects of the program are complementary. The...neuromorphic architectures research focused on long term disruptive technologies with high risk but revolutionary potential. The hardware- based neural...today. Overall, hardware- based neural processing research allows us to study the fundamental system and architectural issues relevant for employing

  4. On Improved Least Squares Regression and Artificial Neural Network Meta-Models for Simulation via Control Variates

    DTIC Science & Technology

    2016-09-15

    18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4

  5. Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-Propagation Neural Network

    ERIC Educational Resources Information Center

    Bahadir, Elif

    2016-01-01

    The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…

  6. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  7. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  8. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks.

    PubMed

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used.

  9. Software Design Challenges in Time Series Prediction Systems Using Parallel Implementation of Artificial Neural Networks

    PubMed Central

    Manikandan, Narayanan; Subha, Srinivasan

    2016-01-01

    Software development life cycle has been characterized by destructive disconnects between activities like planning, analysis, design, and programming. Particularly software developed with prediction based results is always a big challenge for designers. Time series data forecasting like currency exchange, stock prices, and weather report are some of the areas where an extensive research is going on for the last three decades. In the initial days, the problems with financial analysis and prediction were solved by statistical models and methods. For the last two decades, a large number of Artificial Neural Networks based learning models have been proposed to solve the problems of financial data and get accurate results in prediction of the future trends and prices. This paper addressed some architectural design related issues for performance improvement through vectorising the strengths of multivariate econometric time series models and Artificial Neural Networks. It provides an adaptive approach for predicting exchange rates and it can be called hybrid methodology for predicting exchange rates. This framework is tested for finding the accuracy and performance of parallel algorithms used. PMID:26881271

  10. Risk prediction model: Statistical and artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  11. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    PubMed

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  13. Applications of artificial neural networks in medical science.

    PubMed

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  14. Optimality in Microwave-Assisted Drying of Aloe Vera ( Aloe barbadensis Miller) Gel using Response Surface Methodology and Artificial Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Das, Chandan; Das, Arijit; Kumar Golder, Animes

    2016-10-01

    The present work illustrates the Microwave-Assisted Drying (MWAD) characteristic of aloe vera gel combined with process optimization and artificial neural network modeling. The influence of microwave power (160-480 W), gel quantity (4-8 g) and drying time (1-9 min) on the moisture ratio was investigated. The drying of aloe gel exhibited typical diffusion-controlled characteristics with a predominant interaction between input power and drying time. Falling rate period was observed for the entire MWAD of aloe gel. Face-centered Central Composite Design (FCCD) developed a regression model to evaluate their effects on moisture ratio. The optimal MWAD conditions were established as microwave power of 227.9 W, sample amount of 4.47 g and 5.78 min drying time corresponding to the moisture ratio of 0.15. A computer-stimulated Artificial Neural Network (ANN) model was generated for mapping between process variables and the desired response. `Levenberg-Marquardt Back Propagation' algorithm with 3-5-1 architect gave the best prediction, and it showed a clear superiority over FCCD.

  15. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    PubMed

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  16. An artificial neural network system to identify alleles in reference electropherograms.

    PubMed

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  18. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    NASA Astrophysics Data System (ADS)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  19. Prediction of Flow Stress in Cadmium Using Constitutive Equation and Artificial Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Chakravartty, J. K.

    2013-10-01

    A model is developed to predict the constitutive flow behavior of cadmium during compression test using artificial neural network (ANN). The inputs of the neural network are strain, strain rate, and temperature, whereas flow stress is the output. Experimental data obtained from compression tests in the temperature range -30 to 70 °C, strain range 0.1 to 0.6, and strain rate range 10-3 to 1 s-1 are employed to develop the model. A three-layer feed-forward ANN is trained with Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the deformation behavior of cadmium. This trained network could predict the flow stress better than a constitutive equation of the type.

  20. Noise reduction and image enhancement using a hardware implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    David, Robert; Williams, Erin; de Tremiolles, Ghislain; Tannhof, Pascal

    1999-03-01

    In this paper, we present a neural based solution developed for noise reduction and image enhancement using the ZISC, an IBM hardware processor which implements the Restricted Coulomb Energy algorithm and the K-Nearest Neighbor algorithm. Artificial neural networks present the advantages of processing time reduction in comparison with classical models, adaptability, and the weighted property of pattern learning. The goal of the developed application is image enhancement in order to restore old movies (noise reduction, focus correction, etc.), to improve digital television images, or to treat images which require adaptive processing (medical images, spatial images, special effects, etc.). Image results show a quantitative improvement over the noisy image as well as the efficiency of this system. Further enhancements are being examined to improve the output of the system.

  1. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  2. Localizing Tortoise Nests by Neural Networks.

    PubMed

    Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  3. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  4. How Captain Amerika uses neural networks to fight crime

    NASA Technical Reports Server (NTRS)

    Rogers, Steven K.; Kabrisky, Matthew; Ruck, Dennis W.; Oxley, Mark E.

    1994-01-01

    Artificial neural network models can make amazing computations. These models are explained along with their application in problems associated with fighting crime. Specific problems addressed are identification of people using face recognition, speaker identification, and fingerprint and handwriting analysis (biometric authentication).

  5. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  6. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    PubMed Central

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  7. Development and validation of deterioration models for concrete bridge decks - phase 1 : artificial intelligence models and bridge management system.

    DOT National Transportation Integrated Search

    2013-06-01

    This research documents the development and evaluation of artificial neural network (ANN) models to predict the condition ratings of concrete highway bridge decks in Michigan. Historical condition assessments chronicled in the national bridge invento...

  8. A Symbolic Model of the Nonconscious Acquisition of Information.

    ERIC Educational Resources Information Center

    Ling, Charles X.; Marinov, Marin

    1994-01-01

    Challenges Smolensky's theory that human intuitive/nonconscious cognitive processes can only be accurately explained in terms of subsymbolic computations in artificial neural networks. Symbolic learning models of two cognitive tasks involving nonconscious acquisition of information are presented: learning production rules and artificial finite…

  9. Involvement of the left insula in the ecological validity of the human voice

    PubMed Central

    Tamura, Yuri; Kuriki, Shinji; Nakano, Tamami

    2015-01-01

    A subtle difference between a real human and an artificial object that resembles a human evokes an impression of a large qualitative difference between them. This suggests the existence of a neural mechanism that processes the sense of humanness. To examine the presence of such a mechanism, we compared the behavioral and brain responses of participants who listened to human and artificial singing voices created from vocal fragments of a real human voice. The behavioral experiment showed that the song sung by human voices more often elicited positive feelings and feelings of humanness than the same song sung by artificial voices, although the lyrics, melody, and rhythm were identical. Functional magnetic resonance imaging revealed significantly higher activation in the left posterior insula in response to human voices than in response to artificial voices. Insular activation was not merely evoked by differences in acoustic features between the voices. Therefore, these results suggest that the left insula participates in the neural processing of the ecological quality of the human voice. PMID:25739519

  10. Abstracts for the symposium on the Application of neural networks to the earth sciences

    USGS Publications Warehouse

    Singer, Donald A.

    2002-01-01

    Artificial neural networks are a group of mathematical methods that attempt to mimic some of the processes in the human mind. Although the foundations for these ideas were laid as early as 1943 (McCulloch and Pitts, 1943), it wasn't until 1986 (Rumelhart and McClelland, 1986; Masters, 1995) that applications to practical problems became possible. It is the acknowledged superiority of the human mind at recognizing patterns that the artificial neural networks are trying to imitate with their interconnected neurons. Interconnections used in the methods that have been developed allow robust learning. Capabilities of neural networks fall into three kinds of applications: (1) function fitting or prediction, (2) noise reduction or pattern recognition, and (3) classification or placing into types. Because of these capabilities and the powerful abilities of artificial neural networks, there have been increasing applications of these methods in the earth sciences. The abstracts in this document represent excellent samples of the range of applications. Talks associated with the abstracts were presented at the Symposium on the Application of Neural Networks to the Earth Sciences: Seventh International Symposium on Mineral Exploration (ISME–02), held August 20–21, 2002, at NASA Moffett Field, Mountain View, California. This symposium was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the U.S. Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations have always been wide-ranging—abstracts presented here are no exception.

  11. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  12. Third-dimension information retrieval from a single convergent-beam transmission electron diffraction pattern using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.

    2014-05-01

    We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.

  13. Workplace injuries, safety climate and behaviors: application of an artificial neural network.

    PubMed

    Abubakar, A Mohammed; Karadal, Himmet; Bayighomog, Steven W; Merdan, Ethem

    2018-05-09

    This article proposes and tests a model for the interaction effect of the organizational safety climate and behaviors on workplace injuries. Using artificial neural network and survey data from 306 metal casting industry employees in central Anatolia, we found that an organizational safety climate mitigates workplace injuries, and safety behaviors enforce the strength of the negative impact of the safety climate on workplace injuries. The results suggest a complex relationship between the organizational safety climate, safety behavior and workplace injuries. Theoretical and practical implications are discussed in light of decreasing workplace injuries in the Anatolian metal casting industry.

  14. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    NASA Astrophysics Data System (ADS)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  15. Electronic Nose Based on Independent Component Analysis Combined with Partial Least Squares and Artificial Neural Networks for Wine Prediction

    PubMed Central

    Aguilera, Teodoro; Lozano, Jesús; Paredes, José A.; Álvarez, Fernando J.; Suárez, José I.

    2012-01-01

    The aim of this work is to propose an alternative way for wine classification and prediction based on an electronic nose (e-nose) combined with Independent Component Analysis (ICA) as a dimensionality reduction technique, Partial Least Squares (PLS) to predict sensorial descriptors and Artificial Neural Networks (ANNs) for classification purpose. A total of 26 wines from different regions, varieties and elaboration processes have been analyzed with an e-nose and tasted by a sensory panel. Successful results have been obtained in most cases for prediction and classification. PMID:22969387

  16. Artificial neural network does better spatiotemporal compressive sampling

    NASA Astrophysics Data System (ADS)

    Lee, Soo-Young; Hsu, Charles; Szu, Harold

    2012-06-01

    Spatiotemporal sparseness is generated naturally by human visual system based on artificial neural network modeling of associative memory. Sparseness means nothing more and nothing less than the compressive sensing achieves merely the information concentration. To concentrate the information, one uses the spatial correlation or spatial FFT or DWT or the best of all adaptive wavelet transform (cf. NUS, Shen Shawei). However, higher dimensional spatiotemporal information concentration, the mathematics can not do as flexible as a living human sensory system. The reason is obviously for survival reasons. The rest of the story is given in the paper.

  17. Gross domestic product estimation based on electricity utilization by artificial neural network

    NASA Astrophysics Data System (ADS)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  18. The artificial neural network modelling of the piezoelectric actuator vibrations using laser displacement sensor

    NASA Astrophysics Data System (ADS)

    Paralı, Levent; Sarı, Ali; Kılıç, Ulaş; Şahin, Özge; Pěchoušek, Jiří

    2017-09-01

    We report an improvement of the artificial neural network (ANN) modelling of a piezoelectric actuator vibration based on the experimental data. The controlled vibrations of an actuator were obtained by utilizing the swept-sine signal excitation. The peak value in the displacement signal response was measured by a laser displacement sensor. The piezoelectric actuator was modelled in both linear and nonlinear operating range. A consistency from 90.3 up to 98.9% of ANN modelled output values and experimental ones was reached. The obtained results clearly demonstrate exact linear relationship between the ANN model and experimental values.

  19. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    NASA Astrophysics Data System (ADS)

    Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.

    2009-10-01

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  20. Investigation on trophic state index by artificial neural networks (case study: Dez Dam of Iran)

    NASA Astrophysics Data System (ADS)

    Saghi, H.; Karimi, L.; Javid, A. H.

    2015-06-01

    Dam construction and surface runoff control is one of the most common approaches for water-needs supply of human societies. However, the increasing development of social activities and hence the subsequent increase in environmental pollutants leads to deterioration of water quality in dam reservoirs and eutrophication process could be intensified. So, the water quality of reservoirs is now one of the key factors in operation and water quality management of reservoirs. Hence, maintaining the quality of the stored water and identification and examination of changes along time has been a constant concern of humans that involves the water authorities. Traditionally, empirical trophic state indices of dam reservoirs often defined based on changes in concentration of effective factors (nutrients) and its consequences (increase in chlorophyll a), have been used as an efficient tool in the definition of dam reservoirs quality. In recent years, modeling techniques such as artificial neural networks have enhanced the prediction capability and the accuracy of these studies. In this study, artificial neural networks have been applied to analyze eutrophication process in the Dez Dam reservoir in Iran. In this paper, feed forward neural network with one input layer, one hidden layer and one output layer was applied using MATLAB neural network toolbox for trophic state index (TSI) analysis in the Dez Dam reservoir. The input data of this network are effective parameters in the eutrophication: nitrogen cycle parameters and phosphorous cycle parameters and parameters that will be changed by eutrophication: Chl a, SD, DO and the output data is TSI. Based on the results from estimation of modified Carlson trophic state index, Dez Dam reservoir is considered to be eutrophic in the early July to mid-November and would be mesotrophic with decrease in temperature. Therefore, a decrease in water quality of the dam reservoir during the warm seasons is expectable. The results indicated that artificial neural network (ANN) is a suitable tool for quality modeling of reservoir of dam and increment and decrement of nutrients in trend of eutrophication. Therefore, ANN is a suitable tool for quality modeling of reservoir of dam.

Top