Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
Ranking in evolving complex networks
NASA Astrophysics Data System (ADS)
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego
2015-01-01
Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Bayesian Mixed-Membership Models of Complex and Evolving Networks
2006-12-01
R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e
Characterizing complex networks through statistics of Möbius transformations
NASA Astrophysics Data System (ADS)
Jaćimović, Vladimir; Crnkić, Aladin
2017-04-01
It is well-known now that dynamics of large populations of globally (all-to-all) coupled oscillators can be reduced to low-dimensional submanifolds (WS transformation and OA ansatz). Marvel et al. (2009) described an intriguing algebraic structure standing behind this reduction: oscillators evolve by the action of the group of Möbius transformations. Of course, dynamics in complex networks of coupled oscillators is highly complex and not reducible. Still, closer look unveils that even in complex networks some (possibly overlapping) groups of oscillators evolve by Möbius transformations. In this paper, we study properties of the network by identifying Möbius transformations in the dynamics of oscillators. This enables us to introduce some new (statistical) concepts that characterize the network. In particular, the notion of coherence of the network (or subnetwork) is proposed. This conceptual approach is meaningful for the broad class of networks, including those with time-delayed, noisy or mixed interactions. In this paper, several simple (random) graphs are studied illustrating the meaning of the concepts introduced in the paper.
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
Synaptic Plasticity and Spike Synchronisation in Neuronal Networks
NASA Astrophysics Data System (ADS)
Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.
2017-12-01
Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Predicting links based on knowledge dissemination in complex network
NASA Astrophysics Data System (ADS)
Zhou, Wen; Jia, Yifan
2017-04-01
Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall
2018-05-23
Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
The Evolutionary Origins of Hierarchy
Huizinga, Joost; Clune, Jeff
2016-01-01
Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881
The Evolutionary Origins of Hierarchy.
Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff
2016-06-01
Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.
Netgram: Visualizing Communities in Evolving Networks
Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.
2015-01-01
Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538
A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
Characterizing the evolution of climate networks
NASA Astrophysics Data System (ADS)
Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J.
2014-06-01
Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, Erdős-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.
The structure and resilience of financial market networks
NASA Astrophysics Data System (ADS)
Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.
2012-03-01
Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.
Motif formation and industry specific topologies in the Japanese business firm network
NASA Astrophysics Data System (ADS)
Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako
2017-05-01
Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.
Evidence for network evolution in an arabidopsis interactome map
USDA-ARS?s Scientific Manuscript database
Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
Social networks as embedded complex adaptive systems.
Benham-Hutchins, Marge; Clancy, Thomas R
2010-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
“Theory of Food” as a Neurocognitive Adaptation
Allen, John S.
2011-01-01
Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and socio-cultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a “theory of food” (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. PMID:22262561
"Theory of food" as a neurocognitive adaptation.
Allen, John S
2012-01-01
Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and sociocultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a "theory of food" (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. Copyright © 2012 Wiley Periodicals, Inc.
Spatial price dynamics: From complex network perspective
NASA Astrophysics Data System (ADS)
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Papo, David
2018-03-01
Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].
Fitness landscape complexity and the emergence of modularity in neural networks
NASA Astrophysics Data System (ADS)
Lowell, Jessica
Previous research has shown that the shape of the fitness landscape can affect the evolution of modularity. We evolved neural networks to solve different tasks with different fitness landscapes, using NEAT, a popular neuroevolution algorithm that quantifies similarity between genomes in order to divide them into species. We used this speciation mechanism as a means to examine fitness landscape complexity, and to examine connections between fitness landscape complexity and the emergence of modularity.
Environmental change makes robust ecological networks fragile
Strona, Giovanni; Lafferty, Kevin D.
2016-01-01
Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722
Socioscape: Real-Time Analysis of Dynamic Heterogeneous Networks In Complex Socio-Cultural Systems
2015-10-22
Cluster Mixed-Membership Blockmodel for Time-Evolving Networks, Proceedings of the 14th International Conference on Artifical Intelligence and...Learning With Simultaneous Orthogonal Matching Pursuit, Proceedings of the 13th International Conference on Artifical Intelligence and Statistics
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
The genotype-phenotype map of an evolving digital organism.
Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas
2017-02-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.
The genotype-phenotype map of an evolving digital organism
Zaman, Luis; Wagner, Andreas
2017-01-01
To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable. PMID:28241039
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.
2014-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504
Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L
2015-01-01
Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
Selfish cellular networks and the evolution of complex organisms.
Kourilsky, Philippe
2012-03-01
Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Complex Adaptive Schools: Educational Leadership and School Change
ERIC Educational Resources Information Center
Kershner, Brad; McQuillan, Patrick
2016-01-01
This paper utilizes the theoretical framework of complexity theory to compare and contrast leadership and educational change in two urban schools. Drawing on the notion of a complex adaptive system--an interdependent network of interacting elements that learns and evolves in adapting to an ever-shifting context--our case studies seek to reveal the…
Network Analysis of Earth's Co-Evolving Geosphere and Biosphere
NASA Astrophysics Data System (ADS)
Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.
2017-12-01
A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In addition, two mass extinction events appear as "pinch points" in the network.
Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.; Kim, Sanguk
2015-01-01
A central question in animal evolution is how multicellular animals evolved from unicellular ancestors. We hypothesize that membrane proteins must be key players in the development of multicellularity because they are well positioned to form the cell-cell contacts and to provide the intercellular communication required for the creation of complex organisms. Here we find that a major mechanism for the necessary increase in membrane protein complexity in the transition from non-metazoan to metazoan life was the new incorporation of domains from soluble proteins. The membrane proteins that have incorporated soluble domains in metazoans are enriched in many of the functions unique to multicellular organisms such as cell-cell adhesion, signaling, immune defense and developmental processes. They also show enhanced protein-protein interaction (PPI) network complexity and centrality, suggesting an important role in the cellular diversification found in complex organisms. Our results expose an evolutionary mechanism that contributed to the development of higher life forms. PMID:25923201
Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio
2014-01-01
Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
The topological requirements for robust perfect adaptation in networks of any size.
Araujo, Robyn P; Liotta, Lance A
2018-05-01
Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.
Evolutionary rewiring of bacterial regulatory networks
Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.
2015-01-01
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
Dynamics of a network of phase oscillators with plastic couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology
The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.
Implications of behavioral architecture for the evolution of self-organized division of labor.
Duarte, A; Scholtens, E; Weissing, F J
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.
Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor
Duarte, A.; Scholtens, E.; Weissing, F. J.
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization. PMID:22457609
Consistent visualizations of changing knowledge
Tipney, Hannah J.; Schuyler, Ronald P.; Hunter, Lawrence
2009-01-01
Networks are increasingly used in biology to represent complex data in uncomplicated symbolic form. However, as biological knowledge is continually evolving, so must those networks representing this knowledge. Capturing and presenting this type of knowledge change over time is particularly challenging due to the intimate manner in which researchers customize those networks they come into contact with. The effective visualization of this knowledge is important as it creates insight into complex systems and stimulates hypothesis generation and biological discovery. Here we highlight how the retention of user customizations, and the collection and visualization of knowledge associated provenance supports effective and productive network exploration. We also present an extension of the Hanalyzer system, ReOrient, which supports network exploration and analysis in the presence of knowledge change. PMID:21347184
Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship
ERIC Educational Resources Information Center
Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.
2010-01-01
The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…
Shedding Light on Words and Sentences: Near-Infrared Spectroscopy in Language Research
ERIC Educational Resources Information Center
Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth
2012-01-01
Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The…
Geometry Genetics and Evolution
NASA Astrophysics Data System (ADS)
Siggia, Eric
2011-03-01
Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
Structural Controllability of Temporal Networks with a Single Switching Controller
Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang
2017-01-01
Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538
Evolving dynamics of trading behavior based on coordination game in complex networks
NASA Astrophysics Data System (ADS)
Bian, Yue-tang; Xu, Lu; Li, Jin-sheng
2016-05-01
This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.
Preferential attachment in multiple trade networks
NASA Astrophysics Data System (ADS)
Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano
2014-08-01
In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.
Self-determined mechanisms in complex networks
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin
2008-03-01
Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.
Complex Networks in Different Languages: A Study of an Emergent Multilingual Encyclopedia
NASA Astrophysics Data System (ADS)
Pembe, F. Canan; Bingol, Haluk
There is an increasing interest to the study of complex networks in an interdisciplinary way. Language, as a complex network, has been a part of this study due to its importance in human life. Moreover, the Internet has also been at the center of this study by making access to large amounts of information possible. With these ideas in mind, this work aims to evaluate conceptual networks in different languages with the data from a large and open source of information in the Internet, namely Wikipedia. As an evolving multilingual encyclopedia that can be edited by any Internet user, Wikipedia is a good example of an emergent complex system. In this paper, different from previous work on conceptual networks which usually concentrated on single languages, we concentrate on possible ways to compare the usages of different languages and possibly the underlying cultures. This also involves the analysis of local network properties around certain coneepts in different languages. For an initial evaluation, the concept "family" is used to compare the English and German Wikipedias. Although, the work is currently at the beginning, the results are promising.
Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.
Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu
2016-04-01
Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Going End to End to Deliver High-Speed Data
NASA Technical Reports Server (NTRS)
2005-01-01
By the end of the 1990s, the optical fiber "backbone" of the telecommunication and data-communication networks had evolved from megabits-per-second transmission rates to gigabits-per-second transmission rates. Despite this boom in bandwidth, however, users at the end nodes were still not being reached on a consistent basis. (An end node is any device that does not behave like a router or a managed hub or switch. Examples of end node objects are computers, printers, serial interface processor phones, and unmanaged hubs and switches.) The primary reason that prevents bandwidth from reaching the end nodes is the complex local network topology that exists between the optical backbone and the end nodes. This complex network topology consists of several layers of routing and switch equipment which introduce potential congestion points and network latency. By breaking down the complex network topology, a true optical connection can be achieved. Access Optical Networks, Inc., is making this connection a reality with guidance from NASA s nondestructive evaluation experts.
Vertical Transmission of Social Roles Drives Resilience to Poaching in Elephant Networks.
Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George
2016-01-11
Network resilience to perturbation is fundamental to functionality in systems ranging from synthetic communication networks to evolved social organization [1]. While theoretical work offers insight into causes of network robustness, examination of natural networks can identify evolved mechanisms of resilience and how they are related to the selective pressures driving structure. Female African elephants (Loxodonta africana) exhibit complex social networks with node heterogeneity in which older individuals serve as connectivity hubs [2, 3]. Recent ivory poaching targeting older elephants in a well-studied population has mirrored the targeted removal of highly connected nodes in the theoretical literature that leads to structural collapse [4, 5]. Here we tested the response of this natural network to selective knockouts. We find that the hierarchical network topology characteristic of elephant societies was highly conserved across the 16-year study despite ∼70% turnover in individual composition of the population. At a population level, the oldest available individuals persisted to fill socially central positions in the network. For analyses using known mother-daughter pairs, social positions of daughters during the disrupted period were predicted by those of their mothers in years prior, were unrelated to individual histories of family mortality, and were actively built. As such, daughters replicated the social network roles of their mothers, driving the observed network resilience. Our study provides a rare bridge between network theory and an evolved system, demonstrating social redundancy to be the mechanism by which resilience to perturbation occurred in this socially advanced species. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the origins of hierarchy in complex networks
Corominas-Murtra, Bernat; Goñi, Joaquín; Solé, Ricard V.; Rodríguez-Caso, Carlos
2013-01-01
Hierarchy seems to pervade complexity in both living and artificial systems. Despite its relevance, no general theory that captures all features of hierarchy and its origins has been proposed yet. Here we present a formal approach resulting from the convergence of theoretical morphology and network theory that allows constructing a 3D morphospace of hierarchies and hence comparing the hierarchical organization of ecological, cellular, technological, and social networks. Embedded within large voids in the morphospace of all possible hierarchies, four major groups are identified. Two of them match the expected from random networks with similar connectivity, thus suggesting that nonadaptive factors are at work. Ecological and gene networks define the other two, indicating that their topological order is the result of functional constraints. These results are consistent with an exploration of the morphospace, using in silico evolved networks. PMID:23898177
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas
2002-03-01
The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.
Evolving neural networks through augmenting topologies.
Stanley, Kenneth O; Miikkulainen, Risto
2002-01-01
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
Primordial Evolution in the Finitary Process Soup
NASA Astrophysics Data System (ADS)
Görnerup, Olof; Crutchfield, James P.
A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.
ClueNet: Clustering a temporal network based on topological similarity rather than denseness.
Crawford, Joseph; Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.
Functional modules of sigma factor regulons guarantee adaptability and evolvability
Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael
2016-01-01
The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971
Human-Computer Interaction and Information Management Research Needs
2003-10-01
Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...hand-held personal digital assistants, networked sensors and actuators, and low-power computers on satellites. 5 most complex tools that humans have...calculations using data on external media such as tapes evolved into our multi-functional 21st century systems. More ideas came as networks of computing
A Complex Network Analysis of Granular Fabric Evolution in Three-Dimensions
2011-01-01
organized pattern formation (e.g., strain localization), and co-evolution of emergent in- ternal structures (e.g., force cycles and force chains) [15...these networks, particularly recurring patterns or motifs, and understanding how these co-evolve are crucial to the robust characterization and...the lead up to and during failure. Since failure patterns and boundaries of flow in three-dimensional specimens can be quite complicated and difficult
Chen, Heng; Chen, Xinying
2018-01-01
Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system. PMID:29489837
Chen, Heng; Chen, Xinying; Liu, Haitao
2018-01-01
Language is a complex adaptive system, but how does it change? For investigating this process, four diachronic Chinese word co-occurrence networks have been built based on texts that were written during the last 2,000 years. By comparing the network indicators that are associated with the hierarchical features in language networks, we learn that the hierarchy of Chinese lexical networks has indeed evolved over time at three different levels. The connections of words at the micro level are continually weakening; the number of words in the meso-level communities has increased significantly; and the network is expanding at the macro level. This means that more and more words tend to be connected to medium-central words and form different communities. Meanwhile, fewer high-central words link these communities into a highly efficient small-world network. Understanding this process may be crucial for understanding the increasing structural complexity of the language system.
Model of mobile agents for sexual interactions networks
NASA Astrophysics Data System (ADS)
González, M. C.; Lind, P. G.; Herrmann, H. J.
2006-02-01
We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
Discovering urban mobility patterns with PageRank based traffic modeling and prediction
NASA Astrophysics Data System (ADS)
Wang, Minjie; Yang, Su; Sun, Yi; Gao, Jun
2017-11-01
Urban transportation system can be viewed as complex network with time-varying traffic flows as links to connect adjacent regions as networked nodes. By computing urban traffic evolution on such temporal complex network with PageRank, it is found that for most regions, there exists a linear relation between the traffic congestion measure at present time and the PageRank value of the last time. Since the PageRank measure of a region does result from the mutual interactions of the whole network, it implies that the traffic state of a local region does not evolve independently but is affected by the evolution of the whole network. As a result, the PageRank values can act as signatures in predicting upcoming traffic congestions. We observe the aforementioned laws experimentally based on the trajectory data of 12000 taxies in Beijing city for one month.
Alignment of dynamic networks.
Vijayan, V; Critchlow, D; Milenkovic, T
2017-07-15
Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Vijayan, V.; Critchlow, D.; Milenković, T.
2017-01-01
Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980
The complex network of the Brazilian Popular Music
NASA Astrophysics Data System (ADS)
de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.
2004-02-01
We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.
Application-driven strategies for efficient transfer of medical images over very high speed networks
NASA Astrophysics Data System (ADS)
Alsafadi, Yasser H.; McNeill, Kevin M.; Martinez, Ralph
1993-09-01
The American College of Radiology (ACR) and the National Electrical Manufacturing Association (NEMA) in 1982 formed the ACR-NEMA committee to develop a standard to enable equipment from different vendors to communicate and participate in a picture archiving and communications system (PACS). The standard focused mostly on interconnectivity issues and communication needs of PACS. It was patterned after the international standards organization open systems interconnection (ISO/OSI) reference model. Three versions of the standard appeared, evolving from simple point-to-point specification of connection between two medical devices to a complex standard of a network environment. However, fast changes in network software and hardware technologies makes it difficult for the standard to keep pace. This paper compares two versions of the ACR-NEMA standard and then describes a system that is used at the University of Arizona Intensive Care Unit. In this system, the application should specify the interface to network services and grade of service required. These provisions are suggested to make the application independent from evolving network technology and support true open systems.
Flash crashes, bursts, and black swans: parallels between financial markets and healthcare systems.
West, Bruce J; Clancy, Thomas R
2010-11-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 16th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, Dr Clancy, the editor of this column, and co-author, Dr West, discuss how the collapse of global financial markets in 2008 may provide valuable insight into mechanisms of complex system behavior in healthcare. Dr West, a physicist and expert in the field of complex systems and network science, is author of a chapter in the book, On the Edge: Nursing in the Age of Complexity (Lindberg C, Nash S, Linberg C. Bordertown, NJ: Plexus Press; 2008) and his most recent book, Disrupted Networks: From Physics to Climate Change (West BJ, Scafetta N. Singapore: Disrupted Networks, World Scientific Publishing; 2010).
Complex Dynamical Networks Constructed with Fully Controllable Nonlinear Nanomechanical Oscillators.
Fon, Warren; Matheny, Matthew H; Li, Jarvis; Krayzman, Lev; Cross, Michael C; D'Souza, Raissa M; Crutchfield, James P; Roukes, Michael L
2017-10-11
Control of the global parameters of complex networks has been explored experimentally in a variety of contexts. Yet, the more difficult prospect of realizing arbitrary network architectures, especially analog physical networks that provide dynamical control of individual nodes and edges, has remained elusive. Given the vast hierarchy of time scales involved, it also proves challenging to measure a complex network's full internal dynamics. These span from the fastest nodal dynamics to very slow epochs over which emergent global phenomena, including network synchronization and the manifestation of exotic steady states, eventually emerge. Here, we demonstrate an experimental system that satisfies these requirements. It is based upon modular, fully controllable, nonlinear radio frequency nanomechanical oscillators, designed to form the nodes of complex dynamical networks with edges of arbitrary topology. The dynamics of these oscillators and their surrounding network are analog and continuous-valued and can be fully interrogated in real time. They comprise a piezoelectric nanomechanical membrane resonator, which serves as the frequency-determining element within an electrical feedback circuit. This embodiment permits network interconnections entirely within the electrical domain and provides unprecedented node and edge control over a vast region of parameter space. Continuous measurement of the instantaneous amplitudes and phases of every constituent oscillator node are enabled, yielding full and detailed network data without reliance upon statistical quantities. We demonstrate the operation of this platform through the real-time capture of the dynamics of a three-node ring network as it evolves from the uncoupled state to full synchronization.
Visualizing Complex Environments in the Geo- and BioSciences
NASA Astrophysics Data System (ADS)
Prabhu, A.; Fox, P. A.; Zhong, H.; Eleish, A.; Ma, X.; Zednik, S.; Morrison, S. M.; Moore, E. K.; Muscente, D.; Meyer, M.; Hazen, R. M.
2017-12-01
Earth's living and non-living components have co-evolved for 4 billion years through numerous positive and negative feedbacks. Earth and life scientists have amassed vast amounts of data in diverse fields related to planetary evolution through deep time-mineralogy and petrology, paleobiology and paleontology, paleotectonics and paleomagnetism, geochemistry and geochrononology, genomics and proteomics, and more. Integrating the data from these complimentary disciplines is very useful in gaining an understanding of the evolution of our planet's environment. The integrated data however, represent many extremely complex environments. In order to gain insights and make discoveries using this data, it is important for us to model and visualize these complex environments. As part of work in understanding the "Co-Evolution of Geo and Biospheres using Data Driven Methodologies," we have developed several visualizations to help represent the information stored in the datasets from complimentary disciplines. These visualizations include 2D and 3D force directed Networks, Chord Diagrams, 3D Klee Diagrams. Evolving Network Diagrams, Skyline Diagrams and Tree Diagrams. Combining these visualizations with the results of machine learning and data analysis methods leads to a powerful way to discover patterns and relationships about the Earth's past and today's changing environment.
NASA Astrophysics Data System (ADS)
Ozturk, Ugur; Marwan, Norbert; Kurths, Jürgen
2017-04-01
Complex networks are commonly used for investigating spatiotemporal dynamics of complex systems, e.g. extreme rainfall. Especially directed networks are very effective tools in identifying climatic patterns on spatially embedded networks. They can capture the network flux, so as the principal dynamics of spreading significant phenomena. Network measures, such as network divergence, bare the source-receptor relation of the directed networks. However, it is still a challenge how to catch fast evolving atmospheric events, i.e. typhoons. In this study, we propose a new technique, namely Radial Ranks, to detect the general pattern of typhoons forward direction based on the strength parameter of the event synchronization over Japan. We suggest to subset a circular zone of high correlation around the selected grid based on the strength parameter. Radial sums of the strength parameter along vectors within this zone, radial ranks are measured for potential directions, which allows us to trace the network flux over long distances. We employed also the delay parameter of event synchronization to identify and separate the frontal storms' and typhoons' individual behaviors.
Nature-Inspired Cognitive Evolution to Play MS. Pac-Man
NASA Astrophysics Data System (ADS)
Tan, Tse Guan; Teo, Jason; Anthony, Patricia
Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.
Modeling Uncertainty and Its Implications in Complex Interdependent Networks
2016-04-30
observables chosen evolve dynamically (i.e., change over time); also, it is absolutely NECESSARY for these to be numerical, or to correspond to some sort ...ascertain the quantitative mechanism for color transitions of the red, yellow, or green bubbles that capture the changes in value of Cost, Schedule
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
Weighted and directed interactions in evolving large-scale epileptic brain networks
NASA Astrophysics Data System (ADS)
Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus
2016-10-01
Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Deffuant model of opinion formation in one-dimensional multiplex networks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2015-10-01
Complex systems in the real world often operate through multiple kinds of links connecting their constituents. In this paper we propose an opinion formation model under bounded confidence over multiplex networks, consisting of edges at different topological and temporal scales. We determine rigorously the critical confidence threshold by exploiting probability theory and network science when the nodes are arranged on the integers, {{Z}}, evolving in continuous time. It is found that the existence of ‘multiplexity’ impedes the convergence, and that working with the aggregated or summarized simplex network is inaccurate since it misses vital information. Analytical calculations are confirmed by extensive numerical simulations.
NASA Astrophysics Data System (ADS)
Sienkiewicz, J.; Holyst, J. A.
2005-05-01
We have examined a topology of 21 public transport networks in Poland. Our data exhibit several universal features in considered systems when they are analyzed from the point of view of evolving networks. Depending on the assumed definition of a network topology the degree distribution can follow a power law p(k) ˜ k-γ or can be described by an exponential function p(k) ˜ exp (-α k). In the first case one observes that mean distances between two nodes are a linear function of logarithms of their degrees product.
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.
Dynamic Business Networks: A Headache for Sustainable Systems Interoperability
NASA Astrophysics Data System (ADS)
Agostinho, Carlos; Jardim-Goncalves, Ricardo
Collaborative networked environments emerged with the spread of the internet, contributing to overcome past communication barriers, and identifying interoperability as an essential property. When achieved seamlessly, efficiency is increased in the entire product life cycle. Nowadays, most organizations try to attain interoperability by establishing peer-to-peer mappings with the different partners, or in optimized networks, by using international standard models as the core for information exchange. In current industrial practice, mappings are only defined once, and the morphisms that represent them, are hardcoded in the enterprise systems. This solution has been effective for static environments, where enterprise and product models are valid for decades. However, with an increasingly complex and dynamic global market, models change frequently to answer new customer requirements. This paper draws concepts from the complex systems science and proposes a framework for sustainable systems interoperability in dynamic networks, enabling different organizations to evolve at their own rate.
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.
Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry
2017-01-01
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.
ClueNet: Clustering a temporal network based on topological similarity rather than denseness
Milenković, Tijana
2018-01-01
Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of “topologically related” nodes, where the resulting topology-based clusters are expected to “correlate” well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data—their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance. PMID:29738568
The 'wired' universe of organic chemistry.
Grzybowski, Bartosz A; Bishop, Kyle J M; Kowalczyk, Bartlomiej; Wilmer, Christopher E
2009-04-01
The millions of reactions performed and compounds synthesized by organic chemists over the past two centuries connect to form a network larger than the metabolic networks of higher organisms and rivalling the complexity of the World Wide Web. Despite its apparent randomness, the network of chemistry has a well-defined, modular architecture. The network evolves in time according to trends that have not changed since the inception of the discipline, and thus project into chemistry's future. Analysis of organic chemistry using the tools of network theory enables the identification of most 'central' organic molecules, and for the prediction of which and how many molecules will be made in the future. Statistical analyses based on network connectivity are useful in optimizing parallel syntheses, in estimating chemical reactivity, and more.
Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo
2017-10-15
Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.
Moon, Hankyu; Lu, Tsai-Ching
2015-01-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423
NASA Astrophysics Data System (ADS)
Moon, Hankyu; Lu, Tsai-Ching
2015-03-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.
Knowledge extraction from evolving spiking neural networks with rank order population coding.
Soltic, Snjezana; Kasabov, Nikola
2010-12-01
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
Network evolution by nonlinear preferential rewiring of edges
NASA Astrophysics Data System (ADS)
Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie
2011-06-01
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.
Oz, Tugce; Guvenek, Aysegul; Yildiz, Sadik; Karaboga, Enes; Tamer, Yusuf Talha; Mumcuyan, Nirva; Ozan, Vedat Burak; Senturk, Gizem Hazal; Cokol, Murat; Yeh, Pamela; Toprak, Erdal
2014-09-01
Revealing the genetic changes responsible for antibiotic resistance can be critical for developing novel antibiotic therapies. However, systematic studies correlating genotype to phenotype in the context of antibiotic resistance have been missing. In order to fill in this gap, we evolved 88 isogenic Escherichia coli populations against 22 antibiotics for 3 weeks. For every drug, two populations were evolved under strong selection and two populations were evolved under mild selection. By quantifying evolved populations' resistances against all 22 drugs, we constructed two separate cross-resistance networks for strongly and mildly selected populations. Subsequently, we sequenced representative colonies isolated from evolved populations for revealing the genetic basis for novel phenotypes. Bacterial populations that evolved resistance against antibiotics under strong selection acquired high levels of cross-resistance against several antibiotics, whereas other bacterial populations evolved under milder selection acquired relatively weaker cross-resistance. In addition, we found that strongly selected strains against aminoglycosides became more susceptible to five other drug classes compared with their wild-type ancestor as a result of a point mutation on TrkH, an ion transporter protein. Our findings suggest that selection strength is an important parameter contributing to the complexity of antibiotic resistance problem and use of high doses of antibiotics to clear infections has the potential to promote increase of cross-resistance in clinics. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Challenges of Health Games in the Social Network Environment.
Paredes, Hugo; Pinho, Anabela; Zagalo, Nelson
2012-04-01
Virtual communities and their benefits have been widely exploited to support patients, caregivers, families, and healthcare providers. The complexity of the social organization evolved the concept of virtual community to social networks, exploring the establishment of ties and relations between people. These technological platforms provide a way to keep up with one's connections network, through a set of communication and interaction tools. Games, as social interactive technologies, have great potential, ensuring a supportive community and thereby reducing social isolation. Serious social health games bring forward several research challenges. This article examines the potential benefits of the triad "health-serious games-social networks" and discusses some research challenges and opportunities of the liaison of serious health games and social networks.
Mechanisms and dynamics of cooperation and competition emergence in complex networked systems
NASA Astrophysics Data System (ADS)
Gianetto, David A.
Cooperative behavior is a pervasive phenomenon in human interactions and yet how it can evolve and become established, through the selfish process of natural selection, is an enduring puzzle. These behaviors emerge when agents interact in a structured manner; even so, the key structural factors that affect cooperation are not well understood. Moreover, the literature often considers cooperation a single attribute of primitive agents who do not react to environmental changes but real-world actors are more perceptive. The present work moves beyond these assumptions by evolving more realistic game participants, with memories of the past, on complex networks. Agents play repeated games with a three-part Markovian strategy that allows us to separate the cooperation phenomenon into trust, reciprocity, and forgiveness characteristics. Our results show that networks matter most when agents gain the most by acting in a selfish manner, irrespective of how much they may lose by cooperating; since the context provided by neighborhoods inhibits greedy impulses that agents otherwise succumb to in isolation. Network modularity is the most important driver of cooperation emergence in these high-stakes games. However, modularity fails to tell the complete story. Modular scale-free graphs impede cooperation when close coordination is required, partially due to the acyclic nature of scale-free network models. To achieve the highest cooperation in diverse social conditions, both high modularity, low connectivity within modules, and a rich network of long cycles become important. With these findings in hand, we study the influence of networks on coordination and competition within the federal health care insurance exchange. In this applied study, we show that systemic health care coordination is encouraged by the emergent insurance network. The network helps underpin the viability of the exchange and provides an environment of stronger competition once a critical-mass of insurers have entered the market.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Opinion diversity and community formation in adaptive networks
NASA Astrophysics Data System (ADS)
Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.
2017-10-01
It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.
Design of Hybrid Mobile Communication Networks for Planetary Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom
2004-01-01
The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Yoon, H.; Martinez, M. J.
2015-12-01
Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
Counting motifs in dynamic networks.
Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer
2018-04-11
A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.
Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf
2015-01-01
The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237
Impact analysis of two kinds of failure strategies in Beijing road transportation network
NASA Astrophysics Data System (ADS)
Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan
The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.
2015-11-01
NLP Blondel Oslom Infomap 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 5 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap A...Networks with minC ,maxC unconstrained. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 1 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap 0...0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 5 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap B
Evolution of regulatory networks towards adaptability and stability in a changing environment
NASA Astrophysics Data System (ADS)
Lee, Deok-Sun
2014-11-01
Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.
Werner, James J; Stange, Kurt C
2014-01-01
Practice-based research networks (PBRNs) have developed a grounded approach to conducting practice-relevant and translational research in community practice settings. Seismic shifts in the health care landscape are shaping PBRNs that work across organizational and institutional margins to address complex problems. Praxis-based research networks combine PBRN knowledge generation with multistakeholder learning, experimentation, and application of practical knowledge. The catalytic processes in praxis-based research networks are cycles of action and reflection based on experience, observation, conceptualization, and experimentation by network members and partners. To facilitate co-learning and solution-building, these networks have a flexible architecture that allows pragmatic inclusion of stakeholders based on the demands of the problem and the needs of the network. Praxis-based research networks represent an evolving trend that combines the core values of PBRNs with new opportunities for relevance, rigor, and broad participation. © Copyright 2014 by the American Board of Family Medicine.
Complexity of the international agro-food trade network and its impact on food safety.
Ercsey-Ravasz, Mária; Toroczkai, Zoltán; Lakner, Zoltán; Baranyi, József
2012-01-01
With the world's population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes, respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness and vulnerability correlate well with recorded large food poisoning outbreaks.
The complex network of musical tastes
NASA Astrophysics Data System (ADS)
Buldú, Javier M.; Cano, P.; Koppenberger, M.; Almendral, Juan A.; Boccaletti, S.
2007-06-01
We present an empirical study of the evolution of a social network constructed under the influence of musical tastes. The network is obtained thanks to the selfless effort of a broad community of users who share playlists of their favourite songs with other users. When two songs co-occur in a playlist a link is created between them, leading to a complex network where songs are the fundamental nodes. In this representation, songs in the same playlist could belong to different musical genres, but they are prone to be linked by a certain musical taste (e.g. if songs A and B co-occur in several playlists, an user who likes A will probably like also B). Indeed, playlist collections such as the one under study are the basic material that feeds some commercial music recommendation engines. Since playlists have an input date, we are able to evaluate the topology of this particular complex network from scratch, observing how its characteristic parameters evolve in time. We compare our results with those obtained from an artificial network defined by means of a null model. This comparison yields some insight on the evolution and structure of such a network, which could be used as ground data for the development of proper models. Finally, we gather information that can be useful for the development of music recommendation engines and give some hints about how top-hits appear.
Phenotypic integration emerges from aposematism and scale in poison frogs
Santos, Juan C.; Cannatella, David C.
2011-01-01
Complex phenotypes can be modeled as networks of component traits connected by genetic, developmental, or functional interactions. Aposematism, which has evolved multiple times in poison frogs (Dendrobatidae), links a warning signal to a chemical defense against predators. Other traits are involved in this complex phenotype. Most aposematic poison frogs are ant specialists, from which they sequester defensive alkaloids. We found that aposematic species have greater aerobic capacity, also related to diet specialization. To characterize the aposematic trait network more fully, we analyzed phylogenetic correlations among its hypothesized components: conspicuousness, chemical defense, diet specialization, body mass, active and resting metabolic rates, and aerobic scope. Conspicuous coloration was correlated with all components except resting metabolism. Structural equation modeling on the basis of trait correlations recovered “aposematism” as one of two latent variables in an integrated phenotypic network, the other being scaling with body mass and physiology (“scale”). Chemical defense and diet specialization were uniquely tied to aposematism whereas conspicuousness was related to scale. The phylogenetic distribution of the aposematic syndrome suggests two scenarios for its evolution: (i) chemical defense and conspicuousness preceded greater aerobic capacity, which supports the increased resource-gathering abilities required of ant–mite diet specialization; and (ii) assuming that prey are patchy, diet specialization and greater aerobic capacity evolved in tandem, and both traits subsequently facilitated the evolution of aposematism. PMID:21444790
Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.
Drucker, Daniel J
2016-03-01
Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.
Perturbation propagation in random and evolved Boolean networks
NASA Astrophysics Data System (ADS)
Fretter, Christoph; Szejka, Agnes; Drossel, Barbara
2009-03-01
In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.
Automating Network Node Behavior Characterization by Mining Communication Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.
Enterprise networks of scale are complex, dynamic computing environments that respond to evolv- ing business objectives and requirements. Characteriz- ing system behaviors in these environments is essential for network management and cyber security operations. Characterization of system’s communication is typical and is supported using network flow information (NetFlow). Related work has characterized behavior using theoretical graph metrics; results are often difficult to interpret by enterprise staff. We propose a different approach, where flow information is mapped to sets of tags that contextualize the data in terms of network principals and enterprise concepts. Frequent patterns are then extracted and are expressedmore » as behaviors. Behaviors can be com- pared, identifying systems expressing similar behaviors. We evaluate the approach using flow information collected by a third party.« less
Metabolic networks evolve towards states of maximum entropy production.
Unrean, Pornkamol; Srienc, Friedrich
2011-11-01
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.
An evolving model for the lodging-service network in a tourism destination
NASA Astrophysics Data System (ADS)
Hernández, Juan M.; González-Martel, Christian
2017-09-01
Tourism is a complex dynamic system including multiple actors which are related each other composing an evolving social network. This paper presents a growing model that explains how part of the supply components in a tourism system forms a social network. Specifically, the lodgings and services in a destination are the network nodes and a link between them appears if a representative tourist hosted in the lodging visits/consumes the service during his/her stay. The specific link between both categories are determined by a random and preferential attachment rule. The analytic results show that the long-term degree distribution of services follows a shifted power-law distribution. The numerical simulations show slight disagreements with the theoretical results in the case of the one-mode degree distribution of services, due to the low order of convergence to zero of X-motifs. The model predictions are compared with real data coming from a popular tourist destination in Gran Canaria, Spain, showing a good agreement between analytical and empirical data for the degree distribution of services. The theoretical model was validated assuming four type of perturbations in the real data.
Chen, Bor-Sen; Lin, Ying-Po
2011-01-01
In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563
Sovereign public debt crisis in Europe. A network analysis
NASA Astrophysics Data System (ADS)
Matesanz, David; Ortega, Guillermo J.
2015-10-01
In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.
The Complex Construction of Professional Identities: Female EFL Educators in Japan Speak Out
ERIC Educational Resources Information Center
Simon-Maeda, Andrea
2004-01-01
This article reports on the life history narratives of nine female EFL teachers working in higher education in Japan. An interpretive qualitative analysis of the stories suggested that gender cannot be viewed as a free-floating attribute of individual subjectivities but rather must be seen as one of many components in an ever-evolving network of…
Research in Knowledge Representation for Natural Language Understanding.
1984-09-01
TYPE OF REPORT & PERIOO COVERED RESEARCH IN KNOWLEDGE REPRESENTATION Annual Report FOR NATURAL LANGUAGE UNDERSTANDING 9/1/83 - 8/31/84 S. PERFORMING...nhaber) Artificial intelligence, natural language understanding , knowledge representation, semantics, semantic networks, KL-TWO, NIKL, belief and...attempting to understand and react to a complex, evolving situation. This report summarizes our research in knowledge representation and natural language
Evolving Digital Ecological Networks
Wagner, Aaron P.; Ofria, Charles
2013-01-01
“It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370
Co-Option and De Novo Gene Evolution Underlie Molluscan Shell Diversity
Aguilera, Felipe; McDougall, Carmel
2017-01-01
Abstract Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness. We find that each species, including four Pinctada (pearl oyster) species that diverged within the last 20 Ma, expresses a unique mantle secretome. Lineage- or species-specific genes comprise a large proportion of each species’ mantle secretome. A majority of these secreted proteins have unique domain architectures that include repetitive, low complexity domains (RLCDs), which evolve rapidly, and have a proclivity to expand, contract and rearrange in the genome. There are also a large number of secretome genes expressed in the mantle that arose before the origin of gastropods and bivalves. Each species expresses a unique set of these more ancient genes consistent with their independent co-option into these mantle gene regulatory networks. From this analysis, we infer lineage-specific secretomes underlie shell diversity, and include both rapidly evolving RLCD-containing proteins, and the continual recruitment and loss of both ancient and recently evolved genes into the periphery of the regulatory network controlling gene expression in the mantle epithelium. PMID:28053006
NASA Astrophysics Data System (ADS)
Hun Yeon, Ju; Chan, Karen Y. T.; Wong, Ting-Chia; Chan, Kelvin; Sutherland, Michael R.; Ismagilov, Rustem F.; Pryzdial, Edward L. G.; Kastrup, Christian J.
2015-05-01
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces
Partha, Raghavendran; Raman, Karthik
2014-01-01
Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641
Self-organization of complex networks as a dynamical system
NASA Astrophysics Data System (ADS)
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.
Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M
2016-09-29
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
NASA Astrophysics Data System (ADS)
Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.
2016-09-01
Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S
2016-01-01
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics
Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex
2015-01-01
Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networks, and demonstrate its application on two proteomic datasets. This demonstration provides insights to help translational teams overcome theoretical, practical, and pedagogical hurdles for the widespread use of subject-protein networks for analyzing molecular heterogeneities, with the translational goal of designing biomarker-based clinical trials, and accelerating the development of personalized approaches to medicine. PMID:25684269
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Mammalian synthetic biology: emerging medical applications
Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob
2015-01-01
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341
SCOUT: simultaneous time segmentation and community detection in dynamic networks
Hulovatyy, Yuriy; Milenković, Tijana
2016-01-01
Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-02-10
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent's rule are applied to show a subtle trade-off between topological and wiring complexity.
Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro
2016-01-01
For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent’s rule are applied to show a subtle trade-off between topological and wiring complexity. PMID:26861189
Morphological inversion of complex diffusion
NASA Astrophysics Data System (ADS)
Nguyen, V. A. T.; Vural, D. C.
2017-09-01
Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the final state of a complex network. Our method performs better than algorithms based on distance (closeness) and Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model, and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic, pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.
Estimation of Global Network Statistics from Incomplete Data
Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan
2014-01-01
Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183
Intrinsic evolution of controllable oscillators in FPTA-2
NASA Technical Reports Server (NTRS)
Sekanina, Lukas; Zebulum, Ricardo S.
2005-01-01
Simple one- and two-bit controllable oscillators were intrinsically evolved using only four cells of Field Programmable Transistor Array (FPTA-2). These oscillators can produce different oscillations for different setting of control signals. Therefore, they could be used, in principle, to compose complex networks of oscillators that could exhibit rich dynamical behavior in order to perform a computation or to model a desired system.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks.
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the "critical degree" (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology.
Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks
Smerlak, Matteo; Stoll, Brady; Gupta, Agam; Magdanz, James S.
2015-01-01
The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the “critical degree” (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological rapprochement between finance and ecology. PMID:26207631
Intelligent Resource Management for Local Area Networks: Approach and Evolution
NASA Technical Reports Server (NTRS)
Meike, Roger
1988-01-01
The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.
An alternative way to track the hot money in turbulent times
NASA Astrophysics Data System (ADS)
Sensoy, Ahmet
2015-02-01
During recent years, networks have proven to be an efficient way to characterize and investigate a wide range of complex financial systems. In this study, we first obtain the dynamic conditional correlations between filtered exchange rates (against US dollar) of several countries and introduce a time-varying threshold correlation level to define dynamic strong correlations between these exchange rates. Then, using evolving networks obtained from strong correlations, we propose an alternative approach to track the hot money in turbulent times. The approach is demonstrated for the time period including the financial turmoil of 2008. Other applications are also discussed.
Efficiency Analysis of Integrated Public Hospital Networks in Outpatient Internal Medicine.
Ortíz-Barrios, Miguel Angel; Escorcia-Caballero, Juan P; Sánchez-Sánchez, Fabián; De Felice, Fabio; Petrillo, Antonella
2017-09-07
Healthcare systems are evolving towards a complex network of interconnected services due to the increasing costs and the increasing expectations for high service levels. It is evidenced in the literature the importance of implementing management techniques and sophisticated methods to improve the efficiency of healthcare systems, especially in emerging economies. This paper proposes an integrated collaboration model between two public hospitals to reach the reduction of weighted average lead time in outpatient internal medicine department. A strategic framework based on value stream mapping and collaborative practices has been developed in real case study settled in Colombia.
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.
Eye evolution at high resolution: the neuron as a unit of homology.
Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D
2009-08-01
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.
Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.
Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd
2015-01-01
Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.
López Chavira, Magali Alexander; Marcelín-Jiménez, Ricardo
2017-01-01
The study of complex networks has become an important subject over the last decades. It has been shown that these structures have special features, such as their diameter, or their average path length, which in turn are the explanation of some functional properties in a system such as its fault tolerance, its fragility before attacks, or the ability to support routing procedures. In the present work, we study some of the forces that help a network to evolve to the point where structural properties are settled. Although our work is mainly focused on the possibility of applying our ideas to Information and Communication Technologies systems, we consider that our results may contribute to understanding different scenarios where complex networks have become an important modeling tool. Using a discrete event simulator, we get each node to discover the shortcuts that may connect it with regions away from its local environment. Based on this partial knowledge, each node can rewire some of its links, which allows modifying the topology of the entire underlying graph to achieve new structural properties. We proposed a distributed rewiring model that creates networks with features similar to those found in complex networks. Although each node acts in a distributed way and seeking to reduce only the trajectories of its packets, we observed a decrease of diameter and an increase in clustering coefficient in the global structure compared to the initial graph. Furthermore, we can find different final structures depending on slight changes in the local rewiring rules.
Havugimana, Pierre C; Hu, Pingzhao; Emili, Andrew
2017-10-01
Elucidation of the networks of physical (functional) interactions present in cells and tissues is fundamental for understanding the molecular organization of biological systems, the mechanistic basis of essential and disease-related processes, and for functional annotation of previously uncharacterized proteins (via guilt-by-association or -correlation). After a decade in the field, we felt it timely to document our own experiences in the systematic analysis of protein interaction networks. Areas covered: Researchers worldwide have contributed innovative experimental and computational approaches that have driven the rapidly evolving field of 'functional proteomics'. These include mass spectrometry-based methods to characterize macromolecular complexes on a global-scale and sophisticated data analysis tools - most notably machine learning - that allow for the generation of high-quality protein association maps. Expert commentary: Here, we recount some key lessons learned, with an emphasis on successful workflows, and challenges, arising from our own and other groups' ongoing efforts to generate, interpret and report proteome-scale interaction networks in increasingly diverse biological contexts.
Insight to the express transport network
NASA Astrophysics Data System (ADS)
Yang, Hua; Nie, Yuchao; Zhang, Hongbin; Di, Zengru; Fan, Ying
2009-09-01
The express delivery industry is developing rapidly in recent years and has attracted attention in many fields. Express shipment service requires that parcels be delivered in a limited time with a low operation cost, which requests a high level and efficient express transport network (ETN). The ETN is constructed based on the public transport networks, especially the airline network. It is similar to the airline network in some aspects, while it has its own feature. With the complex network theory, the topological properties of the ETN are analyzed deeply. We find that the ETN has the small-world property, with disassortative mixing behavior and rich club phenomenon. It also shows difference from the airline network in some features, such as edge density and average shortest path. Analysis on the corresponding distance-weighted network shows that the distance distribution displays a truncated power-law behavior. At last, an evolving model, which takes both geographical constraint and preference attachment into account, is proposed. The model shows similar properties with the empirical results.
Ohayon, Elan L; Kalitzin, Stiliyan; Suffczynski, Piotr; Jin, Frank Y; Tsang, Paul W; Borrett, Donald S; Burnham, W McIntyre; Kwan, Hon C
2004-01-01
The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.
Evolutionary transitions in controls reconcile adaptation with continuity of evolution.
Badyaev, Alexander V
2018-05-19
Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
The evolution of phenotypic correlations and ‘developmental memory’
Watson, Richard A.; Wagner, Günter P.; Pavlicev, Mihaela; Weinreich, Daniel M.; Mills, Rob
2014-01-01
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent non-linear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can ‘store’ and ‘recall’ multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and ‘generalise’ (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviours follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well-understood in the context of neural networks. This helps to explain how development facilitates the evolution of high-fitness phenotypes and how this ability changes over evolutionary time. PMID:24351058
Evolving phenotypic networks in silico.
François, Paul
2014-11-01
Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
A Network Based Theory of Health Systems and Cycles of Well-being
Rhodes, Michael Grant
2013-01-01
There are two dominant approaches to describe and understand the anatomy of complete health and well-being systems internationally. Yet, neither approach has been able to either predict or explain occasional but dramatic crises in health and well-being systems around the world and in developed emerging market or developing country contexts. As the impacts of such events can be measured not simply in terms of their social and economic consequences but also public health crises, there is a clear need to look for and formulate an alternative approach. This paper examines multi-disciplinary theoretical evidence to suggest that health systems exhibit natural and observable systemic and long cycle characteristics that can be modelled. A health and well-being system model of two slowly evolving anthropological network sub-systems is defined. The first network sub-system consists of organised professional networks of exclusive suppliers of health and well-being services. The second network sub-system consists of communities organising themselves to resource those exclusive services. Together these two network sub-systems interact to form the specific (sovereign) health and well-being systems we know today. But the core of a truly ‘complex adaptive system’ can also be identified and a simplified two sub-system model of recurring Lotka-Volterra predator-prey cycles is specified. The implications of such an adaptive and evolving model of system anatomy for effective public health, social security insurance and well-being systems governance could be considerable. PMID:24596831
Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei
2012-01-01
There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.
2016-01-01
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023
Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S
2016-01-01
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.
Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease
Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.
2015-01-01
The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739
Crosstalk and the evolvability of intracellular communication.
Rowland, Michael A; Greenbaum, Joseph M; Deeds, Eric J
2017-07-10
Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is unclear what pressures drove the evolution of this architecture. We explore the hypothesis that crosstalk allows different cell types, each expressing a specific subset of signalling proteins, to activate different outputs when faced with the same inputs, responding differently to the same environment. We find that the pressure to generate diversity leads to the evolution of networks with extensive crosstalk. Using available data, we find that human tissues exhibit higher levels of diversity between cell types than networks with random expression patterns or networks with no crosstalk. We also find that crosstalk and differential expression can influence drug activity: no protein has the same impact on two tissues when inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our work indicates that consideration of cellular context will likely be crucial for targeting signalling networks.
In silico modeling of the yeast protein and protein family interaction network
NASA Astrophysics Data System (ADS)
Goh, K.-I.; Kahng, B.; Kim, D.
2004-03-01
Understanding of how protein interaction networks of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce an in silico ``coevolutionary'' model for the protein interaction network and the protein family network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed: gene duplication, divergence, and mutation. This model produces a prototypical feature of complex networks in a wide range of parameter space, following the generalized Pareto distribution in connectivity. Moreover, we investigate other structural properties of our model in detail with some specific values of parameters relevant to the yeast Saccharomyces cerevisiae, showing excellent agreement with the empirical data. Our model indicates that the physical constraints encoded via the domain structure of proteins play a crucial role in protein interactions.
Solé, Ricard V.; Valverde, Sergi
2013-01-01
The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussed. PMID:23596506
New solutions for climate network visualization
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Buschmann, Stefan; Donges, Jonathan F.; Marwan, Norbert
2016-04-01
An increasing amount of climate and climate impact research methods deals with geo-referenced networks, including energy, trade, supply-chain, disease dissemination and climatic tele-connection networks. At the same time, the size and complexity of these networks increases, resulting in networks of more than hundred thousand or even millions of edges, which are often temporally evolving, have additional data at nodes and edges, and can consist of multiple layers even in real 3D. This gives challenges to both the static representation and the interactive exploration of these networks, first of all avoiding edge clutter ("edge spagetti") and allowing interactivity even for unfiltered networks. Within this presentation, we illustrate potential solutions to these challenges. Therefore, we give a glimpse on a questionnaire performed with climate and complex system scientists with respect to their network visualization requirements, and on a review of available state-of-the-art visualization techniques and tools for this purpose (see as well Nocke et al., 2015). In the main part, we present alternative visualization solutions for several use cases (global, regional, and multi-layered climate networks) including alternative geographic projections, edge bundling, and 3-D network support (based on CGV and GTX tools), and implementation details to reach interactive frame rates. References: Nocke, T., S. Buschmann, J. F. Donges, N. Marwan, H.-J. Schulz, and C. Tominski: Review: Visual analytics of climate networks, Nonlinear Processes in Geophysics, 22, 545-570, doi:10.5194/npg-22-545-2015, 2015
de Blasio, Birgitte Freiesleben; Seierstad, Taral Guldahl; Aalen, Odd O
2011-01-01
Preferential attachment is a proportionate growth process in networks, where nodes receive new links in proportion to their current degree. Preferential attachment is a popular generative mechanism to explain the widespread observation of power-law-distributed networks. An alternative explanation for the phenomenon is a randomly grown network with large individual variation in growth rates among the nodes (frailty). We derive analytically the distribution of individual rates, which will reproduce the connectivity distribution that is obtained from a general preferential attachment process (Yule process), and the structural differences between the two types of graphs are examined by simulations. We present a statistical test to distinguish the two generative mechanisms from each other and we apply the test to both simulated data and two real data sets of scientific citation and sexual partner networks. The findings from the latter analyses argue for frailty effects as an important mechanism underlying the dynamics of complex networks. PMID:21572513
NASA Technical Reports Server (NTRS)
Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates
Laramée, Marie-Eve; Boire, Denis
2015-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.
Laramée, Marie-Eve; Boire, Denis
2014-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.
Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of networkmore » activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.« less
A generalized theory of preferential linking
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan
2014-12-01
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.
Laarits, T; Bordalo, P; Lemos, B
2016-08-01
Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Yu, Shuiyuan; Xu, Chunshan
2014-12-01
Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.
Gillette, Rhanor; Brown, Jeffrey W
2015-12-01
How and why did complex brain and behavior evolve? Clues emerge from comparative studies of animals with simpler morphology, nervous system, and behavioral economics. The brains of vertebrates, arthropods, and some annelids have highly derived executive structures and function that control downstream, central pattern generators (CPGs) for locomotion, behavioral choice, and reproduction. For the vertebrates, these structures-cortex, basal ganglia, and hypothalamus-integrate topographically mapped sensory inputs with motivation and memory to transmit complex motor commands to relay stations controlling CPG outputs. Similar computations occur in the central complex and mushroom bodies of the arthropods, and in mammals these interactions structure subjective thought and socially based valuations. The simplest model systems available for comparison are opisthobranch molluscs, which have avoided selective pressure for complex bodies, brain, and behavior through potent chemical defenses. In particular, in the sea-slug Pleurobranchaea californica the functions of vertebrates' olfactory bulb and pallium are performed in the peripheral nervous system (PNS) of the chemotactile oral veil. Functions of hypothalamus and basal ganglia are combined in Pleurobranchaea's feeding motor network. The actions of basal ganglia on downstream locomotor regions and spinal CPGs are analogous to Pleurobranchaea's feeding network actions on CPGs for agonist and antagonist behaviors. The nervous systems of opisthobranch and pulmonate gastropods may conserve or reflect relations of the ancestral urbilaterian. Parallels and contrasts in neuronal circuits for action selection in Pleurobranchaea and vertebrates suggest how a basic set of decision circuitry was built upon in evolving segmentation, articulated skeletons, sociality, and highly invested reproductive strategies. They suggest (1) an origin of olfactory bulb and pallium from head-region PNS; (2) modularization of an ancestral feeding network into discrete but interacting executive modules for incentive comparison and decision (basal ganglia), and homeostatic functions (hypothalamus); (3) modification of a multifunctional premotor network for turns and locomotion, and its downstream targets for mid-brain and hind-brain motor areas and spinal CPGs; (4) condensation of a distributed serotonergic network for arousal into the raphe nuclei, with superimposed control by a peptidergic hypothalamic network mediating appetite and arousal; (5) centralization and condensation of the dopaminergic sensory afferents of the PNS, and/or the disperse dopaminergic elements of central CPGs, into the brain nuclei mediating valuation, reward, and motor arousal; and (6) the urbilaterian possessed the basic circuit relations integrating sensation, internal state, and learning for cost-benefit approach-avoidance decisions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J
2008-01-01
Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.
Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.
Shang, Yilun
2015-01-01
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.
Wolff, Sara M; Ellison, Melinda J; Hao, Yue; Cockrum, Rebecca R; Austin, Kathy J; Baraboo, Michael; Burch, Katherine; Lee, Hyuk Jin; Maurer, Taylor; Patil, Rocky; Ravelo, Andrea; Taxis, Tasia M; Truong, Huan; Lamberson, William R; Cammack, Kristi M; Conant, Gavin C
2017-06-08
Grazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal's diet, we inferred a microbiome-level metabolic network from shotgun metagenomic data. Using comparative genomics, we then linked this microbial network to that of the host animal using a set of interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites that are nearer in network space to the host's metabolism. In addition, these reactions are more central in the network and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals. Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the appearance of a number of different microbial networks, including a degenerate network characterized by an inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an unexpected result of a diet shift. We argue that network approaches, particularly those that link the microbial network with that of the host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular, different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless, there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such as a diet shift uncover more of this type of diversity.
NASA Astrophysics Data System (ADS)
Stahn, Kirsten; Lehnertz, Klaus
2017-12-01
We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks.
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-12-17
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-01-01
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism. PMID:26694409
Hultman, Rainbo; Mague, Stephen D.; Li, Qiang; Katz, Brittany M.; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K.; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D.; Dzirasa, Kafui
2016-01-01
Summary Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social-defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. PMID:27346529
NASA Astrophysics Data System (ADS)
Rings, Thorsten; Lehnertz, Klaus
2016-09-01
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
Probing into the effectiveness of self-isolation policies in epidemic control
NASA Astrophysics Data System (ADS)
Crokidakis, Nuno; Duarte Queirós, Sílvio M.
2012-06-01
In this work, we inspect the reliability of controlling and quelling an epidemic disease mimicked by a susceptible-infected-susceptible (SIS) model defined on a complex network by means of current and implementable quarantine and isolation policies. Specifically, we consider that each individual in the network is originally linked to individuals of two types: members of the same household and acquaintances. The topology of this network evolves, taking into account a probability q that aims at representing the quarantine or isolation process in which the connection with acquaintances is severed according to standard policies of control of epidemics. Within current policies of self-isolation and standard infection rates, our results show that the propagation is either only controllable for hypothetical rates of compliance or not controllable at all.
Mammalian synthetic biology: emerging medical applications.
Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob
2015-05-06
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Evolving science of marine reserves: New developments and emerging research frontiers
Gaines, Steven D.; Lester, Sarah E.; Grorud-Colvert, Kirsten; Costello, Christopher; Pollnac, Richard
2010-01-01
The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks. PMID:20978212
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
Structural principles within the human-virus protein-protein interaction network
Franzosa, Eric A.; Xia, Yu
2011-01-01
General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host’s endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces—including many sites of endogenous-exogenous overlap—tend to evolve faster, consistent with an evolutionary “arms race” between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks. PMID:21680884
Fundamental Principles of Network Formation among Preschool Children1
Schaefer, David R.; Light, John M.; Fabes, Richard A.; Hanish, Laura D.; Martin, Carol Lynn
2009-01-01
The goal of this research was to investigate the origins of social networks by examining the formation of children’s peer relationships in 11 preschool classes throughout the school year. We investigated whether several fundamental processes of relationship formation were evident at this age, including reciprocity, popularity, and triadic closure effects. We expected these mechanisms to change in importance over time as the network crystallizes, allowing more complex structures to evolve from simpler ones in a process we refer to as structural cascading. We analyzed intensive longitudinal observational data of children’s interactions using the SIENA actor-based model. We found evidence that reciprocity, popularity, and triadic closure all shaped the formation of preschool children’s networks. The influence of reciprocity remained consistent, whereas popularity and triadic closure became increasingly important over the course of the school year. Interactions between age and endogenous network effects were nonsignificant, suggesting that these network formation processes were not moderated by age in this sample of young children. We discuss the implications of our longitudinal network approach and findings for the study of early network developmental processes. PMID:20161606
Toward link predictability of complex networks
Lü, Linyuan; Pan, Liming; Zhou, Tao; Zhang, Yi-Cheng; Stanley, H. Eugene
2015-01-01
The organization of real networks usually embodies both regularities and irregularities, and, in principle, the former can be modeled. The extent to which the formation of a network can be explained coincides with our ability to predict missing links. To understand network organization, we should be able to estimate link predictability. We assume that the regularity of a network is reflected in the consistency of structural features before and after a random removal of a small set of links. Based on the perturbation of the adjacency matrix, we propose a universal structural consistency index that is free of prior knowledge of network organization. Extensive experiments on disparate real-world networks demonstrate that (i) structural consistency is a good estimation of link predictability and (ii) a derivative algorithm outperforms state-of-the-art link prediction methods in both accuracy and robustness. This analysis has further applications in evaluating link prediction algorithms and monitoring sudden changes in evolving network mechanisms. It will provide unique fundamental insights into the above-mentioned academic research fields, and will foster the development of advanced information filtering technologies of interest to information technology practitioners. PMID:25659742
The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science
NASA Astrophysics Data System (ADS)
Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.
2012-12-01
A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.
Therapeutic synthetic gene networks.
Karlsson, Maria; Weber, Wilfried
2012-10-01
The field of synthetic biology is rapidly expanding and has over the past years evolved from the development of simple gene networks to complex treatment-oriented circuits. The reprogramming of cell fate with open-loop or closed-loop synthetic control circuits along with biologically implemented logical functions have fostered applications spanning over a wide range of disciplines, including artificial insemination, personalized medicine and the treatment of cancer and metabolic disorders. In this review we describe several applications of interactive gene networks, a synthetic biology-based approach for future gene therapy, as well as the utilization of synthetic gene circuits as blueprints for the design of stimuli-responsive biohybrid materials. The recent progress in synthetic biology, including the rewiring of biosensing devices with the body's endogenous network as well as novel therapeutic approaches originating from interdisciplinary work, generates numerous opportunities for future biomedical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Seismic Hazard Analysis on a Complex, Interconnected Fault Network
NASA Astrophysics Data System (ADS)
Page, M. T.; Field, E. H.; Milner, K. R.
2017-12-01
In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.
Wang, Bo; Lu, Min; Cook, James M; Yang, Da-Rong; Dunn, Derek W; Wang, Rui-Wu
2018-01-30
Different types of mutualisms may interact, co-evolve and form complex networks of interdependences, but how species interact in networks of a mutualistic community and maintain its stability remains unclear. In a mutualistic network between treehoppers-weaver ants and fig-pollinating wasps, we found that the cuticular hydrocarbons of the treehoppers are more similar to the surface chemical profiles of fig inflorescence branches (FIB) than the cuticular hydrocarbons of the fig wasps. Behavioral assays showed that the cuticular hydrocarbons from both treehoppers and FIBs reduce the propensity of weaver ants to attack treehoppers even in the absence of honeydew rewards, suggesting that chemical camouflage helps enforce the mutualism between weaver ants and treehoppers. High levels of weaver ant and treehopper abundances help maintain the dominance of pollinating fig wasps in the fig wasp community and also increase fig seed production, as a result of discriminative predation and disturbance by weaver ants of ovipositing non-pollinating fig wasps (NPFWs). Ants therefore help preserve this fig-pollinating wasp mutualism from over exploitation by NPFWs. Our results imply that in this mutualistic network chemical camouflage plays a decisive role in regulating the behavior of a key species and indirectly shaping the architecture of complex arthropod-plant interactions.
Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control
NASA Astrophysics Data System (ADS)
Petrovic-Lazarevic, Sonja; Zhang, Jian Ying
2007-12-01
The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan
2017-01-01
Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.
NASA Astrophysics Data System (ADS)
Farmer, J. Doyne; Gallegati, M.; Hommes, C.; Kirman, A.; Ormerod, P.; Cincotti, S.; Sanchez, A.; Helbing, D.
2012-11-01
We outline a vision for an ambitious program to understand the economy and financial markets as a complex evolving system of coupled networks of interacting agents. This is a completely different vision from that currently used in most economic models. This view implies new challenges and opportunities for policy and managing economic crises. The dynamics of such models inherently involve sudden and sometimes dramatic changes of state. Further, the tools and approaches we use emphasize the analysis of crises rather than of calm periods. In this they respond directly to the calls of Governors Bernanke and Trichet for new approaches to macroeconomic modelling.
Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability
Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino
2012-01-01
Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419
The topology and dynamics of complex networks
NASA Astrophysics Data System (ADS)
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Ruan, Jujun; Zhang, Chao; Li, Ya; Li, Peiyi; Yang, Zaizhi; Chen, Xiaohong; Huang, Mingzhi; Zhang, Tao
2017-02-01
This work proposes an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic process for treating papermaking wastewater. With the self-learning and memory abilities of neural network, handling the uncertainty capacity of fuzzy logic, analyzing local detail superiority of wavelet transform and global search of GA, this proposed control system can extract the dynamic behavior and complex interrelationships between various operation variables. The results indicate that the reasonable forecasting and control performances were achieved with optimal DO, and the effluent quality was stable at and below the desired values in real time. Our proposed hybrid approach proved to be a robust and effective DO control tool, attaining not only adequate effluent quality but also minimizing the demand for energy, and is easily integrated into a global monitoring system for purposes of cost management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Does the Type of Event Influence How User Interactions Evolve on Twitter?
del Val, Elena; Rebollo, Miguel; Botti, Vicente
2015-01-01
The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events. PMID:25961305
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-08-10
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.
Predicting the evolution of complex networks via similarity dynamics
NASA Astrophysics Data System (ADS)
Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping
2017-01-01
Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.
Optical network democratization.
Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra
2016-03-06
The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
An Evolving Identity: How Chronic Care Is Transforming What it Means to Be a Physician.
Bogetz, Alyssa L; Bogetz, Jori F
2015-12-01
Physician identity and the professional role physicians play in health care is rapidly evolving. Over 130 million adults and children in the USA have complex and chronic diseases, each of which is shaped by aspects of the patient's social, psychological, and economic status. These patients have lifelong health care needs that require the ongoing care of multiple health care providers, access to community services, and the involvement of patients' family support networks. To date, physician professional identity formation has centered on autonomy, authority, and the ability to "heal." These notions of identity may be counterproductive in chronic disease care, which demands interdependency between physicians, their patients, and teams of multidisciplinary health care providers. Medical educators can prepare trainees for practice in the current health care environment by providing training that legitimizes and reinforces a professional identity that emphasizes this interdependency. This commentary outlines the important challenges related to this change and suggests potential strategies to reframe professional identity to better match the evolving role of physicians today.
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
NASA Astrophysics Data System (ADS)
Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo
2015-11-01
Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
SuperJet International case study: a business network start-up in the aeronautics industry
NASA Astrophysics Data System (ADS)
Corallo, Angelo; de Maggio, Marco; Storelli, Davide
This chapter presents the SuperJet International case study, a start-up in the aeronautics industry characterized by a process-oriented approach and a complex and as yet evolving network of partnerships and collaborations. The chapter aims to describe the key points of the start-up process, highlighting common factors and differences compared to the TEKNE Methodology of Change, with particular reference to the second and third phase, namely, the design and deployment of new techno-organizational systems. The SuperJet International startup is presented as a case study where strategic and organizational aspects have been jointly conceived from a network-driven perspective. The chapter compares some of the guidelines of the TEKNE Methodology of Change with experiences and actual practices deriving from interviews with key players in SJI's start-up process.
Neuronal avalanches and learning
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla
2011-05-01
Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
Network motif frequency vectors reveal evolving metabolic network organisation.
Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia
2015-01-01
At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.
Steiner, Christopher F.
2012-01-01
The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-05-22
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.
Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee
2018-01-01
Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710
Signalling chains with probe and adjust learning
NASA Astrophysics Data System (ADS)
Gosti, Giorgio
2018-04-01
Many models explain the evolution of signalling in repeated stage games on social networks, differently in this study each signalling game evolves a communication strategy to transmit information across the network. Specifically, I formalise signalling chain games as a generalisation of Lewis' signalling games, where a number of players are placed on a chain network and play a signalling game in which they have to propagate information across the network. I show that probe and adjust learning allows the system to develop communication conventions, but it may temporarily perturb the system out of conventions. Through simulations, I evaluate how long the system takes to evolve a signalling convention and the amount of time it stays in it. This discussion presents a mechanism in which simple players can evolve signalling across a social network without necessarily understanding the entire system.
Social networks: Evolving graphs with memory dependent edges
NASA Astrophysics Data System (ADS)
Grindrod, Peter; Parsons, Mark
2011-10-01
The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Exploring the Role of Intrinsic Nodal Activation on the Spread of Influence in Complex Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visweswara Sathanur, Arun; Halappanavar, Mahantesh; Shi, Yi
In many complex networked systems such as online social networks, at any given time, activity originates at certain nodes and subsequently spreads on the network through influence. To model the spread of influence in such a scenario, we consider the problem of identification of influential entities in a complex network when nodal activation can happen through two different mechanisms. The first mode of activation is due mechanisms intrinsic to the node. The second mechanism is through the influence of connected neighbors. In this work, we present a simple probabilistic formulation that models such self-evolving systems where information diffusion occurs primarilymore » because of the intrinsic activity of users and the spread of activity occurs due to influence. We provide an algorithm to mine for the influential seeds in such a scenario by modifying the well-known influence maximization framework with the independent cascade diffusion model. We provide small motivating examples to provide an intuitive understanding of the effect of including the intrinsic activation mechanism. We sketch a proof of the submodularity of the influence function under the new formulation and demonstrate the same with larger graphs. We then show by means of additional experiments on a real-world twitter dataset how the formulation can be applied to real-world social media datasets. Finally we derive a computationally efficient centrality metric that takes into account, both the mechanisms of activation and provides for an accurate as well as computationally efficient alternative approach to the problem of identifying influencers under intrinsic activation.« less
Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui
2016-07-20
Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1 Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Leeuwen, Brian P.; Eldridge, John M.
Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approachmore » that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.« less
Evolution of Functional Diversification within Quasispecies
Colizzi, Enrico Sandro; Hogeweg, Paulien
2014-01-01
According to quasispecies theory, high mutation rates limit the amount of information genomes can store (Eigen’s Paradox), whereas genomes with higher degrees of neutrality may be selected even at the expenses of higher replication rates (the “survival of the flattest” effect). Introducing a complex genotype to phenotype map, such as RNA folding, epitomizes such effect because of the existence of neutral networks and their exploitation by evolution, affecting both population structure and genome composition. We reexamine these classical results in the light of an RNA-based system that can evolve its own ecology. Contrary to expectations, we find that quasispecies evolving at high mutation rates are steep and characterized by one master sequence. Importantly, the analysis of the system and the characterization of the evolved quasispecies reveal the emergence of functionalities as phenotypes of nonreplicating genotypes, whose presence is crucial for the overall viability and stability of the system. In other words, the master sequence codes for the information of the entire ecosystem, whereas the decoding happens, stochastically, through mutations. We show that this solution quickly outcompetes strategies based on genomes with a high degree of neutrality. In conclusion, individually coded but ecosystem-based diversity evolves and persists indefinitely close to the Information Threshold. PMID:25056399
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
Baker, David A; Algorta, Guillermo Perez
2016-11-01
Online social networking sites (SNSs) such as Facebook, Twitter, and MySpace are used by billions of people every day to communicate and interact with others. There has been increasing interest in the potential impact of online social networking on wellbeing, with a broadening body of new research into factors associated with both positive and negative mental health outcomes such as depression. This systematic review of empirical studies (n = 30) adds to existing research in this field by examining current quantitative studies focused on the relationship between online social networking and symptoms of depression. The academic databases PsycINFO, Web of Science, CINAHL, MEDLINE, and EMBASE were searched systematically using terms related to online social networking and depression. Reporting quality was critically appraised and the findings discussed with reference to their wider implications. The findings suggest that the relationship between online social networking and symptoms of depression may be complex and associated with multiple psychological, social, behavioral, and individual factors. Furthermore, the impact of online social networking on wellbeing may be both positive and negative, highlighting the need for future research to determine the impact of candidate mediators and moderators underlying these heterogeneous outcomes across evolving networks.
Review of Literature on Mentorship Networks in Medicine: Where Are We Now and Where Are We Going?
NASA Astrophysics Data System (ADS)
Mickelson, Jennifer Judith
Mentorship is imperative in medical training and conceptual frameworks for mentoring continue to evolve. This study is an integrated review of the literature on mentoring networks. A systematic review of the literature on mentoring networks identified 943 articles from multiple databases. 24 relevant articles under went qualitative analysis. An iterative approach was taken to formulate themes, subthemes and codes. Three major themes were identified. The first theme was that group or peer networks meet evolving and dynamic or changing needs through training and career development. A prominent subtheme was identified which was the need for mentees to be the architects or directors of their evolving mentorship networks. The second theme identified was that mentorship networks offered a solution to barriers associated with the dyad model of mentorship. The third theme was the importance of the informality or "voluntary marriages", as distinguished from structured formal programs, to create meaningful mentorship networks. Future directions of study include examining how to empower mentees to facilitate and direct their mentorship networks.
Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.
Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen
2017-11-01
Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra
2013-01-01
Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Hosseini, Sayed-Rzgar; Barve, Aditya; Wagner, Andreas
2015-01-01
All biological evolution takes place in a space of possible genotypes and their phenotypes. The structure of this space defines the evolutionary potential and limitations of an evolving system. Metabolism is one of the most ancient and fundamental evolving systems, sustaining life by extracting energy from extracellular nutrients. Here we study metabolism’s potential for innovation by analyzing an exhaustive genotype-phenotype map for a space of 1015 metabolisms that encodes all possible subsets of 51 reactions in central carbon metabolism. Using flux balance analysis, we predict the viability of these metabolisms on 10 different carbon sources which give rise to 1024 potential metabolic phenotypes. Although viable metabolisms with any one phenotype comprise a tiny fraction of genotype space, their absolute numbers exceed 109 for some phenotypes. Metabolisms with any one phenotype typically form a single network of genotypes that extends far or all the way through metabolic genotype space, where any two genotypes can be reached from each other through a series of single reaction changes. The minimal distance of genotype networks associated with different phenotypes is small, such that one can reach metabolisms with novel phenotypes – viable on new carbon sources – through one or few genotypic changes. Exceptions to these principles exist for those metabolisms whose complexity (number of reactions) is close to the minimum needed for viability. Increasing metabolic complexity enhances the potential for both evolutionary conservation and evolutionary innovation. PMID:26252881
Neutral evolution of mutational robustness
van Nimwegen, Erik; Crutchfield, James P.; Huynen, Martijn
1999-01-01
We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population’s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network’s adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. These results quantify the extent to which populations evolve mutational robustness—the insensitivity of the phenotype to mutations—and thus reduce genetic load. Because the average neutrality is independent of evolutionary parameters—such as mutation rate, population size, and selective advantage—one can infer global statistics of neutral network topology by using simple population data available from in vitro or in vivo evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions. PMID:10449760
Host-pathogen interaction in Fusarium oxysporum infections: where do we stand?
Husaini, Amjad M; Sakina, Aafreen; Cambay, Souliha R
2018-03-16
Fusarium oxysporum, a ubiquitous soil-borne pathogen causes devastating vascular wilt in more than 100 plant species and ranks fifth among top ten fungal plant pathogens. It has emerged as a human pathogen too, causing infections in immune-compromised patients. It is, therefore, important to gain insight into the molecular processes involved in the pathogenesis of this trans-kingdom pathogen. A complex network comprising of interconnected and over lapping signal pathways; mitogen-activated protein kinase (MAPK) signaling pathways, Ras proteins, G-protein signaling components and their downstream pathways, components of the velvet (LaeA/VeA/VelB) complex and cAMP pathways, is involved in perceiving the host. This network regulates the expression of various pathogenicity genes. Plants have however evolved an elaborate protection system to combat this attack. They too possess intricate mechanisms at molecular level, which once triggered by pathogen attack transduce signals to activate defense response. This review focuses on understanding and presenting a wholistic picture of the molecular mechanisms of F. oxysporum-host interactions in plant immunity.
Collective almost synchronisation in complex networks.
Baptista, Murilo S; Ren, Hai-Peng; Swarts, Johen C M; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso
2012-01-01
This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.
Collective Almost Synchronisation in Complex Networks
Baptista, Murilo S.; Ren, Hai-Peng; Swarts, Johen C. M.; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso
2012-01-01
This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it. PMID:23144851
Evolution of tag-mediated altruistic behavior in one-shot encounters on large-scale complex networks
NASA Astrophysics Data System (ADS)
Hadzibeganovic, Tarik; Lima, F. Welington S.; Stauffer, Dietrich
2012-11-01
An agent-based evolutionary model of tag-mediated altruism is studied on large-scale complex networks addressing multiplayer one-shot Prisoner’s Dilemma-like games with four competing strategies. Contrary to standard theoretical predictions, but in line with recent empirical findings, we observed that altruistic acts in non-repeated interactions can emerge as a natural consequence of recognition of heritable phenotypic traits such as visual tags, which enable the discrimination between potentially beneficial and unproductive encounters. Moreover, we identified topological regimes in which cooperation always prevails at short times, but where unconditional cooperators are favored over conditional tag-based helpers, even though the latter initially have a slight reproductive advantage. After very long times, we found that all four strategies appeared about equally often, meaning that only one quarter of agents refused cooperation egoistically. However, our study suggests that intra-tag generosity can quickly evolve to dominate over other strategies in spatially structured environments that are otherwise detrimental to cooperative behavior.
Evolving neural networks with genetic algorithms to study the string landscape
NASA Astrophysics Data System (ADS)
Ruehle, Fabian
2017-08-01
We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
The NASA Space Communications Data Networking Architecture
NASA Technical Reports Server (NTRS)
Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.
2006-01-01
The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.
Entropic determination of the phase transition in a coevolving opinion-formation model.
Burgos, E; Hernández, Laura; Ceva, H; Perazzo, R P J
2015-03-01
We study an opinion formation model by the means of a coevolving complex network where the vertices represent the individuals, characterized by their evolving opinions, and the edges represent the interactions among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that controls the plasticity of the network. We show how the information entropy associated to the distribution of group sizes allows us to locate the phase transition between a phase of full consensus and another, where different opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the distribution of the sizes of groups holding the same opinion is scale free.
Contrasting effects of strong ties on SIR and SIS processes in temporal networks
NASA Astrophysics Data System (ADS)
Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2015-12-01
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks.
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-01-01
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants. PMID:20706207
Understanding global health governance as a complex adaptive system.
Hill, Peter S
2011-01-01
The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.
The many faces of graph dynamics
NASA Astrophysics Data System (ADS)
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany
2018-03-19
Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership, and flexible structures and processes to accommodate the dynamic reality of these networks. Originality/value This case study builds on growing interest in the role of networks to foster large-scale change. The particular value rests on the longitudinal perspective on the evolution of a large, complex global network, and the use of theory to guide understanding.
Dufour, Yann S.; Donohue, Timothy J.
2015-01-01
Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950
The evolution of communities in the international oil trade network
NASA Astrophysics Data System (ADS)
Zhong, Weiqiong; An, Haizhong; Gao, Xiangyun; Sun, Xiaoqi
2014-11-01
International oil trade is a subset of global trade and there exist oil trade communities. These communities evolve over time and provide clues of international oil trade patterns. A better understanding of the international oil trade patterns is necessary for governments in policy making. To study the evolution of trade communities in the international oil trade network, we set up unweighted and weighted oil trade network models based on complex network theory using data from 2002 to 2011. We detected the communities in the oil trade networks and analyzed their evolutionary properties and stabilities over time. We found that the unweighted and weighted international oil trade networks show many different features in terms of community number, community scale, distribution of countries, quality of partitions, and stability of communities. Two turning points occurred in the evolution of community stability in the international oil trade network. One is the year 2004-2005 which correlates with changes in demand and supply in the world oil market after the Iraq War, and the other is the year 2008-2009 which is connected to the 2008 financial crisis. Different causations of instability show different features and this should be considered by policy makers.
Diversity Driven Coexistence: Collective Stability in the Cyclic Competition of Three Species
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Frey, Erwin; Zia, R. K. P.
2015-03-01
The basic physics of collective behavior are often difficult to quantify and understand, particularly when the system is driven out of equilibrium. Many complex systems are usefully described as complex networks, consisting of nodes and links. The nodes specify individual components of the system and the links describe their interactions. When both nodes and links change dynamically, or `co-evolve', as happens in many realistic systems, complex mathematical structures are encountered, posing challenges to our understanding. In this context, we introduce a minimal system of node and link degrees of freedom, co-evolving with stochastic rules. Specifically, we show that diversity of social temperament (intro- or extroversion) can produce collective stable coexistence when three species compete cyclically. It is well-known that when only extroverts exist in a stochastic rock-paper-scissors game, or in a conserved predator-prey, Lotka-Volterra system, extinction occurs at times of O(N), where N is the number of nodes. We find that when both introverts and extroverts exist, where introverts sever social interactions and extroverts create them, collective coexistence prevails in long-living, quasi-stationary states. Work supported by the NSF through Grants DMR-1206839 (KEB) and DMR-1244666 (RKPZ), and by the AFOSR and DARPA through Grant FA9550-12-1-0405 (KEB).
Evolvable mathematical models: A new artificial Intelligence paradigm
NASA Astrophysics Data System (ADS)
Grouchy, Paul
We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.
Empirical Models of Social Learning in a Large, Evolving Network.
Bener, Ayşe Başar; Çağlayan, Bora; Henry, Adam Douglas; Prałat, Paweł
2016-01-01
This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals' access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1) attraction homophily causes individuals to form ties on the basis of attribute similarity, 2) aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3) social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends.
Self-organization in multilayer network with adaptation mechanisms based on competition
NASA Astrophysics Data System (ADS)
Pitsik, Elena N.; Makarov, Vladimir V.; Nedaivozov, Vladimir O.; Kirsanov, Daniil V.; Goremyko, Mikhail V.
2018-04-01
The paper considers the phenomena of competition in multiplex network whose structure evolves corresponding to dynamics of it's elements, forming closed loop of self-learning with the aim to reach the optimal topology. Numerical analysis of proposed model shows that it is possible to obtain scale-invariant structures for corresponding parameters as well as the structures with homogeneous distribution of connections in the layers. Revealed phenomena emerges as the consequence of the self-organization processes related to structure-dynamical selflearning based on homeostasis and homophily, as well as the result of the competition between the network's layers for optimal topology. It was shown that in the mode of partial and cluster synchronization the network reaches scale-free topology of complex nature that is different from layer to layer. However, in the mode of global synchronization the homogeneous topologies on all layer of the network are observed. This phenomenon is tightly connected with the competitive processes that represent themselves as the natural mechanism of reaching the optimal topology of the links in variety of real-world systems.
Empirical Models of Social Learning in a Large, Evolving Network
Bener, Ayşe Başar; Çağlayan, Bora; Henry, Adam Douglas; Prałat, Paweł
2016-01-01
This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals’ access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1) attraction homophily causes individuals to form ties on the basis of attribute similarity, 2) aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3) social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends. PMID:27701430
Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity
Bassett, Danielle S.; Khambhati, Ankit N.; Grafton, Scott T.
2018-01-01
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain–machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer’s tool kit. PMID:28375650
Von Der Heide, Rebecca; Vyas, Govinda
2014-01-01
The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846
The Role of Caretakers in Disease Dynamics
NASA Astrophysics Data System (ADS)
Noble, Charleston; Bagrow, James P.; Brockmann, Dirk
2013-08-01
One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that, for both homogeneous networks and networks possessing large topological variability, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.
Assessing the evolving fragility of the global food system
NASA Astrophysics Data System (ADS)
Puma, Michael J.; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.
2015-02-01
The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18 year study period, we show that the global food system is relatively homogeneous (85% of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90%, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9% (3.8%) for 1992-1996, increasing to 11% (5.7%) for 2005-2009. Over the same intervals, rice losses increase from 8.2% (2.2%) to 14% (5.2%). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.
Assessing the Evolving Fragility of the Global Food System
NASA Technical Reports Server (NTRS)
Puma, Michael Joseph; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.
2015-01-01
The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18-year study period, we show that the global food system is relatively homogeneous (85 of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9 (3.8) for 1992-1996, increasing to 11 (5.7) for 20052009. Over the same intervals, rice losses increase from 8.2 (2.2) to 14 (5.2). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network
NASA Astrophysics Data System (ADS)
Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun
2008-08-01
Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel
2014-11-15
Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
NASA Astrophysics Data System (ADS)
Canetta, D.; Capozza, A.; Iovino, G.
The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed.
Intelligent reservoir operation system based on evolving artificial neural networks
NASA Astrophysics Data System (ADS)
Chaves, Paulo; Chang, Fi-John
2008-06-01
We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.
Systems engineering for very large systems
NASA Technical Reports Server (NTRS)
Lewkowicz, Paul E.
1993-01-01
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
Systems engineering for very large systems
NASA Astrophysics Data System (ADS)
Lewkowicz, Paul E.
Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.
A new evolutionary system for evolving artificial neural networks.
Yao, X; Liu, Y
1997-01-01
This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Link Prediction in Evolving Networks Based on Popularity of Nodes.
Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian
2017-08-02
Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.
Grip on health: A complex systems approach to transform health care.
van Wietmarschen, Herman A; Wortelboer, Heleen M; van der Greef, Jan
2018-02-01
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem. © 2016 John Wiley & Sons, Ltd.
Wei, Fangping; Chen, Bowen
2012-03-01
To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.
Taylor, Dane; Skardal, Per Sebastian; Sun, Jie
2016-01-01
Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.
2014-08-01
Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.
Microscale Spatiotemporal Dynamics during Neocortical Propagation of Human Focal Seizures
Wagner, Fabien B.; Eskandar, Emad N.; Cosgrove, G. Rees; Madsen, Joseph R.; Blum, Andrew S.; Potter, N. Stevenson; Hochberg, Leigh R.; Cash, Sydney S.; Truccolo, Wilson
2015-01-01
Some of the most clinically consequential aspects of focal epilepsy, e.g. loss of consciousness, arise from the generalization or propagation of seizures through local and large-scale neocortical networks. Yet, the dynamics of such neocortical propagation remain poorly understood. Here, we studied the microdynamics of focal seizure propagation in neocortical patches (4 × 4 mm) recorded via high-density microelectrode arrays (MEAs) implanted in people with pharmacologically resistant epilepsy. Our main findings are threefold: (1) A newly developed stage segmentation method, applied to local field potentials (LFPs) and multi-unit activity (MUA), revealed a succession of discrete seizure stages, each lasting several seconds. These different stages showed characteristic evolutions in overall activity and spatial patterns, which were relatively consistent across seizures within each of the 5 patients studied. Interestingly, segmented seizure stages based on LFPs or MUA showed a dissociation of their spatiotemporal dynamics, likely reflecting different contributions of non-local synaptic inputs and local network activity. (2) As previously reported, some of the seizures showed a peak in MUA that happened several seconds after local seizure onset and slowly propagated across the MEA. However, other seizures had a more complex structure characterized by, for example, several MUA peaks, more consistent with the succession of discrete stages than the slow propagation of a simple wavefront of increased MUA. In both cases, nevertheless, seizures characterized by spike-wave discharges (SWDs, ~ 2–3Hz) eventually evolved into patterns of phase-locked MUA and LFPs. (3) Individual SWDs or gamma oscillation cycles (25–60 Hz), characteristic of two different types of recorded seizures, tended to propagate with varying degrees of directionality, directions of propagation and speeds, depending on the identified seizure stage. However, no clear relationship was observed between the MUA peak onset time (in seizures where such peak onset occurred) and changes in MUA or LFP propagation patterns. Overall, our findings indicate that the recruitment of neocortical territories into ictal activity undergo complex spatiotemporal dynamics evolving in slow discrete states, which are consistent across seizures within each patient. Furthermore, ictal states at finer spatiotemporal scales (individual SWDs or gamma oscillations) are organized by slower time-scale network dynamics evolving through these discrete stages. PMID:26279211
Gravity effects on information filtering and network evolving.
Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi
2014-01-01
In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model.
Gravity Effects on Information Filtering and Network Evolving
Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi
2014-01-01
In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162
Environmental Influence on the Evolution of Morphological Complexity in Machines
Auerbach, Joshua E.; Bongard, Josh C.
2014-01-01
Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483
Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)
NASA Astrophysics Data System (ADS)
Newman, David
2015-03-01
Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.
Schmidt, Helmut; Petkov, George; Richardson, Mark P; Terry, John R
2014-11-01
Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz) and low-alpha (6-9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.
Communication and complexity in a GRN-based multicellular system for graph colouring.
Buck, Moritz; Nehaniv, Chrystopher L
2008-01-01
Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.
Long-Term Environmental Research Programs - Evolving Capacity for Discovery
NASA Astrophysics Data System (ADS)
Swanson, F. J.
2008-12-01
Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.
NASA Astrophysics Data System (ADS)
Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.
2017-12-01
The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.
Supply network science: Emergence of a new perspective on a classical field
NASA Astrophysics Data System (ADS)
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks
NASA Astrophysics Data System (ADS)
Bhatia, U.; Ganguly, A. R.
2015-12-01
Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.
Supply network science: Emergence of a new perspective on a classical field.
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.
Jovanović, Stojan; Rotter, Stefan
2016-06-01
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.
Data based identification and prediction of nonlinear and complex dynamical systems
NASA Astrophysics Data System (ADS)
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.
Complex systems: physics beyond physics
NASA Astrophysics Data System (ADS)
Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan
2017-03-01
Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.
JavaGenes: Evolving Graphs with Crossover
NASA Technical Reports Server (NTRS)
Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd
2000-01-01
Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.
Text Authorship Identified Using the Dynamics of Word Co-Occurrence Networks
Akimushkin, Camilo; Amancio, Diego Raphael; Oliveira, Osvaldo Novais
2017-01-01
Automatic identification of authorship in disputed documents has benefited from complex network theory as this approach does not require human expertise or detailed semantic knowledge. Networks modeling entire books can be used to discriminate texts from different sources and understand network growth mechanisms, but only a few studies have probed the suitability of networks in modeling small chunks of text to grasp stylistic features. In this study, we introduce a methodology based on the dynamics of word co-occurrence networks representing written texts to classify a corpus of 80 texts by 8 authors. The texts were divided into sections with equal number of linguistic tokens, from which time series were created for 12 topological metrics. Since 73% of all series were stationary (ARIMA(p, 0, q)) and the remaining were integrable of first order (ARIMA(p, 1, q)), probability distributions could be obtained for the global network metrics. The metrics exhibit bell-shaped non-Gaussian distributions, and therefore distribution moments were used as learning attributes. With an optimized supervised learning procedure based on a nonlinear transformation performed by Isomap, 71 out of 80 texts were correctly classified using the K-nearest neighbors algorithm, i.e. a remarkable 88.75% author matching success rate was achieved. Hence, purely dynamic fluctuations in network metrics can characterize authorship, thus paving the way for a robust description of large texts in terms of small evolving networks. PMID:28125703
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
El-Sayed, Hesham; Sankar, Sharmi; Daraghmi, Yousef-Awwad; Tiwari, Prayag; Rattagan, Ekarat; Mohanty, Manoranjan; Puthal, Deepak; Prasad, Mukesh
2018-05-24
Heterogeneous vehicular networks (HETVNETs) evolve from vehicular ad hoc networks (VANETs), which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs). The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS) improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM) kernels with a radial basis function (RBF). The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy.
Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W
2016-04-18
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
Dancing with Swarms: Utilizing Swarm Intelligence to Build, Investigate, and Control Complex Systems
NASA Astrophysics Data System (ADS)
Jacob, Christian
We are surrounded by a natural world of massively parallel, decentralized biological "information processing" systems, a world that exhibits fascinating emergent properties in many ways. In fact, our very own bodies are the result of emergent patterns, as the development of any multi-cellular organism is determined by localized interactions among an enormous number of cells, carefully orchestrated by enzymes, signalling proteins and other molecular "agents". What is particularly striking about these highly distributed developmental processes is that a centralized control agency is completely absent. This is also the case for many other biological systems, such as termites which build their nests—without an architect that draws a plan, or brain cells evolving into a complex `mind machine'—without an explicit blueprint of a network layout.
Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.
Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan
2015-03-14
A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.
Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks
Ollivier, Julien F.; Soyer, Orkun S.
2016-01-01
Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612
Quantum games on evolving random networks
NASA Astrophysics Data System (ADS)
Pawela, Łukasz
2016-09-01
We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.
Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea
2017-01-01
ABSTRACT All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria. Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. PMID:29208747
Experimental observations of root growth in a controlled photoelastic granular material
NASA Astrophysics Data System (ADS)
Barés, Jonathan; Mora, Serge; Delenne, Jean-Yves; Fourcaud, Thierry
2017-06-01
We present a novel root observation apparatus capable of measuring the mechanical evolution of both the root network and the surrounding granular medium. The apparatus consists of 11 parallel growth frames, two of them being shearable, where the roots grow inside a photo-elastic or glass granular medium sandwiched between two pieces of glass. An automated system waters the plant and image each frame periodically in white light and between crossed polarisers. This makes it possible to follow (i) the root tips and (ii) the grain displacements as well as (iii) their inner pressure. We show how a root networks evolve in a granular medium and how it can mechanically stabilize it. This constitutes a model experiment to move forward in the understanding of the complex interaction between root growth and surrounding soil mechanical evolution.
From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.
Kaufmann, Kerstin; Chen, Dijun
2017-01-01
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
The Zel'dovich approximation: key to understanding cosmic web complexity
NASA Astrophysics Data System (ADS)
Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien
2014-02-01
We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.
Biodiversity and ecosystem functioning in evolving food webs.
Allhoff, K T; Drossel, B
2016-05-19
We use computer simulations in order to study the interplay between biodiversity and ecosystem functioning (BEF) during both the formation and the ongoing evolution of large food webs. A species in our model is characterized by its own body mass, its preferred prey body mass and the width of its potential prey body mass spectrum. On an ecological time scale, population dynamics determines which species are viable and which ones go extinct. On an evolutionary time scale, new species emerge as modifications of existing ones. The network structure thus emerges and evolves in a self-organized manner. We analyse the relation between functional diversity and five community level measures of ecosystem functioning. These are the metabolic loss of the predator community, the total biomasses of the basal and the predator community, and the consumption rates on the basal community and within the predator community. Clear BEF relations are observed during the initial build-up of the networks, or when parameters are varied, causing bottom-up or top-down effects. However, ecosystem functioning measures fluctuate only very little during long-term evolution under constant environmental conditions, despite changes in functional diversity. This result supports the hypothesis that trophic cascades are weaker in more complex food webs. © 2016 The Author(s).
Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language
Scharff, Constance; Petri, Jana
2011-01-01
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130
Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.
Scharff, Constance; Petri, Jana
2011-07-27
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.
Scale-free effect of substitution networks
NASA Astrophysics Data System (ADS)
Li, Ziyu; Yu, Zhouyu; Xi, Lifeng
2018-02-01
In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
Holme, Petter; Huss, Mikael; Lee, Sang Hoon
2011-05-06
The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.
Weighted Scaling in Non-growth Random Networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li
2012-09-01
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Cyber Security Research Frameworks For Coevolutionary Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rush, George D.; Tauritz, Daniel Remy
Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger,more » more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justify the use of a coevolutionary algorithm.« less
Modelling the influence of parental effects on gene-network evolution.
Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud
2018-05-01
Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540
Evolving network simulation study. From regular lattice to scale free network
NASA Astrophysics Data System (ADS)
Makowiec, D.
2005-12-01
The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.
Recovering time-varying networks of dependencies in social and biological studies.
Ahmed, Amr; Xing, Eric P
2009-07-21
A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.
Jia, Jingjing; Li, Huajiao; Zhou, Jinsheng; Jiang, Meihui; Dong, Di
2018-03-01
Research on the price fluctuation transmission of the carbon trading pilot market is of great significance for the establishment of China's unified carbon market and its development in the future. In this paper, the carbon market transaction prices of Beijing, Shanghai, Tianjin, Shenzhen, and Guangdong were selected from December 29, 2013 to March 26, 2016, as sample data. Based on the view of the complex network theory, we construct a price fluctuation transmission network model of five pilot carbon markets in China, with the purposes of analyzing the topological features of this network, including point intensity, weighted clustering coefficient, betweenness centrality, and community structure, and elucidating the characteristics and transmission mechanism of price fluctuation in China's five pilot cities. The results of point intensity and weighted clustering coefficient show that the carbon prices in the five markets remained unchanged and transmitted smoothly in general, and price fragmentation is serious; however, at some point, the price fluctuates with mass phenomena. The result of betweenness centrality reflects that a small number of price fluctuations can control the whole market carbon price transmission and price fluctuation evolves in an alternate manner. The study provides direction for the scientific management of the carbon price. Policy makers should take a positive role in promoting market activity, preventing the risks that may arise from mass trade and scientifically forecasting the volatility of trading prices, which will provide experience for the establishment of a unified carbon market in China.
Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619
Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin
2013-01-01
Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter.
Resiliently evolving supply-demand networks
NASA Astrophysics Data System (ADS)
Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.
2014-01-01
The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.
ERIC Educational Resources Information Center
Tennant, Roy
The Internet is a worldwide network of computer networks. In the United States, the National Science Foundation Network (NSFNet) serves as the Internet "backbone" (a very high speed network that connects key regions across the country). The NSFNet will likely evolve into the National Research and Education Network (NREN) as defined in…
The evolvability of programmable hardware.
Raman, Karthik; Wagner, Andreas
2011-02-06
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.
The General Evolving Model for Energy Supply-Demand Network with Local-World
NASA Astrophysics Data System (ADS)
Sun, Mei; Han, Dun; Li, Dandan; Fang, Cuicui
2013-10-01
In this paper, two general bipartite network evolving models for energy supply-demand network with local-world are proposed. The node weight distribution, the "shifting coefficient" and the scaling exponent of two different kinds of nodes are presented by the mean-field theory. The numerical results of the node weight distribution and the edge weight distribution are also investigated. The production's shifted power law (SPL) distribution of coal enterprises and the installed capacity's distribution of power plants in the US are obtained from the empirical analysis. Numerical simulations and empirical results are given to verify the theoretical results.
Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design
NASA Astrophysics Data System (ADS)
Schaffer, J. David
2015-06-01
Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.
Link prediction in multiplex online social networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
Link prediction in multiplex online social networks.
Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž
2017-02-01
Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.
Schwartz, Tonia S; Bronikowski, Anne M
2016-08-01
The insulin and insulin-like signaling (IIS) molecular network regulates cellular growth and division, and influences organismal metabolism, growth and development, reproduction, and lifespan. As a group, reptiles have incredible diversity in the complex life history traits that have been associated with the IIS network, yet the research on the IIS network in ectothermic reptiles is sparse. Here, we review the IIS network and synthesize what is known about the function and evolution of the IIS network in ectothermic reptiles. The primary hormones of this network-the insulin-like growth factors 1 and 2 (IGFs) likely function in reproduction in ectothermic reptiles, but the precise mechanisms are unclear, and likely range from influencing mating and ovulation to maternal investment in embryonic development. In general, plasma levels of IGF1 increase with food intake in ectothermic reptiles, but the magnitude of the response to food varies across species or populations and the ages of animals. Long-term temperature treatments as well as thermal stress can alter expression of genes within the IIS network. Although relatively little work has been done on IGF2 in ectothermic reptiles, IGF2 is consistently expressed at higher levels than IGF1 in juvenile ectothermic reptiles. Furthermore, in contrast to mammals that have genetic imprinting that silences the maternal IGF2 allele, in reptiles IGF2 is bi-allelically expressed (based on findings in chickens, a snake, and a lizard). Evolutionary analyses indicate some members of the IIS network are rapidly evolving across reptile species, including IGF1, insulin (INS), and their receptors. In particular, IGF1 displays extensive nucleotide variation across lizards and snakes, which suggests that its functional role may vary across this group. In addition, genetic variation across families and populations in the response of the IIS network to environmental conditions illustrates that components of this network may be evolving in natural populations. The diversity in reproductive physiology, metabolic plasticity, and lifespan among reptiles makes the study of the IIS network in this group a potentially rich avenue for insight into the evolution and function of this network. The field would benefit from future studies that discern the respective functions of IGF1 and IGF2 and how these functions vary across taxa, perfecting additional assays for measuring IIS components, and determining the role of IIS in different tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Autonomous evolution of topographic regularities in artificial neural networks.
Gauci, Jason; Stanley, Kenneth O
2010-07-01
Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.
De Boer, Rob J.; Perelson, Alan S.
2017-09-06
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Rob J.; Perelson, Alan S.
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
NASA Astrophysics Data System (ADS)
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
A Bayesian Approach to Real-Time Earthquake Phase Association
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.
2014-12-01
Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.
A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms
Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles
2013-01-01
Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113
Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach
Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2016-01-01
Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671
Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N
2006-12-01
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
How People Interact in Evolving Online Affiliation Networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.
2012-07-01
The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Practice innovation: the need for nimble data platforms to implement precision oncology care.
Elfiky, Aymen; Zhang, Dongyang; Krishnan Nair, Hari K
2015-01-01
Given the drive toward personalized, value-based, and coordinated cancer care delivery, modern knowledge-based practice is being shaped within the context of an increasingly technology-driven healthcare landscape. The ultimate promise of 'precision medicine' is predicated on taking advantage of the range of new capabilities for integrating disease- and individual-specific data to define new taxonomies as part of a systems-based knowledge network. Specifically, with cancer being a constantly evolving complex disease process, proper care of an individual will require the ability to seamlessly integrate multi-dimensional 'omic' and clinical data. Importantly, however, the challenges of curating knowledge from multiple dynamic data sources and translating to practice at the point-of-care highlight parallel needs. As patients, caregivers, and their environments become more proactive in clinical care and management, practical success of precision medicine is equally dependent on the development of proper infrastructures for evolving data integration, platforms for knowledge representation in a clinically-relevant context, and implementation within a provider's work-life and workflow.
Convergent evolution of complex brains and high intelligence
Roth, Gerhard
2015-01-01
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. PMID:26554042
Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.
Jékely, Gáspár
2014-09-02
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Origin and Evolution of the Self-Organizing Cytoskeleton in the Network of Eukaryotic Organelles
Jékely, Gáspár
2014-01-01
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing “active gel,” the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. PMID:25183829
Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features
NASA Astrophysics Data System (ADS)
Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios
2018-04-01
We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.
Social interaction in synthetic and natural microbial communities.
Xavier, Joao B
2011-04-12
Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.
Papatsoris, Athanasios G; Karamouzis, Michalis V; Papavassiliou, Athanasios G
2007-03-01
Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. Initially, tumor growth is androgen dependent and thus responsive to pharmacologic androgen deprivation, but there is a high rate of treatment failure because the disease evolves in an androgen-independent state. Growing evidence suggests that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade represents a pivotal molecular circuitry participating directly or indirectly in prostate cancer evolution. The crucial role of the protein elements comprising this complex signal transduction network makes them potential targets for pharmacologic interference. Here, we will delineate the current knowledge regarding the involvement of the Ras/MAPK pathway in prostate carcinogenesis, spotlight ongoing research concerning the development of novel targeted agents such as the Ras/MAPK inhibitors in prostate cancer, and discuss the future perspectives of their therapeutic efficacy.
A Comparative View of Face Perception
Leopold, David A.; Rhodes, Gillian
2010-01-01
Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and non-primates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Since the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. PMID:20695655
A comparative view of face perception.
Leopold, David A; Rhodes, Gillian
2010-08-01
Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and functional magnetic resonance imaging (fMRI) experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and nonprimates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Because the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. 2010 APA, all rights reserved
Linking Behavior in the Physics Education Research Coauthorship Network
ERIC Educational Resources Information Center
Anderson, Katharine A.; Crespi, Matthew; Sayre, Eleanor C.
2017-01-01
There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real…
On Complex Networks Representation and Computation of Hydrologycal Quantities
NASA Astrophysics Data System (ADS)
Serafin, F.; Bancheri, M.; David, O.; Rigon, R.
2017-12-01
Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.
Privacy as an enabler, not an impediment: building trust into health information exchange.
McGraw, Deven; Dempsey, James X; Harris, Leslie; Goldman, Janlori
2009-01-01
Building privacy and security protections into health information technology systems will bolster trust in such systems and promote their adoption. The privacy issue, too long seen as a barrier to electronic health information exchange, can be resolved through a comprehensive framework that implements core privacy principles, adopts trusted network design characteristics, and establishes oversight and accountability mechanisms. The public policy challenges of implementing this framework in a complex and evolving environment will require improvements to existing law, new rules for entities outside the traditional health care sector, a more nuanced approach to the role of consent, and stronger enforcement mechanisms.
Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions.
Bauché, David; Marie, Julien C
2017-04-01
The relationship between host organisms and their microbiota has co-evolved towards an inter-dependent network of mutualistic interactions. This interplay is particularly well studied in the gastrointestinal tract, where microbiota and host immune cells can modulate each other directly, as well as indirectly, through the production and release of chemical molecules and signals. In this review, we define the functional impact of transforming growth factor-beta (TGF-β) on this complex interplay, especially through its modulation of the activity of local regulatory T cells (Tregs), type 17 helper (Th17) cells, innate lymphoid cells (ILCs) and B cells.
Machine learning and social network analysis applied to Alzheimer's disease biomarkers.
Di Deco, Javier; González, Ana M; Díaz, Julia; Mato, Virginia; García-Frank, Daniel; Álvarez-Linera, Juan; Frank, Ana; Hernández-Tamames, Juan A
2013-01-01
Due to the fact that the number of deaths due Alzheimer is increasing, the scientists have a strong interest in early stage diagnostic of this disease. Alzheimer's patients show different kind of brain alterations, such as morphological, biochemical, functional, etc. Currently, using magnetic resonance imaging techniques is possible to obtain a huge amount of biomarkers; being difficult to appraise which of them can explain more properly how the pathology evolves instead of the normal ageing. Machine Learning methods facilitate an efficient analysis of complex data and can be used to discover which biomarkers are more informative. Moreover, automatic models can learn from historical data to suggest the diagnostic of new patients. Social Network Analysis (SNA) views social relationships in terms of network theory consisting of nodes and connections. The resulting graph-based structures are often very complex; there can be many kinds of connections between the nodes. SNA has emerged as a key technique in modern sociology. It has also gained a significant following in medicine, anthropology, biology, information science, etc., and has become a popular topic of speculation and study. This paper presents a review of machine learning and SNA techniques and then, a new approach to analyze the magnetic resonance imaging biomarkers with these techniques, obtaining relevant relationships that can explain the different phenotypes in dementia, in particular, different stages of Alzheimer's disease.
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
SkyNet: Modular nuclear reaction network library
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Roberts, Luke F.
2017-10-01
The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.
NASA Technical Reports Server (NTRS)
Davies, Mark
1991-01-01
The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.
What Presidents Need To Know about the Impact of Networking.
ERIC Educational Resources Information Center
Leadership Abstracts, 1993
1993-01-01
Many colleges and universities are undergoing cultural changes as a result of extensive voice, data, and video networking. Local area networks link large portions of most campuses, and national networks have evolved from specialized services for researchers in computer-related disciplines to general utilities on many campuses. Campuswide systems…
Chiang, Yen-Sheng
2015-01-01
The fact that the more resourceful people are sharing with the poor to mitigate inequality—egalitarian sharing—is well documented in the behavioral science research. How inequality evolves as a result of egalitarian sharing is determined by the structure of “who gives whom”. While most prior experimental research investigates allocation of resources in dyads and groups, the paper extends the research of egalitarian sharing to networks for a more generalized structure of social interaction. An agent-based model is proposed to predict how actors, linked in networks, share their incomes with neighbors. A laboratory experiment with human subjects further shows that income distributions evolve to different states in different network topologies. Inequality is significantly reduced in networks where the very rich and the very poor are connected so that income discrepancy is salient enough to motivate the rich to share their incomes with the poor. The study suggests that social networks make a difference in how egalitarian sharing influences the evolution of inequality. PMID:26061642
Martin, Daniel J.; McCarthy, Brian D.; Donley, Carrie L.; ...
2014-12-04
Here, a Ni(ii) complex with nitrogen and sulfur donor ligands degrades electrochemically in the presence of acid in acetonitrile to form an electrode adsorbed film that catalytically evolves hydrogen.
Empirical confirmation of creative destruction from world trade data.
Klimek, Peter; Hausmann, Ricardo; Thurner, Stefan
2012-01-01
We show that world trade network datasets contain empirical evidence that the dynamics of innovation in the world economy indeed follows the concept of creative destruction, as proposed by J.A. Schumpeter more than half a century ago. National economies can be viewed as complex, evolving systems, driven by a stream of appearance and disappearance of goods and services. Products appear in bursts of creative cascades. We find that products systematically tend to co-appear, and that product appearances lead to massive disappearance events of existing products in the following years. The opposite-disappearances followed by periods of appearances-is not observed. This is an empirical validation of the dominance of cascading competitive replacement events on the scale of national economies, i.e., creative destruction. We find a tendency that more complex products drive out less complex ones, i.e., progress has a direction. Finally we show that the growth trajectory of a country's product output diversity can be understood by a recently proposed evolutionary model of Schumpeterian economic dynamics.
Empirical Confirmation of Creative Destruction from World Trade Data
Klimek, Peter; Hausmann, Ricardo; Thurner, Stefan
2012-01-01
We show that world trade network datasets contain empirical evidence that the dynamics of innovation in the world economy indeed follows the concept of creative destruction, as proposed by J.A. Schumpeter more than half a century ago. National economies can be viewed as complex, evolving systems, driven by a stream of appearance and disappearance of goods and services. Products appear in bursts of creative cascades. We find that products systematically tend to co-appear, and that product appearances lead to massive disappearance events of existing products in the following years. The opposite–disappearances followed by periods of appearances–is not observed. This is an empirical validation of the dominance of cascading competitive replacement events on the scale of national economies, i.e., creative destruction. We find a tendency that more complex products drive out less complex ones, i.e., progress has a direction. Finally we show that the growth trajectory of a country’s product output diversity can be understood by a recently proposed evolutionary model of Schumpeterian economic dynamics. PMID:22719989
The Major Histocompatibility Complex in Bovines: A Review
Behl, Jyotsna Dhingra; Verma, N. K.; Tyagi, Neha; Mishra, Priyanka; Behl, Rahul; Joshi, B. K.
2012-01-01
Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign. PMID:23738132
Robustness and Vulnerability of Networks with Dynamical Dependency Groups.
Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi
2016-11-28
The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.
NASA Astrophysics Data System (ADS)
Huffmann, Master; Siegel, Edward Carl-Ludwig
2013-03-01
Newcomb-Benford(NeWBe)-Siegel log-law BEC Digit-Physics Network/Graph-Physics Barabasi et.al. evolving-``complex''-networks/graphs BEC JAMMING DOA attacks: Amazon(weekends: Microsoft I.E.-7/8(vs. Firefox): Memorial-day, Labor-day,...), MANY U.S.-Banks:WF,BoA,UB,UBS,...instantiations AGAIN militate for MANDATORY CONVERSION to PARALLEL ANALOG FAULT-TOLERANT but slow(er) SECURITY-ASSURANCE networks/graphs in parallel with faster ``sexy'' DIGITAL-Networks/graphs:``Cloud'', telecomm: n-G,..., because of common ACHILLES-HEEL VULNERABILITY: DIGITS!!! ``In fast-hare versus slow-tortoise race, Slow-But-Steady ALWAYS WINS!!!'' (Zeno). {Euler [#s(1732)] ∑- ∏()-Riemann[Monats. Akad. Berlin (1859)] ∑- ∏()- Kummer-Bernoulli (#s)}-Newcomb [Am.J.Math.4(1),39 (81) discovery of the QUANTUM!!!]-{Planck (01)]}-{Einstein (05)]-Poincar e [Calcul Probabilités,313(12)]-Weyl[Goett. Nach.(14); Math.Ann.77,313(16)]-(Bose (24)-Einstein(25)]-VS. -Fermi (27)-Dirac(27))-Menger [Dimensiontheorie(29)]-Benford [J.Am. Phil.Soc.78,115(38)]-Kac[Maths Stats.-Reason. (55)]- Raimi [Sci.Am.221,109(69)]-Jech-Hill [Proc.AMS,123,3,887(95)] log-function
Empirical investigation of topological and weighted properties of a bus transport network from China
NASA Astrophysics Data System (ADS)
Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci
2016-03-01
Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).
Modeling the Chinese language as an evolving network
NASA Astrophysics Data System (ADS)
Liang, Wei; Shi, Yuming; Huang, Qiuling
2014-01-01
The evolution of Chinese language has three main features: the total number of characters is gradually increasing, new words are generated in the existing characters, and some old words are no longer used in daily-life language. Based on the features, we propose an evolving language network model. Finally, we use this model to simulate the character co-occurrence networks (nodes are characters, and two characters are connected by an edge if they are adjacent to each other) constructed from essays in 11 different periods of China, and find that characters that appear with high frequency in old words are likely to be reused when new words are formed.
Control of multidimensional systems on complex network
Bagnoli, Franco; Battistelli, Giorgio; Chisci, Luigi; Fanelli, Duccio
2017-01-01
Multidimensional systems coupled via complex networks are widespread in nature and thus frequently invoked for a large plethora of interesting applications. From ecology to physics, individual entities in mutual interactions are grouped in families, homogeneous in kind. These latter interact selectively, through a sequence of self-consistently regulated steps, whose deeply rooted architecture is stored in the assigned matrix of connections. The asymptotic equilibrium eventually attained by the system, and its associated stability, can be assessed by employing standard nonlinear dynamics tools. For many practical applications, it is however important to externally drive the system towards a desired equilibrium, which is resilient, hence stable, to external perturbations. To this end we here consider a system made up of N interacting populations which evolve according to general rate equations, bearing attributes of universality. One species is added to the pool of interacting families and used as a dynamical controller to induce novel stable equilibria. Use can be made of the root locus method to shape the needed control, in terms of intrinsic reactivity and adopted protocol of injection. The proposed method is tested on both synthetic and real data, thus enabling to demonstrate its robustness and versatility. PMID:28892493
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway.
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination.
Greek, Ray; Hansen, Lawrence A
2013-11-01
We surveyed the scientific literature regarding amyotrophic lateral sclerosis, the SOD1 mouse model, complex adaptive systems, evolution, drug development, animal models, and philosophy of science in an attempt to analyze the SOD1 mouse model of amyotrophic lateral sclerosis in the context of evolved complex adaptive systems. Humans and animals are examples of evolved complex adaptive systems. It is difficult to predict the outcome from perturbations to such systems because of the characteristics of complex systems. Modeling even one complex adaptive system in order to predict outcomes from perturbations is difficult. Predicting outcomes to one evolved complex adaptive system based on outcomes from a second, especially when the perturbation occurs at higher levels of organization, is even more problematic. Using animal models to predict human outcomes to perturbations such as disease and drugs should have a very low predictive value. We present empirical evidence confirming this and suggest a theory to explain this phenomenon. We analyze the SOD1 mouse model of amyotrophic lateral sclerosis in order to illustrate this position. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genetic and environmental factors affecting cryptic variations in gene regulatory networks
2013-01-01
Background Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Results Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Conclusions Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity. PMID:23622056
Genetic and environmental factors affecting cryptic variations in gene regulatory networks.
Iwasaki, Watal M; Tsuda, Masaki E; Kawata, Masakado
2013-04-26
Cryptic genetic variation (CGV) is considered to facilitate phenotypic evolution by producing visible variations in response to changes in the internal and/or external environment. Several mechanisms enabling the accumulation and release of CGVs have been proposed. In this study, we focused on gene regulatory networks (GRNs) as an important mechanism for producing CGVs, and examined how interactions between GRNs and the environment influence the number of CGVs by using individual-based simulations. Populations of GRNs were allowed to evolve under various stabilizing selections, and we then measured the number of genetic and phenotypic variations that had arisen. Our results showed that CGVs were not depleted irrespective of the strength of the stabilizing selection for each phenotype, whereas the visible fraction of genetic variation in a population decreased with increasing strength of selection. On the other hand, increasing the number of different environments that individuals encountered within their lifetime (i.e., entailing plastic responses to multiple environments) suppressed the accumulation of CGVs, whereas the GRNs with more genes and interactions were favored in such heterogeneous environments. Given the findings that the number of CGVs in a population was largely determined by the size (order) of GRNs, we propose that expansion of GRNs and adaptation to novel environments are mutually facilitating and sustainable sources of evolvability and hence the origins of biological diversity and complexity.
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
Can We Recognize an Innovation? Perspective from an Evolving Network Model
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
"Innovations" are central to the evolution of societies and the evolution of life. But what constitutes an innovation? We can often agree after the event, when its consequences and impact over a long term are known, whether something was an innovation, and whether it was a "big" innovation or a "minor" one. But can we recognize an innovation "on the fly" as it appears? Successful entrepreneurs often can. Is it possible to formalize that intuition? We discuss this question in the setting of a mathematical model of evolving networks. The model exhibits self-organization , growth, stasis, and collapse of a complex system with many interacting components, reminiscent of real-world phenomena. A notion of "innovation" is formulated in terms of graph-theoretic constructs and other dynamical variables of the model. A new node in the graph gives rise to an innovation, provided it links up "appropriately" with existing nodes; in this view innovation necessarily depends upon the existing context. We show that innovations, as defined by us, play a major role in the birth, growth, and destruction of organizational structures. Furthermore, innovations can be categorized in terms of their graph-theoretic structure as they appear. Different structural classes of innovation have potentially different qualitative consequences for the future evolution of the system, some minor and some major. Possible general lessons from this specific model are briefly discussed.
NASA Astrophysics Data System (ADS)
Hagerty, J. J.
2017-12-01
The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for visualizing planetary data and products (e.g., 3D printing and virtual reality platforms/experiences). We anticipate that in a few years virtual reality tools will be an integral part of data analysis, providing more intuitive understanding of multiple complex data sets.
Context-aided analysis of community evolution in networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose
Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less
Context-aided analysis of community evolution in networks
Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose; ...
2017-09-15
Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less
Bertalan, Tom; Wu, Yan; Laing, Carlo; Gear, C. William; Kevrekidis, Ioannis G.
2017-01-01
Finding accurate reduced descriptions for large, complex, dynamically evolving networks is a crucial enabler to their simulation, analysis, and ultimately design. Here, we propose and illustrate a systematic and powerful approach to obtaining good collective coarse-grained observables—variables successfully summarizing the detailed state of such networks. Finding such variables can naturally lead to successful reduced dynamic models for the networks. The main premise enabling our approach is the assumption that the behavior of a node in the network depends (after a short initial transient) on the node identity: a set of descriptors that quantify the node properties, whether intrinsic (e.g., parameters in the node evolution equations) or structural (imparted to the node by its connectivity in the particular network structure). The approach creates a natural link with modeling and “computational enabling technology” developed in the context of Uncertainty Quantification. In our case, however, we will not focus on ensembles of different realizations of a problem, each with parameters randomly selected from a distribution. We will instead study many coupled heterogeneous units, each characterized by randomly assigned (heterogeneous) parameter value(s). One could then coin the term Heterogeneity Quantification for this approach, which we illustrate through a model dynamic network consisting of coupled oscillators with one intrinsic heterogeneity (oscillator individual frequency) and one structural heterogeneity (oscillator degree in the undirected network). The computational implementation of the approach, its shortcomings and possible extensions are also discussed. PMID:28659781
Implementations of back propagation algorithm in ecosystems applications
NASA Astrophysics Data System (ADS)
Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed
2015-05-01
Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.
Toward a model of school inspections in a polycentric system.
Janssens, Frans J G; Ehren, Melanie C M
2016-06-01
Many education systems are developing towards more lateral structures where schools collaborate in networks to improve and provide (inclusive) education. These structures call for bottom-up models of network evaluation and accountability instead of the current hierarchical arrangements where single schools are evaluated by a central agency. This paper builds on available research about network effectiveness to present evolving models of network evaluation. Network effectiveness can be defined as the achievement of positive network level outcomes that cannot be attained by individual organizational participants acting alone. Models of network evaluation need to take into account the relations between network members, the structure of the network, its processes and its internal mechanism to enforce norms in order to understand the achievement and outcomes of the network and how these may evolve over time. A range of suitable evaluation models are presented in this paper, as well as a tentative school inspection framework which is inspired by these models. The final section will present examples from Inspectorates of Education in Northern Ireland and Scotland who have developed newer inspection models to evaluate the effectiveness of a range of different networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vosse, Theo; Kempen, Gerard
2009-12-01
We introduce a novel computer implementation of the Unification-Space parser (Vosse and Kempen in Cognition 75:105-143, 2000) in the form of a localist neural network whose dynamics is based on interactive activation and inhibition. The wiring of the network is determined by Performance Grammar (Kempen and Harbusch in Verb constructions in German and Dutch. Benjamins, Amsterdam, 2003), a lexicalist formalism with feature unification as binding operation. While the network is processing input word strings incrementally, the evolving shape of parse trees is represented in the form of changing patterns of activation in nodes that code for syntactic properties of words and phrases, and for the grammatical functions they fulfill. The system is capable, at least qualitatively and rudimentarily, of simulating several important dynamic aspects of human syntactic parsing, including garden-path phenomena and reanalysis, effects of complexity (various types of clause embeddings), fault-tolerance in case of unification failures and unknown words, and predictive parsing (expectation-based analysis, surprisal effects). English is the target language of the parser described.
A simple rule for the evolution of cooperation on graphs and social networks.
Ohtsuki, Hisashi; Hauert, Christoph; Lieberman, Erez; Nowak, Martin A
2006-05-25
A fundamental aspect of all biological systems is cooperation. Cooperative interactions are required for many levels of biological organization ranging from single cells to groups of animals. Human society is based to a large extent on mechanisms that promote cooperation. It is well known that in unstructured populations, natural selection favours defectors over cooperators. There is much current interest, however, in studying evolutionary games in structured populations and on graphs. These efforts recognize the fact that who-meets-whom is not random, but determined by spatial relationships or social networks. Here we describe a surprisingly simple rule that is a good approximation for all graphs that we have analysed, including cycles, spatial lattices, random regular graphs, random graphs and scale-free networks: natural selection favours cooperation, if the benefit of the altruistic act, b, divided by the cost, c, exceeds the average number of neighbours, k, which means b/c > k. In this case, cooperation can evolve as a consequence of 'social viscosity' even in the absence of reputation effects or strategic complexity.
Bio-inspired spiking neural network for nonlinear systems control.
Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M
2018-08-01
Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Silveira, Paulo S P; Fredberg, Jeffrey J
2005-10-01
Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.
Inferring Structure and Forecasting Dynamics on Evolving Networks
2016-01-05
Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines
An evolving Mars telecommunications network to enable exploration and increase science data return
NASA Technical Reports Server (NTRS)
Edwards, Chad; Komarek, Tomas A.; Noreen, Gary K.; Wilson, Gregory R.
2003-01-01
The coming decade of Mars exploration involves a variety of unique telecommunications challenges. Increasing spatial and spectral resolution of in situ science instruments drive the need for increased bandwidth. At the same time, many innovative and low-cost in situ mission concepts are enabled by energy-efficient relay communications. In response to these needs, the Mars Exploration Program has established a plan for an evolving orbital infrastructure that can provide enhancing and enabling telecommunications services to future Mars missions. We will present the evolving capabilities of this network over the coming decade in terms of specific quantitative metrics such as data volume per sol and required lander energy per Gb of returned data for representative classes of Mars exploration spacecraft.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
A journey from reductionist to systemic cell biology aboard the schooner Tara.
Karsenti, Eric
2012-07-01
In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells-hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.
Synergy from reproductive division of labor and genetic complexity drive the evolution of sex.
Jaffe, Klaus
2018-04-16
Computer experiments that mirror the evolutionary dynamics of sexual and asexual organisms as they occur in nature were used to test features proposed to explain the evolution of sexual recombination. Results show that this evolution is better described as a network of interactions between possible sexual forms, including diploidy, thelytoky, facultative sex, assortation, bisexuality, and division of labor between the sexes, rather than a simple transition from parthenogenesis to sexual recombination. Diploidy was shown to be fundamental for the evolution of sex; bisexual reproduction emerged only among anisogamic diploids with a synergistic division of reproductive labor; and facultative sex was more likely to evolve among haploids practicing assortative mating. Looking at the evolution of sex as a complex system through individual-based simulations explains better the diversity of sexual strategies known to exist in nature, compared to classical analytical models.
NASA Astrophysics Data System (ADS)
Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh
2016-09-01
In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.
Reverse Ecology: from systems to environments and back.
Levy, Roie; Borenstein, Elhanan
2012-01-01
The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.
Convergent evolution of complex brains and high intelligence.
Roth, Gerhard
2015-12-19
Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).
Final Report. Analysis and Reduction of Complex Networks Under Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef M.; Coles, T.; Spantini, A.
2013-09-30
The project was a collaborative effort among MIT, Sandia National Laboratories (local PI Dr. Habib Najm), the University of Southern California (local PI Prof. Roger Ghanem), and The Johns Hopkins University (local PI Prof. Omar Knio, now at Duke University). Our focus was the analysis and reduction of large-scale dynamical systems emerging from networks of interacting components. Such networks underlie myriad natural and engineered systems. Examples important to DOE include chemical models of energy conversion processes, and elements of national infrastructure—e.g., electric power grids. Time scales in chemical systems span orders of magnitude, while infrastructure networks feature both local andmore » long-distance connectivity, with associated clusters of time scales. These systems also blend continuous and discrete behavior; examples include saturation phenomena in surface chemistry and catalysis, and switching in electrical networks. Reducing size and stiffness is essential to tractable and predictive simulation of these systems. Computational singular perturbation (CSP) has been effectively used to identify and decouple dynamics at disparate time scales in chemical systems, allowing reduction of model complexity and stiffness. In realistic settings, however, model reduction must contend with uncertainties, which are often greatest in large-scale systems most in need of reduction. Uncertainty is not limited to parameters; one must also address structural uncertainties—e.g., whether a link is present in a network—and the impact of random perturbations, e.g., fluctuating loads or sources. Research under this project developed new methods for the analysis and reduction of complex multiscale networks under uncertainty, by combining computational singular perturbation (CSP) with probabilistic uncertainty quantification. CSP yields asymptotic approximations of reduceddimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty in this context raised fundamentally new issues, e.g., how is the topology of slow manifolds transformed by parametric uncertainty? How to construct dynamical models on these uncertain manifolds? To address these questions, we used stochastic spectral polynomial chaos (PC) methods to reformulate uncertain network models and analyzed them using CSP in probabilistic terms. Finding uncertain manifolds involved the solution of stochastic eigenvalue problems, facilitated by projection onto PC bases. These problems motivated us to explore the spectral properties stochastic Galerkin systems. We also introduced novel methods for rank-reduction in stochastic eigensystems—transformations of a uncertain dynamical system that lead to lower storage and solution complexity. These technical accomplishments are detailed below. This report focuses on the MIT portion of the joint project.« less
Recommendation in evolving online networks
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zeng, An; Shang, Ming-Sheng
2016-02-01
Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.
The evolvability of programmable hardware
Raman, Karthik; Wagner, Andreas
2011-01-01
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598
User-Centered Indexing for Adaptive Information Access
NASA Technical Reports Server (NTRS)
Chen, James R.; Mathe, Nathalie
1996-01-01
We are focusing on information access tasks characterized by large volume of hypermedia connected technical documents, a need for rapid and effective access to familiar information, and long-term interaction with evolving information. The problem for technical users is to build and maintain a personalized task-oriented model of the information to quickly access relevant information. We propose a solution which provides user-centered adaptive information retrieval and navigation. This solution supports users in customizing information access over time. It is complementary to information discovery methods which provide access to new information, since it lets users customize future access to previously found information. It relies on a technique, called Adaptive Relevance Network, which creates and maintains a complex indexing structure to represent personal user's information access maps organized by concepts. This technique is integrated within the Adaptive HyperMan system, which helps NASA Space Shuttle flight controllers organize and access large amount of information. It allows users to select and mark any part of a document as interesting, and to index that part with user-defined concepts. Users can then do subsequent retrieval of marked portions of documents. This functionality allows users to define and access personal collections of information, which are dynamically computed. The system also supports collaborative review by letting users share group access maps. The adaptive relevance network provides long-term adaptation based both on usage and on explicit user input. The indexing structure is dynamic and evolves over time. Leading and generalization support flexible retrieval of information under similar concepts. The network is geared towards more recent information access, and automatically manages its size in order to maintain rapid access when scaling up to large hypermedia space. We present results of simulated learning experiments.
Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data
Guan, Xiangyang; Chen, Cynthia; Work, Dan
2016-01-01
Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061
Yutin, Natalya; Raoult, Didier; Koonin, Eugene V
2013-05-23
Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements.
2013-01-01
Background Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. Results We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknownvirus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. Conclusions The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide viruses and other classes of capsid-less mobile elements. PMID:23701946
Topology for Dominance for Network of Multi-Agent System
NASA Astrophysics Data System (ADS)
Szeto, K. Y.
2007-05-01
The resource allocation problem in evolving two-dimensional point patterns is investigated for the existence of good strategies for the construction of initial configuration that leads to fast dominance of the pattern by one single species, which can be interpreted as market dominance by a company in the context of multi-agent systems in econophysics. For hexagonal lattice, certain special topological arrangements of the resource in two-dimensions, such as rings, lines and clusters have higher probability of dominance, compared to random pattern. For more complex networks, a systematic way to search for a stable and dominant strategy of resource allocation in the changing environment is found by means of genetic algorithm. Five typical features can be summarized by means of the distribution function for the local neighborhood of friends and enemies as well as the local clustering coefficients: (1) The winner has more triangles than the loser has. (2) The winner likes to form clusters as the winner tends to connect with other winner rather than with losers; while the loser tends to connect with winners rather than losers. (3) The distribution function of friends as well as enemies for the winner is broader than the corresponding distribution function for the loser. (4) The connectivity at which the peak of the distribution of friends for the winner occurs is larger than that of the loser; while the peak values for friends for winners is lower. (5) The connectivity at which the peak of the distribution of enemies for the winner occurs is smaller than that of the loser; while the peak values for enemies for winners is lower. These five features appear to be general, at least in the context of two-dimensional hexagonal lattices of various sizes, hierarchical lattice, Voronoi diagrams, as well as high-dimensional random networks. These general local topological properties of networks are relevant to strategists aiming at dominance in evolving patterns when the interaction between the agents is local.
ERIC Educational Resources Information Center
Ghosh, Jaideep; Kshitij, Avinash
2017-01-01
This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…
From integrative genomics to systems genetics in the rat to link genotypes to phenotypes
Moreno-Moral, Aida
2016-01-01
ABSTRACT Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. PMID:27736746
From integrative genomics to systems genetics in the rat to link genotypes to phenotypes.
Moreno-Moral, Aida; Petretto, Enrico
2016-10-01
Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. © 2016. Published by The Company of Biologists Ltd.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Barneh, Farnaz; Jafari, Mohieddin; Mirzaie, Mehdi
2016-11-01
Network pharmacology elucidates the relationship between drugs and targets. As the identified targets for each drug increases, the corresponding drug-target network (DTN) evolves from solely reflection of the pharmaceutical industry trend to a portrait of polypharmacology. The aim of this study was to evaluate the potentials of DrugBank database in advancing systems pharmacology. We constructed and analyzed DTN from drugs and targets associations in the DrugBank 4.0 database. Our results showed that in bipartite DTN, increased ratio of identified targets for drugs augmented density and connectivity of drugs and targets and decreased modular structure. To clear up the details in the network structure, the DTNs were projected into two networks namely, drug similarity network (DSN) and target similarity network (TSN). In DSN, various classes of Food and Drug Administration-approved drugs with distinct therapeutic categories were linked together based on shared targets. Projected TSN also showed complexity because of promiscuity of the drugs. By including investigational drugs that are currently being tested in clinical trials, the networks manifested more connectivity and pictured the upcoming pharmacological space in the future years. Diverse biological processes and protein-protein interactions were manipulated by new drugs, which can extend possible target combinations. We conclude that network-based organization of DrugBank 4.0 data not only reveals the potential for repurposing of existing drugs, also allows generating novel predictions about drugs off-targets, drug-drug interactions and their side effects. Our results also encourage further effort for high-throughput identification of targets to build networks that can be integrated into disease networks. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Implications of network structure on public health collaboratives.
Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M
2013-10-01
Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of these findings for research and practice are discussed.
Functional Topology of Evolving Urban Drainage Networks
NASA Astrophysics Data System (ADS)
Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.
2017-11-01
We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
Phylogeny of metabolic networks: a spectral graph theoretical approach.
Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony
2015-10-01
Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.
Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees
Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés
2009-01-01
Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. Reviewers This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan) PMID:19883502
Diversity in the origins of proteostasis networks- a driver for protein function in evolution
Powers, Evan T.; Balch, William E.
2013-01-01
Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216
Collen, M F
1994-01-01
This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803
From Neural and Social Cooperation to the Global Emergence of Cognition
Grigolini, Paolo; Piccinini, Nicola; Svenkeson, Adam; Pramukkul, Pensri; Lambert, David; West, Bruce J.
2015-01-01
The recent article (Turalska et al., 2012) discusses the emergence of intelligence via criticality as a consequence of locality breakdown. Herein, we use criticality for the foundation of a novel generation of game theory making the local interaction between players yield long-range effects. We first establish that criticality is not confined to the Ising-like structure of the sociological model of (Turalska et al., 2012), called the decision making model (DMM), through the study of the emergence of altruism using the altruism-selfishness model (ASM). Both models generate criticality, one by imitation of opinion (DMM) and the other by imitation of behavior (ASM). The dynamics of a sociological network 𝒮 influences the behavioral network ℱ through two game theoretic paradigms: (i) the value of altruism; (ii) the benefit of rapid consensus. In (i), the network 𝒮 debates the moral issue of altruism by means of the DMM, while at the level ℱ the individuals operate according to the ASM. The individuals of the level 𝒮, through a weak influence on the individuals of the level ℱ, exert a societal control on ℱ, fitting the principle of complexity management and complexity matching. In (ii), the benefit to society is the rapid attainment of consensus in the 𝒮 level. The agents of the level ℱ operate according to the prisoner’s dilemma prescription, with the defectors acting as DMM contrarians at the level 𝒮. The contrarians, acting as the inhibitory links of neural networks, exert on society the same beneficial effect of maintaining the criticality-induced resilience that they generate in neural networks. The conflict between personal and social benefit makes the networks evolve toward criticality. Finally, we show that the theory of this article is compatible with recent discoveries in the burgeoning field of social neuroscience. PMID:26137455
Maury, Carl Peter J
2018-05-01
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
The Global Special Operations Forces Network from a Partner-Nation Perspective
2014-12-01
in networks vs . management of Networks. ................................80 Figure 17. A national SOF network with SOCOM as the manager of networks...context and are asked in the natural course of things; there is no predetermination of question topics or wording. 10 descriptive section is the...struggles and challenges that occur naturally over time. As depicted in Figure 2, the network will constantly have to examine how it is evolving and, if
A group evolving-based framework with perturbations for link prediction
NASA Astrophysics Data System (ADS)
Si, Cuiqi; Jiao, Licheng; Wu, Jianshe; Zhao, Jin
2017-06-01
Link prediction is a ubiquitous application in many fields which uses partially observed information to predict absence or presence of links between node pairs. The group evolving study provides reasonable explanations on the behaviors of nodes, relations between nodes and community formation in a network. Possible events in group evolution include continuing, growing, splitting, forming and so on. The changes discovered in networks are to some extent the result of these events. In this work, we present a group evolving-based characterization of node's behavioral patterns, and via which we can estimate the probability they tend to interact. In general, the primary aim of this paper is to offer a minimal toy model to detect missing links based on evolution of groups and give a simpler explanation on the rationality of the model. We first introduce perturbations into networks to obtain stable cluster structures, and the stable clusters determine the stability of each node. Then fluctuations, another node behavior, are assumed by the participation of each node to its own belonging group. Finally, we demonstrate that such characteristics allow us to predict link existence and propose a model for link prediction which outperforms many classical methods with a decreasing computational time in large scales. Encouraging experimental results obtained on real networks show that our approach can effectively predict missing links in network, and even when nearly 40% of the edges are missing, it also retains stationary performance.
Monitoring of seismic time-series with advanced parallel computational tools and complex networks
NASA Astrophysics Data System (ADS)
Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.
2012-04-01
Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic understanding of the possible triggering mechanisms as arrived from the adequately monitoring and modelling of the regional earthquake phenomena.
Imaging complex nutrient dynamics in mycelial networks.
Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L
2008-08-01
Transport networks are vital components of multi-cellular organisms, distributing nutrients and removing waste products. Animal cardiovascular and respiratory systems, and plant vasculature, are branching trees whose architecture is thought to determine universal scaling laws in these organisms. In contrast, the transport systems of many multi-cellular fungi do not fit into this conceptual framework, as they have evolved to explore a patchy environment in search of new resources, rather than ramify through a three-dimensional organism. These fungi grow as a foraging mycelium, formed by the branching and fusion of threadlike hyphae, that gives rise to a complex network. To function efficiently, the mycelial network must both transport nutrients between spatially separated source and sink regions and also maintain its integrity in the face of continuous attack by mycophagous insects or random damage. Here we review the development of novel imaging approaches and software tools that we have used to characterise nutrient transport and network formation in foraging mycelia over a range of spatial scales. On a millimetre scale, we have used a combination of time-lapse confocal imaging and fluorescence recovery after photobleaching to quantify the rate of diffusive transport through the unique vacuole system in individual hyphae. These data then form the basis of a simulation model to predict the impact of such diffusion-based movement on a scale of several millimetres. On a centimetre scale, we have used novel photon-counting scintillation imaging techniques to visualize radiolabel movement in small microcosms. This approach has revealed novel N-transport phenomena, including rapid, preferential N-resource allocation to C-rich sinks, induction of simultaneous bi-directional transport, abrupt switching between different pre-existing transport routes, and a strong pulsatile component to transport in some species. Analysis of the pulsatile transport component using Fourier techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.
Role of Osmolytes in Regulating Immune System.
Kumar, Tarun; Yadav, Manisha; Singh, Laishram Rajendrakumar
2016-01-01
The immune system has evolved to protect the host organism from diverse range of pathogenic microbes that are themselves constantly evolving. It is a complex network of cells, humoral factors, chemokines and cytokines. Dysregulation of immune system results in various kinds of immunological disorders. There are several external agents which govern the regulation of immune system. Recent studies have indicated the role of osmolytes in regulation of various immunological processes such as Ag-Ab interaction, Ig assembly, Ag presentation etc. In this present review, we have systematically discussed the role of osmolytes involved in regulation of several key immunological processes. Osmolytes are involved in the regulation of several key immunological processes such as immunoglobulin assembly and folding, immune cells proliferation, regulation of immune cells function, Ag-Ab interaction, antigen presentation, inflammatory response and protection against photo-immunosuppression. Hence, osmolytes and their transporters might be used as potential drug and drug targets respectively. This review is therefore designed to help clinicians in development of osmolyte based therapeutic strategies in the treatment of various immunological disorders. Appropriate future perspectives have also been included.
Global Change and the Earth System
NASA Astrophysics Data System (ADS)
Pollack, Henry N.
2004-08-01
The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''
Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul
2017-03-15
Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
Systemic risk and spatiotemporal dynamics of the consumer market of China
NASA Astrophysics Data System (ADS)
Wang, Minggang; Tian, Lixin; Xu, Hua; Li, Weiyu; Du, Ruijin; Dong, Gaogao; Wang, Jie; Gu, Jiani
2017-05-01
The consumer price index (CPI) contains rich information of the consumer market, in order to characterize the essential characteristics of the consumer market of China, a novel method by using complex network theory is proposed to visualizing the evolution and transformation characteristics of correlated modes among the regional consumer markets. CPI data of 31 provinces and cities of China are selected as sample data. Underlying dynamics of time-evolving correlation networks are revealed. A formula to measure the systemic risk in the consumer market is designed. And the correlation modes transmission network of the regional consumer markets is obtained. Numerical simulations show that the consumer market network has co-movement, group-occurring and small-word property. Different regions played different roles in the consumer market of China. The risk in the consumer market presented a decreasing trend from April 2013 but remain at the high level. Different from the stochastic system, the consumer market of China both has the short-range correlation and the long-range correlation. The strength of correlation modes transmission network basically satisfies a power-law distribution. The correlation modes are transferred into each other conveniently, although the consumer market system is highly complicated. The transformation of the correlation patterns of the regional consumer markets mainly revolves around three core correlation modes and each transformation needs to undergo 4 non-core modes.
Genonets server-a web server for the construction, analysis and visualization of genotype networks.
Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L
2016-07-08
A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Wang, Guochang; Cheng, Guojian; Carr, Timothy R.
2013-04-01
The organic-rich Marcellus Shale was deposited in a foreland basin during Middle Devonian. In terms of mineral composition and organic matter richness, we define seven mudrock lithofacies: three organic-rich lithofacies and four organic-poor lithofacies. The 3D lithofacies model is very helpful to determine geologic and engineering sweet spots, and consequently useful for designing horizontal well trajectories and stimulation strategies. The NeuroEvolution of Augmenting Topologies (NEAT) is relatively new idea in the design of neural networks, and shed light on classification (i.e., Marcellus Shale lithofacies prediction). We have successfully enhanced the capability and efficiency of NEAT in three aspects. First, we introduced two new attributes of node gene, the node location and recurrent connection (RCC), to increase the calculation efficiency. Second, we evolved the population size from an initial small value to big, instead of using the constant value, which saves time and computer memory, especially for complex learning tasks. Third, in multiclass pattern recognition problems, we combined feature selection of input variables and modular neural network to automatically select input variables and optimize network topology for each binary classifier. These improvements were tested and verified by true if an odd number of its arguments are true and false otherwise (XOR) experiments, and were powerful for classification.
Network topology of an experimental futures exchange
NASA Astrophysics Data System (ADS)
Wang, S. C.; Tseng, J. J.; Tai, C. C.; Lai, K. H.; Wu, W. S.; Chen, S. H.; Li, S. P.
2008-03-01
Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth are one of the examples. To better understand the working behind the complexity, we undertook an experiment recording the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and small-world with a power law exponent of 1.02±0.09 in the degree distribution after an exponential decay correction. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law-like distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19±0.16.
A Risk Based Approach to Node Insertion Within Social Networks
2015-03-26
changes to enemy networks, tactical involvement must evolve, beginning with the intelligent use of network infiltration through the application of the...counterterrorism begins with the intelligent use of network infiltration, or the covert insertion of assets into a network, otherwise known as node insertion. The...Federal Bureau of Intelligence (FBI) defines an undercover operation as “an investigation involving a series of related undercover activities over a
The next step in health data exchanges: trust and privacy in exchange networks.
Gravely, Steve D; Whaley, Erin S
2009-01-01
The rapid development of health information exchanges (HIE), regional health information organizations (RHIO), the Nationwide Health Information Network (NHIN) and other data exchange platforms for health records creates complex and multifaceted challenges for protecting the privacy and security of health information. Often these issues are addressed in a contractual agreement between two parties seeking to exchange data. Until recently, this point-to-point approach has been acceptable because there were few operational HIEs or RHIOs that were ready, willing and able to actually exchange data. With the proliferation of HIEs and RHIOs that are either operational or on the cusp of being operational, the utility of point-to-point is diminishing. It is no longer efficient for a RHIO to negotiate a separate data exchange agreement with every one of its exchange partners. The evolving model for data exchange agreements is a multi-party trust agreement. This article will examine the crucial components of a multi-party trust agreement.
Investigating a holobiont: Microbiota perturbations and transkingdom networks.
Greer, Renee; Dong, Xiaoxi; Morgun, Andrey; Shulzhenko, Natalia
2016-01-01
The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.
Timms, Lee; Jimenez, Rosmery; Chase, Mike; Lavelle, Dean; McHale, Leah; Kozik, Alexander; Lai, Zhao; Heesacker, Adam; Knapp, Steven; Rieseberg, Loren; Michelmore, Richard; Kesseli, Rick
2006-01-01
Comparative genomic studies among highly divergent species have been problematic because reduced gene similarities make orthologous gene pairs difficult to identify and because colinearity is expected to be low with greater time since divergence from the last common ancestor. Nevertheless, synteny between divergent taxa in several lineages has been detected over short chromosomal segments. We have examined the level of synteny between the model species Arabidopsis thaliana and species in the Compositae, one of the largest and most diverse plant families. While macrosyntenic patterns covering large segments of the chromosomes are not evident, significant levels of local synteny are detected at a fine scale covering segments of 1-Mb regions of A. thaliana and regions of <5 cM in lettuce and sunflower. These syntenic patches are often not colinear, however, and form a network of regions that have likely evolved by duplications followed by differential gene loss. PMID:16783026
NASA Astrophysics Data System (ADS)
Greene, Casey S.; Hill, Douglas P.; Moore, Jason H.
The relationship between interindividual variation in our genomes and variation in our susceptibility to common diseases is expected to be complex with multiple interacting genetic factors. A central goal of human genetics is to identify which DNA sequence variations predict disease risk in human populations. Our success in this endeavour will depend critically on the development and implementation of computational intelligence methods that are able to embrace, rather than ignore, the complexity of the genotype to phenotype relationship. To this end, we have developed a computational evolution system (CES) to discover genetic models of disease susceptibility involving complex relationships between DNA sequence variations. The CES approach is hierarchically organized and is capable of evolving operators of any arbitrary complexity. The ability to evolve operators distinguishes this approach from artificial evolution approaches using fixed operators such as mutation and recombination. Our previous studies have shown that a CES that can utilize expert knowledge about the problem in evolved operators significantly outperforms a CES unable to use this knowledge. This environmental sensing of external sources of biological or statistical knowledge is important when the search space is both rugged and large as in the genetic analysis of complex diseases. We show here that the CES is also capable of evolving operators which exploit one of several sources of expert knowledge to solve the problem. This is important for both the discovery of highly fit genetic models and because the particular source of expert knowledge used by evolved operators may provide additional information about the problem itself. This study brings us a step closer to a CES that can solve complex problems in human genetics in addition to discovering genetic models of disease.
Evolution of the Global Space Geodesy Network
NASA Astrophysics Data System (ADS)
Pearlman, Michael R.; Bianco, Giuseppe; Ipatov, Alexander; Ma, Chopo; Neilan, Ruth; Noll, Carey; Park, Jong Uk; Pavlis, Erricos; Wetzel, Scott
2013-04-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the scientific Services has been encouraging current groups to upgrade and new groups to join the activity. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.
Reptile scale paradigm: Evo-Devo, pattern formation and regeneration
Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming
2010-01-01
The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687
The Life-Changing Magic of Nonlinearity in Network Control
NASA Astrophysics Data System (ADS)
Cornelius, Sean
The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.
Beckett, Stephen J.; Williams, Hywel T. P.
2013-01-01
Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719
Sequential detection of temporal communities by estrangement confinement.
Kawadia, Vikas; Sreenivasan, Sameet
2012-01-01
Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.
Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves
NASA Astrophysics Data System (ADS)
Couchet, Jorge; Font, José María; Manrique, Daniel
In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.
Evasion Mechanisms Used by Pathogens to Escape the Lectin Complement Pathway
Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine; Garred, Peter
2017-01-01
The complement system is a crucial defensive network that protects the host against invading pathogens. It is part of the innate immune system and can be initiated via three pathways: the lectin, classical and alternative activation pathway. Overall the network compiles a group of recognition molecules that bind specific patterns on microbial surfaces, a group of associated proteases that initiates the complement cascade, and a group of proteins that interact in proteolytic complexes or the terminal pore-forming complex. In addition, various regulatory proteins are important for controlling the level of activity. The result is a pro-inflammatory response meant to combat foreign microbes. Microbial elimination is, however, not a straight forward procedure; pathogens have adapted to their environment by evolving a collection of evasion mechanisms that circumvent the human complement system. Complement evasion strategies features different ways of exploiting human complement proteins and moreover features different pathogen-derived proteins that interfere with the normal processes. Accumulated, these mechanisms target all three complement activation pathways as well as the final common part of the cascade. This review will cover the currently known lectin pathway evasion mechanisms and give examples of pathogens that operate these to increase their chance of invasion, survival and dissemination. PMID:28553281
The tangled web of non-canonical Wnt signalling in neural migration.
Clark, Charlotte E J; Nourse, C Cathrin; Cooper, Helen M
2012-01-01
In all multicellular animals, successful embryogenesis is dependent on the ability of cells to detect the status of the local environment and respond appropriately. The nature of the extracellular environment is communicated to the intracellular compartment by ligand/receptor interactions at the cell surface. The Wnt canonical and non-canonical signalling pathways are found in the most primitive metazoans, and they play an essential role in the most fundamental developmental processes in all multicellular organisms. Vertebrates have expanded the number of Wnts and Frizzled receptors and have additionally evolved novel Wnt receptor families (Ryk, Ror). The multiplicity of potential interactions between Wnts, their receptors and downstream effectors has exponentially increased the complexity of the signal transduction network. Signalling through each of the Wnt pathways, as well as crosstalk between them, plays a critical role in the establishment of the complex architecture of the vertebrate central nervous system. In this review, we explore the signalling networks triggered by non-canonical Wnt/receptor interactions, focussing on the emerging roles of the non-conventional Wnt receptors Ryk and Ror. We describe the role of these pathways in neural tube formation and axon guidance where Wnt signalling controls tissue polarity, coordinated cell migration and axon guidance via remodelling of the cytoskeleton. Copyright © 2012 S. Karger AG, Basel.
Completing sparse and disconnected protein-protein network by deep learning.
Huang, Lei; Liao, Li; Wu, Cathy H
2018-03-22
Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method. The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data sources.
Libraries in the Global, National, and Local Networked Information Infrastructure.
ERIC Educational Resources Information Center
McClure, Charles R.
This paper explores the challenges and opportunities facing libraries as they evolve into the electronic networked environment, and looks at options for libraries in the year 2000 and beyond. The internationally networked environment has fundamentally changed the way in which people acquire and use information resources and services. The paper…
ERIC Educational Resources Information Center
Barrett, Joanne
2006-01-01
Social networking is one of the latest trends to evolve out of the growing online community. Social networking sites gather data submitted by members that is then stored as user profiles. The data or profiles can then be shared among the members of the site. Membership can be free or fee-based. A typical social networking site provides members…
Support Network Responses to Acquired Brain Injury
ERIC Educational Resources Information Center
Chleboun, Steffany; Hux, Karen
2011-01-01
Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…
In-silico studies of neutral drift for functional protein interaction networks
NASA Astrophysics Data System (ADS)
Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.
Jaeger, Johannes; Crombach, Anton
2012-01-01
We propose an approach to evolutionary systems biology which is based on reverse engineering of gene regulatory networks and in silico evolutionary simulations. We infer regulatory parameters for gene networks by fitting computational models to quantitative expression data. This allows us to characterize the regulatory structure and dynamical repertoire of evolving gene regulatory networks with a reasonable amount of experimental and computational effort. We use the resulting network models to identify those regulatory interactions that are conserved, and those that have diverged between different species. Moreover, we use the models obtained by data fitting as starting points for simulations of evolutionary transitions between species. These simulations enable us to investigate whether such transitions are random, or whether they show stereotypical series of regulatory changes which depend on the structure and dynamical repertoire of an evolving network. Finally, we present a case study-the gap gene network in dipterans (flies, midges, and mosquitoes)-to illustrate the practical application of the proposed methodology, and to highlight the kind of biological insights that can be gained by this approach.
Research at the Crossroads: How Intellectual Initiatives across Disciplines Evolve
ERIC Educational Resources Information Center
Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.
2004-01-01
How do intellectual initiatives across disciplines evolve? This qualitative case study of 11 interdisciplinary research initiatives at Emory University identifies key factors in their development: the passionate commitments of scholarly leaders, the presence of strong collegial networks, access to timely and multiple resources, flexible practices,…
Creative Work: The Case of Charles Darwin.
ERIC Educational Resources Information Center
Gruber, Howard E.; Wallace, Doris B.
2001-01-01
Describes the evolving systems approach (ESA) to creative work, which emerged from a case study of Charles Darwin. Explains how the ESA differs from other approaches and describes various facets of creative work (networks of enterprise, uniqueness, insight, pluralism, and evolving belief systems and ensembles of metaphor). Emphasizes the…
Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations
NASA Astrophysics Data System (ADS)
Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.
2014-01-01
The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.
Pearce, Oliver M T; Delaine-Smith, Robin M; Maniati, Eleni; Nichols, Sam; Wang, Jun; Böhm, Steffen; Rajeeve, Vinothini; Ullah, Dayem; Chakravarty, Probir; Jones, Roanne R; Montfort, Anne; Dowe, Tom; Gribben, John; Jones, J Louise; Kocher, Hemant M; Serody, Jonathan S; Vincent, Benjamin G; Connelly, John; Brenton, James D; Chelala, Claude; Cutillas, Pedro R; Lockley, Michelle; Bessant, Conrad; Knight, Martin M; Balkwill, Frances R
2018-03-01
We have profiled, for the first time, an evolving human metastatic microenvironment by measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, extracellular matrix organization, and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer metastases that ranged from minimal to extensive disease, we show how nonmalignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define, for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, while also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and 12 other primary solid cancers, suggesting that there may be a common matrix response to human cancer. Significance: Conducting multilevel analysis with data integration on biopsies with a range of disease involvement identifies important features of the evolving tumor microenvironment. The data suggest that despite the large spectrum of genomic alterations, some human malignancies may have a common and potentially targetable matrix response that influences the course of disease. Cancer Discov; 8(3); 304-19. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 253 . ©2017 American Association for Cancer Research.
Cardone, A.; Bornstein, A.; Pant, H. C.; Brady, M.; Sriram, R.; Hassan, S. A.
2015-01-01
A method is proposed to study protein-ligand binding in a system governed by specific and non-specific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore alternative pathways of complexation with statistical significance and can be integrated into a general algorithm to study protein interaction networks. The method is applied to a peptide-protein complex. The peptide adopts several low-population conformers and binds in a variety of modes with a broad range of affinities. The system is thus well suited to analyze general features of binding, including conformational selection, multiplicity of binding modes, and nonspecific interactions, and to illustrate how the method can be applied to study these problems systematically. The equilibrium distributions can be used to generate biasing functions for simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated. PMID:25782918
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
The Structure and Characteristics of #PhDChat, an Emergent Online Social Network
ERIC Educational Resources Information Center
Ford, Kasey C.; Veletsianos, George; Resta, Paul
2014-01-01
#PhDChat is an online network of individuals that has its roots to a group of UK doctoral students who began using Twitter in 2010 to hold discussions. Since then, the network around #PhDchat has evolved and grown. In this study, we examine this network using a mixed methods analysis of the tweets that were labeled with the hashtag over a…
The evolving cobweb of relations among partially rational investors
DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents’ behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors. PMID:28196144
The evolving cobweb of relations among partially rational investors.
DeLellis, Pietro; DiMeglio, Anna; Garofalo, Franco; Lo Iudice, Francesco
2017-01-01
To overcome the limitations of neoclassical economics, researchers have leveraged tools of statistical physics to build novel theories. The idea was to elucidate the macroscopic features of financial markets from the interaction of its microscopic constituents, the investors. In this framework, the model of the financial agents has been kept separate from that of their interaction. Here, instead, we explore the possibility of letting the interaction topology emerge from the model of the agents' behavior. Then, we investigate how the emerging cobweb of relationship affects the overall market dynamics. To this aim, we leverage tools from complex systems analysis and nonlinear dynamics, and model the network of mutual influence as the output of a dynamical system describing the edge evolution. In this work, the driver of the link evolution is the relative reputation between possibly coupled agents. The reputation is built differently depending on the extent of rationality of the investors. The continuous edge activation or deactivation induces the emergence of leaders and of peculiar network structures, typical of real influence networks. The subsequent impact on the market dynamics is investigated through extensive numerical simulations in selected scenarios populated by partially rational investors.
Categorizing words through semantic memory navigation
NASA Astrophysics Data System (ADS)
Borge-Holthoefer, J.; Arenas, A.
2010-03-01
Semantic memory is the cognitive system devoted to storage and retrieval of conceptual knowledge. Empirical data indicate that semantic memory is organized in a network structure. Everyday experience shows that word search and retrieval processes provide fluent and coherent speech, i.e. are efficient. This implies either that semantic memory encodes, besides thousands of words, different kind of links for different relationships (introducing greater complexity and storage costs), or that the structure evolves facilitating the differentiation between long-lasting semantic relations from incidental, phenomenological ones. Assuming the latter possibility, we explore a mechanism to disentangle the underlying semantic backbone which comprises conceptual structure (extraction of categorical relations between pairs of words), from the rest of information present in the structure. To this end, we first present and characterize an empirical data set modeled as a network, then we simulate a stochastic cognitive navigation on this topology. We schematize this latter process as uncorrelated random walks from node to node, which converge to a feature vectors network. By doing so we both introduce a novel mechanism for information retrieval, and point at the problem of category formation in close connection to linguistic and non-linguistic experience.
Popularity and Novelty Dynamics in Evolving Networks.
Abbas, Khushnood; Shang, Mingsheng; Abbasi, Alireza; Luo, Xin; Xu, Jian Jun; Zhang, Yu-Xia
2018-04-20
Network science plays a big role in the representation of real-world phenomena such as user-item bipartite networks presented in e-commerce or social media platforms. It provides researchers with tools and techniques to solve complex real-world problems. Identifying and predicting future popularity and importance of items in e-commerce or social media platform is a challenging task. Some items gain popularity repeatedly over time while some become popular and novel only once. This work aims to identify the key-factors: popularity and novelty. To do so, we consider two types of novelty predictions: items appearing in the popular ranking list for the first time; and items which were not in the popular list in the past time window, but might have been popular before the recent past time window. In order to identify the popular items, a careful consideration of macro-level analysis is needed. In this work we propose a model, which exploits item level information over a span of time to rank the importance of the item. We considered ageing or decay effect along with the recent link-gain of the items. We test our proposed model on four various real-world datasets using four information retrieval based metrics.
Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter
2014-05-01
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.
Assuring SS7 dependability: A robustness characterization of signaling network elements
NASA Astrophysics Data System (ADS)
Karmarkar, Vikram V.
1994-04-01
Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.
Nowke, Christian; Diaz-Pier, Sandra; Weyers, Benjamin; Hentschel, Bernd; Morrison, Abigail; Kuhlen, Torsten W.; Peyser, Alexander
2018-01-01
Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed. PMID:29937723
Richardson, Alison; Sitzia, John; Cotterell, Phil
2005-01-01
Abstract Aims and objectives To investigate the characteristics and achievements of cancer partnership groups – collaborative service improvement groups formed of NHS staff and service users – in the 34 cancer networks in England, and in particular to explore the influence that such groups had on local cancer services. Design A qualitative approach employing a structured telephone survey, face‐to‐face interviews and documentary analysis. Participants and setting Thirty cancer networks in England with an active Partnership Group completed the telephone survey. From these 30 networks, six networks were subsequently selected from which service users and NHS professionals involved in partnership groups and NHS professionals who were non‐members were recruited to take part in face‐to‐face interviews. Results and conclusions Partnership groups were established in the majority of cancer networks. Typically, these groups were at network level, been established for less than a year, met once every 2 months, and were populated with both service users and health‐care professionals. Five common activities and achievements were identified: establishment of the group itself; acting as a ‘reference’ group for consultation; networking and representation on other groups; patient information and communication and proactive influencing. Activities progressed in scale and complexity as groups evolved. Groups had learnt the basics of change management and some identified a more sophisticated understanding of change processes in the NHS as essential for the group's motivation and survival. When gauging the impact of involvement strategies it would seem important to subscribe to broad indicators of success that include both process and outcome measures. PMID:16098151
Genetic learning in rule-based and neural systems
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
A model for evolution of overlapping community networks
NASA Astrophysics Data System (ADS)
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
Active printed materials for complex self-evolving deformations.
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-12-18
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.
Active Printed Materials for Complex Self-Evolving Deformations
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-01-01
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053
Modeling the chemistry of complex petroleum mixtures.
Quann, R J
1998-01-01
Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903
Multilayer Optimization of Heterogeneous Networks Using Grammatical Genetic Programming.
Fenton, Michael; Lynch, David; Kucera, Stepan; Claussen, Holger; O'Neill, Michael
2017-09-01
Heterogeneous cellular networks are composed of macro cells (MCs) and small cells (SCs) in which all cells occupy the same bandwidth. Provision has been made under the third generation partnership project-long term evolution framework for enhanced intercell interference coordination (eICIC) between cell tiers. Expanding on previous works, this paper instruments grammatical genetic programming to evolve control heuristics for heterogeneous networks. Three aspects of the eICIC framework are addressed including setting SC powers and selection biases, MC duty cycles, and scheduling of user equipments (UEs) at SCs. The evolved heuristics yield minimum downlink rates three times higher than a baseline method, and twice that of a state-of-the-art benchmark. Furthermore, a greater number of UEs receive transmissions under the proposed scheme than in either the baseline or benchmark cases.
Long-term variability of importance of brain regions in evolving epileptic brain networks
NASA Astrophysics Data System (ADS)
Geier, Christian; Lehnertz, Klaus
2017-04-01
We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.
Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network
2015-08-14
theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints
ERIC Educational Resources Information Center
Bothun, Gregory D.
2016-01-01
Purpose: The purpose of this paper is to provide a case study report of the development of data networks and initial connectivity in the Sub-Saharan African (SSA) region and how that development evolved into the formation of research and education (R&E) networks that enable new collaborations and curriculum potential.…
Self-assembling enzymes and the origins of the cytoskeleton
Barry, Rachael; Gitai, Zemer
2011-01-01
The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508
An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie
2013-06-12
Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Evolution and intelligent design in drug development.
Agafonov, Roman V; Wilson, Christopher; Kern, Dorothee
2015-01-01
Sophisticated protein kinase networks, empowering complexity in higher organisms, are also drivers of devastating diseases such as cancer. Accordingly, these enzymes have become major drug targets of the twenty-first century. However, the holy grail of designing specific kinase inhibitors aimed at specific cancers has not been found. Can new approaches in cancer drug design help win the battle with this multi-faced and quickly evolving enemy? In this perspective we discuss new strategies and ideas that were born out of a recent breakthrough in understanding the molecular basis underlying the clinical success of the cancer drug Gleevec. An "old" method, stopped-flow kinetics, combined with old enzymes, the ancestors dating back up to about billion years, provides an unexpected outlook for future intelligent design of drugs.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1992-01-01
New standards are evolving which provide the foundation for novel multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. This paper introduces the HiPPI standards suite and technology products which incorporate the standards. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1991-01-01
New standards are evolving which provide the foundation for multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. The HiPPI Standards suite and technology products which incorporate the standards are introduced. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
Key cognitive preconditions for the evolution of language.
Donald, Merlin
2017-02-01
Languages are socially constructed systems of expression, generated interactively in social networks, which can be assimilated by the individual brain as it develops. Languages co-evolved with culture, reflecting the changing complexity of human culture as it acquired the properties of a distributed cognitive system. Two key preconditions set the stage for the evolution of such cultures: a very general ability to rehearse and refine skills (evident early in hominin evolution in toolmaking), and the emergence of material culture as an external (to the brain) memory record that could retain and accumulate knowledge across generations. The ability to practice and rehearse skill provided immediate survival-related benefits in that it expanded the physical powers of early hominins, but the same adaptation also provided the imaginative substrate for a system of "mimetic" expression, such as found in ritual and pantomime, and in proto-words, which performed an expressive function somewhat like the home signs of deaf non-signers. The hominid brain continued to adapt to the increasing importance and complexity of culture as human interactions with material culture became more complex; above all, this entailed a gradual expansion in the integrative systems of the brain, especially those involved in the metacognitive supervision of self-performances. This supported a style of embodied mimetic imagination that improved the coordination of shared activities such as fire tending, but also in rituals and reciprocal mimetic games. The time-depth of this mimetic adaptation, and its role in both the construction and acquisition of languages, explains the importance of mimetic expression in the media, religion, and politics. Spoken language evolved out of voco-mimesis, and emerged long after the more basic abilities needed to refine skill and share intentions, probably coinciding with the common ancestor of sapient humans. Self-monitoring and self-supervised practice were necessary preconditions for lexical invention, and as these abilities evolved further, communicative skills extended to more abstract and complex aspects of the communication environments-that is, the "cognitive ecologies"-being generated by human groups. The hominin brain adapted continuously to the need to assimilate language and its many cognitive byproducts by expanding many of its higher integrative systems, a process that seems to have accelerated and peaked in the past half million years.
The urban watershed continuum: evolving spatial and temporal dimensions
Sujay S. Kaushal; Kenneth T. Belt
2012-01-01
Urban ecosystems are constantly evolving, and they are expected to change in both space and time with active management or degradation. An urban watershed continuum framework recognizes a continuum of engineered and natural hydrologic flowpaths that expands hydrologic networks in ways that are seldom considered. It recognizes that the nature of hydrologic connectivity...
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.
2016-01-01
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses. PMID:27625669
Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J
2017-02-05
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).
Wallbank, Richard W. R.; Hanly, Joseph J.
2017-01-01
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the ‘Nymphalid Ground Plan’, which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent ‘hotspots’ for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994126
Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo
2015-09-29
The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.
Directed evolution to re-adapt a co-evolved network within an enzyme.
Strafford, John; Payongsri, Panwajee; Hibbert, Edward G; Morris, Phattaraporn; Batth, Sukhjeet S; Steadman, David; Smith, Mark E B; Ward, John M; Hailes, Helen C; Dalby, Paul A
2012-01-01
We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve k(cat) 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varela, Consuelo; Tarquis, Ana M.; Blanco-Gutiérrez, Irene; Estebe, Paloma; Toledo, Marisol; Martorano, Lucieta
2015-04-01
Social-ecological systems are linked complex systems that represent interconnected human and biophysical processes evolving and adapting across temporal and spatial scales. In the real world, social-ecological systems pose substantial challenges for modeling. In this regard, Fuzzy Cognitive Maps (FCMs) have proven to be a useful method for capturing the functioning of this type of systems. FCMs are a semi-quantitative type of cognitive map that represent a system composed of relevant factors and weighted links showing the strength and direction of cause-effects relationships among factors. Therefore, FCMs can be interpreted as complex system structures or complex networks. In this sense, recent research has applied complex network concepts for the analysis of FCMs that represent social-ecological systems. Key to FCM the tool is its potential to allow feedback loops and to include stakeholder knowledge in the construction of the tool. Also, previous research has demonstrated their potential to represent system dynamics and simulate the effects of changes in the system, such as policy interventions. For illustrating this analysis, we have developed a series of participatory FCM for the study of the ecological and human systems related to biodiversity conservation in two case studies of the Amazonian region, the Bolivia lowlands of Guarayos and the Brazil Tapajos National forest. The research is carried out in the context of the EU project ROBIN1 and it is based on the development of a series of stakeholder workshops to analyze the current state of the socio-ecological environment in the Amazonian forest, reflecting conflicts and challenges for biodiversity conservation and human development. Stakeholders included all relevant actors in the local case studies, namely farmers, environmental groups, producer organizations, local and provincial authorities and scientists. In both case studies we illustrate the use of complex networks concepts, such as the adjacency matrix and centrality properties (e.g.: centrality, page-rank, betweenness centrality). Different measures of network centrality evidence that deforestation and loss of biodiversity are the most relevant factors in the FCM of the two case studies analyzed. In both cases agricultural expansion emerges as a key driver of deforestation. The lack of policy coordination and a weak implementation and enforcement are also highly influential factors. The analysis of the system's dynamics suggest that in the case of Bolivia forest fires and deforestation are likely to continue in the immediate future as illegal activities are maintained and poverty increases. In the case of Brazil a decrease in available viable economic activities is driving further deforestation and ecosystem services loss. Overall, the research evidences how using FCMs together with complex network analysis can support policy development by identifying key elements and processes upon which policy makers and institutions can take action. Acknowledgements The authors would like to acknowledge the EU project ROBIN (The Role of Biodiversity in Climate Change Mitigation, from the EC FP7, no 283093) and the Spanish project AL14-PID-12 (Biodiversidad y cambio climático en la Amazonía: Perspectivas socio-económicas y ambientales) of the UPM Latin America Cooperation Program for funding this research.
Computational analysis of complex systems: Applications to population dynamics and networks
NASA Astrophysics Data System (ADS)
Molnar, Ferenc
In most complex evolving systems, we can often find a critical subset of the constituents that can initiate a global change in the entire system. For example, in complex networks, a critical subset of nodes can efficiently spread information, influence, or control dynamical processes over the entire network. Similarly, in nonlinear dynamics, we can locate key variables, or find the necessary parameters, to reach the attraction basin of a desired global state. In both cases, a fundamental goal is finding the ability to efficiently control these systems. We study two distinct complex systems in this dissertation, exploring these topics. First, we analyze a population dynamics model describing interactions of sex-structured population groups. Specifically, we analyze how a sex-linked genetic trait's ecological consequence (population survival or extinction) can be influenced by the presence of sex-specific cultural mortality traits, motivated by the desire to expand the theoretical understanding of the role of biased sex ratios in organisms. We analyze dynamics within a single population group, as well as between competing groups. We find that there is a finite range of sex ratio bias that can be maintained in stable equilibrium by sex-specific mortalities. We also find that the outcome of an invasion and the ensuing between-group competition depends not on larger equilibrium group densities, but on the higher allocation of sex-ratio genes. When we extend the model with diffusive dispersal, we find that a critical patch size for achieving positive growth only exists if the population expands into an empty environment. If a resident population is already present that can be exploited by the invading group, then any small seed of invader can advance from rarity, in the mean-field approximation, as long as the local competition dynamics favors the invader's survival. Most spatial models assume initial populations with a uniform distribution inside a finite patch; a simple, but not a cost-efficient approach. We show, using a novel application of simulated annealing, that a specific, non-trivial shape of spatial distribution can minimize the total cost of successful invasion, i.e., the cost of ecological restoration. Further, our approach can be generalized to essentially any reaction-diffusion model with diffusive spreading. In the second part of the dissertation we conduct an extensive study of minimum dominating sets (MDS) in complex networks; particularly, in scale-free networks. MDS is the smallest subset of nodes in a network that can reach every other node as nearest neighbors, thus it provides a key subset of nodes that play critical role in controllability and observability of social, biological, and technological networks. Continued interest in network control, monitoring and influencing of complex networks motivates our research of understanding the properties and practical application-related issues of the MDS. Our study of the scaling behavior reveals that the size of MDS always scales linearly with network size, as long as the power-law degree exponent gamma of the degree distribution is larger than 2. However, when gamma<2, a domination transition occurs, allowing the MDS size to become O(1), leading to easily dominated networks, under certain structural conditions. Motivated by practical applicability in large networks, we develop a new dominating set selection method, derived from probabilistic node selection techniques, which can select small dominating sets without complete network topology information. We also show that the effectiveness of our method, as well as the effectiveness of other heuristics of dominating set selection, strongly depends on the assortativity of networks. Finally, we conduct a numerical study to analyze the fraction of nodes that remain dominated, after the network is damaged, and some nodes are removed. We find that dominating sets optimized for small size are particularly vulnerable to damage; a significant amount of "domination coverage" may be lost if key dominator nodes are deleted. However, we also find that increasing the redundancy of dominating sets by adding a few well-picked nodes can successfully increase the post-damage dominated fraction of the network. Based on this idea, we develop two algorithms to build dominating sets with flexible balance between size and damage resilience.
Behavioural and neurophysiological evidence for face identity and face emotion processing in animals
Tate, Andrew J; Fischer, Hanno; Leigh, Andrea E; Kendrick, Keith M
2006-01-01
Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task. PMID:17118930
Tate, Andrew J; Fischer, Hanno; Leigh, Andrea E; Kendrick, Keith M
2006-12-29
Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task.
The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development.
Sarmiento, Felipe
2013-04-01
Plants depend on light during all phases of its life cycle, and have evolved a complex signaling network to constantly monitor its surroundings. Photomorphogenesis, a process during which the plant reprograms itself in order to dwell life in presence of light is one of the most studied phenomena in plants. Recent mutant analyses using model plant Arabidopsis thaliana and protein interaction assays have unraveled a new set of players, an 8-member subfamily of B-box proteins, known as BBX subfamily IV. For the members of this subfamily, positive (BBX21, BBX22) as well as negative (BBX24) functions have been described for its members, showing a strong association to two major players of the photomorphogenic cascade, HY5 and COP1. The roles of these new BBX regulators are not restricted to photomorphogenesis, but also have functions in other facets of light-dependent development. Therefore this newly identified set of regulators has opened up new insights into the understanding of the fine-tuning of this complex process.
Efficient utilization of graphics technology for space animation
NASA Technical Reports Server (NTRS)
Panos, Gregory Peter
1989-01-01
Efficient utilization of computer graphics technology has become a major investment in the work of aerospace engineers and mission designers. These new tools are having a significant impact in the development and analysis of complex tasks and procedures which must be prepared prior to actual space flight. Design and implementation of useful methods in applying these tools has evolved into a complex interaction of hardware, software, network, video and various user interfaces. Because few people can understand every aspect of this broad mix of technology, many specialists are required to build, train, maintain and adapt these tools to changing user needs. Researchers have set out to create systems where an engineering designer can easily work to achieve goals with a minimum of technological distraction. This was accomplished with high-performance flight simulation visual systems and supercomputer computational horsepower. Control throughout the creative process is judiciously applied while maintaining generality and ease of use to accommodate a wide variety of engineering needs.
Neural encoding of large-scale three-dimensional space-properties and constraints.
Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.
An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.
Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha
2017-02-01
Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex
ERIC Educational Resources Information Center
Howard, Derrick L.; Tinoco, Arthur D.; Brudvig, Gary W.; Vrettos, John S.; Allen, Bertha Connie
2005-01-01
Bioinorganic models of the manganese Mn4 cluster are important not only as aids in understanding the structure and function of the oxygen-evolving complex (OEC), but also in developing artificial water-oxidation catalysts. The mechanism of water oxidation by photosystem II (PSII) is thought to involve the formation of a high-valent terminal Mn-oxo…
ERIC Educational Resources Information Center
Dai, David Yun
2017-01-01
This article presents a new theory of talent development, evolving complexity theory (ECT), in the context of the changing theoretical directions as well as the landscape of gifted education. I argue that gifted education needs a new foundation that provides a broad psychosocial basis than what the notion of giftedness can afford. A focus on…
Netlang: A software for the linguistic analysis of corpora by means of complex networks
Serna Salazar, Diego; Isaza, Gustavo; Castillo Ossa, Luis F.; Bedia, Manuel G.
2017-01-01
To date there is no software that directly connects the linguistic analysis of a conversation to a network program. Networks programs are able to extract statistical information from data basis with information about systems of interacting elements. Language has also been conceived and studied as a complex system. However, most proposals do not analyze language according to linguistic theory, but use instead computational systems that should save time at the price of leaving aside many crucial aspects for linguistic theory. Some approaches to network studies on language do apply precise linguistic analyses, made by a linguist. The problem until now has been the lack of interface between the analysis of a sentence and its integration into the network that could be managed by a linguist and that could save the analysis of any language. Previous works have used old software that was not created for these purposes and that often produced problems with some idiosyncrasies of the target language. The desired interface should be able to deal with the syntactic peculiarities of a particular language, the options of linguistic theory preferred by the user and the preservation of morpho-syntactic information (lexical categories and syntactic relations between items). Netlang is the first program able to do that. Recently, a new kind of linguistic analysis has been developed, which is able to extract a complexity pattern from the speaker's linguistic production which is depicted as a network where words are inside nodes, and these nodes connect each other by means of edges or links (the information inside the edge can be syntactic, semantic, etc.). The Netlang software has become the bridge between rough linguistic data and the network program. Netlang has integrated and improved the functions of programs used in the past, namely the DGA annotator and two scripts (ToXML.pl and Xml2Pairs.py) used for transforming and pruning data. Netlang allows the researcher to make accurate linguistic analysis by means of syntactic dependency relations between words, while tracking record of the nature of such syntactic relationships (subject, object, etc). The Netlang software is presented as a new tool that solve many problems detected in the past. The most important improvement is that Netlang integrates three past applications into one program, and is able to produce a series of file formats that can be read by a network program. Through the Netlang software, the linguistic network analysis based on syntactic analyses, characterized for its low cost and the completely non-invasive procedure aims to evolve into a sufficiently fine grained tool for clinical diagnosis in potential cases of language disorders. PMID:28832598
Netlang: A software for the linguistic analysis of corpora by means of complex networks.
Barceló-Coblijn, Lluís; Serna Salazar, Diego; Isaza, Gustavo; Castillo Ossa, Luis F; Bedia, Manuel G
2017-01-01
To date there is no software that directly connects the linguistic analysis of a conversation to a network program. Networks programs are able to extract statistical information from data basis with information about systems of interacting elements. Language has also been conceived and studied as a complex system. However, most proposals do not analyze language according to linguistic theory, but use instead computational systems that should save time at the price of leaving aside many crucial aspects for linguistic theory. Some approaches to network studies on language do apply precise linguistic analyses, made by a linguist. The problem until now has been the lack of interface between the analysis of a sentence and its integration into the network that could be managed by a linguist and that could save the analysis of any language. Previous works have used old software that was not created for these purposes and that often produced problems with some idiosyncrasies of the target language. The desired interface should be able to deal with the syntactic peculiarities of a particular language, the options of linguistic theory preferred by the user and the preservation of morpho-syntactic information (lexical categories and syntactic relations between items). Netlang is the first program able to do that. Recently, a new kind of linguistic analysis has been developed, which is able to extract a complexity pattern from the speaker's linguistic production which is depicted as a network where words are inside nodes, and these nodes connect each other by means of edges or links (the information inside the edge can be syntactic, semantic, etc.). The Netlang software has become the bridge between rough linguistic data and the network program. Netlang has integrated and improved the functions of programs used in the past, namely the DGA annotator and two scripts (ToXML.pl and Xml2Pairs.py) used for transforming and pruning data. Netlang allows the researcher to make accurate linguistic analysis by means of syntactic dependency relations between words, while tracking record of the nature of such syntactic relationships (subject, object, etc). The Netlang software is presented as a new tool that solve many problems detected in the past. The most important improvement is that Netlang integrates three past applications into one program, and is able to produce a series of file formats that can be read by a network program. Through the Netlang software, the linguistic network analysis based on syntactic analyses, characterized for its low cost and the completely non-invasive procedure aims to evolve into a sufficiently fine grained tool for clinical diagnosis in potential cases of language disorders.