NASA Technical Reports Server (NTRS)
Kalb, Michael; Robertson, Franklin; Jedlovec, Gary; Perkey, Donald
1987-01-01
Techniques by which mesoscale numerical weather prediction model output and radiative transfer codes are combined to simulate the radiance fields that a given passive temperature/moisture satellite sensor would see if viewing the evolving model atmosphere are introduced. The goals are to diagnose the dynamical atmospheric processes responsible for recurring patterns in observed satellite radiance fields, and to develop techniques to anticipate the ability of satellite sensor systems to depict atmospheric structures and provide information useful for numerical weather prediction (NWP). The concept of linking radiative transfer and dynamical NWP codes is demonstrated with time sequences of simulated radiance imagery in the 24 TIROS vertical sounder channels derived from model integrations for March 6, 1982.
NASA Technical Reports Server (NTRS)
Cohn, S. E.
1982-01-01
Numerical weather prediction (NWP) is an initial-value problem for a system of nonlinear differential equations, in which initial values are known incompletely and inaccurately. Observational data available at the initial time must therefore be supplemented by data available prior to the initial time, a problem known as meteorological data assimilation. A further complication in NWP is that solutions of the governing equations evolve on two different time scales, a fast one and a slow one, whereas fast scale motions in the atmosphere are not reliably observed. This leads to the so called initialization problem: initial values must be constrained to result in a slowly evolving forecast. The theory of estimation of stochastic dynamic systems provides a natural approach to such problems. For linear stochastic dynamic models, the Kalman-Bucy (KB) sequential filter is the optimal data assimilation method, for linear models, the optimal combined data assimilation-initialization method is a modified version of the KB filter.
Droegemeier, Kelvin K
2009-03-13
Mesoscale weather, such as convective systems, intense local rainfall resulting in flash floods and lake effect snows, frequently is characterized by unpredictable rapid onset and evolution, heterogeneity and spatial and temporal intermittency. Ironically, most of the technologies used to observe the atmosphere, predict its evolution and compute, transmit or store information about it, operate in a static pre-scheduled framework that is fundamentally inconsistent with, and does not accommodate, the dynamic behaviour of mesoscale weather. As a result, today's weather technology is highly constrained and far from optimal when applied to any particular situation. This paper describes a new cyberinfrastructure framework, in which remote and in situ atmospheric sensors, data acquisition and storage systems, assimilation and prediction codes, data mining and visualization engines, and the information technology frameworks within which they operate, can change configuration automatically, in response to evolving weather. Such dynamic adaptation is designed to allow system components to achieve greater overall effectiveness, relative to their static counterparts, for any given situation. The associated service-oriented architecture, known as Linked Environments for Atmospheric Discovery (LEAD), makes advanced meteorological and cyber tools as easy to use as ordering a book on the web. LEAD has been applied in a variety of settings, including experimental forecasting by the US National Weather Service, and allows users to focus much more attention on the problem at hand and less on the nuances of data formats, communication protocols and job execution environments.
ERIC Educational Resources Information Center
Rimland, Jeffrey C.
2013-01-01
In many evolving systems, inputs can be derived from both human observations and physical sensors. Additionally, many computation and analysis tasks can be performed by either human beings or artificial intelligence (AI) applications. For example, weather prediction, emergency event response, assistive technology for various human sensory and…
Dynamically Evolving Sectors for Convective Weather Impact
NASA Technical Reports Server (NTRS)
Drew, Michael C.
2010-01-01
A new strategy for altering existing sector boundaries in response to blocking convective weather is presented. This method seeks to improve the reduced capacity of sectors directly affected by weather by moving boundaries in a direction that offers the greatest capacity improvement. The boundary deformations are shared by neighboring sectors within the region in a manner that preserves their shapes and sizes as much as possible. This reduces the controller workload involved with learning new sector designs. The algorithm that produces the altered sectors is based on a force-deflection mesh model that needs only nominal traffic patterns and the shape of the blocking weather for input. It does not require weather-affected traffic patterns that would have to be predicted by simulation. When compared to an existing optimal sector design method, the sectors produced by the new algorithm are more similar to the original sector shapes, resulting in sectors that may be more suitable for operational use because the change is not as drastic. Also, preliminary results show that this method produces sectors that can equitably distribute the workload of rerouted weather-affected traffic throughout the region where inclement weather is present. This is demonstrated by sector aircraft count distributions of simulated traffic in weather-affected regions.
The scientific challenges to forecasting and nowcasting the solar origins of space weather (Invited)
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Title, A. M.
2013-12-01
With the full-sphere continuous coverage of the Sun achieved by combining SDO and STEREO imagery comes the realization that solar activity is a manifestation of local processes that respond to long-range if not global influences. Numerical experiments provide insights into these couplings, as well as into the intricacies of destabilizations of field emerging into pre-existing configurations and evolving within the context of their dynamic surroundings. With these capabilities grows an understanding of the difficulties in forecasting of the solar origins of space weather: we need assimilative global non-potential field models, but our observational resources are too limited to meet that need.
The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center
NASA Astrophysics Data System (ADS)
Singer, H. J.
2017-12-01
The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.
Weather and Climate Monitoring Protocol, Channel Islands National Park, California
McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky
2008-01-01
Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.
Dynamical Networks Characterization of Space Weather Events
NASA Astrophysics Data System (ADS)
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.
2015-12-01
A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.
Realistic natural atmospheric phenomena and weather effects for interactive virtual environments
NASA Astrophysics Data System (ADS)
McLoughlin, Leigh
Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..
Long-Term Changes in Chemical Weathering in the Himalayan Region from Indus Fan Sediments
NASA Astrophysics Data System (ADS)
Carter, S.; Griffith, E. M.; Scher, H.; Dellapenna, T. M.; Clift, P. D.
2017-12-01
The Asian Monsoon reflects large-scale interactions between the atmosphere, land, and ocean systems. Increasing our understanding of this system, how and why it has evolved through time, is critically important in order to understand how it may evolve in the future. The radiogenic strontium isotopic signature (87Sr/86Sr) of the clay fraction in deep sea sediment cores within submarine fans has been used as a record of riverine 87Sr/86Sr composition to gain information about Himalayan weathering intensity. Strontium exists in clay minerals primarily in interlayer sites or adsorbed onto mineral surfaces. Interlayer cation exchange is thought to be completed within rivers during recrystallization or neoformation of clays. A record of chemical weathering intensity in the Himalayas is presented by analyzing the 87Sr/86Sr signature of the clay fraction in sediments from International Ocean Discovery Program (IODP) Expedition 355 Sites U1456 and U1457, located on the Indus Fan, eastern Arabian Sea. This record will be coupled with additional records of bulk grain size and K/Al ratios of clay as potentially additional indicators of weathering intensity. The Sr isotopes in the interstitial waters at each site have also been measured (Carter et al., in press) to verify that the Sr in the treated clay fraction is not being reset by diagenesis in the sedimentary column. Initial results verify that the 87Sr/86Sr values of the clay are less than those in the bulk sediment, as expected, but are not similar to pore fluid Sr. 87Sr/86Sr values of the clays show trends suggesting fluctuations in chemical weathering intensity through time. However, bulk grain size and K/Al ratios results conflict with the 87Sr/86Sr values. If the additional proxy records continue to show conflicting results for "weathering intensity", together they may reveal more information regarding the sedimentary system. Ultimately, the various records will either agree, providing strong evidence for changes in chemical weathering and the evolution of the monsoon, or disagree, allowing for further investigation into the relationships between chemical weathering, evolution of the flood plain, and sediment deposition in the fan. These new records will aid in the correlation of Himalayan exhumation and monsoon intensity and help to constrain this dynamic system.
The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone
NASA Astrophysics Data System (ADS)
Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.
2017-12-01
In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our findings highlight the strong influence of water transport and storage dynamics in the weathered bedrock beneath the soil layer on catchment-scale hydrologic and geochemical fluxes, and underscore the need for further exploration of the fractured bedrock vadose zones common to many upland landscapes.
In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil
NASA Astrophysics Data System (ADS)
Thompson, Michelle S.; Zega, Thomas J.; Howe, Jane Y.
2017-03-01
We report the results of the first dynamic, in situ heating of lunar soils to simulate micrometeorite impacts on the lunar surface. We performed slow- and rapid-heating experiments inside the transmission electron microscope to understand the chemical and microstructural changes in surface soils resulting from space-weathering processes. Our slow-heating experiments show that the formation of Fe nanoparticles begins at 575 °C. These nanoparticles also form as a result of rapid-heating experiments, and electron energy-loss spectroscopy measurements indicate the Fe nanoparticles are composed entirely of Fe0, suggesting this simulation accurately mimics micrometeorite space-weathering processes occurring on airless body surfaces. In addition to Fe nanoparticles, rapid-heating experiments also formed vesiculated textures in the samples. Several grains were subjected to repeated thermal shocks, and the measured size distribution and number of Fe nanoparticles evolved with each subsequent heating event. These results provide insight into the formation and growth mechanisms for Fe nanoparticles in space-weathered soils and could provide a new methodology for relative age dating of individual soil grains from within a sample population.
NASA Technical Reports Server (NTRS)
McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)
2015-01-01
A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.
Near Real Time Data for Operational Space Weather Forecasting
NASA Astrophysics Data System (ADS)
Berger, T. E.
2014-12-01
Space weather operations presents unique challenges for data systems and providers. Space weather events evolve more quickly than terrestrial weather events. While terrestrial weather occurs on timescales of minutes to hours, space weather storms evolve on timescales of seconds to minutes. For example, the degradation of the High Frequency Radio communications between the ground and commercial airlines is nearly instantaneous when a solar flare occurs. Thus the customer is observing impacts at the same time that the operational forecast center is seeing the event unfold. The diversity and spatial scale of the space weather system is such that no single observation can capture the salient features. The vast space that encompasses space weather and the scarcity of observations further exacerbates the situation and make each observation even more valuable. The physics of interplanetary space, through which many major storms propagate, is very different from the physics of the ionosphere where most of the impacts are felt. And while some observations can be made from ground-based observatories, many of the most critical data comes from satellites, often in unique orbits far from Earth. In this presentation, I will describe some of the more important sources and types of data that feed into the operational alerts, watches, and warnings of space weather storms. Included will be a discussion of some of the new space weather forecast models and the data challenges that they bring forward.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2006-01-01
The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
NASA Technical Reports Server (NTRS)
2005-01-01
This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.
NASA Technical Reports Server (NTRS)
Hicks, K.; Steele, W.
1974-01-01
The SEASAT program will provide scientific and economic benefits from global remote sensing of the ocean's dynamic and physical characteristics. The program as presently envisioned consists of: (1) SEASAT A; (2) SEASAT B; and (3) Operational SEASAT. This economic assessment was to identify, rationalize, quantify and validate the economic benefits evolving from SEASAT. These benefits will arise from improvements in the operating efficiency of systems that interface with the ocean. SEASAT data will be combined with data from other ocean and atmospheric sampling systems and then processed through analytical models of the interaction between oceans and atmosphere to yield accurate global measurements and global long range forecasts of ocean conditions and weather.
NASA Technical Reports Server (NTRS)
OConnor, Cornelius J.; Rutishauser, David K.
2001-01-01
An aspect of airport terminal operations that holds potential for efficiency improvements is the separation criteria applied to aircraft for wake vortex avoidance. These criteria evolved to represent safe spacing under weather conditions conducive to the longest wake hazards, and are consequently overly conservative during a significant portion of operations. Under many ambient conditions, such as moderate crosswinds or turbulence, wake hazard durations are substantially reduced. To realize this reduction NASA has developed a proof-of-concept Aircraft Vortex Spacing System (AVOSS). Successfully operated in a real-time field demonstration during July 2000 at the Dallas Ft. Worth International Airport, AVOSS is a novel integration of weather sensors, wake sensors, and analytical wake prediction algorithms. Gains in airport throughput using AVOSS spacing as compared to the current criteria averaged 6%, with peak values approaching the theoretical maximum of 16%. The average throughput gain translates to 15-40% reductions in delay when applied to realistic capacity ratios at major airports.
NASA Technical Reports Server (NTRS)
McAdaragh, Raymon M.
2002-01-01
The capacity of the National Airspace System is being stressed due to the limits of current technologies. Because of this, the FAA and NASA are working to develop new technologies to increase the system's capacity which enhancing safety. Adverse weather has been determined to be a major factor in aircraft accidents and fatalities and the FAA and NASA have developed programs to improve aviation weather information technologies and communications for system users The Aviation Weather Information Element of the Weather Accident Prevention Project of NASA's Aviation Safety Program is currently working to develop these technologies in coordination with the FAA and industry. This paper sets forth a theoretical approach to implement these new technologies while addressing the National Airspace System (NAS) as an evolving system with Weather Information as one of its subSystems. With this approach in place, system users will be able to acquire the type of weather information that is needed based upon the type of decision-making situation and condition that is encountered. The theoretical approach addressed in this paper takes the form of a model for weather information implementation. This model addresses the use of weather information in three decision-making situations, based upon the system user's operational perspective. The model also addresses two decision-making conditions, which are based upon the need for collaboration due to the level of support offered by the weather information provided by each new product or technology. The model is proposed for use in weather information implementation in order to provide a systems approach to the NAS. Enhancements to the NAS collaborative decision-making capabilities are also suggested.
Perturbed-input-data ensemble modeling of magnetospheric dynamics
NASA Astrophysics Data System (ADS)
Morley, S.; Steinberg, J. T.; Haiducek, J. D.; Welling, D. T.; Hassan, E.; Weaver, B. P.
2017-12-01
Many models of Earth's magnetospheric dynamics - including global magnetohydrodynamic models, reduced complexity models of substorms and empirical models - are driven by solar wind parameters. To provide consistent coverage of the upstream solar wind these measurements are generally taken near the first Lagrangian point (L1) and algorithmically propagated to the nose of Earth's bow shock. However, the plasma and magnetic field measured near L1 is a point measurement of an inhomogeneous medium, so the individual measurement may not be sufficiently representative of the broader region near L1. The measured plasma may not actually interact with the Earth, and the solar wind structure may evolve between L1 and the bow shock. To quantify uncertainties in simulations, as well as to provide probabilistic forecasts, it is desirable to use perturbed input ensembles of magnetospheric and space weather forecasting models. By using concurrent measurements of the solar wind near L1 and near the Earth, we construct a statistical model of the distributions of solar wind parameters conditioned on their upstream value. So that we can draw random variates from our model we specify the conditional probability distributions using Kernel Density Estimation. We demonstrate the utility of this approach using ensemble runs of selected models that can be used for space weather prediction.
Drake, Phillip
2016-04-01
The Lapindo mudflow is one of the most controversial disasters in Indonesian history. Despite its unique biophysical features, most consider the mudflow a social disaster as scientific conflicts about its main trigger have evolved into legal disputes over accountability and rights. This paper examines this 'trigger debate', the stakes of scientific contention and the broader social and natural dynamics that shape the terms of this debate. A Latourian impulse drives this analysis, which aims to improve both understandings of--and responses to--complex disasters. This paper also notes that the stakes of representation extend to constructions of its stakeholders, especially to victims. As socionatural disasters become an increasingly common feature of the contemporary world, from mud volcanoes to extreme weather events caused by global warming, it is more important than ever to understand the dynamics of representing disasters and stakeholders. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
NASA Astrophysics Data System (ADS)
Gasperini, Federico
In a society increasingly dependent on space technology, space weather has become a prominent scientific paradigm. In the last decade evidence has shown that terrestrial weather significantly influences space weather. Periodic absorption of solar radiation in local time and longitude by tropospheric water vapor and stratospheric ozone as well as latent heat release in clouds generate a spatially- and temporally-evolving spectrum of global-scale atmospheric waves (i.e., tides, planetary waves and Kelvin waves). A subset of these waves propagates vertically, evolving with height due to wave-mean flow, wave-wave, and wave-plasma interactions, and driving electric fields of tidal origin in the dynamo region. While considerable improvements have been made on the understanding of MLT dynamics, driven in part by the development and deployment of new instruments and techniques, relatively little is known about the coupling of waves in the 120-300 km `thermospheric gap' between satellite remote-sensing and in-situ wave diagnostics. The dissertation herein reveals vertical wave coupling in this height region and quantifies its role in determining thermospheric variability. This objective is accomplished employing quasi-Sun-synchronous satellite measurements (i.e., TIMED, CHAMP, and GOCE) and state-of-the-art numerical modeling simulations (i.e., TIME-GCM/MERRA). Evidence is found for the vertical propagation from the lower to the middle thermosphere of the eastward propagating diurnal tide with zonal wave number 3 (DE3) and the 3-day ultra-fast Kelvin wave (UFKW), two major global-scale atmospheric oscillations of tropospheric origin. These waves are shown to nonlinearly interact and produce secondary waves responsible for significant longitudinal and day-to-day variability. For solar and geomagnetic quiet conditions, atmospheric waves are found to be responsible for up to 60% of the total variability, demonstrating lower atmosphere coupling as a key contributor to thermosphere weather, at least in the absence of major solar-driven variability. Additionally, background atmospheric conditions (i.e., dissipation and zonal mean winds) and found to significantly impact the latitudinal-temporal evolution of upward propagating waves.
Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects
NASA Technical Reports Server (NTRS)
Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Urata, R. A.; Montmessin, F.
2017-01-01
Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:
Coupling Landform Evolution and Soil Pedogenesis - Initial Results From the SSSPAM5D Model
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Welivitiya, W. D. D. P.; Hancock, G. R.; Cohen, S.
2015-12-01
Evolution of soil on a dynamic landform is a crucial next step in landscape evolution modelling. Some attempts have been taken such as MILESD by Vanwalleghem et al. to develop a first model which is capable of simultaneously evolving both the soil profile and the landform. In previous work we have presented physically based models for soil pedogenesis, mARM and SSSPAM. In this study we present the results of coupling a landform evolution model with our SSSPAM5D soil pedogenesis model. In previous work the SSSPAM5D soil evolution model was used to identify trends of the soil profile evolution on a static landform. Two pedogenetic processes, namely (1) armouring due to erosion, and (2) physical and chemical weathering were used in those simulations to evolve the soil profile. By incorporating elevation changes (due to erosion and deposition) we have advanced the SSSPAM5D modelling framework into the realm of landscape evolution. Simulations have been run using elevation and soil grading data of the engineered landform (spoil heap) at the Ranger Uranium Mine, Northern Territory, Australia. The results obtained for the coupled landform-soil evolution simulations predict the erosion of high slope areas, development of rudimentary channel networks in the landform and deposition of sediments in lowland areas, and qualitatively consistent with landform evolution models on their own. Examination of the soil profile characteristics revealed that hill crests are weathering dominated and tend to develop a thick soil layer. The steeper hillslopes at the edge of the landform are erosion dominated with shallow soils while the foot slopes are deposition dominated with thick soil layers. The simulation results of our coupled landform and soil evolution model provide qualitatively correct and timely characterization of the soil evolution on a dynamic landscape. Finally we will compare the characteristics of erosion and deposition predicted by the coupled landform-soil SSSPAM landscape simulator, with landform evolution simulations using a static soil.
Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather
NASA Technical Reports Server (NTRS)
Spann, James
2012-01-01
Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.
Description and availability of airborne Doppler radar data
NASA Technical Reports Server (NTRS)
Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.
1993-01-01
An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.
Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event
NASA Astrophysics Data System (ADS)
Manchester, W. B., IV; van der Holst, B.; Lavraud, B.
2014-06-01
Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, R. I.; Rogan, J.; Valdivia, J. A.
2015-12-31
Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focusmore » on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.« less
VenSAR on EnVision: Taking earth observation radar to Venus
NASA Astrophysics Data System (ADS)
Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed
2018-02-01
Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.
Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...
Weather, fuels, fire behavior, plumes, and smoke - the nexus of fire meteorology
Scott L. Goodrick; Timothy J. Brown; W. Matt Jolly
2017-01-01
In a pair of review papers, Potter (2012a, 2012b) summarized the significant fire weather research findings over about the past hundred years. Our scientific understanding of wildland fire-atmosphere interactions has evolved: from simple correlations supporting the notion that hot, dry, and windy conditions lead to more intense fires, we have moved towards more...
Application of dynamical systems theory to global weather phenomena revealed by satellite imagery
NASA Technical Reports Server (NTRS)
Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh
1989-01-01
Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.
Patil, Vijay P.; Karels, Timothy J.; Hik, David S.
2015-01-01
Biennial breeding is a rare life-history trait observed in animal species living in harsh, unproductive environments. This reproductive pattern is thought to occur in 10 of 14 species in the genus Marmota, making marmots useful model organisms for studying its ecological and evolutionary implications. Biennial breeding in marmots has been described as an obligate pattern which evolved as a mechanism to mitigate the energetic costs of reproduction (Evolved Constraint hypothesis). However, recent anecdotal evidence suggests that it is a facultative pattern controlled by annual variation in climate and food availability (Environmental Constraint hypothesis). Finally, in social animals like marmots, biennial breeding could result from reproductive competition between females within social groups (Social Constraint hypothesis). We evaluated these three hypotheses using mark-recapture data from an 8-year study of hoary marmot (Marmota caligata) population dynamics in the Yukon. Annual variation in breeding probability was modeled using multi-state mark-recapture models, while other reproductive life-history traits were modeled with generalized linear mixed models. Hoary marmots were neither obligate nor facultative biennial breeders, and breeding probability was insensitive to evolved, environmental, or social factors. However, newly mature females were significantly less likely to breed than older individuals. Annual breeding did not result in increased mortality. Female survival and, to a lesser extent, average fecundity were correlated with winter climate, as indexed by the Pacific Decadal Oscillation. Hoary marmots are less conservative breeders than previously believed, and the evidence for biennial breeding throughout Marmota, and in other arctic/alpine/antarctic animals, should be re-examined. Prediction of future population dynamics requires an accurate understanding of life history strategies, and of how life history traits allow animals to cope with changes in weather and other demographic influences. PMID:25768300
Charles, Richelle C; Ryan, Edward T
2011-10-01
This review will focus on recent advances in our understanding of biologic and environmental factors that shape current cholera outbreaks, advances in our understanding of host-pathogen interactions during cholera, and recent evolution of current treatment and cholera prevention strategies. New research studies have improved our understanding of a number of dynamic factors that shape the ecology of Vibrio cholerae and influence its transmission, including the role of lytic bacteriophage, biofilm formation, a hyperinfectious state of human-passaged V. cholerae, and the impact of severe weather events. Provision of safe water and improved sanitation continue to be the mainstays of preventing cholera transmission; however, the role of cholera vaccination as a control measure in both endemic and epidemic settings is evolving. Recent advances in our understanding of long-lived protective immunity after natural infection may aid in the global efforts to control cholera. Improved understanding of factors associated with protective immunity and dynamic factors associated with cholera outbreaks may lead to improved control and prevention strategies for cholera.
Benefits Analysis of Multi-Center Dynamic Weather Routes
NASA Technical Reports Server (NTRS)
Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien
2014-01-01
Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.
Metapopulation Structure and Dynamics of an Endangered Butterfly
2010-01-01
the yearly variation of between-generation population change. We utilized weather data from the closest accessible NOAA weather station (43◦56′N/90◦49...patterns in the population dynamic, and tested for density-dependent growth and weather factors as potential explanatory factors of the yearly variation...followed a standard protocol including avoiding inclement weather con- ditions (Wilder 1999) and about 95% of the survey data were collected by a single
Introduction to the Space Weather Monitoring System at KASI
NASA Astrophysics Data System (ADS)
Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.
2014-05-01
We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.
Space Weather Needs of an Evolving Customer Base (Invited)
NASA Astrophysics Data System (ADS)
Rutledge, B.; Viereck, R. A.; Onsager, T. G.
2013-12-01
Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.
Prevention of Spacecraft Anomalies: The Role of Space Climate and Space Weather Models
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure to support the quality of life on Earth. Mission requirements along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. This chapter describes approaches to accommodate space climate and space weather impacts on systems and notes areas where gaps in model development limit our ability to prevent spacecraft anomalies.
Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.
2013-12-01
Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected soils solution samples to quantify dissolved inorganic carbon (DIC), pH, and other solute concentrations. Importantly, we found Rsoil dynamics to be nearly in direct contrast to our classic understanding of patterns of soil CO2 efflux after rain events. Rsoil rates declined immediately upon wetting and gradually increased to pre-rain rates as the soils dried. Investigation into soil CO2 profile data showed that CO2 concentrations just below the surface declined significantly from near-ambient levels to near ~50ppm, which would directly impact rates of Rsoil. We detected differences among plant functional types in terms of rooting depth, water use, photosynthetic uptake, base rates of Rsoil, the time required to return to pre-rain rates of Rsoil, and the rates of soil weathering. Combining aboveground measurements of carbon uptake with these belowground estimates of carbon pools and efflux will allow us to make much more informed projections of carbon dynamics within highly weatherable soils across a range of global climate change projections and plant functional types.
Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.
Shang, Yilun
2015-01-01
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.
Thresholds for soil cover and weathering in mountainous landscapes
NASA Astrophysics Data System (ADS)
Dixon, Jean; Benjaram, Sarah
2017-04-01
The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.
The Future of Planetary Climate Modeling and Weather Prediction
NASA Technical Reports Server (NTRS)
Del Genio, A. D.; Domagal-Goldman, S. D.; Kiang, N. Y.; Kopparapu, R. K.; Schmidt, G. A.; Sohl, L. E.
2017-01-01
Modeling of planetary climate and weather has followed the development of tools for studying Earth, with lags of a few years. Early Earth climate studies were performed with 1-dimensionalradiative-convective models, which were soon fol-lowed by similar models for the climates of Mars and Venus and eventually by similar models for exoplan-ets. 3-dimensional general circulation models (GCMs) became common in Earth science soon after and within several years were applied to the meteorology of Mars, but it was several decades before a GCM was used to simulate extrasolar planets. Recent trends in Earth weather and and climate modeling serve as a useful guide to how modeling of Solar System and exoplanet weather and climate will evolve in the coming decade.
The Future of Operational Space Weather Observations
NASA Astrophysics Data System (ADS)
Berger, T. E.
2015-12-01
We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.
DRAW: Dynamic Routes for Arrivals in Weather: Concept and Trial Planning Overview
NASA Technical Reports Server (NTRS)
Gong, Chester
2016-01-01
Presentation for FAA sponsored meeting to discuss time-based metering trial planning. This presentation describes the Dynamic Routes for Arrivals in Weather (DRAW) concept and the associated trial planning functionality.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.
2009-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.
Real-Time Safety Monitoring and Prediction for the National Airspace System
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil
2016-01-01
As new operational paradigms and additional aircraft are being introduced into the National Airspace System (NAS), maintaining safety in such a rapidly growing environment becomes more challenging. It is therefore desirable to have both an overview of the current safety of the airspace at different levels of granularity, as well an understanding of how the state of the safety will evolve into the future given the anticipated flight plans, weather forecasts, predicted health of assets in the airspace, and so on. To this end, we have developed a Real-Time Safety Monitoring (RTSM) that first, estimates the state of the NAS using the dynamic models. Then, given the state estimate and a probability distribution of future inputs to the NAS, the framework predicts the evolution of the NAS, i.e., the future state, and analyzes these future states to predict the occurrence of unsafe events. The entire probability distribution of airspace safety metrics is computed, not just point estimates, without significant assumptions regarding the distribution type and or parameters. We demonstrate our overall approach by predicting the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress.
Web Based Semi-automatic Scientific Validation of Models of the Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
MacNeice, P. J.; Chulaki, A.; Taktakishvili, A.; Kuznetsova, M. M.
2013-12-01
Validation is a critical step in preparing models of the corona and inner heliosphere for future roles supporting either or both the scientific research community and the operational space weather forecasting community. Validation of forecasting quality tends to focus on a short list of key features in the model solutions, with an unchanging order of priority. Scientific validation exposes a much larger range of physical processes and features, and as the models evolve to better represent features of interest, the research community tends to shift its focus to other areas which are less well understood and modeled. Given the more comprehensive and dynamic nature of scientific validation, and the limited resources available to the community to pursue this, it is imperative that the community establish a semi-automated process which engages the model developers directly into an ongoing and evolving validation process. In this presentation we describe the ongoing design and develpment of a web based facility to enable this type of validation of models of the corona and inner heliosphere, on the growing list of model results being generated, and on strategies we have been developing to account for model results that incorporate adaptively refined numerical grids.
Notes on a Vision for the Global Space Weather Enterprise
NASA Astrophysics Data System (ADS)
Head, James N.
2015-07-01
Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.
Integration of Weather Avoidance and Traffic Separation
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.
2011-01-01
This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol
2012-01-01
In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.
Dynamic Blowout Risk Analysis Using Loss Functions.
Abimbola, Majeed; Khan, Faisal
2018-02-01
Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.
Turcotte, Martin M; Reznick, David N; Hare, J Daniel
2011-11-01
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.
2017-12-01
The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.
Fire weather and large fire potential in the northern Sierra Nevada
Brandon M. Collins
2014-01-01
Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...
NASA Astrophysics Data System (ADS)
Chang, H. I.; Castro, C. L.; Luong, T. M.; Lahmers, T.; Jares, M.; Carrillo, C. M.
2014-12-01
Most severe weather during the North American monsoon in the Southwest U.S. occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. Our objective is to project how monsoon severe weather is changing due to anthropogenic global warming. We first consider a dynamically downscaled reanalysis (35 km grid spacing), generated with the Weather Research and Forecasting (WRF) model during the period 1948-2010. Individual severe weather events, identified by favorable thermodynamic conditions of instability and precipitable water, are then simulated for short-term, numerical weather prediction-type simulations of 24h at a convective-permitting scale (2 km grid spacing). Changes in the character of severe weather events within this period likely reflect long-term climate change driven by anthropogenic forcing. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future and if these changes correspond with what is already occurring per the downscaled renalaysis and available observational data. The CMIP5 models we are downscaling (HadGEM and MPI-ECHAM6) will be included as part of North American CORDEX. The regional model experimental design for severe weather event projection reasonably accounts for the known operational forecast prerequisites for severe monsoon weather. The convective-permitting simulations show that monsoon convection appears to be reasonably well captured with the use of the dynamically downscaled reanalysis, in comparison to Stage IV precipitation data. The regional model tends to initiate convection too early, though correctly simulates the diurnal maximum in convection in the afternoon and subsequent westward propagation of thunderstorms. Projected changes in extreme event precipitation will be described in relation to the long-term changes in thermodynamic and dynamic forcing mechanisms for severe weather. Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.
Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system
Key Issues for Seamless Integrated Chemistry–Meteorology Modeling
Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can con...
NASA Astrophysics Data System (ADS)
Zhou, P.; Clift, P. D.; Murray, R. W.; Blusztajn, J.; Ireland, T. J.; Feakins, S. J.; Liddy, H.
2017-12-01
The Asian monsoon is the dominant climatic phenomena in Southwest Asia and as the primary source of moisture is one of the major controls over the processes of chemical weathering, especially in the Himalayan foreland basin. The sedimentary records of the eastern Arabian Sea mostly reflect the evolving erosion and chemical weathering processes in the source mountains and foreland basin, with limited input from peninsular India. Analysis of the geochemistry of sediments from International Ocean Discovery Program (IODP) Sites U1456 and U1457 allow us to investigate how chemical weathering may relate to evolving environments and the intensity of the precipitation in the Indus catchment since 11 Ma. We employed X-ray diffraction methods to quantify clay mineral assemblages from the core samples of these two sites. kaolinite/(chlorite+illite) and illite crystallinity show a general long-term trend towards less chemical weathering from 10 Ma to 5 Ma. Meanwhile, the high-resolution hematite/goethite records were acquired from visible diffuse reflectance spectrophotometry from both Sites U1457 and U1456 show a general increase in hematite/goethite, This may represent a long-term drying of the climate and/or an increase in seasonality since 10 Ma, consistent with the long-term trend in carbon isotope values known from the Siwalik Group of the Himalayan foreland. In particular, there is an increase in the relative portion of hematite starting at 8.2 Ma with a subsequent decrease at 6.7 Ma, and a further notable increase after 5.7 Ma. Bulk sediment geochemistry allows us to calculate the Chemical Index of Alteration (CIA) as well other geochemical indices such as K/Al. Both these proxies indicate a strong decrease in chemical weathering intensity at 8.2 Ma, followed by a rapid increase in the degree of alteration after 7.8 Ma followed by a gradual decrease until 6.6 Ma. In general, drier/more seasonal conditions are associated with less chemical weathering over this critical transition. Sedimentary provenance does not drive the variations in weathering indices across most of the record. We therefore interpret the degree of chemical weathering in the floodplains of the Indus River as a record of changing monsoon precipitation (amount and seasonality) within the Indus catchment.
Assessing the Role of Seafloor Weathering in Global Geochemical Cycling
NASA Astrophysics Data System (ADS)
Farahat, N. X.; Abbot, D. S.; Archer, D. E.
2015-12-01
Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing modeling frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and geochemical numerical model of low-temperature, off-axis hydrothermal activity. This model is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The model's ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.
Dynamic Weather Routes Architecture Overview
NASA Technical Reports Server (NTRS)
Eslami, Hassan; Eshow, Michelle
2014-01-01
Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.
The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.
2007-01-01
The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.
Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Bilimoria, Karl D.
2016-01-01
This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.
MiKlip-PRODEF: Probabilistic Decadal Forecast for Central and Western Europe
NASA Astrophysics Data System (ADS)
Reyers, Mark; Haas, Rabea; Ludwig, Patrick; Pinto, Joaquim
2013-04-01
The demand for skilful climate predictions on time-scales of several years to decades has increased in recent years, in particular for economic, societal and political terms. Within the BMBF MiKlip consortium, a decadal prediction system on the global to local scale is currently being developed. The subproject PRODEF is part of the MiKlip-Module C, which aims at the regionalisation of decadal predictability for Central and Western Europe. In PRODEF, a combined statistical-dynamical downscaling (SDD) and a probabilistic forecast tool are developed and applied to the new Earth system model of the Max-Planck Institute Hamburg (MPI-ESM), which is part of the CMIP5 experiment. Focus is given on the decadal predictability of windstorms, related wind gusts as well as wind energy potentials. SDD combines the benefits of both high resolution dynamical downscaling and purely statistical downscaling of GCM output. Hence, the SDD approach is used to obtain a very large ensemble of highly resolved decadal forecasts. With respect to the focal points of PRODEF, a clustering of temporal evolving atmospheric fields, a circulation weather type (CWT) analysis, and a storm damage indices analysis is applied to the full ensemble of the decadal hindcast experiments of the MPI-ESM in its lower resolution (MPI-ESM-LR). The ensemble consists of up to ten realisations per yearly initialised decadal hindcast experiments for the period 1960-2010 (altogether 287 realisations). Representatives of CWTs / clusters and single storm episodes are dynamical downscaled with the regional climate model COSMO-CLM with a horizontal resolution of 0.22°. For each model grid point, the distributions of the local climate parameters (e.g. surface wind gusts) are determined for different periods (e.g. each decades) by recombining dynamical downscaled episodes weighted with the respective weather type frequencies. The applicability of the SDD approach is illustrated with examples of decadal forecasts of the MPI-ESM. We are able to perform a bias correction of the frequencies of large scale weather types and to quantify the uncertainties of decadal predictability on large and local scale arising from different initial conditions. Further, probability density functions of local parameters like e.g. wind gusts for different periods and decades derived from the SDD approach is compared to observations and reanalysis data. Skill scores are used to quantify the decadal predictability for different leading time periods and to analyse whether the SDD approach shows systematic errors for some regions.
Groen, Thomas A; L'Ambert, Gregory; Bellini, Romeo; Chaskopoulou, Alexandra; Petric, Dusan; Zgomba, Marija; Marrama, Laurence; Bicout, Dominique J
2017-10-26
Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito control efforts. But modelling results may differ from place to place. In this study we look at which type of models and weather variables can be consistently used across different locations. Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded. Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx. pipiens and to check whether the weather variables could improve these models. Correlations were strongest between mean temperatures at short time lags, followed by relative humidity, most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites. SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens observations are available. Average temperature was a consistently good predictor across sites. When only short time series (~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also an important determinant of Cx. pipiens dynamics.
Constraining the role of early land plants in Palaeozoic weathering and global cooling.
Quirk, Joe; Leake, Jonathan R; Johnson, David A; Taylor, Lyla L; Saccone, Loredana; Beerling, David J
2015-08-22
How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9-13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. © 2015 The Authors.
Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang
2017-01-01
To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859
Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.
Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R
2012-12-23
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.
Kahilainen, Aapo; van Nouhuys, Saskya; Schulz, Torsti; Saastamoinen, Marjo
2018-04-23
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long-term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life-history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Palmer, T. N.
2014-01-01
This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038
Palmer, T N
2014-06-28
This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.
DOT National Transportation Integrated Search
2017-01-01
FHWAs Road Weather Management Program developed a Prototype Road Weather Management (RW-PM) Tool to help DOTs maximize the effectiveness of their maintenance resources and efficiently adjust deployments dynamically, as road conditions and traffic ...
Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.
Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S
2016-01-01
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.
Keppner, Eva M; Jarau, Stefan
2016-10-01
Stingless bees have evolved several ways to share contested resources to ensure the coexistence between different species. Partamona orizabaensis quickly exploits food sources by fast and direct recruitment that does not rely on scent marks deposited on substrates. In this study we show that the flight activity of P. orizabaensis is influenced by weather conditions, with higher activity during periods of colder temperatures, higher relative humidity and even during rainfall. We showed that the outcome of aggression experiments between the non-aggressive species P. orizabaensis and its aggressive competitor Trigona fuscipennis is influenced by the number of bees that arrive early after food source discovery. Therefore, the increased activity during less favorable weather conditions and the fast recruitment of nestmates following the discovery of a food source, as observed for P. orizabaensis, may be adaptations that evolved to coexist even with more aggressive and dominant species of stingless bees, with which P. orizabaensis has to compete for resources.
Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering
NASA Astrophysics Data System (ADS)
Calabrese, Salvatore; Parolari, Anthony J.; Porporato, Amilcare
2017-10-01
Chemical weathering is one of the major processes interacting with climate and tectonics to form clays, supply nutrients to soil microorganisms and plants, and sequester atmospheric CO2. Hydrology and dissolution kinetics have been emphasized as factors controlling chemical weathering rates. However, the interaction between hydrology and transport of dissolved inorganic carbon (DIC) in controlling weathering has received less attention. In this paper, we present an analytical model that couples subsurface water and chemical molar balance equations to analyze the roles of hydrology and DIC transport on chemical weathering. The balance equations form a dynamical system that fully determines the dynamics of the weathering zone chemistry as forced by the transport of DIC. The model is formulated specifically for the silicate mineral albite, but it can be extended to other minerals, and is studied as a function of percolation rate and water transit time. Three weathering regimes are elucidated. For very small or large values of transit time, the weathering is limited by reaction kinetics or transport, respectively. For intermediate values, the system is transport controlled and is sensitive to transit time. We apply the model to a series of watersheds for which we estimate transit times and identify the type of weathering regime. The results suggest that hydrologic transport of DIC may be as important as reaction kinetics and dilution in determining chemical weathering rates.
1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...
NASA Astrophysics Data System (ADS)
Mitchell, Jonathan
2012-04-01
Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern hemisphere summer.
Genetic programming for evolving due-date assignment models in job shop environments.
Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen
2014-01-01
Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.
Risk Communication: The Role of the South Carolina State Climatology Office.
NASA Astrophysics Data System (ADS)
Smith, David J.; Purvis, John C.; Felts, Arthur
1995-12-01
The federally supported state climatologist program ended in 1972. Thereafter, most states supported these endeavors in coordination with the National Climatic Data Center, but the current state programs vary widely. One of the functions of state climate programs that evolved since 1972 is acting as a liaison between the National Weather Service and various state agencies. This role is most apparent and controversial in coordinating state and local government response to severe weather and extreme climate anomalies such as drought, flood, winter storms, and tropical cyclones. The activities of the climate office in South Carolina during Hurricane Hugo in September 1989 and the October 1990 floods reveal how these interactions occur in one state that mandated these activities. The state climate office had to react to shifting weather conditions and to variable political conditions that affect public organizations. The climate office in South Carolina acts to interpret weather information, develop scenarios and predictions, and to assist in postevent damage surveys. This review is presented to acknowledge and document the expanding role of the state climate office in South Carolina in response to state and local government needs for weather forecast interpretation and expert guidance in the event of severe weather.
Linking Space Weather Science and Decision Making (Invited)
NASA Astrophysics Data System (ADS)
Fisher, G. M.
2009-12-01
Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.
NOAA Photo Library - NOAA In Space Collection
and Infra-Red Observation Satellite. Data from this first meteorological satellite was processed at the Weather Bureau's Meteorological Satellite Laboratory. This laboratory ultimately evolved into the satellite operations of NOAA's National Environmental Satellite, Data, and Information Service (NESDIS
Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G
2009-01-01
Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.
The state of broadcast meteorology in the United States
NASA Astrophysics Data System (ADS)
Trobec, J.
2010-09-01
According to a 2010 study by the Radio, Television Digital News Association, there are 762 television stations in the U.S. producing local news (and presumably weather) content. Those stations reported staff reductions of 400 news department jobs in 2009, following a cut of 1,200 local news jobs in 2008. Even as the number of news employees declined, local stations increased the amount of local news programming from an average of 4.7 hours to 5.0 hours per weekday in the past year. The phrase "doing more with less" has become a common theme in television newsrooms. Broadcasting economics have also impacted the approximately 2,200 weather presenters on local television stations. Several high-profile, on-air meteorologists have lost their jobs. The workload of weather presenters is evolving as television stations extend their reach beyond broadcasting — to the internet, and wireless (e.g. cellular telephone) delivery of information. Technological advancements have improved televised severe weather coverage. The number of amateur storm chasers possessing video streaming equipment has grown signicantly, and social networks such as Twitter have become a useful source of weather reports from the public.
A framework for standardized calculation of weather indices in Germany
NASA Astrophysics Data System (ADS)
Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til
2018-05-01
Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).
A dynamical systems approach to studying midlatitude weather extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide
2017-04-01
Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.
Yan Boulanger; Frédéric Fabry; Alamelu Kilambi; Deepa S. Pureswaran; Brian R. Sturtevant; Rémi Saint-Amant
2017-01-01
The likely spread of the current spruce budworm (SBW; Choristoneura fumiferana [Clem.]) outbreak fromhigh to low density areas brings to the forefront a pressing need to understand its dispersal dynamics and to document mass exodus flights in relation to weather patterns. In this study, we used the weather surveillance radar of Val d'Irène in...
Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering
Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.
2012-01-01
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556
Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.
2015-01-01
Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.
Mutation rate evolution in replicator dynamics.
Allen, Benjamin; Rosenbloom, Daniel I Scholes
2012-11-01
The mutation rate of an organism is itself evolvable. In stable environments, if faithful replication is costless, theory predicts that mutation rates will evolve to zero. However, positive mutation rates can evolve in novel or fluctuating environments, as analytical and empirical studies have shown. Previous work on this question has focused on environments that fluctuate independently of the evolving population. Here we consider fluctuations that arise from frequency-dependent selection in the evolving population itself. We investigate how the dynamics of competing traits can induce selective pressure on the rates of mutation between these traits. To address this question, we introduce a theoretical framework combining replicator dynamics and adaptive dynamics. We suppose that changes in mutation rates are rare, compared to changes in the traits under direct selection, so that the expected evolutionary trajectories of mutation rates can be obtained from analysis of pairwise competition between strains of different rates. Depending on the nature of frequency-dependent trait dynamics, we demonstrate three possible outcomes of this competition. First, if trait frequencies are at a mutation-selection equilibrium, lower mutation rates can displace higher ones. Second, if trait dynamics converge to a heteroclinic cycle-arising, for example, from "rock-paper-scissors" interactions-mutator strains succeed against non-mutators. Third, in cases where selection alone maintains all traits at positive frequencies, zero and nonzero mutation rates can coexist indefinitely. Our second result suggests that relatively high mutation rates may be observed for traits subject to cyclical frequency-dependent dynamics.
NASA Astrophysics Data System (ADS)
Subramanian, Aneesh C.; Palmer, Tim N.
2017-06-01
Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.
2012-01-01
Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.
The Dynamical Core Model Intercomparison Project (DCMIP-2016): Results of the Supercell Test Case
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Nair, R. D.
2016-12-01
The 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) assesses the modeling techniques for global climate and weather models and was recently held at the National Center for Atmospheric Research (NCAR) in conjunction with a two-week summer school. Over 12 different international modeling groups participated in DCMIP-2016 and focused on the evaluation of the newest non-hydrostatic dynamical core designs for future high-resolution weather and climate models. The paper highlights the results of the third DCMIP-2016 test case, which is an idealized supercell storm on a reduced-radius Earth. The supercell storm test permits the study of a non-hydrostatic moist flow field with strong vertical velocities and associated precipitation. This test assesses the behavior of global modeling systems at extremely high spatial resolution and is used in the development of next-generation numerical weather prediction capabilities. In this regime the effective grid spacing is very similar to the horizontal scale of convective plumes, emphasizing resolved non-hydrostatic dynamics. The supercell test case sheds light on the physics-dynamics interplay and highlights the impact of diffusion on model solutions.
Distress detection, location, and communications using advanced space technology
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1977-01-01
This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.
NASA Astrophysics Data System (ADS)
Trout, Joseph; Manson, J. Russell; Rios, Manny; King, David; Decicco, Nicholas
2015-04-01
Wake Vortex Turbulence is the turbulence generated by an aircraft in flight. This turbulence is created by vortices at the tips of the wing that may decay slowly and persist for several minutes after creation. The strength, formation and lifetime of the turbulence and vortices are effected by many things including the weather. Here we present the preliminary results of an investigation of low level wind fields generated by the Weather Research and Forecasting Model and an analysis of historical data. The simulations are used as inputs for the computational fluid dynamics model (OpenFoam) that will be used to investigate the effect of weather on wake turbulence. The initial results of the OpenFoam model are presented elsewhere. Presented here are the initial results from a research grant, ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''.
The Social and Economic Impacts of Space Weather (US Project)
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Bisi, M. M.; Webb, D. F.; Oughton, E. J.; Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.; Basoli, D.; Griot, O.
2017-12-01
The National Space Weather Action Plan calls for new research into the social and economic impacts of space weather and for the development of quantitative estimates of potential costs. In response to this call, NOAA's Space Weather Prediction Center (SWPC) and Abt Associates are working together to identify, describe, and quantify the impact of space weather to U.S. interests. This study covers impacts resulting from both moderate and severe space weather events across four technological sectors: Electric power, commercial aviation, satellites, and Global Navigation Satellite System (GNSS) users. It captures the full range of potential impacts, identified from an extensive literature review and from additional conversations with more than 50 sector stakeholders of diverse expertise from engineering to operations to end users. We organize and discuss our findings in terms of five broad but interrelated impact categories including Defensive Investments, Mitigating Actions, Asset Damages, Service Interruptions, and Health Effects. We also present simple, tractable estimates of the potential costs where we focused on quantifying a subset of all identified impacts that are apt to be largest and are also most plausible during moderate and more severe space weather scenarios. We hope that our systematic exploration of the social and economic impacts provides a foundation for the future work that is critical for designing technologies, developing procedures, and implementing policies that can effectively reduce our known and evolving vulnerabilities to this natural hazard.
Nonlinear dynamics of global atmospheric and Earth system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1993-01-01
During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.
Isolating weather effects from seasonal activity patterns of a temperate North American Colubrid
Andrew D. George; Frank R. III Thompson; John Faaborg
2015-01-01
Forecasting the effects of climate change on threatened ecosystems and species will require an understanding of how weather influences processes that drive population dynamics. We have evaluated weather effects on activity patterns of western ratsnakes, a widespread predator of birds and small mammals in eastern North America. From 2010-2013 we radio-tracked 53...
Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd
2012-01-01
Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
Influence of finite-time Lyapunov exponents on winter precipitation over the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Garaboa-Paz, Daniel; Lorenzo, Nieves; Pérez-Muñuzuri, Vicente
2017-05-01
Seasonal forecasts have improved during the last decades, mostly due to an increase in understanding of the coupled ocean-atmosphere dynamics, and the development of models able to predict the atmosphere variability. Correlations between different teleconnection patterns and severe weather in different parts of the world are constantly evolving and changing. This paper evaluates the connection between winter precipitation over the Iberian Peninsula and the large-scale tropospheric mixing over the eastern Atlantic Ocean. Finite-time Lyapunov exponents (FTLEs) have been calculated from 1979 to 2008 to evaluate this mixing. Our study suggests that significant negative correlations exist between summer FTLE anomalies and winter precipitation over Portugal and Spain. To understand the mechanisms behind this correlation, summer anomalies of the FTLE have also been correlated with other climatic variables such as the sea surface temperature (SST), the sea level pressure (SLP) or the geopotential. The East Atlantic (EA) teleconnection index correlates with the summer FTLE anomalies, confirming their role as a seasonal predictor for winter precipitation over the Iberian Peninsula.
Information Flow in an Atmospheric Model and Data Assimilation
ERIC Educational Resources Information Center
Yoon, Young-noh
2011-01-01
Weather forecasting consists of two processes, model integration and analysis (data assimilation). During the model integration, the state estimate produced by the analysis evolves to the next cycle time according to the atmospheric model to become the background estimate. The analysis then produces a new state estimate by combining the background…
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Gibson, Christy; Berry, Timothy D; Wang, Ruzhen; Spencer, Julie A; Johnston, Cliff T; Jiang, Yong; Bird, Jeffrey A; Filley, Timothy R
2016-02-01
The addition of pyrogenic organic matter (PyOM), the aromatic carbon-rich product of the incomplete combustion of plant biomass or fossil fuels, to soil can influence the rate of microbial metabolism of native soil carbon. The interaction of soil heterotrophs with PyOM may be governed by the surficial chemical and physical properties of PyOM that evolve with environmental exposure. We present results of a 36-day laboratory incubation investigating the interaction of a common white-rot fungus, Trametes versicolor, with three forms of 13 C-enriched (2.08 atom% 13 C) PyOM derived from Pinus ponderosa (450 °C): one freshly produced, and two artificially weathered (254 nm, UV light-water treatment and water-leaching alone). Analysis (FTIR, XPS) of the UV-weathered PyOM showed increased aliphatic C-H content and oxidation of aromatic carbon relative to both the original and water-leached PyOM. The addition of both weathered forms of PyOM stimulated (positively primed) fungal respiration of the growth media, while the unaltered PyOM mildly inhibited (negatively primed) respiration. Artificial weathering resulted in higher oxidative (laccase and peroxidase) enzyme activity than unaltered PyOM, possibly the result of a diminished capacity to bind reactive substrates and extracellular enzymes after weathering. However, and contrary to expectations, simple water-leached weathering resulted in a relatively higher enzyme activity and respiration than that of UV-weathering. The 13 C content of respired CO 2 indicated negligible fungal oxidation of PyOM for all treatments, demonstrating the overall low microbial reactivity of this high temperature PyOM. The increased enzymatic and positive priming response of T. versicolor to weathered PyOM highlights the importance of weathering-induced chemistry in controlling PyOM-microbe-soil carbon interactions.
Pilot behaviors in the face of adverse weather: A new look at an old problem.
Batt, Richard; O'Hare, David
2005-06-01
Weather-related general aviation accidents remain one of the most significant causes for concern in aviation safety. Previous studies have typically compared accident and non-accident cases. In contrast, the current study does not concentrate on occurrence outcome. Instead, the emphasis is on the different behaviors that pilots exhibit in the face of adverse weather and, by inference, on the decision-making processes that underlie those behaviors. This study compares three weather-related behaviors that reflect different levels of risk: visual flight rules flight into instrument meteorological conditions ('VFR into IMC'); precautionary landing; and other significant weather avoidance actions. Occurrence data (n=491) were drawn from the Australian Transport Safety Bureau database of aviation occurrences, and included weather-related accidents, incidents, and 'normal operationsd.' There were few significant differences between the three weather-related behavior groups in terms of pilot demographics, aircraft characteristics, geographic or environmental factors, or absolute flight distances. The pattern of relative flight distances (a psychological construct) was markedly different for the three groups, with pilots in the weather avoidance group being distinguished by taking timely action. The relative distance results suggest that the mid-point of the flight can be a 'psychological turning point' for pilots, irrespective of the absolute flight distance involved. Hence, pilots' behavior was sometimes influenced by psychological factors not related to any particular operational aspect of the flight. The results of the weather avoidance group indicate that a safe pilot is a proactive pilot. Dealing with adverse weather is not a one-off decision but a continually evolving process. This aspect is discussed in terms of the concept of 'mindfulness'.
Predicting atmospheric states from local dynamical properties of the underlying attractor
NASA Astrophysics Data System (ADS)
Faranda, Davide; Rodrigues, David; Alvarez-Castro, M. Carmen; Messori, Gabriele; Yiou, Pascal
2017-04-01
Mid-latitude flows are characterized by a chaotic dynamics and recurring patterns hinting to the existence of an atmospheric attractor. In 1963 Lorenz described this object as: "the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid" and analyzed a low dimensional system describing a convective dynamics whose attractor has the shape of a butterfly. Since then, many studies try to find equivalent of the Lorenz butterfly in the complex atmospheric dynamics. Most of the studies where focused to determine the average dimension D of the attractor i.e. the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.
Evolving Systems and Adaptive Key Component Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Balas, Mark J.
2009-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. An introduction to Evolving Systems and exploration of the essential topics of the control and stability properties of Evolving Systems is provided. This chapter defines a framework for Evolving Systems, develops theory and control solutions for fundamental characteristics of Evolving Systems, and provides illustrative examples of Evolving Systems and their control with adaptive key component controllers.
Traffic Management Coordinator Evaluation of the Dynamic Weather Routes Concept and System
NASA Technical Reports Server (NTRS)
Gong, Chester
2014-01-01
Dynamic Weather Routes (DWR) is a weather-avoidance system for airline dispatchers and FAA traffic managers that continually searches for and advises the user of more efficient routes around convective weather. NASA and American Airlines (AA) have been conducting an operational trial of DWR since July 17, 2012. The objective of this evaluation is to assess DWR from a traffic management coordinator (TMC) perspective, using recently retired TMCs and actual DWR reroutes advisories that were rated acceptable by AA during the operational trial. Results from the evaluation showed that the primary reasons for a TMC to modify or reject airline reroute requests were related to airspace configuration. Approximately 80 percent of the reroutes evaluated required some coordination before implementation. Analysis showed TMCs approved 62 percent of the requested DWR reroutes, resulting in 57 percent of the total requested DWR time savings.
Representation in dynamical agents.
Ward, Ronnie; Ward, Robert
2009-04-01
This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.
Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities
NASA Technical Reports Server (NTRS)
Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick;
2012-01-01
Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.
Coupling chemical weathering with soil production across soil-mantled landscapes
Burke, B.C.; Heimsath, A.M.; White, A.F.
2007-01-01
Soil-covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil-mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X-ray fluorescence spectroscopy, and for clay mineralogy by X-ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices - the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon-aluminium ratio - with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4.7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright ?? 2006 John Wiley & Sons, Ltd.
Decreasing trend in severe weather occurrence over China during the past 50 years.
Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing
2017-02-17
Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.
Decreasing trend in severe weather occurrence over China during the past 50 years
Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing
2017-01-01
Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China. PMID:28211465
Decreasing trend in severe weather occurrence over China during the past 50 years
NASA Astrophysics Data System (ADS)
Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing
2017-04-01
Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.
Decreasing trend in severe weather occurrence over China during the past 50 years
NASA Astrophysics Data System (ADS)
Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing
2017-02-01
Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.
Development and Observation of the Phase Array Radar at X band
NASA Astrophysics Data System (ADS)
Ushio, T.; Shimamura, S.; Wu, T.; Kikuchi, H.; Yoshida, S.; Kawasaki, Z.; Mizutani, F.; Wada, M.; Satoh, S.; Iguchi, T.
2013-12-01
A new Phased Array Radar (PAR) system for thunderstorm observation has been developed by Toshiba Corporation and Osaka University under a grant of NICT, and installed in Osaka University, Japan last year. It is now well known that rapidly evolving severe weather phenomena (e.g., microbursts, severe thunderstorms, tornadoes) are a threat to our lives particularly in a densely populated area and is closely related to the production of lightning discharges. Over the past decade, mechanically rotating radar systems at the C-band or S-band have been proved to be effective for weather surveillance especially in a wide area more than 100 km in range. However, severe thunderstorm sometimes develops rapidly on the temporal and spatial scales comparable to the resolution limit (-10 min. and -500m) of typical S-band or C-band radar systems, and cannot be fully resolved with these radar systems. In order to understand the fundamental process and dynamics of such fast changing weather phenomena like lightning and tornado producing thunderstorm, volumetric observations with both high temporal and spatial resolution are required. The phased array radar system developed has the unique capability of scanning the whole sky with 100m and 10 to 30 second resolution up to 60 km. The system adopts the digital beam forming technique for elevation scanning and mechanically rotates the array antenna in azimuth direction within 10 to 30 seconds. The radar transmits a broad beam of several degrees with 24 antenna elements and receives the back scattered signal with 128 elements digitizing at each elements. Then by digitally forming the beam in the signal processor, the fast scanning is realized. After the installation of the PAR system in Osaka University, the initial observation campaign was conducted in Osaka urban area with Ku-band Broad Band Radar (BBR) network, C-band weather radar, and lightning location system. The initial comparison with C band radar system shows that the developed PAR system can observe the behavior of the thunderstorm structure in much more detail than any other radar system. The observed high temporal resolution images of the severe thunderstorm and lightning are introduced, showing the potential capabilities of the PAR and lightning location system.
Propagation of hydroclimatic variability through the critical zone
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Calabrese, S.; Parolari, A.
2016-12-01
The interaction between soil moisture dynamics and mineral-weathering reactions (e.g., ion exchange, precipitation-dissolution) affects the availability of nutrients to plants, composition of soils, soil acidification, as well as CO2 sequestration. Across the critical zone (CZ), this interaction is responsible for propagating hydroclimatic fluctuations to deeper soil layers, controlling weathering rates via leaching events which intermittently alter the alkalinity levels. In this contribution, we analyze these dynamics using a stochastic modeling approach based on spatially lumped description of soil hydrology and chemical weathering reactions forced by multi-scale temporal hydrologic variability. We quantify the role of soil moisture dynamics in filtering the rainfall fluctuations through its impacts on soil water chemistry, described by a system of ordinary differential equations (and algebraic equations, for the equilibrium reactions), driving the evolution of alkalinity, pH, the chemical species of the soil solution, and the mineral-weathering rate. A probabilistic description of the evolution of the critical zone is thus obtained, allowing us to describe the CZ response to long-term climate fluctuations, ecosystem and land-use conditions, in terms of key variables groups. The model is applied to the weathering rate of albite in the Calhoun CZ observatory and then extended to explore similarities and differences across other CZs. Typical time scales of response and degrees of sensitivities of CZ to hydroclimatic fluctuations and human forcing are also explored.
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
GHRC: NASAs Hazardous Weather Distributed Active Archive Center
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Bugbee, Kaylin
2016-01-01
The Global Hydrology Resource Center (GHRC; ghrc.nsstc.nasa.gov) is one of NASA's twelve Distributed Active Archive Centers responsible for providing access to NASA's Earth science data to users worldwide. Each of NASA's twelve DAACs focuses on a specific science discipline within Earth science, provides data stewardship services and supports its research community's needs. Established in 1991 as the Marshall Space Flight Center DAAC and renamed GHRC in 1997, the data center's original mission focused on the global hydrologic cycle. However, over the years, data holdings, tools and expertise of GHRC have gradually shifted. In 2014, a User Working Group (UWG) was established to review GHRC capabilities and provide recommendations to make GHRC more responsive to the research community's evolving needs. The UWG recommended an update to the GHRC mission, as well as a strategic plan to move in the new direction. After a careful and detailed analysis of GHRC's capabilities, research community needs and the existing data landscape, a new mission statement for GHRC has been crafted: to provide a comprehensive active archive of both data and knowledge augmentation services with a focus on hazardous weather, its governing dynamical and physical processes, and associated applications. Within this broad mandate, GHRC will focus on lightning, tropical cyclones and storm-induced hazards through integrated collections of satellite, airborne, and in-situ data sets. The new mission was adopted at the recent 2015 UWG meeting. GHRC will retain its current name until such time as it has built substantial data holdings aligned with the new mission.
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new
Nonlinear dynamics of global atmospheric and Earth-system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel
1990-01-01
Researchers are continuing their studies of the nonlinear dynamics of global weather systems. Sensitivity analyses of large-scale dynamical models of the atmosphere (i.e., general circulation models i.e., GCM's) were performed to establish the role of satellite-signatures of soil moisture, sea surface temperature, snow cover, and sea ice as crucial boundary conditions determining global weather variability. To complete their study of the bimodality of the planetary wave states, they are using the dynamical systems approach to construct a low-order theoretical explanation of this phenomenon. This work should have important implications for extended range forecasting of low-frequency oscillations, elucidating the mechanisms for the transitions between the two wave modes. Researchers are using the methods of jump analysis and attractor dimension analysis to examine the long-term satellite records of significant variables (e.g., long wave radiation, and cloud amount), to explore the nature of mode transitions in the atmosphere, and to determine the minimum number of equations needed to describe the main weather variations with a low-order dynamical system. Where feasible they will continue to explore the applicability of the methods of complex dynamical systems analysis to the study of the global earth-system from an integrative viewpoint involving the roles of geochemical cycling and the interactive behavior of the atmosphere, hydrosphere, and biosphere.
About Our Agency | National Oceanic and Atmospheric Administration
our agency Mission & vision Our commitment to science Our history Leadership RDML Tim Gallaudet our evolving planet View our featured experts Our history A weather kite being prepared for launching with kite-reel house in the background. NOAA's history is an intrinsic part of the history of the
Law, Bradley S; Chidel, Mark; Law, Peter R
2018-01-01
Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can 'refugia' buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999-2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16-30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by timber harvesting, suggesting ecologically sustainable harvesting may be compatible with climate refugia.
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1977-01-01
This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.
The fluid dynamics of atmospheric clouds
NASA Astrophysics Data System (ADS)
Randall, David A.
2017-11-01
Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.
Weather variability and adaptive management for rangeland restoration
USDA-ARS?s Scientific Manuscript database
Inherent weather variability in upland rangeland systems requires relatively long-term goal setting, and contingency planning for partial success or failure in any given year. Rangeland plant communities are dynamic systems and successional planning is essential for achieving and maintaining system...
NASA Astrophysics Data System (ADS)
Rudnick, R. L.; Liu, X.
2011-12-01
The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.
Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes
NASA Astrophysics Data System (ADS)
Rudnick, R. L.; Liu, X. M.
2012-04-01
The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" that is the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems point to the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 1×10^10 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.
A weather-driven model of malaria transmission.
Hoshen, Moshe B; Morse, Andrew P
2004-09-06
Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts.
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
Space Weathering Impact on Solar System Surfaces and Planetary Mission Science
NASA Technical Reports Server (NTRS)
Cooper, John F.
2011-01-01
We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.
Modeling Weather Impact on Ground Delay Programs
NASA Technical Reports Server (NTRS)
Wang, Yao; Kulkarni, Deepak
2011-01-01
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
NASA Astrophysics Data System (ADS)
Faranda, D.; Yiou, P.; Alvarez-Castro, M. C. M.
2015-12-01
A combination of dynamical systems and statistical techniques allows for a robust assessment of the dynamical properties of the mid-latitude atmospheric circulation. Extremes at different spatial and time scales are not only associated to exceptionally intense weather structures (e.g. extra-tropical cyclones) but also to rapid changes of circulation regimes (thunderstorms, supercells) or the extreme persistence of weather structure (heat waves, cold spells). We will show how the dynamical systems theory of recurrence combined to the extreme value theory can take into account the spatial and temporal dependence structure of the mid-latitude circulation structures and provide information on the statistics of extreme events.
Weather conditions drive dynamic habitat selection in a generalist predator.
Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B; Rahbek, Carsten
2014-01-01
Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year-round resident generalist predator, to see how this varied as a function of weather, season and availability. Use of the two most frequently used land cover types, gardens/buildings and cultivated fields varied more than 3-fold as a simple function of season and weather through linear effects of wind and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types. An opportunistic foraging strategy in a landscape with erratically appearing feeding opportunities in different land cover types, may possibly also explain decreasing selection of the two most frequently used land cover types with increasing availability.
Analysis of weather patterns associated with air quality degradation and potential health impacts
Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...
Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser
NASA Astrophysics Data System (ADS)
Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao
2018-03-01
Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.
Atmospheric Diabatic Heating in Different Weather States and the General Circulation
NASA Technical Reports Server (NTRS)
Rossow, William B.; Zhang, Yuanchong; Tselioudis, George
2016-01-01
Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.
Impact of atmospheric CO2 levels on continental silicate weathering
NASA Astrophysics Data System (ADS)
Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.
2010-07-01
Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.
The role of synoptic weather variability in Greenland ice sheet dynamics
NASA Astrophysics Data System (ADS)
Walker, J. M.; Radic, V.
2017-12-01
Much of the large uncertainty in predictions of future global sea level rise is due to our limited understanding of Greenland ice sheet (GrIS) motion and its interactions with climate. Over the next century, climate models predict that the GrIS will experience not only gradual warming, but also changes in atmospheric circulation, hydrology, and weather, including a northward shift of the North Atlantic storm track, with greater frequency and intensity of rain storms over the GrIS. Recent studies of GrIS dynamics have focused on the effects of increased seasonal mean meltwater on ice velocities, finding only a modest impact due to compensation by subglacial drainage systems, but subglacial hydraulic theory indicates that variability on shorter timescales is also relevant: short-term surges in meltwater or rainfall can overload drainage systems at rates faster than they can adjust, leading to water pressure spikes and ice acceleration. If the magnitude or frequency of these transient ice accelerations increase substantially as synoptic weather patterns change over the next century, there could be a significant cumulative impact on seasonal mean ice velocities. However, this issue has not been addressed in the literature and represents a major source of uncertainty. In this study, we investigate the role of synoptic weather variability in GrIS dynamics, with the ultimate goal of evaluating the relationships between extreme weather events and ice sheet flow in different seasons and regions of the GrIS. As a first step, we apply the machine learning technique of self-organizing maps to atmospheric reanalysis data to categorize the predominant synoptic weather systems over the GrIS domain, evaluating atmospheric moisture transport and rainfall to assess the impacts of each weather system on GrIS surface hydrology. The preliminary results presented here will be used in conjunction with ice velocity satellite measurements in future work, to identify any correlations between seasonal mean GrIS velocities and the frequency or intensity of storms during the season.
EFFECTS OF CLIMATE CHANGE ON WEATHER AND WATER
Information regarding weather and hydrological processes and how they may change in the future is available from a variety of dynamically downscaled climate models. Current studies are helping to improve the use of such models for regional climate impact studies by testing the s...
Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil
Lewnard, Joseph A.; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R.; Glesby, Marshall J.; Ko, Albert I.; Carvalho, Edgar M.; Schriefer, Albert; Weinberger, Daniel M.
2014-01-01
Introduction Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. Methodology/Principal Findings We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. Significance These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets. PMID:25356734
Forecasting temporal dynamics of cutaneous leishmaniasis in Northeast Brazil.
Lewnard, Joseph A; Jirmanus, Lara; Júnior, Nivison Nery; Machado, Paulo R; Glesby, Marshall J; Ko, Albert I; Carvalho, Edgar M; Schriefer, Albert; Weinberger, Daniel M
2014-10-01
Cutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions. We fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation. These outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets.
Space Weathering of Itokawa Particles: Implications for Regolith Evolution
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Space weathering processes such as solar wind irradiation and micrometeorite impacts are known to alter the the properties of regolith materials exposed on airless bodies. The rates of space weathering processes however, are poorly constrained for asteroid regoliths, with recent estimates ranging over many orders of magnitude. The return of surface samples by JAXA's Hayabusa mission to asteroid 25143 Itokawa, and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering processes on airless bodies. Here, we use the effects of solar wind irradiation and the accumulation of solar flare tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics on these timescales.
NASA Astrophysics Data System (ADS)
Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta
2012-12-01
Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.
Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C
2018-04-17
The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.
Stratosphere-Troposphere Coupling in the Northern Hemisphere analyzed with climate network measures
NASA Astrophysics Data System (ADS)
Kirsch, C.; Donner, R. V.
2017-12-01
The Stratosphere-Troposphere Coupling (STC) is a climate phenomenon providing additional predictive skills for extended-range weather forecasting. The variability of the winter stratospheric polar vortex can particularly influence the tropospheric circulation and, hence, mid-to-high latitude weather for a few weeks or months by strong or weak vortex signals propagating downward with time. This study investigates the STC with climate networks. For this purpose, we use the geopotential height field between 20°N and 90°N at 37 vertical levels from the ERA-Interim reanalysis data from 1979 until 2016. There are two main research questions: (i) Is it possible to define a new, more robust index of the variability of the polar vortex than the currently used NAM index by exploiting climate network properties? (ii) What additional information on STC is provided by climate networks? By calculating the transitivity of evolving climate networks at 10 hPa height, we obtain a new characteristic measure for tracing evolving patterns in stratospheric variability. A higher value than the baseline transitivity indicates an anomalous (strong or weak) polar vortex. Displayed for all vertical levels, the transitivity also exhibits the downward propagation of pressure anomalies into the troposphere. Beyond these findings, we observe additional peaks in the transitivity that does not coincide with weak and strong vortex events. These peaks could be used for identifying the change between winter and summer circulation, also called final warming. We will discuss how these results could potentially affect the predictability of tropospheric weather during boreal spring.
Counting motifs in dynamic networks.
Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer
2018-04-11
A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.
HOME PAGE Image of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN NCEP Products Inventory Image of horizontal rule Hurricane Products Updated: 6/09/2015 Geophysical fluid dynamics laboratory Hurricane Model (GHM) Hurricane Weather Research and Forecast System (HWRF) * Products Information
A primer on clothing systems for cold-weather field work
Denner, J.C.
1993-01-01
Hypothermia in cold environments can be prevented by physiological adaptation and by the proper use of cold weather clothing. The human body adjusts to cold temperature by increasing the rates of basal metabolism, specific dynamic action, and physical exercise. Heat loss is reduced by vasoconstriction. Clothing systems for cold weather reduce loss by providing insulation and protection from the elements. Satisfactory cold- weather clothing is constructed of wool fabrics or the synthetic fibers polypropylene and polyester. Outerwear suitable for cold climates is insulated with down, high-loft polyester fiberfills, or the new synthetic thin insulators. (USGS)
A weather-driven model of malaria transmission
Hoshen, Moshe B; Morse, Andrew P
2004-01-01
Background Climate is a major driving force behind malaria transmission and climate data are often used to account for the spatial, seasonal and interannual variation in malaria transmission. Methods This paper describes a mathematical-biological model of the parasite dynamics, comprising both the weather-dependent within-vector stages and the weather-independent within-host stages. Results Numerical evaluations of the model in both time and space show that it qualitatively reconstructs the prevalence of infection. Conclusion A process-based modelling structure has been developed that may be suitable for the simulation of malaria forecasts based on seasonal weather forecasts. PMID:15350206
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
NASA Astrophysics Data System (ADS)
Jenney, A. M.; Randall, D. A.
2017-12-01
Tropical intraseasonal oscillations are known to be a source of extratropical variability. We show that subseasonal variability in observed North American epidemiologically significant regional extreme weather regimes is teleconnected to the boreal summer intraseasonal oscillation (BSISO)—a complex tropical weather system that is active during the northern summer and has a 30-50 day timescale. The dynamics of the teleconnection are examined. We also find that interannual variability of the tropical mean-state can modulate the teleconnection. Our results suggest that the BSISO may enable subseasonal to seasonal predictions of North American summertime weather extremes.
Quantumness-generating capability of quantum dynamics
NASA Astrophysics Data System (ADS)
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit
2010-01-01
The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.
NASA Astrophysics Data System (ADS)
Arend, Mark; Campmier, Mark; Fernandez, Aris; Moshary, Fred
2018-04-01
The complexity of urban boundary layer dynamics poses challenges to those responsible for the design and regulation of buildings and structures in the urban environment. Lidar systems in the New York City Metropolitan region have been used extensively to study urban boundary layer dynamics. These systems, in conjunction with other sensing platforms can provide an observatory to perform research and analysis of turbulent and inclement weather patterns of interest to developers and agencies.
Chidel, Mark; Law, Peter R.
2018-01-01
Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can ‘refugia’ buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999–2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16–30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by timber harvesting, suggesting ecologically sustainable harvesting may be compatible with climate refugia. PMID:29444115
Maintaining a Local Data Integration System in Support of Weather Forecast Operations
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian
2010-01-01
Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) at Johnson Space Center in Houston, TX have used a local data integration system (LDIS) as part of their forecast and warning operations. The original LDIS was developed by NASA's Applied Meteorology Unit (AMU; Bauman et ai, 2004) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features
The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets
NASA Technical Reports Server (NTRS)
Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt
2007-01-01
The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.
Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson
2017-01-01
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...
The evolution of resource adaptation: how generalist and specialist consumers evolve.
Ma, Junling; Levin, Simon A
2006-07-01
Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.
Dynamic Routing of Aircraft in the Presence of Adverse Weather Using a POMDP Framework
NASA Technical Reports Server (NTRS)
Balaban, Edward; Roychoudhury, Indranil; Spirkovska, Lilly; Sankararaman, Shankar; Kulkarni, Chetan; Arnon, Tomer
2017-01-01
Each year weather-related airline delays result in hundreds of millions of dollars in additional fuel burn, maintenance, and lost revenue, not to mention passenger inconvenience. The current approaches for aircraft route planning in the presence of adverse weather still mainly rely on deterministic methods. In contrast, this work aims to deal with the problem using a Partially Observable Markov Decision Processes (POMDPs) framework, which allows for reasoning over uncertainty (including uncertainty in weather evolution over time) and results in solutions that are more robust to disruptions. The POMDP-based decision support system is demonstrated on several scenarios involving convective weather cells and is benchmarked against a deterministic planning system with functionality similar to those currently in use or under development.
NASA Astrophysics Data System (ADS)
Föllmi, Karl B.; Hosein, Rachel; Arn, Kaspar; Steinmann, Philipp
2009-04-01
In this study we evaluate the dynamics of the biophile element phosphorus (P) in the catchment and proglacial areas of the Rhône and Oberaar glaciers (central Switzerland). We analysed erosion and dissolution rates of P-containing minerals in the subglacial environment by sampling water and suspended sediment in glacier outlets during three ablation and two accumulation seasons. We also quantified biogeochemical weathering rates of detrital P in proglacial sedimentary deposits using two chronosequences of samples of fresh, suspended, material obtained from the Oberaar and Rhône water outlets, Little-Ice-Age (LIA) moraines and Younger Dryas (YD) tills in each catchment. Subglacial P weathering is mainly a physical process and detrital P represents more than 99% of the precipitation-corrected total P denudation flux (234 and 540 kg km -2 yr -1 for the Rhône and Oberaar catchments, respectively). The calculated detrital P flux rates are three to almost five times higher than the world average flux. The precipitation-corrected soluble reactive P (SRP) flux corresponds to 1.88-1.99 kg km -2 yr -1 (Rhône) and 2.12-2.44 kg km -2 yr -1 (Oberaar), respectively. These fluxes are comparable to those of tropical rivers draining transport-limited, tectonically inactive weathering areas. In order to evaluate the efficiency of detrital P weathering in the Rhône and Oberaar proglacial areas, we systematically graded apatite grains extracted from the chronosequence in each catchment relative to weathering-induced changes in their surface morphologies (grades 1-4). Fresh apatite grains are heavily indented and dissolution rounded (grade 1). LIA grains from two 0-10 cm deep moraine samples show extensive dissolution etching, similar to surface grains from the YD profile (mean grades 2.7, 3.5 and 3.5, respectively). In these proglacial deposits, the weathering front deepens progressively as a function of time due to biocorrosion in the evolving acidic pedosphere , with mechanical indentations on grains acting as sites of preferential dissolution. We also measured iron-bound, organic and detrital P concentrations in the chronosequence and show that organic and iron-bound P has almost completely replaced detrital P in the top layers of the YD profiles. Detrital P weathering rates are calculated as 310 and 280 kg km -2 yr -1 for LIA moraines and 10 kg km -2 yr -1 for YD tills. During the first 300 years of glacial sediment exposure P dissolution rates are shown to be approximately 70 times higher than the mean global dissolved P flux from ice-free continents. After 11.6 kyr the flux is 2.5 times the global mean. These data strengthen the argument for substantial changes in the global dissolved P flux on glacial-interglacial timescales. A crude extrapolation from the data described here suggests that the global dissolved P flux may increase by 40-45% during the first few hundred years of a deglaciation phase.
Weathering Heights: The Emergence of Aeronautical Meteorology as an Infrastructural Science
NASA Astrophysics Data System (ADS)
Turner, Roger
The first half of the 20th century was an era of weathering heights. As the development of powered flight made the free atmosphere militarily and economically relevant, meteorologists encountered new kinds of weather conditions at altitude. Pilots also learned to weather heights, as they struggled to survive in an atmosphere that revealed surprising dangers like squall lines, fog, icing, and turbulence. Aeronautical meteorology evolved out of these encounters, a heterogeneous body of knowledge that included guidelines for routing aircraft, networks for observing the upper air using scientific instruments, and procedures for synthesizing those observations into weather forecasts designed for pilots. As meteorologists worked to make the skies safe for aircraft, they remade their science around the physics of the free atmosphere. The dissertation tracks a small group of Scandinavian meteorologists, the "Bergen School," who came to be the dominant force in world meteorology by forecasting for Arctic exploration flights, designing airline weather services, and training thousands of military weather officers during World War II. After the war, some of these military meteorologists invented the TV weather report (now the most widely consumed genre of popular science) by combining the narrative of the pre-fight weather briefing with the visual style of comic-illustrated training manuals. The dissertation argues that aeronautical meteorology is representative of what I call the "infrastructural sciences," a set of organizationally intensive, purposefully invisible, applied sciences. These sciences enable the reliable operation of large technological systems by integrating theory-derived knowledge with routine environmental observation. The dissertation articulates a set of characteristics for identifying and understanding infrastructural science, and then argues that these culturally modest technical practices play a pervasive role in maintaining industrial lifeways. It concludes by noting that while meteorology successfully helped aviation become a reliable, taken-for-granted part of the transportation system, the interests of aviation created a meteorology that centered on the needs of pilots, to the detriment of fields like agricultural climatology.
Experimental geobiology links evolutionary intensification of rooting systems and weathering
NASA Astrophysics Data System (ADS)
Quirk, Joe; Beerling, David; Leake, Jonathan
2016-04-01
The evolution of mycorrhizal fungi in partnership with early land plants over 440 million years ago led to the greening of the continents by plants of increasing biomass, rooting depth, nutrient demand and capacity to alter soil minerals, culminating in modern forested ecosystems. The later co-evolution of trees and rooting systems with arbuscular mycorrhizal (AM) fungi, together driving the biogeochemical cycling of elements and weathering of minerals in soil to meet subsequent increased phosphorus demands is thought to constitute one the most important biotic feedbacks on the geochemical carbon cycle to emerge during the Phanerozoic, and fundamentally rests on the intensifying effect of trees and their root-associating mycorrhizal fungal partners on mineral weathering. Here I present experimental and field evidence linking these evolutionary events to a mechanistic framework whereby: (1) as plants evolved in stature, biomass, and rooting depth, their mycorrhizal fungal partnerships received increasing amounts of plant photosynthate; (2) this enabled intensification of plant-driven fungal weathering of rocks to release growth-limiting nutrients; (3) in turn, this increased land-to-ocean export of Ca and P and enhanced ocean carbonate precipitation impacting the global carbon cycle and biosphere-geosphere-ocean-atmosphere interactions over the past 410 Ma. Our findings support an over-arching hypothesis that evolution has selected plant and mycorrhizal partnerships that have intensified mineral weathering and altered global biogeochemical cycles.
Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics.
2014-04-01
hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In
How MAG4 Improves Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Falconer, David; Khazanov, Igor; Barghouty, Nasser
2013-01-01
Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.
Campbell, Karen M; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V; Halsey, Eric S; Laguna-Torres, V Alberto; Yagui, Martín; Morrison, Amy C; Lin, Chii-Dean; Scott, Thomas W
2015-01-01
Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning.
Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta
2012-07-01
A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
NASA Astrophysics Data System (ADS)
Emanuel, K.
2015-12-01
Since the revolutionary work of Vilhelm Bjerknes, Jule Charney, and Eric Eady, geophysical fluid dynamics has dominated weather research and continues to play an important in climate dynamics. Although the physics of radiative transfer is central to understanding climate, it has played a far smaller role in weather research and is given only rudimentary attention in most educational programs in meteorology. Yet key contemporary problems in atmospheric science, such as the Madden-Julian Oscillation and the self-aggregation of moist convection, do not appear to have been solved by approaches based strictly on fluid dynamics and moist adiabatic thermodynamics. Here I will argue that many outstanding problems in meteorology and climate science involve a nontrivial coupling of circulation and radiation physics. In particular, the phenomenon of self-aggregation of moist convection depends on the interaction of radiation with time-varying water vapor and clouds, with strong implications for such diverse problems as the Madden-Julian Oscillation, tropical cyclones, and the relative insensitivity of tropical climate to radiative forcing. This argues for an augmentation of radiative transfer physics in graduate curricula in atmospheric sciences.
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
Krissansen-Totton, Joshua; Arney, Giada N.
2018-01-01
The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6−0.4+0.6 (2σ) at 4.0 Ga to 7.0−0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9−0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. PMID:29610313
Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model
NASA Astrophysics Data System (ADS)
Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.
2018-04-01
The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.
An Electronic Weather Vane for Field Science
ERIC Educational Resources Information Center
Burman, J.; Talbert, R.; Carlton, K.
2014-01-01
This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…
NASA Astrophysics Data System (ADS)
Kusano, K.
2016-12-01
Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.
Atmospheric conditions create freeways, detours and tailbacks for migrating birds.
Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G
2017-07-01
The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.
Mining key elements for severe convection prediction based on CNN
NASA Astrophysics Data System (ADS)
Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng
2017-04-01
Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with the new machine-learning method via CNN models. Based on the analysis of those experimental results and case studies, the proposed new method have below benefits for the severe convection prediction: (1) helping forecasters to narrow down the scope of analysis and saves lead-time for those high-impact severe convection; (2) performing huge amount of weather big data by machine learning methods rather relying on traditional theory and knowledge, which provide new method to explore and quantify the severe convective weathers; (3) providing machine learning based end-to-end analysis and processing ability with considerable scalability on data volumes, and accomplishing the analysis work without human intervention.
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Bian, Songhan
2017-05-01
In this paper, we apply the empirical mode decomposition (EMD) method to the recurrence plot (RP) and recurrence quantification analysis (RQA), to evaluate the frequency- and time-evolving dynamics of the traffic flow. Based on the cumulative intrinsic mode functions extracted by the EMD, the frequency-evolving RP regarding different oscillation of modes suggests that apparent dynamics of the data considered are mainly dominated by its components of medium- and low-frequencies while severely affected by fast oscillated noises contained in the signal. Noises are then eliminated to analyze the intrinsic dynamics and consequently, the denoised time-evolving RQA diversely characterizes the properties of the signal and marks crucial points more accurately where white bands in the RP occur, whereas a strongly qualitative agreement exists between all the non-denoised RQA measures. Generally, the EMD combining with the recurrence analysis sheds more reliable, abundant and inherent lights into the traffic flow, which is meaningful to the empirical analysis of complex systems.
Dynamics and life histories of northern ungulates in changing environments
NASA Astrophysics Data System (ADS)
Hendrichsen, D. K.
2011-12-01
Regional climate and local weather conditions can profoundly influence life history parameters (growth, survival, fecundity) and population dynamics in northern ungulates (Post and Stenseth 1999, Coulson et al. 2001). The influence is both direct, for example through reduced growth or survival (Aanes et al. 2000, Tyler et al. 2008), and indirect, for example through changes in resource distribution, phenology and quality, changes which subsequently influence consumer dynamics (Post et al. 2008). By comparing and contrasting data from three spatially independent populations of ungulates, I discuss how variation in local weather parameters and vegetation growth influence spatial and temporal dynamics through changes in life history parameters and/or behavioural dynamics. The data originate from long term (11-15 years) monitoring data from three populations of ungulates in one subarctic and two high Arctic sites; semi-domesticated reindeer (Rangifer tarandus tarandus) in northern Norway, Svalbard reindeer (R. t. platyrhynchus) on Spitsbergen and muskoxen (Ovibos moschatus) in Northeast Greenland. The results show that juvenile animals can be particularly vulnerable to changes in their environment, and that this is mirrored to different degrees in the spatio-temporal dynamics of the three populations. Adverse weather conditions, acting either directly or mediated through access to and quality of vegetation, experienced by young early in life, or even by their dams during pregnancy, can lead to reduced growth, lower survival and reduced reproductive performance later in life. The influence of current climatic variation, and the predictions of how local weather conditions may change over time, differs between the three sites, resulting in potentially different responses in the three populations. Aanes R, Saether BE and Øritsland NA. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography, 23: 437-443 Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ and Grenfell BT. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science, 292: 1528-1531 Post, E and Stenseth NC. 1999. Climatic variability, plant phenology, and northern ungulates. Ecology, 80: 1322-1339 Post E, Pedersen C, Wilmers CC and Forchhammer MC. 2008. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. Roy Soc. B., 275: 2005-2013 Tyler NJC, Forchhammer MC and Øritsland NA. 2008. Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer. Ecology, 89: 1675-1686
Space Weather Impacts to Conjunction Assessment: A NASA Robotic Orbital Safety Perspective
NASA Technical Reports Server (NTRS)
Ghrist, Richard; Ghrist, Richard; DeHart, Russel; Newman, Lauri
2013-01-01
National Aeronautics and Space Administration (NASA) recognizes the risk of on-orbit collisions from other satellites and debris objects and has instituted a process to identify and react to close approaches. The charter of the NASA Robotic Conjunction Assessment Risk Analysis (CARA) task is to protect NASA robotic (unmanned) assets from threats posed by other space objects. Monitoring for potential collisions requires formulating close-approach predictions a week or more in the future to determine analyze, and respond to orbital conjunction events of interest. These predictions require propagation of the latest state vector and covariance assuming a predicted atmospheric density and ballistic coefficient. Any differences between the predicted drag used for propagation and the actual drag experienced by the space objects can potentially affect the conjunction event. Therefore, the space environment itself, in particular how space weather impacts atmospheric drag, is an essential element to understand in order effectively to assess the risk of conjunction events. The focus of this research is to develop a better understanding of the impact of space weather on conjunction assessment activities: both accurately determining the current risk and assessing how that risk may change under dynamic space weather conditions. We are engaged in a data-- ]mining exercise to corroborate whether or not observed changes in a conjunction event's dynamics appear consistent with space weather changes and are interested in developing a framework to respond appropriately to uncertainty in predicted space weather. In particular, we use historical conjunction event data products to search for dynamical effects on satellite orbits from changing atmospheric drag. Increased drag is expected to lower the satellite specific energy and will result in the satellite's being 'later' than expected, which can affect satellite conjunctions in a number of ways depending on the two satellites' orbits and the geometry of the conjunction. These satellite time offsets can form the basis of a new technique under development to determine whether space weather perturbations, such as coronal mass ejections, are likely to increase, decrease, or have a neutral effect on the collision risk due to a particular close approach.
Space Weather Workshop 2010 to Be Held in April
NASA Astrophysics Data System (ADS)
Peltzer, Thomas
2010-03-01
The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).
Cuypers, Thomas D.; Hogeweg, Paulien
2012-01-01
The picture that emerges from phylogenetic gene content reconstructions is that genomes evolve in a dynamic pattern of rapid expansion and gradual streamlining. Ancestral organisms have been estimated to possess remarkably rich gene complements, although gene loss is a driving force in subsequent lineage adaptation and diversification. Here, we study genome dynamics in a model of virtual cells evolving to maintain homeostasis. We observe a pattern of an initial rapid expansion of the genome and a prolonged phase of mutational load reduction. Generally, load reduction is achieved by the deletion of redundant genes, generating a streamlining pattern. Load reduction can also occur as a result of the generation of highly neutral genomic regions. These regions can expand and contract in a neutral fashion. Our study suggests that genome expansion and streamlining are generic patterns of evolving systems. We propose that the complex genotype to phenotype mapping in virtual cells as well as in their biological counterparts drives genome size dynamics, due to an emerging interplay between adaptation, neutrality, and evolvability. PMID:22234601
1982-06-01
usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
Observational study of atmospheric surface layer and coastal weather in northern Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Sadr, Reza
2016-04-01
Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.
Liquid interfacial water and brines in the upper surface of Mars
NASA Astrophysics Data System (ADS)
Moehlmann, Diedrich
2013-04-01
Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.
2017-12-01
Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.
NASA Technical Reports Server (NTRS)
2009-01-01
The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D.C., 2008), which was prepared by the Committee on the Societal and Economic Impacts of Severe Space Weather Events: A Workshop. The present document is an expanded summary of that report.
Impact of Tactical and Strategic Weather Avoidance on Separation Assurance
NASA Technical Reports Server (NTRS)
Refai, Mohamad S.; Windhorst, Robert
2011-01-01
The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers that start far ahead of encountering a weather cell when rerouting around weather.
The more extreme nature of North American monsoon precipitation in the Southwestern United States
NASA Astrophysics Data System (ADS)
Chang, H. I.; Luong, T. M.; Castro, C. L.; Lahmers, T. M.; Adams, D. K.; Ochoa-Moya, C.
2017-12-01
Most severe weather in the Southwestern United States occurs during the North American monsoon. This research examines how monsoon extreme weather events will change with respect to occurrence and intensity. A new technique to severe weather event projection has been developed, using convective perimitting regional atmospheric modeling of days with highest instabilty and atmospheric moisture. The guiding principle is to use a weather forecast based approach to climate change project, with a modeling paradigm in which organized convective structures and their behavior are explicitly physically represented in the simulation design. Of particular interest is the simulation of severe weather events caused by mesoscale convective systems (MCSs), which account for a greater proportion of monsoon rainfall downwind of the Mogollon Rim in Arizona, in the central and southwestern portions of the state. The convective-permitting model simulations are performed for identified severe weather event days for both historical and future climate projections, similar to an operational weather forecast. There have been significant long-term changes in atmospheric thermodynamic and dynamic conditions that have occurred over the past sixty years. Monsoon thunderstorms are tending to be more 'thermodynamically dominated' with less tendency to organize and propagate. Though there are tending to be a fewer number of strong, organized MCS-type convective events during the monsoon, when they do occur their associated precipitation is now tending to be more intense. The area of central and southwestern Arizona, corresponding to the area of the state most impacted by MCSs during the monsoon, appears to be a local hot spot where precipitation and downdraft winds are becoming more intense. These types of changes are very consistent with the historical observed precipitation data and model projections of historical and future climate, from dynamically downscaled CMIP3 and CMIP5 models.
NASA Astrophysics Data System (ADS)
Marcon, V.; Gu, X.; Brantley, S. L.
2017-12-01
Life on Earth relies on the breakdown of impermeable bedrock into porous weathered rock to release nutrients and open pathways for gases and fluids to move through the subsurface. Serpentinites, though rare, are found across the globe and often have thin soils. Few studies have evaluated how porosity, a first order control on weathering, evolves from unweathered serpentinite bedrock to the soil. In this study, we evaluated weathering of serpentinites from bedrock to soil along a ridgetop in Nottingham Park, PA. A suite of geochemical analyses were used to determine chemical and physical changes during weathering. We used neutron scattering to measure pores 2nm to 20 microns in size (referred to here as nanoporosity). As this serpentinite weathers, small pores ( 1nm in diameter) are occluded and total nanoporosity and pore connectivity decrease throughout the weathered rock. Specifically, total nanoporosity decreases from 10% in the unweathered parent material to 5% in the weathered rock. However, in the upper meter of the profile, total nanoporosity increases as Fe, Mg, Mn, Si, Ni, Cr, and V are depleted. Additionally, bulk density and strain calculations suggest total volume expansion throughout the weathered rock followed by volume collapse in the upper 0.5m of the profile. We propose that low temperature reactions alter olivine in the parent material to serpentine minerals at the parent-weathered rock interface, resulting in a volume expansion and the loss of nanopores 1-100nm in size in this weathered rock zone. Volume expansion has long been reported to occur during low temperature serpentinization. We also infer that this loss of porosity limits the infiltration of reactive meteoric fluids into the deeper rock material and restricts the depth of regolith development. Following low temperature serpentinization, serpentine minerals (e.g. antigorite and lizardite) dissolve higher in the weathered rock. Because serpentinite rocks lack a non-reactive mineral such as quartz to provide supportive skeleton in the regolith, dissolution ultimately leads to collapse in the upper meter of the profile. The evolution of porosity in this profile can help explain why serpentinite regolith is characteristically thin to non-existent in the Piedmont: thin regolith occurs because of porosity occlusion as well as collapse.
NASA Astrophysics Data System (ADS)
Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.
2015-12-01
Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be followed in the future.
Impact of transient climate change upon Grouse population dynamics in the Italian Alps
NASA Astrophysics Data System (ADS)
Pirovano, Andrea; Bocchiola, Daniele
2010-05-01
Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project
NASA Astrophysics Data System (ADS)
Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.
2018-03-01
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
Dynamic model of time-dependent complex networks.
Hill, Scott A; Braha, Dan
2010-10-01
The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.
2011 Space Weather Workshop to Be Held in April
NASA Astrophysics Data System (ADS)
Peltzer, Thomas
2011-04-01
The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Michalakes, J.; Vanderwende, B.
Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less
Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres
NASA Astrophysics Data System (ADS)
Judge, Philip G.
2017-12-01
We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Space Weather Effects on Spacecraft Systems
NASA Technical Reports Server (NTRS)
Barth, Janet L.
2003-01-01
Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.
Designing Crop Simulation Web Service with Service Oriented Architecture Principle
NASA Astrophysics Data System (ADS)
Chinnachodteeranun, R.; Hung, N. D.; Honda, K.
2015-12-01
Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting various services for running crop models for decision support.
Campbell, Karen M.; Haldeman, Kristin; Lehnig, Chris; Munayco, Cesar V.; Halsey, Eric S.; Laguna-Torres, V. Alberto; Yagui, Martín; Morrison, Amy C.; Lin, Chii-Dean; Scott, Thomas W.
2015-01-01
Background Dengue is one of the most aggressively expanding mosquito-transmitted viruses. The human burden approaches 400 million infections annually. Complex transmission dynamics pose challenges for predicting location, timing, and magnitude of risk; thus, models are needed to guide prevention strategies and policy development locally and globally. Weather regulates transmission-potential via its effects on vector dynamics. An important gap in understanding risk and roadblock in model development is an empirical perspective clarifying how weather impacts transmission in diverse ecological settings. We sought to determine if location, timing, and potential-intensity of transmission are systematically defined by weather. Methodology/Principal Findings We developed a high-resolution empirical profile of the local weather-disease connection across Peru, a country with considerable ecological diversity. Applying 2-dimensional weather-space that pairs temperature versus humidity, we mapped local transmission-potential in weather-space by week during 1994-2012. A binary classification-tree was developed to test whether weather data could classify 1828 Peruvian districts as positive/negative for transmission and into ranks of transmission-potential with respect to observed disease. We show that transmission-potential is regulated by temperature-humidity coupling, enabling epidemics in a limited area of weather-space. Duration within a specific temperature range defines transmission-potential that is amplified exponentially in higher humidity. Dengue-positive districts were identified by mean temperature >22°C for 7+ weeks and minimum temperature >14°C for 33+ weeks annually with 95% sensitivity and specificity. In elevated-risk locations, seasonal peak-incidence occurred when mean temperature was 26-29°C, coincident with humidity at its local maximum; highest incidence when humidity >80%. We profile transmission-potential in weather-space for temperature-humidity ranging 0-38°C and 5-100% at 1°C x 2% resolution. Conclusions/Significance Local duration in limited areas of temperature-humidity weather-space identifies potential locations, timing, and magnitude of transmission. The weather-space profile of transmission-potential provides needed data that define a systematic and highly-sensitive weather-disease connection, demonstrating separate but coupled roles of temperature and humidity. New insights regarding natural regulation of human-mosquito transmission across diverse ecological settings advance our understanding of risk locally and globally for dengue and other mosquito-borne diseases and support advances in public health policy/operations, providing an evidence-base for modeling, predicting risk, and surveillance-prevention planning. PMID:26222979
NASA Astrophysics Data System (ADS)
Atlas, R. M.
2016-12-01
Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.
Putting the Weather Back Into Climate
NASA Astrophysics Data System (ADS)
Smith, Leonard A.; Stainforth, David A.
2014-05-01
The literature contains a variety of definitions of climate, and the emphasis in these definitions has changed over time. Defining climate as a mean value is, of course, both limiting and misleading; definitions of climate based on averages have been deprecated as far back as 1931 [1]. In the context of current efforts to produce climate predictions for use in climate adaptation, it is timely to consider how well various definitions of climate serve the research for applications community. From a nonlinear dynamical systems perspective it is common to associate climate with a system's natural measure (or "attractor" if such an object exists). Such a definition is not easily applied to physical systems where we have limited observations over a restricted period of time; the duration of 30 years is often mentioned today and the origin of this period is discussed. Given a dynamic system in which parameters are evolving in time, the view of climate as a natural measure becomes problematic as, by definition, there may be no attractor per se. Attractors defined for particular parameter values cannot be expected to have any association with the probability of states under transient changes in the values of that parameter. Alternatively, distributions may be determined which reflect the transient situation, based on (rather broad) additional assumptions regarding the state of the system at some point in the past (say, an ice age planet vs an interglacial planet). Such distributions reflect many of the properties one would hope to be represented in a generalised definition of the system's climate. Here we trace how definitions of climate have changed over time and highlight a number of properties of definitions of climate which would facilitate common use across researchers, from observers to theoreticians, from climate modellers to mathematicians. We show while periodic changes in parameter values (such as those found in an annual cycle or a diurnal cycle) are easily incorporated within the traditional nonlinear dynamical systems view, non-periodic or secular changes (such as those due to increasing atmospheric greenhouse gas concentrations) yield an open challenge. We argue the need both for clarifying and for clearly meeting the open challenges of defining climate in relation to the state of an evolving system, and suggest a path forward. [1] Miller, A.A., 1931: Climatology. First Ed. Methuen.
Severe Weather Forecast Decision Aid
NASA Technical Reports Server (NTRS)
Bauman, William H., III; Wheeler, Mark M.; Short, David A.
2005-01-01
This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.
C.A. Eyre; M. Kozanitas; M. Garbelotto
2013-01-01
Limited information is available on how soil and leaf populations of the sudden oak death pathogen, Phytophthora ramorum, may differ in their response to changing weather conditions, and their corresponding role in initiating the next disease cycle after unfavorable weather conditions. We sampled and cultured from 425 trees in six sites, three...
NASA Astrophysics Data System (ADS)
Zaki, M. K.; Furi, N. T.; Syamsiyah, Jauhari; Sumani
2018-03-01
Weather dynamics such as the fifth time of the rainy season and drought are becoming more frequent. These conditions pose a significant impact on the strategies of cultivation such as cropping pattern and crop yields, especially in rainfed areas. One of the steps that can be taken is to return to local wisdom, such as pranata mangsa. This study aimed at analyzing the relationship of the variability of precipitation in rainfed areas with pranata mangsa and then to evaluate cropping patterns based on the result of the analysis. The study was conducted in rainfed areas of the District of Jumantono, Karanganyar Regency; and District of Teras and District of Ampel, Boyolali Regency in June until December 2014. The research method is a descriptive exploratory survey with purposive sampling based on moderate altitude (200-700 masl). The types of data that are used are primary and secondary. Data analysis was used correlation test. The results showed that precipitation in rainfed areas has a close relationship with paranata mangsa. These results explain that pranata mangsa still relevant to be used even though it has happened weather dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu P.; Gentle, Jake P.; Hill, Porter
Abstract—Overhead transmission lines (TLs) are conventionally given seasonal ratings based on conservative environmental assumptions. Such an approach often results in underutilization of the line ampacity as the worst conditions prevail only for a short period over a year/season. We presents dynamic line rating (DLR) as an enabling smart grid technology that adaptively computes ratings of TLs based on local weather conditions to utilize additional headroom of existing lines. In particular, general line ampacity state solver utilizes measured weather data for computing the real-time thermal rating of the TLs. The performance of the presented method is demonstrated from a field studymore » of DLR technology implementation on four TL segments at AltaLink, Canada. The performance is evaluated and quantified by comparing the existing static and proposed dynamic line ratings, and the potential benefits of DLR for enhanced transmission assets utilization. For the given line segments, the proposed DLR results in real-time ratings above the seasonal static ratings for most of the time; up to 95.1% of the time, with a mean increase of 72% over static rating.« less
A Simple Exploration of Complexity at the Climate-Weather-Social-Conflict Nexus
NASA Astrophysics Data System (ADS)
Shaw, M.
2017-12-01
The conceptualization, exploration, and prediction of interplay between climate, weather, important resources, and social and economic - so political - human behavior is cast, and analyzed, in terms familiar from statistical physics and nonlinear dynamics. A simple threshold toy model is presented which emulates human tendencies to either actively engage in responses deriving, in part, from environmental circumstances or to maintain some semblance of status quo, formulated based on efforts drawn from the sociophysics literature - more specifically vis a vis a model akin to spin glass depictions of human behavior - with threshold/switching of individual and collective dynamics influenced by relatively more detailed weather and land surface model (hydrological) analyses via a land data assimilation system (a custom rendition of the NASA GSFC Land Information System). Parameters relevant to human systems' - e.g., individual and collective switching - sensitivity to hydroclimatology are explored towards investigation of overall system behavior; i.e., fixed points/equilibria, oscillations, and bifurcations of systems composed of human interactions and responses to climate and weather through, e.g., agriculture. We discuss implications in terms of conceivable impacts of climate change and associated natural disasters on socioeconomics, politics, and power transfer, drawing from relatively recent literature concerning human conflict.
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2004-01-01
In the early 1980 s NASA began research to understand global habitability and quantify the processes and fluxes between the Earth's vegetation and the biosphere. This effort evolved into the Earth Observing System Program which current encompasses 18 platforms and 80 sensors. During this time, the global environmental research community has evolved from a data poor to a data rich research area and is challenged to provide timely use of these new data. This talk will outline some of the data mining research NASA has funded in support for the environmental sciences in the Intelligent Systems project and will give a specific example in ecological forecasting, predicting the land surface properties given nowcasts and weather forecasts, using the Terrestrial Observation and Prediction System (TOPS).
Identifying the Dynamic Catchment Storage That Does Not Drive Runoff
NASA Astrophysics Data System (ADS)
Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.
2017-12-01
The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of three pools of subsurface water: (i) seasonally dynamic vs. static; (ii) unsaturated vs. saturated, and (iii) storage whose magnitude directly influences runoff vs. that which does not. These results highlight the importance of hillslope monitoring for physically interpreting methods of runoff-based hydrologic analysis.
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.
2011-12-01
Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By contrast, during the dry year infiltration and subsequent displacement of stored water that has had longer contact time with minerals and therefore has become more geochemically evolved to produce a greater difference between snowmelt and catchment outlet hydrochemistry. The results for EMD show little distinction between albite weathering for wet and dry years (55.9g and 66.0g, relatively). A hypothesis for this lack of difference in mineral phase changes may be due to less subsurface storage capacity in EMD relative to GL4. The spatial distribution of snowmelt has also been shown to influence the integrated watershed response, and future work includes using the Alpine Hydrochemical Model (AHM) to further investigate catchment response to these spatial data. The AHM will also provide further insight of surface-groundwater interactions through a more integrated model which includes hydrochemical, biological and physical processes to elucidate catchment response to changes in snowmelt dynamics.
Development of Waypoint Planning Tool in Response to NASA Field Campaign Challenges
NASA Technical Reports Server (NTRS)
He, Matt; Hardin, Danny; Mayer, Paul; Blakeslee, Richard; Goodman, Michael
2012-01-01
Airborne real time observations are a major component of NASA 's Earth Science research and satellite ground validation studies. Multiple aircraft are involved in most NASA field campaigns. The coordination of the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions often determines the success of the campaign. Planning a research aircraft mission within the context of meeting the science objectives is a complex task because it requires real time situational awareness of the weather conditions that affect the aircraft track. A flight planning tools is needed to provide situational awareness information to the mission scientists, and help them plan and modify the flight tracks. Scientists at the University of Alabama ]Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool that enables scientists to develop their own flight plans (also known as waypoints) with point -and-click mouse capabilities on a digital map filled with real time raster and vector data. The development of this Waypoint Planning Tool demonstrates the significance of mission support in responding to the challenges presented during NASA field campaigns. Analysis during and after each campaign helped identify both issues and new requirements, and initiated the next wave of development. Currently the Waypoint Planning Tool has gone through three rounds of development and analysis processes. The development of this waypoint tool is directly affected by the technology advances on GIS/Mapping technologies. From the standalone Google Earth application and simple KML functionalities, to Google Earth Plugin on web platform, and to the rising open source GIS tools with New Java Script frameworks, the Waypoint Planning Tool has entered its third phase of technology advancement. Adapting new technologies for the Waypoint Planning Tool ensures its success in helping scientist reach their mission objectives.
NASA Astrophysics Data System (ADS)
McLennan, S. M.; Dehouck, E.; Hurowitz, J.; Lindsley, D. H.; Schoonen, M. A.; Tosca, N. J.; Zhao, Y. Y. S.
2016-12-01
Starting with Pathfinder and Global Surveyor, recent missions to Mars have provided great opportunity for low-temperature experimental geochemistry investigations of the Martian sedimentary record by providing geochemical and mineralogical data that can be used as meaningful tests for experiments. These missions have documented a long-lived, complex and dynamic sedimentary rock cycle, including "source-to-sink" sedimentary systems and global paleoenvironmental transitions through time. We designed and constructed an experimental facility, beginning in 2000, specifically to evaluate surficial processes on Mars. Our experimental philosophy has been to (1) keep apparatus simple and flexible, and if feasible maintain sample access during experiments; (2) use starting materials (minerals, rocks) close to known Mars compositions (often requiring synthesis); (3) address sedimentary processes supported by geological investigations at Mars; (4) begin with experiments at standard conditions so they are best supported by thermodynamics; (5) support experiments with thermodynamic-kinetic-mass balance modeling in both design and interpretation, and by high quality chemical, mineralogical and textural lab analyses; (6) interpret results in the context of measurements made at Mars. Although eliciting much comment in proposal and manuscript reviews, we have not attempted to slavishly maintain "Mars conditions", doing so only to the degree required by variables being tested in any given experiments. Among the problems we have addressed are (1) Amazonian alteration of rock surfaces; (2) Noachian-Hesperian chemical weathering; (3) epithermal alteration of `evolved' igneous rocks; (4) mineral surface chemical reactivity from aeolian abrasion; (5) evaporation of mafic brines; (6) early diagenesis of sedimentary iron mineralogy; (7) trace element and halogen behavior during chemical weathering and diagenesis; (8) photochemical influences on halogen distribution and speciation; (9) post-depositional stability of sedimentary amorphous materials.
Upgrade Summer Severe Weather Tool in MIDDS
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.
2010-01-01
The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiantis, Dian; Nelson, Malik; Van Ranst, Eric
Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elementsmore » and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.« less
NASA Technical Reports Server (NTRS)
Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.;
2013-01-01
The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.
NASA Astrophysics Data System (ADS)
Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence
2016-04-01
The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the role of the weathering negative feedback mechanism on multi-millennial timescales.
NASA Astrophysics Data System (ADS)
Castro, C. L.; Chang, H. I.; Luong, T. M.; Lahmers, T.; Jares, M.; Mazon, J.; Carrillo, C. M.; Adams, D. K.
2015-12-01
The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. Monsoon convection typically initiates during daytime over the mountains and may organize into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. A convective resolving grid spacing (on the kilometer scale) model is required to explicitly represent the physical characteristics of organized convection, for example the presence of leading convective lines and trailing stratiform precipitation regions. Our objective is to analyze how monsoon severe weather is changing in relation to anthropogenic climate change. We first consider a dynamically downscaled reanalysis during a historical period 1948-2010. Individual severe weather event days, identified by favorable thermodynamic conditions, are then simulated for short-term, numerical weather prediction-type simulations of 30h at a convective-permitting scale. Changes in modeled severe weather events indicate increases in precipitation intensity in association with long-term increases in atmospheric instability and moisture, particularly with organized convection downwind of mountain ranges. However, because the frequency of synoptic transients is decreasing during the monsoon, organized convection is less frequent and convective precipitation tends to be more phased locked to terrain. These types of modeled changes also similarly appear in observed CPC precipitation, when the severe weather event days are selected using historical radiosonde data. Next, we apply the identical model simulation and analysis procedures to several dynamically downscaled CMIP3 and CMIP5 models for the period 1950-2100, to assess how monsoon severe weather may change in the future with respect to occurrence and intensity and if these changes correspond with what is already occurring in the historical record. The CMIP5 models we are downscaling (HadGEM2-ES and MPI-ESM-LR) will be included as part of North American COordinated Regional climate Downscaling EXperiment (CORDEX). Results from this project will be used for climate change impacts assessment for U.S. military installations in the region.
Soil erosion in mountainous areas: how far can we go?
NASA Astrophysics Data System (ADS)
Egli, Markus
2017-04-01
Erosion is the counter part of soil formation, is a natural process and cannot be completely impeded. With respect to soil protection, the term of tolerable soil erosion, having several definitions, has been created. Tolerable erosion is often equalled to soil formation or production. It is therefore crucial that we know the rates of soil formation when discussing sustainability of soil use and management. Natural rates of soil formation or production are determined by mineral weathering or transformation of parent material into soil, dust deposition and organic matter incorporation. In mountain areas where soil depth is a main limiting factor for soil productivity, the use and management of soils must consider how to preserve them from excessive depth loss and consequent degradation of their physical, chemical and biological properties. Even under natural conditions, landscape surfaces and soils are known to evolve in complex, non-linear ways over time. As a result, soil production and erosion change substantially with time. The fact that soil erosion and soil production processes are discontinuous over time is an aspect that is in most cases completely neglected. To conserve a given situation, tolerable values should take these dynamics into account. Measurements of long and short-term physical erosion rates, total denudation, weathering rates and soil production have recently become much more widely available through cosmogenic and fallout nuclide techniques. In addition to this, soil chronosequences deliver a precious insight into the temporal aspect of soil formation and production. Examples from mountainous and alpine areas demonstrate that soil production rates strongly vary as a function of time (with young soils and eroded surfaces having distinctly higher rates than old soils). Extensive erosion promotes rejuvenation of the surface and, therefore, accelerates chemical weathering and soil production - the resulting soil thickness will however be shallow. The comparison of soil production and erosion rates indicates that the present-day management of grassland soils in several alpine and mountain regions will lead in the long-term to very shallow soils (showing the characteristics of young soils). Shallow soils go along with high 'tolerable' erosion rates. It is, however, strongly doubtful whether this matches the deeper sense of sustainability.
Wavepacket dynamics in a family of nonlinear Fibonacci lattices
NASA Astrophysics Data System (ADS)
Pandey, Mohit; Campbell, David
We examine the dynamics of a quantum particle in a variety of one-dimensional Fibonacci lattices (which are shifted from each other) in the presence of interaction. To describe the nonlinear interactions we employ the discrete nonlinear Schrödinger (DNLS) equation. Using a single-site localized state in the lattice as our initial condition, we evolve the wavepacket numerically using DNLS equation. We compute the root-mean-square width of the wavepacket as it evolves in time and show how the ``global location'' of initial wavepacket affects the dynamics. We compare and contrast our results with earlier studies of related but distinct models.
Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru
2016-01-01
This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons. PMID:27092508
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
Tokumitsu, Masahiro; Hasegawa, Keisuke; Ishida, Yoshiteru
2016-04-15
This paper attempts to construct a resilient sensor network model with an example of space weather forecasting. The proposed model is based on a dynamic relational network. Space weather forecasting is vital for a satellite operation because an operational team needs to make a decision for providing its satellite service. The proposed model is resilient to failures of sensors or missing data due to the satellite operation. In the proposed model, the missing data of a sensor is interpolated by other sensors associated. This paper demonstrates two examples of space weather forecasting that involves the missing observations in some test cases. In these examples, the sensor network for space weather forecasting continues a diagnosis by replacing faulted sensors with virtual ones. The demonstrations showed that the proposed model is resilient against sensor failures due to suspension of hardware failures or technical reasons.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.
2017-12-01
Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.
Rachel A. Loehman; Joran Elias; Richard J. Douglass; Amy J. Kuenzi; James N. Mills; Kent Wagoner
2012-01-01
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for...
Surface Exposure Ages of Space-Weathered Grains from Asteroid 25143 Itokawa
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.; Christoffersen, R.
2015-01-01
We use the observed effects of solar wind ion irradiation and the accumulation of solar flare particle tracks recorded in Itokawa grains to constrain the rates of space weathering and yield information about regolith dynamics. The track densities are consistent with exposure at mm depths for 104-105 years. The solar wind damaged rims form on a much faster timescale, <10(exp 3) years.
Potential Vorticity Analysis of Low Level Thunderstorm Dynamics in an Idealized Supercell Simulation
2009-03-01
Severe Weather, Supercell, Weather Research and Forecasting Model , Advanced WRF 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...27 A. ADVANCED RESEARCH WRF MODEL .................................................27 1. Data, Model Setup, and Methodology...03/11/2006 GFS model run. Top row: 11/12Z initialization. Middle row: 12 hour forecast valid at 12/00Z. Bottom row: 24 hour forecast valid at
A nonlocal fluid closure for antiparallel reconnection
NASA Astrophysics Data System (ADS)
Ng, J.; Hakim, A.; Bhattacharjee, A.
2016-12-01
The integration of kinetic effects in fluid models is an important problem in global simulations of the Earth's magnetosphere and space weather modelling. In particular, it has been shown that ion kinetics play an important role in the dynamics of large reconnecting systems, and that fluid models can account of some of these effects[1,2] . Here we introduce a new fluid model and closure for collisionless magnetic reconnection and more general applications. Taking moments of the kinetic equation, we evolve the full pressure tensor for electrons and ions, which includes the off diagonal terms necessary for reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework [3]. Using the island coalescence problem as a test, we show how the nonlocal ion closure improves on the typical collisional closures used for ten-moment models and circumvents the need for a colllisional free parameter. Finally, we extend the closure to study guide-field reconnection and discuss the implementation of a twenty-moment model.[1] A. Stanier et al. Phys Rev Lett (2015)[2] J. Ng et al. Phys Plasmas (2015)[3] G. Hammett et al. Phys Rev Lett (1990)
Web-Based Satellite Products Database for Meteorological and Climate Applications
NASA Technical Reports Server (NTRS)
Phan, Dung; Spangenberg, Douglas A.; Palikonda, Rabindra; Khaiyer, Mandana M.; Nordeen, Michele L.; Nguyen, Louis; Minnis, Patrick
2004-01-01
The need for ready access to satellite data and associated physical parameters such as cloud properties has been steadily growing. Air traffic management, weather forecasters, energy producers, and weather and climate researchers among others can utilize more satellite information than in the past. Thus, it is essential that such data are made available in near real-time and as archival products in an easy-access and user friendly environment. A host of Internet web sites currently provide a variety of satellite products for various applications. Each site has a unique contribution with appeal to a particular segment of the public and scientific community. This is no less true for the NASA Langley's Clouds and Radiation (NLCR) website (http://www-pm.larc.nasa.gov) that has been evolving over the past 10 years to support a variety of research projects This website was originally developed to display cloud products derived from the Geostationary Operational Environmental Satellite (GOES) over the Southern Great Plains for the Atmospheric Radiation Measurement (ARM) Program. It has evolved into a site providing a comprehensive database of near real-time and historical satellite products used for meteorological, aviation, and climate studies. To encourage the user community to take advantage of the site, this paper summarizes the various products and projects supported by the website and discusses future options for new datasets.
Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts
NASA Technical Reports Server (NTRS)
Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela
2014-01-01
The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.
Modelling unsaturated/saturated flow in weathered profiles
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Ali, M. A.; Van Der Kamp, G.
2016-12-01
Vertical weathering profiles are a common feature of many geological materials, where the fracture or macropore porosity decreases progressively below the ground surface. The weathered near surface zone (WNSZ) has an enhanced storage and permeability. When the water table is deep, the WNSZ can act to buffer recharge. When the water table is shallow, intersecting the WNSZ, transmissivity and lateral saturated flow, increase with increasing water table elevation. Such a situation exists in the glacial till dominated landscapes of the Canadian prairies, effectively resulting in dynamic patterns of subsurface connectivity. Using dual permeability hydraulic properties with vertically scaled macroporosity, we show how the WNSZ can be represented in models. The resulting model can be more parsimonious than an equivalent model with two or more discrete layers, and more physically realistic. We implement our model in PARFLOW-CLM, and apply the model to a field site in the Canadian prairies. We are able to convincingly simulate shallow groundwater dynamics, and spatio-temporal patterns of groundwater connectivity.
Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim
2015-09-01
Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].
Barrera, Roberto; Amador, Manuel; MacKay, Andrew J
2011-12-01
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.
Barrera, Roberto; Amador, Manuel; MacKay, Andrew J.
2011-01-01
Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence. PMID:22206021
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
Alignment of dynamic networks.
Vijayan, V; Critchlow, D; Milenkovic, T
2017-07-15
Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Vijayan, V.; Critchlow, D.; Milenković, T.
2017-01-01
Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980
Vehicular-networking- and road-weather-related research in Sodankylä
NASA Astrophysics Data System (ADS)
Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika
2016-10-01
Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of the research field.
The research frontier and beyond: granitic terrains
NASA Astrophysics Data System (ADS)
Twidale, C. R.
1993-07-01
Investigations of granite forms and landscapes over the past two centuries suggest that many features, major and minor, are shaped by fracture-controlled subsurface weathering, and particularly moisture-driven alteration: in other words etch forms are especially well represented in granitic terrains. Commonly referred to as two stage forms, many are in reality multistage in origin, for the structural contrasts exploited by weathering and erosion that are essential to the mechanism originated as magmatic, thermal or tectonic events in the distant geological past. Fracture patterns are critical to landform and landscape development in granitic terrains, but other structural factors also come into play. Location with respect to water table and moisture contact are also important. Once exposed and comparatively dry, granite forms tend to stability; they are developed and diversified, and many are gradually destroyed as new, epigene, forms evolve, but many granite forms persist over long ages. Reinforcement effects frequently play a part in landform development. Several granite forms are convergent, i.e. features of similar morphology evolve under the influence of different processes, frequently in contrasted environments. On the other hand many landforms considered to be typical of granitic terrains are also developed in bedrock that is petrologically different but physically similar to granite; and in particular is subdivided by fractures of similar pattern and density. To date, most of the general statements concerning the evolution of granitic terrains have been based in work in the tropics but other climatic settings, and notably those of cold land, are now yielding significant results. Future research will extend and develop these avenues, but biotic factors, and particularly the role of bacteria, in such areas as weathering, will take on a new importance. Structural variations inherited from the magnetic, thermal and tectonic events to which granite bodies have been subjected will be more and more appreciated as offering explanations for a wide range of granite forms, major and minor, ancient and recent. In particular, investigations of rock strain, including gravitational loading, at a variety of scales, and especially as it influences fracture patterns and susceptibility to weathering, will assume a prime importance in the explanation of granitic landforms and landscapes. Finally, there as genuine hopes that the close dating of surfaces and weathering events will allow structural and process studies to be placed in their chronilogical contexts. New techniques and observations will prove important to advances in the understanding of granitic forms, but, as in other areas of geomorphological endeavour, fresh perceptions, different linkages and new ideas are critical.
Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill
2013-01-01
An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Wang, Easter Mayan Chan
2016-01-01
Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.
Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.
Chuang, Ting-Wu; Ionides, Edward L; Knepper, Randall G; Stanuszek, William W; Walker, Edward D; Wilson, Mark L
2012-07-01
Weather is important determinant of mosquito abundance that, in turn, influences vectorborne disease dynamics. In temperate regions, transmission generally is seasonal as mosquito abundance and behavior varies with temperature, precipitation, and other meteorological factors. We investigated how such factors affected species-specific mosquito abundance patterns in Saginaw County, MI, during a 17-yr period. Systematic sampling was undertaken at 22 trapping sites from May to September, during 1989-2005, for 19,228 trap-nights and 300,770 mosquitoes in total. Aedes vexans (Meigen), Culex pipiens L. and Culex restuans Theobald, the most abundant species, were analyzed. Weather data included local daily maximum temperature, minimum temperature, total precipitation, and average relative humidity. In addition to standard statistical methods, cross-correlation mapping was used to evaluate temporal associations with various lag periods between weather variables and species-specific mosquito abundances. Overall, the average number of mosquitoes was 4.90 per trap-night for Ae. vexans, 2.12 for Cx. pipiens, and 1.23 for Cx. restuans. Statistical analysis of the considerable temporal variability in species-specific abundances indicated that precipitation and relative humidity 1 wk prior were significantly positively associated with Ae. vexans, whereas elevated maximum temperature had a negative effect during summer. Cx. pipiens abundance was positively influenced by the preceding minimum temperature in the early season but negatively associated with precipitation during summer and with maximum temperature in July and August. Cx. restuans showed the least weather association, with only relative humidity 2-24 d prior being linked positively during late spring-early summer. The recently developed analytical method applied in this study could enhance our understanding of the influences of weather variability on mosquito population dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.
Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less
Winnick, Matthew J.; Carroll, Rosemary W. H.; Williams, Kenneth H.; ...
2017-03-01
Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO 2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less
Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability
Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino
2012-01-01
Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419
The USGS geomagnetism program and its role in space weather monitoring
Love, Jeffrey J.; Finn, Carol A.
2011-01-01
Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.
The USGS Geomagnetism Program and its role in Space-Weather Monitoring
Love, Jeffrey J.; Finn, Carol A.
2011-01-01
Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.
Bridging the Gap Between the iLEAPS and GEWEX Land-Surface Modeling Communities
NASA Technical Reports Server (NTRS)
Bonan, Gordon; Santanello, Joseph A., Jr.
2013-01-01
Models of Earth's weather and climate require fluxes of momentum, energy, and moisture across the land-atmosphere interface to solve the equations of atmospheric physics and dynamics. Just as atmospheric models can, and do, differ between weather and climate applications, mostly related to issues of scale, resolved or parameterised physics,and computational requirements, so too can the land models that provide the required surface fluxes differ between weather and climate models. Here, however, the issue is less one of scale-dependent parameterisations.Computational demands can influence other minor land model differences, especially with respect to initialisation, data assimilation, and forecast skill. However, the distinction among land models (and their development and application) is largely driven by the different science and research needs of the weather and climate communities.
NASA Astrophysics Data System (ADS)
Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.
2017-12-01
Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
Dynamical systems in economics
NASA Astrophysics Data System (ADS)
Stanojević, Jelena; Kukić, Katarina
2018-01-01
In last few decades much attention is given to explain complex behaviour of very large systems, such as weather, economy, biology and demography. In this paper we give short overview of basic notions in the field of dynamical systems which are relevant for understanding complex nature of some economic models.
Reconceptualizing Learning as a Dynamical System.
ERIC Educational Resources Information Center
Ennis, Catherine D.
1992-01-01
Dynamical systems theory can increase our understanding of the constantly evolving learning process. Current research using experimental and interpretive paradigms focuses on describing the attractors and constraints stabilizing the educational process. Dynamical systems theory focuses attention on critical junctures in the learning process as…
Consumer co-evolution as an important component of the eco-evolutionary feedback.
Hiltunen, Teppo; Becks, Lutz
2014-10-22
Rapid evolution in ecologically relevant traits has recently been recognized to significantly alter the interaction between consumers and their resources, a key interaction in all ecological communities. While these eco-evolutionary dynamics have been shown to occur when prey populations are evolving, little is known about the role of predator evolution and co-evolution between predator and prey in this context. Here, we investigate the role of consumer co-evolution for eco-evolutionary feedback in bacteria-ciliate microcosm experiments by manipulating the initial trait variation in the predator populations. With co-evolved predators, prey evolve anti-predatory defences faster, trait values are more variable, and predator and prey population sizes are larger at the end of the experiment compared with the non-co-evolved predators. Most importantly, differences in predator traits results in a shift from evolution driving ecology, to ecology driving evolution. Thus we demonstrate that predator co-evolution has important effects on eco-evolutionary dynamics.
Wiegmann, Douglas A; Goh, Juliana; O'Hare, David
2002-01-01
Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.
Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease
NASA Astrophysics Data System (ADS)
Sun, Jun; Deem, Michael
2006-03-01
The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.
Cooperative behavior and phase transitions in co-evolving stag hunt game
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.
2016-02-01
Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.
Mission Driven Scene Understanding: Dynamic Environments
2016-06-01
the Army mission. Then, for example, helpful image cues that relate to mission activities may include time of day, current and future weather...mission.10 In other words, visual saliency also can be used to highlight key image cues that relate to Army mission activities.10 For example, an...to the Army mission. Then, for example, helpful image cues that relate to mission activities may include time of day, current and future weather
Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Done, James; Holland, Greg; Bruyere, Cindy
2013-10-19
Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias inmore » the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.« less
Weather chains during the 2013/2014 winter and their significance for seasonal prediction
NASA Astrophysics Data System (ADS)
Davies, Huw C.
2015-11-01
Day-to-day weather forecasting has improved substantially over the past few decades. In contrast, progress in seasonal prediction outside the tropics has been meagre and mixed. On seasonal timescales, the constraining influence of the initial atmospheric state is weak, and the internal variability associated with transient weather systems tends to be large compared with the nuanced influence of anomalies in external forcing. Current research and operational activities focus on exploring and exploiting potential links between external anomalies and seasonal-mean climate patterns. Here I examine reanalysed meteorological data sets for the unusual winter 2013/2014, with drought and freezing conditions juxtaposed over North America and severe wet and stormy weather over parts of Europe, to study the role of weather systems and their transient upper-tropospheric flow patterns. I find that the amplitude, recurrence and location of these transient patterns account directly for the corresponding anomalous seasonal-mean patterns. They occurred episodically and sequentially, were linked dynamically, and exhibited some circumpolar connectivity. I conclude that the upper-tropospheric components of transient weather systems are significant for understanding and predicting seasonal weather patterns, whereas the role of external factors is more subtle.
Weather explains high annual variation in butterfly dispersal
Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter
2016-01-01
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662
Simulation of all-scale atmospheric dynamics on unstructured meshes
NASA Astrophysics Data System (ADS)
Smolarkiewicz, Piotr K.; Szmelter, Joanna; Xiao, Feng
2016-10-01
The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed.
NASA Astrophysics Data System (ADS)
Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.
2013-10-01
The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.
NASA Astrophysics Data System (ADS)
Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.
2013-06-01
The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.
CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape
van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin
2017-01-01
Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.
Locations Where Space Weather Energy Impacts the Atmosphere
NASA Astrophysics Data System (ADS)
Sojka, Jan J.
2017-11-01
In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.
Application of the SCADA system in wastewater treatment plants.
Dieu, B
2001-01-01
The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.
Global sensitivity analysis of the BSM2 dynamic influent disturbance scenario generator.
Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf
2012-01-01
This paper presents the results of a global sensitivity analysis (GSA) of a phenomenological model that generates dynamic wastewater treatment plant (WWTP) influent disturbance scenarios. This influent model is part of the Benchmark Simulation Model (BSM) family and creates realistic dry/wet weather files describing diurnal, weekend and seasonal variations through the combination of different generic model blocks, i.e. households, industry, rainfall and infiltration. The GSA is carried out by combining Monte Carlo simulations and standardized regression coefficients (SRC). Cluster analysis is then applied, classifying the influence of the model parameters into strong, medium and weak. The results show that the method is able to decompose the variance of the model predictions (R(2)> 0.9) satisfactorily, thus identifying the model parameters with strongest impact on several flow rate descriptors calculated at different time resolutions. Catchment size (PE) and the production of wastewater per person equivalent (QperPE) are two parameters that strongly influence the yearly average dry weather flow rate and its variability. Wet weather conditions are mainly affected by three parameters: (1) the probability of occurrence of a rain event (Llrain); (2) the catchment size, incorporated in the model as a parameter representing the conversion from mm rain · day(-1) to m(3) · day(-1) (Qpermm); and, (3) the quantity of rain falling on permeable areas (aH). The case study also shows that in both dry and wet weather conditions the SRC ranking changes when the time scale of the analysis is modified, thus demonstrating the potential to identify the effect of the model parameters on the fast/medium/slow dynamics of the flow rate. The paper ends with a discussion on the interpretation of GSA results and of the advantages of using synthetic dynamic flow rate data for WWTP influent scenario generation. This section also includes general suggestions on how to use the proposed methodology to any influent generator to adapt the created time series to a modeller's demands.
Utilization of satellite data and regional scale numerical models in short range weather forecasting
NASA Technical Reports Server (NTRS)
Kreitzberg, C. W.
1985-01-01
Overwhelming evidence was developed in a number of studies of satellite data impact on numerical weather prediction that it is unrealistic to expect satellite temperature soundings to improve detailed regional numerical weather prediction. It is likely that satellite data over the United States would substantially impact mesoscale dynamical predictions if the effort were made to develop a composite moisture analysis system. The horizontal variability of moisture, most clearly depicited in images from satellite water vapor channels, would not be determined from conventional rawinsondes even if that network were increased by a doubling of both the number of sites and the time frequency.
Scaling in nature: From DNA through heartbeats to weather
NASA Astrophysics Data System (ADS)
Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Ivanov, P. Ch.; Peng, C.-K.; Stanley, H. E.
1999-12-01
The purpose of this talk is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent α quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent α is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.
Nonlinear response of mid-latitude weather to the changing Arctic
NASA Astrophysics Data System (ADS)
Overland, James E.; Dethloff, Klaus; Francis, Jennifer A.; Hall, Richard J.; Hanna, Edward; Kim, Seong-Joong; Screen, James A.; Shepherd, Theodore G.; Vihma, Timo
2016-11-01
Are continuing changes in the Arctic influencing wind patterns and the occurrence of extreme weather events in northern mid-latitudes? The chaotic nature of atmospheric circulation precludes easy answers. The topic is a major science challenge, as continued Arctic temperature increases are an inevitable aspect of anthropogenic climate change. We propose a perspective that rejects simple cause-and-effect pathways and notes diagnostic challenges in interpreting atmospheric dynamics. We present a way forward based on understanding multiple processes that lead to uncertainties in Arctic and mid-latitude weather and climate linkages. We emphasize community coordination for both scientific progress and communication to a broader public.
Scaling in nature: from DNA through heartbeats to weather
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Bunde, A.; Goldberger, A. L.; Peng, C. K.; Stanley, H. E.
1999-01-01
The purpose of this report is to describe some recent progress in applying scaling concepts to various systems in nature. We review several systems characterized by scaling laws such as DNA sequences, heartbeat rates and weather variations. We discuss the finding that the exponent alpha quantifying the scaling in DNA in smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the scaling exponent alpha is smaller during sleep periods compared to wake periods. We also discuss the recent findings that suggest a universal scaling exponent characterizing the weather fluctuations.
Towards a unified Global Weather-Climate Prediction System
NASA Astrophysics Data System (ADS)
Lin, S. J.
2016-12-01
The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the unification in weather and climate models can happen not just at the algorithm or parameterization level, but also in the metric and tuning strategy used for both applications, and ultimately, with benefits to both weather and climate applications.
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)
2002-01-01
The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.
Advances in Predicting Magnetic Fields on the Far Side of the Sun
NASA Astrophysics Data System (ADS)
Lindsey, C. A.
2016-12-01
Techniques in local solar seismology applied to observations of seismic oscillations in the Sun's near hemisphere allow us to map large magnetic regions in the Sun's far hemisphere. Seismic signatures are not nearly as sensitive to magnetic flux as observations in electromagnetic radiation. However, they clearly identify and locate the 400 or so largest active regions in a typical solar cycle, i.e., those of most concern for space-weather forecasting. By themselves, seismic observations are insensitive to magnetic polarity. However, the Hale polarity law offers tantalizing avenues for guessing polarity distributions from seismic signatures as they evolve. I will review what we presently know about the relationship between seismic signatures of active regions and their magnetic and radiative properties, and offer a preliminary assessment of the potential of far-side seismic maps for space-weather forecasting in the coming decade.
Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States
Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to ...
Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the contiguous United States
Dynamic evaluation of the fully coupled Weather Research and Forecasting (WRF)– Community Multi-scale Air Quality (CMAQ) model ozone simulations over the contiguous United States (CONUS) using two decades of simulations covering the period from 1990 to 2010 is conducted to assess...
Complexity in the Chinese stock market and its relationships with monetary policy intensity
NASA Astrophysics Data System (ADS)
Ying, Shangjun; Fan, Ying
2014-01-01
This paper introduces how to formulate the CSI300 evolving stock index using the Paasche compiling technique of weighed indexes after giving the GCA model. It studies dynamics characteristics of the Chinese stock market and its relationships with monetary policy intensity, based on the evolving stock index. It concludes by saying that it is possible to construct a dynamics equation of the Chinese stock market using three variables, and that it is useless to regular market-complexity according to changing intensity of external factors from a chaos point of view.
NASA Astrophysics Data System (ADS)
Zischg, Andreas
2013-04-01
Integrated risk management consists of risk prevention, early warning, intervention during an event and restoration/re-construction after an event. The prevention phase consists of land use planning measures with a long-term time horizon and of structural measures that sometimes have a lifespan of more than 30-50 years. In this case, it is important to analyse the long-term evolvement of natural risks due to climate changes or land use changes. Besides of this, the spatial and temporal variability of a natural hazard process during the course of an event is also important. The shift from "static" hazard and risk assessment towards a "dynamic" assessment offers benefits for improving the intervention phase in risk management. This contribution describes some examples and points out the benefits of this shift for risk management. One example is the variable disposition of small alpine catchments for runoff and its relevance for early warning. The disposition for runoff depends on the actual status of environmental variables such as soil moisture and the snowpack characteristics. A feasibility study showed how the monitoring of soil moisture and the status of the snowpack can be incorporated into a rule base for describing the temporal variability of the disposition for high runoff in alpine catchments. The study showed that this information about the system state of alpine catchments can be used to improve the assessment of the consequences of a weather forecast for risk management. Another example is the use of snowpack and weather monitoring and traffic intensity measurements for avalanche risk management on alpine roads. Here, the information about the spatio-temporal variability of the snow avalanches and the presence of vehicles can be used for improving the procedures for road closure and re-opening. Another example is the preparation of intervention plans for fire brigades and other relief units during urban floods. The simulation of the temporal evolvement of a single flood event (time horizon of 0-24 hours) provides information for the elaboration of the intervention tactic. The following questions can be answered only by knowing the temporal and spatial evolvement during an event itself: Which intervention priorities have to be set if the resources of the relief units are limited? Which early interventions could be turn out to be unhelpful because in a later step the object to be protected will be flooded anyway? What is the time available for setting up object protection measures and other flood protection measures? The most important factor to implement the theory in practice is the focus on the interlinkages between the simulation of all possible scenarios in advance (scenario techniques, analysing the time-steps in flood simulation), the monitoring system (now-casting, real-time-data), the scenarios of intervention measures and their interdependency with the hazard scenarios. The interlinkages can be set up and described with the expert system approach.
NASA Technical Reports Server (NTRS)
Dworak, Richard; Bedka, Kristopher; Brunner, Jason; Feltz, Wayne
2012-01-01
Studies have found that convective storms with overshooting-top (OT) signatures in weather satellite imagery are often associated with hazardous weather, such as heavy rainfall, tornadoes, damaging winds, and large hail. An objective satellite-based OT detection product has been developed using 11-micrometer infrared window (IRW) channel brightness temperatures (BTs) for the upcoming R series of the Geostationary Operational Environmental Satellite (GOES-R) Advanced Baseline Imager. In this study, this method is applied to GOES-12 IRW data and the OT detections are compared with radar data, severe storm reports, and severe weather warnings over the eastern United States. The goals of this study are to 1) improve forecaster understanding of satellite OT signatures relative to commonly available radar products, 2) assess OT detection product accuracy, and 3) evaluate the utility of an OT detection product for diagnosing hazardous convective storms. The coevolution of radar-derived products and satellite OT signatures indicates that an OT often corresponds with the highest radar echo top and reflectivity maximum aloft. Validation of OT detections relative to composite reflectivity indicates an algorithm false-alarm ratio of 16%, with OTs within the coldest IRW BT range (less than 200 K) being the most accurate. A significant IRW BT minimum typically present with an OT is more often associated with heavy precipitation than a region with a spatially uniform BT. Severe weather was often associated with OT detections during the warm season (April September) and over the southern United States. The severe weather to OT relationship increased by 15% when GOES operated in rapid-scan mode, showing the importance of high temporal resolution for observing and detecting rapidly evolving cloud-top features. Comparison of the earliest OT detection associated with a severe weather report showed that 75% of the cases occur before severe weather and that 42% of collocated severe weather reports had either an OT detected before a severe weather warning or no warning issued at all. The relationships between satellite OT signatures, severe weather, and heavy rainfall shown in this paper suggest that 1) when an OT is detected, the particular storm is likely producing heavy rainfall and/or possibly severe weather; 2) an objective OT detection product can be used to increase situational awareness and forecaster confidence that a given storm is severe; and 3) this product may be particularly useful in regions with insufficient radar coverage.
Bonhoeffer, Sebastian
2018-01-01
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. PMID:29750784
Frenoy, Antoine; Bonhoeffer, Sebastian
2018-05-01
The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.
Evolving virtual creatures and catapults.
Chaumont, Nicolas; Egli, Richard; Adami, Christoph
2007-01-01
We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard
NASA Technical Reports Server (NTRS)
Pellish, Jonathan
2017-01-01
Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.
Global, real-time ionosphere specification for end-user communication and navigation products
NASA Astrophysics Data System (ADS)
Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2010-12-01
Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those data into operational space physics models, and finally generate visualization products such as the images, plots, and alerts that can be viewed on SpaceWx. In a real sense, the space weather community is now able to transition research models into operations through “proofing” products such as real-time disseminated of information through smart phones. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
NASA Astrophysics Data System (ADS)
Block, J.; Crawl, D.; Artes, T.; Cowart, C.; de Callafon, R.; DeFanti, T.; Graham, J.; Smarr, L.; Srivas, T.; Altintas, I.
2016-12-01
The NSF-funded WIFIRE project has designed a web-based wildfire modeling simulation and visualization tool called FireMap. The tool executes FARSITE to model fire propagation using dynamic weather and fire data, configuration settings provided by the user, and static topography and fuel datasets already built-in. Using GIS capabilities combined with scalable big data integration and processing, FireMap enables simple execution of the model with options for running ensembles by taking the information uncertainty into account. The results are easily viewable, sharable, repeatable, and can be animated as a time series. From these capabilities, users can model real-time fire behavior, analyze what-if scenarios, and keep a history of model runs over time for sharing with collaborators. Firemap runs FARSITE with national and local sensor networks for real-time weather data ingestion and High-Resolution Rapid Refresh (HRRR) weather for forecasted weather. The HRRR is a NOAA/NCEP operational weather prediction system comprised of a numerical forecast model and an analysis/assimilation system to initialize the model. It is run with a horizontal resolution of 3 km, has 50 vertical levels, and has a temporal resolution of 15 minutes. The HRRR requires an Environmental Data Exchange (EDEX) server to receive the feed and generate secondary products out of it for the modeling. UCSD's EDEX server, funded by NSF, makes high-resolution weather data available to researchers worldwide and enables visualization of weather systems and weather events lasting months or even years. The high-speed server aggregates weather data from the University Consortium for Atmospheric Research by way of a subscription service from the Consortium called the Internet Data Distribution system. These features are part of WIFIRE's long term goals to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. Although Firemap is a research product of WIFIRE, developed in collaboration with a number of fire departments, the tool is operational in pilot form for providing big data-driven predictive fire spread modeling. Most recently, FireMap was used for situational awareness in the July 2016 Sand Fire by LA City and LA County Fire Departments.
East African weathering dynamics controlled by vegetation-climate feedbacks
Ivory, Sarah J.; McGlue, Michael M.; Ellis, Geoffrey S.; Boehlke, Adam; Lézine, Anne-Marie; Vincens, Annie; Cohen, Andrew S.
2017-01-01
Tropical weathering has important linkages to global biogeochemistry and landscape evolution in the East African rift. We disentangle the influences of climate and terrestrial vegetation on chemical weathering intensity and erosion at Lake Malawi using a long sediment record. Fossil pollen, microcharcoal, particle size, and mineralogy data affirm that the detrital clays accumulating in deep water within the lake are controlled by feedbacks between climate and hinterland forest composition. Particle-size patterns are also best explained by vegetation, through feedbacks with lake levels, wildfires, and erosion. We develop a new source-to-sink framework that links lacustrine sedimentation to hinterland vegetation in tropical rifts. Our analysis suggests that climate-vegetation interactions and their coupling to weathering/erosion could threaten future food security and has implications for accurately predicting petroleum play elements in continental rift basins.
An Aircraft Vortex Spacing System (AVOSS) for Dynamical Wake Vortex Spacing Criteria
NASA Technical Reports Server (NTRS)
Hinton, D. A.
1996-01-01
A concept is presented for the development and implementation of a prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to use current and short-term predictions of the atmospheric state in approach and departure corridors to provide, to ATC facilities, dynamical weather dependent separation criteria with adequate stability and lead time for use in establishing arrival scheduling. The AVOSS will accomplish this task through a combination of wake vortex transport and decay predictions, weather state knowledge, defined aircraft operational procedures and corridors, and wake vortex safety sensors. Work is currently underway to address the critical disciplines and knowledge needs so as to implement and demonstrate a prototype AVOSS in the 1999/2000 time frame.
NASA Astrophysics Data System (ADS)
Mutua, F.; Koike, T.
2013-12-01
Extreme weather events have been the leading cause of disasters and damage all over the world.The primary ingredient to these disasters especially floods is rainfall which over the years, despite advances in modeling, computing power and use of new data and technologies, has proven to be difficult to predict. Also, recent climate projections showed a pattern consistent with increase in the intensity and frequency of extreme events in the East African region.We propose a holistic integrated approach to climate change assessment and extreme event adaptation through coupling of analysis techniques, tools and data. The Lake Victoria Basin (LVB) in East Africa supports over three million livelihoods and is a valuable resource to five East African countries as a source of water and means of transport. However, with a Mesoscale weather regime driven by land and lake dynamics,extreme Mesoscale events have been prevalent and the region has been on the receiving end during anomalously wet years in the region. This has resulted in loss of lives, displacements, and food insecurity. In the LVB, the effects of climate change are increasingly being recognized as a significant contributor to poverty, by its linkage to agriculture, food security and water resources. Of particular importance are the likely impacts of climate change in frequency and intensity of extreme events. To tackle this aspect, this study adopted an integrated regional, mesoscale and basin scale approach to climate change assessment. We investigated the projected changes in mean climate over East Africa, diagnosed the signals of climate change in the atmosphere, and transferred this understanding to mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC AR4 report; the selected three General Circulation Models (GCMs) project a wetter East Africa with intermittent dry periods in June-August. Extreme events in the region are projected to increase; with the number of wet days exceeding the 90% percentile of 1981-2000 likely to increase by 20-40% in the whole region. We also focused on short-term weather forecasting as a step towards adapting to a changing climate. This involved dynamic downscaling of global weather forecasts to high resolution with a special focus on extreme events. By utilizing complex model dynamics, the system was able to reproduce the Mesoscale dynamics well, simulated the land/lake breeze and diurnal pattern but was inadequate in some aspects. The quantitative prediction of rainfall was inaccurate with overestimation and misplacement but with reasonable occurrence. To address these shortcomings we investigated the value added by assimilating Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature during the event. By assimilating 23GHz (sensitive to water) and 89GHz (sensitive to cloud) frequency brightness temperature; the predictability of an extreme rain weather event was investigated. The assimilation through a Cloud Microphysics Data Assimilation (CMDAS) into the weather prediction model considerably improved the spatial distribution of this event.
NASA Astrophysics Data System (ADS)
Hartmann, Jens; Li, Gaojun; West, A. Joshua
2017-04-01
Enhanced partial melting of mantle material probably started when the subduction motor started around 3.2 Ga ago as evidenced by the formation history of the continental crust. Carbon is degassing due partial melting as it is an incompatible element. Therefore, mantle carbon degassing rates would change with time proportionally to the reservoir mantle concentration evolution and the ocean crust production rate, causing a distinct CO2-degassing rate change with time. The evolution of the mantle degassing rate has some implications for the reconstruction of the carbon cycle and therefore climate and Earth surface processes rates, as CO2-degassing rates are used to constrain or to balance the atmosphere-ocean-crust carbon cycle system. It will be shown that compilations of CO2-degassing from relevant geological sources are probably exceeding the established CO2-sink terrestrial weathering, which is often used to constrain long-term mantle degassing rates to close the carbon cycle on geological time scales. In addition, the scenarios for the degassing dynamics from the mantle sources suggest that the mantle is depleting its carbon content since 3 Ga. This has further implications for the long-term CO2-sink weathering. Results will be compared with geochemical proxies for weathering and weathering intensity dynamics, and will be set in context with snow ball Earth events and long-term emplacement dynamics of mafic areas as Large Igneous Provinces. Decreasing mantle degassing rates since about 2 Ga suggest a constraint for the evolution of the carbon cycle and recycling potential of the amount of subducted carbon. If the given scenarios hold further investigation, the contribution of mantle degassing to climate forcing (directly and via recycling) will decrease further.
NASA Astrophysics Data System (ADS)
Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.
2017-12-01
The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.
New challenges of the ARISE project
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth
2015-04-01
It has been robustly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate throughout the troposphere all the way to the Earth's surface. A key part of the coupling between the troposphere and stratosphere occurs through the propagation and breaking of planetary-scale Rossby waves and gravity waves. Limited observation of the middle atmosphere and these waves in particular limits the ability to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The ARISE project combines for the first time international networks with complementary technologies such as infrasound, lidar and airglow. This joint network provided advanced data products that started to be used as benchmarks for weather forecast models. The ARISE network also allows enhanced and detailed monitoring of other extreme events in the Earth system such as erupting volcanoes, magnetic storms, tornadoes and tropical thunderstorms. In order to improve the ability of the network to monitor atmospheric dynamics, ARISE proposes to extend i) the existing network coverage in Africa and the high latitudes, ii) the altitude range in the stratosphere and mesosphere, iii) the observation duration using routine observation modes, and to use complementary existing infrastructures and innovative instrumentations. Data will be collected over the long term to improve weather forecasting to monthly or seasonal timescales, to monitor atmospheric extreme events and climate change. ARISE focuses on the link between models and observations for future assimilation of data by operational weather forecasting models. Among the applications, ARISE2 proposes infrasound remote volcano monitoring to provide notifications to civil aviation.
Loehman, Rachel A.; Elias, Joran; Douglass, Richard J.; Kuenzi, Amy J.; Mills, James N.; Wagoner, Kent
2013-01-01
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for development of early-warning systems for disease risk. Relationships among weather variables, satellite-derived vegetation productivity, and deer mouse populations were examined for a grassland site east of the Continental Divide and a sage-steppe site west of the Continental Divide in Montana, USA. We acquired monthly deer mouse population data for mid-1994 through 2007 from long-term study sites maintained for monitoring changes in hantavirus reservoir populations, and we compared these with monthly bioclimatology data from the same period and gross primary productivity data from the Moderate Resolution Imaging Spectroradiometer sensor for 2000–06. We used the Random Forests statistical learning technique to fit a series of predictive models based on temperature, precipitation, and vegetation productivity variables. Although we attempted several iterations of models, including incorporating lag effects and classifying rodent density by seasonal thresholds, our results showed no ability to predict rodent populations using vegetation productivity or weather data. We concluded that trophic cascade connections to rodent population levels may be weaker than originally supposed, may be specific to only certain climatic regions, or may not be detectable using remotely sensed vegetation productivity measures, although weather patterns and vegetation dynamics were positively correlated. PMID:22493110
EVOLUTION OF GALAXY GROUPS IN THE ILLUSTRIS SIMULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raouf, Mojtaba; Khosroshahi, Habib G.; Dariush, A., E-mail: m.raouf@ipm.ir
We present the first study of the evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation overproduces galaxy systems with a large luminosity gap, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is just as successful as the probed semi-analytic model inmore » recovering the correlation between luminosity gap and offset of the luminosity centroid. We find evolutionary tracks based on luminosity gap that indicate that a group with a large luminosity gap is rooted in one with a small luminosity gap, regardless of the position of the brightest group galaxy within the halo. This simulation helps to explore, for the first time, the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this to be consistent with the latest observational studies of radio activity in the brightest group galaxies in fossil groups. We also find that the intragalactic medium in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.« less
Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model
Xu, Guanghua; Yang, Junjie; Li, Guoqing
2013-01-01
We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530
Beyond Problem-Based Learning: Using Dynamic PBL in Chemistry
ERIC Educational Resources Information Center
Overton, Tina L.; Randles, Christopher A.
2015-01-01
This paper describes the development and implementation of a novel pedagogy, dynamic problem-based learning. The pedagogy utilises real-world problems that evolve throughout the problem-based learning activity and provide students with choice and different data sets. This new dynamic problem-based learning approach was utilised to teach…
Root-driven Weathering Impacts on Mineral-Organic Associations in Deep Soil
NASA Astrophysics Data System (ADS)
Keiluweit, M.; Garcia Arredondo, M.; Tfaily, M. M.; Kukkadapu, R. K.; Schulz, M. S.; Lawrence, C. R.
2017-12-01
Plant roots dramatically reshape the soil environments through the release of organic compounds. While root-derived organic compounds are recognized as an important source of soil C, their role in promoting weathering reactions has largely been overlooked. On the one hand, root-driven weathering may generate mineral-organic associations, which can protect soil C for centuries to millennia. On the other hand, root-driven weathering also transforms minerals, potentially disrupting protective mineral-organic associations in the process. Hence root-derived C may not only initiate C accumulation, but also diminish C stocks through disruption of mineral-organic associations. Here we determined the impact of rhizogenic weathering on mineral-organic associations, and associated changes in C storage, across the Santa Cruz Marine Terrace chronosequence (65ka-226ka). Using a combination of high-resolution mass spectrometry, Mössbauer, and X-ray (micro)spectroscopy, we examined mineral-organic associations of deep soil horizons characterized by intense rhizogenic weathering gradients. Initial rhizogenic weathering dramatically increased C stocks, which is directly linked to an increase of microbially-derived C bound to monomeric Fe and Al and nano-goethite. As weathering proceeded, the soil C stocks declined concurrent with an increasingly plant-derived C signature and decreasing crystallinity. X-ray spectromicroscopic analyses revealed strong spatial associations between C and Fe during initial weathering stages, indicative of protective mineral-organic associations. In contrast, later weathering stages showed weaker spatial relationships between C and Fe. We conclude that rhizogenic weathering enhance C storage by creating protective mineral-organic associations in the initial weathering stages. As root-driven weathering proceeds, minerals are transformed into more crystalline phases that retain lower amounts of C. Our results demonstrate that root-induced weathering reactions are primary drivers of the dynamics of mineral-organic associations, and are thus critical for future predictions of the vulnerability of deep soil carbon to climate change.
Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center
NASA Astrophysics Data System (ADS)
Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz
2013-03-01
Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/
Dynamic evaluation of two decades of ozone simulations performed with the fully coupled Weather Research and Forecasting (WRF)–Community Multi-scale Air Quality (CMAQ) model over the contiguous United States is conducted to assess how well the changes in observed ozone air ...
Space Weathering Rates in Lunar and Itokawa Samples
NASA Technical Reports Server (NTRS)
Keller, L. P.; Berger, E. L.
2017-01-01
Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.
Phithakkitnukoon, Santi; Leong, Tuck W.; Smoreda, Zbigniew; Olivier, Patrick
2012-01-01
The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics. PMID:23071523
Phithakkitnukoon, Santi; Leong, Tuck W; Smoreda, Zbigniew; Olivier, Patrick
2012-01-01
The effect of weather on social interactions has been explored through the analysis of a large mobile phone use dataset. Time spent on phone calls, numbers of connected social ties, and tie strength were used as proxies for social interactions; while weather conditions were characterized in terms of temperature, relative humidity, air pressure, and wind speed. Our results are based on the analysis of a full calendar year of data for 22,696 mobile phone users (53.2 million call logs) in Lisbon, Portugal. The results suggest that different weather parameters have correlations to the level and character of social interactions. We found that although weather did not show much influence upon people's average call duration, the likelihood of longer calls was found to increase during periods of colder weather. During periods of weather that were generally considered to be uncomfortable (i.e., very cold/warm, very low/high air pressure, and windy), people were found to be more likely to communicate with fewer social ties. Despite this tendency, we found that people are more likely to maintain their connections with those they have strong ties with much more than those of weak ties. This study sheds new light on the influence of weather conditions on social relationships and how mobile phone data can be used to investigate the influence of environmental factors on social dynamics.
Identifying when weather influences life-history traits of grazing herbivores.
Sims, Michelle; Elston, David A; Larkham, Ann; Nussey, Daniel H; Albon, Steve D
2007-07-01
1. There is increasing evidence that density-independent weather effects influence life-history traits and hence the dynamics of populations of animals. Here, we present a novel statistical approach to estimate when such influences are strongest. The method is demonstrated by analyses investigating the timing of the influence of weather on the birth weight of sheep and deer. 2. The statistical technique allowed for the pattern of temporal correlation in the weather data enabling the effects of weather in many fine-scale time intervals to be investigated simultaneously. Thus, while previous studies have typically considered weather averaged across a single broad time interval during pregnancy, our approach enabled examination simultaneously of the relationships with weekly and fortnightly averages throughout the whole of pregnancy. 3. We detected a positive effect of temperature on the birth weight of deer, which is strongest in late pregnancy (mid-March to mid-April), and a negative effect of rainfall on the birthweight of sheep, which is strongest during mid-pregnancy (late January to early February). The possible mechanisms underlying these weather-birth weight relationships are discussed. 4. This study enhances our insight into the pattern of the timing of influence of weather on early development. The method is of much more general application and could provide valuable insights in other areas of ecology in which sequences of intercorrelated explanatory variables have been collected in space or in time.
A Milestone in Commercial Space Weather: USTAR Center for Space Weather
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.
2009-12-01
As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.
Interplay between solid Earth and biological evolution
NASA Astrophysics Data System (ADS)
Höning, Dennis; Spohn, Tilman
2017-04-01
Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.
ADAS Update and Maintainability
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2010-01-01
Since 2000, both the National Weather Service Melbourne (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LOIS) as part of their forecast and warning operations. The original LOIS was developed by the Applied Meteorology Unit (AMU) in 1998 (Manobianco and Case 1998) and has undergone subsequent improvements. Each has benefited from three-dimensional (3-D) analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (AD AS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive understanding of evolving fine-scale weather features. Over the years, the LDIS has become problematic to maintain since it depends on AMU-developed shell scripts that were written for an earlier version of the ADAS software. The goals of this task were to update the NWS MLB/SMG LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify the AMU-developed shell scripts written to govern the system. In addition, the previously developed ADAS graphical user interface (GUI) was updated. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting (WRF) model used by both groups.
Probabilistic Weather Information Tailored to the Needs of Transmission System Operators
NASA Astrophysics Data System (ADS)
Alberts, I.; Stauch, V.; Lee, D.; Hagedorn, R.
2014-12-01
Reliable and accurate forecasts for wind and photovoltaic (PV) power production are essential for stable transmission systems. A high potential for improving the wind and PV power forecasts lies in optimizing the weather forecasts, since these energy sources are highly weather dependent. For this reason the main objective of the German research project EWeLiNE is to improve the quality the underlying numerical weather predictions towards energy operations. In this project, the German Meteorological Service (DWD), the Fraunhofer Institute for Wind Energy and Energy System Technology, and three of the German transmission system operators (TSOs) are working together to improve the weather and power forecasts. Probabilistic predictions are of particular interest, as the quantification of uncertainties provides an important tool for risk management. Theoretical considerations suggest that it can be advantageous to use probabilistic information to represent and respond to the remaining uncertainties in the forecasts. However, it remains a challenge to integrate this information into the decision making processes related to market participation and power systems operations. The project is planned and carried out in close cooperation with the involved TSOs in order to ensure the usability of the products developed. It will conclude with a demonstration phase, in which the improved models and newly developed products are combined into a process chain and used to provide information to TSOs in a real-time decision support tool. The use of a web-based development platform enables short development cycles and agile adaptation to evolving user needs. This contribution will present the EWeLiNE project and discuss ideas on how to incorporate probabilistic information into the users' current decision making processes.
Climate, weather, space weather: model development in an operational context
NASA Astrophysics Data System (ADS)
Folini, Doris
2018-05-01
Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.
Weather explains high annual variation in butterfly dispersal.
Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter
2016-07-27
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.
2016-12-01
The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.
NASA Astrophysics Data System (ADS)
Adamson, E. T.; Pizzo, V. J.; Biesecker, D. A.; Mays, M. L.; MacNeice, P. J.; Taktakishvili, A.; Viereck, R. A.
2017-12-01
In 2011, NOAA's Space Weather Prediction Center (SWPC) transitioned the world's first operational space weather model into use at the National Weather Service's Weather and Climate Operational Supercomputing System (WCOSS). This operational forecasting tool is comprised of the Wang-Sheeley-Arge (WSA) solar wind model coupled with the Enlil heliospheric MHD model. Relying on daily-updated photospheric magnetograms produced by the National Solar Observatory's Global Oscillation Network Group (GONG), this tool provides critical predictive knowledge of heliospheric dynamics such as high speed streams and coronal mass ejections. With the goal of advancing this predictive model and quantifying progress, SWPC and NASA's Community Coordinated Modeling Center (CCMC) have initiated a collaborative effort to assess improvements in space weather forecasts at Earth by moving from a single daily-updated magnetogram to a sequence of time-dependent magnetograms to drive the ambient inputs for the WSA-Enlil model as well as incorporating the newly developed Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. We will provide a detailed overview of the scope of this effort and discuss preliminary results from the first phase focusing on the impact of time-dependent magnetogram inputs to the WSA-Enlil model.
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
Malinowska, Agnieszka H; van Strien, Arco J; Verboom, Jana; WallisdeVries, Michiel F; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.
Malinowska, Agnieszka H.; van Strien, Arco J.; Verboom, Jana; WallisdeVries, Michiel F.; Opdam, Paul
2014-01-01
Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics) across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i) trends in distribution patterns, (ii) the effect of temperature on colonisation and persistence probability, and (iii) the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity), or other factors might be masking the effects (e.g. availability and quality of habitat). Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest. PMID:25330414
Effects of Space Weather on Biomedical Parameters during the Solar Activity Cycles 23-24.
Ragul'skaya, M V; Rudenchik, E A; Chibisov, S M; Gromozova, E N
2015-06-01
The results of long-term (1998-2012) biomedical monitoring of the biotropic effects of space weather are discussed. A drastic change in statistical distribution parameters in the middle of 2005 was revealed that did not conform to usual sinusoidal distribution of the biomedical data reflecting changes in the number of solar spots over a solar activity cycle. The dynamics of space weather of 2001-2012 is analyzed. The authors hypothesize that the actual change in statistical distributions corresponds to the adaptation reaction of the biosphere to nonstandard geophysical characteristics of the 24th solar activity cycle and the probable long-term decrease in solar activity up to 2067.
NASA Astrophysics Data System (ADS)
Cai, X.; Yang, Z.-L.; Fisher, J. B.; Zhang, X.; Barlage, M.; Chen, F.
2016-01-01
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. In this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soil and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station - a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.
The Operational Meteorology of Convective Weather. Volume 1. Operational Mesoanalysis.
1982-11-01
instabilities and ,]low a clearer picture to emerge of what "mesoscale" really imnlies about the dynamics of systems . At this time , it seems plausible to...and explains why the term is quasigeostrophic) and its validity is seen in its value for diagnosis of real weather systems . Vorticity advection is...is, the time scale generally decreases with size scale. Mesoscale systems _ an develop vertical motions in the range of several m s , but their life
Low-Impact Space Weather Sensors and the U.S. National Security Spacecraft
2016-09-01
aircraft. Even the CIA’s supersonic and stealthy A-12 Oxcart and the Air Force’s SR-71 were vulnerable by the time they became operational. The...thrusters that expel the energy providing thrust. Multiple sources of energy can be used for propellant, including solid and liquid fueled thrusters...dynamic space weather. At its core, this great ball of gas produces significant energy through nuclear fusion that converts hydrogen to helium, the two
NASA Astrophysics Data System (ADS)
Babyakin, Alexander; Polozkov, Igor; Golitsyn, Georgy; Efimenko, Natalia; Zherlitsina, Liubov; Povolotskaya, Nina; Senik, Irina; Chalaya, Elena; Artamonova, Maria; Pogarski, Fedor
2010-05-01
The current global climate change is determined by changes in the structure of weather conditions, whose impact on the health of various regions of the planet has not been studied sufficiently. To study this effect on the low-altitude mountains resort of Kislovodsk (southern Russia) multi-factor assessment of the impact of the environment on human health is carried out. There were taking in account atmosphere condition, atmospheric aerosol pollution relationship with atmospheric circulation, the level of pollution matching with different types of weather, and, on the base of analysis of meteopathic reactions (MPR), the extent of their biotropism was revealed. Two sides of weather-climatic influences - specific and nonspecific - are interconnected. They manifest themselves differently in humans with different levels of regulation of vital activity and the adaptive capacity of the organism to the complex environmental effects. This complicates the precise physiological basis of quantitative criteria for the prediction of "biotropic" (adverse) weathers. Nevertheless, clinical observations have shown the existence of the "limiting" physiological bound on the size of medical-meteorological modules (MMM). The reactions of the organism to unfavorable weather factors on the results of a questionnaire monitoring surveillance of patients treated in clinics of Federal State Institution "Pyatigorsk State Research Institute of Curortology, FMBA of Russia" (PSRIC), in comparison with clinical data, have identified various MPR of the organism, the clinical manifestation of which depends on age, sex of the patient, the availability of principal and attendant pathology, reactivity, etc. Analysis of the results of clinical observation, cases of medical aid appealability to the station an ambulance at the sudden ill health, as well as the uptake of advice of sick people among immigrants during their short stay at the resort, and the local population, allowed the first approximation to clarify the criteria for "pathogenicity" of various weather conditions and the factors of air pollution. These criteria were put in a new technology of the Medical Weather Forecast (MWF). In this technology it is proposed to use the integrated Weather Pathogenicity Index (WPI), which is calculated as a weighted average of biotropism indices of various MMM, which include: the dynamics and day to day variability of temperature, pressure and humidity, wind speed, weight content of oxygen and natural air ions in the surface atmosphere, cloudiness, atmospheric phenomena, geomagnetic activity, the ultraviolet index (by UVB solar radiation), the integrated illumination by the sun, the heat conditions of the human. For each of the MMM the five physiological grades of the effects of weather on human adaptation to weather of magnitude and dynamics of WPI are marked out: indifferent, weak, moderate, harsh and overly harsh, according to which the degree of "pathogenicity" of the weather is estimating. Pathogenicity is indicated by quantitative number of medical types of weather (I - a very good weather, II - good weather, III - adverse weather, and IV - a particularly adverse weather). According to the forms of the pressure relief on the sea level, 850 hPa, and 500 hPa, the nature of atmospheric stratification and the presence of atmospheric fronts in the medical types of weather the type of atmospheric circulation is evaluating (anticyclonic - "A", cyclonic - "B", frontal - "C"), which defines a subtype of weather and the possible nature of meteopathia (hypotensive, hypoxic, spastic, etc.). Innovations of the new technology are associated with the introduction of a methodology for the preparation of MWF the modified classifiers to determine the gradation of biotropism degree for various MMM, confirmed by the results of comprehensive empirical medical and climatic studies using dynamic and synoptic weather forecasting making by Hydrometeocenter of Russia and forecast of atmospheric pollution making by Obukhov Institute of Atmospheric Physics RAS. The average weighted WPI forms the basis of weather type number, synoptic weather forecast allows you to define a subtype of the weather. This classification is used in the system of MWF in the resorts of Caucasian Mineral Waters (mountainous region of Northern Caucasus), making for the purpose of timely warnings of medical personnel of medical institutions to strengthen health surveillance and, if necessary, conduct prevention of MPR. MPR to changing weather conditions are most manifest in connection with resettlement of patients from their places of permanent residence to the unusual climatic conditions of the resort. In this regard, in order to enhance the spa rehabilitation of meteosensitive patients with coronary artery disease at PSRIC a physiological method was developed for early and routine prophylaxis of maladaptive pathological and, above all, MPR using the method of transcranial electric-pulse meso-diencephalic modulation by MDMK-4 apparatus with a frontooccipital location of the electrodes. Clinical manifestation of the MPR in adverse weather conditions in patients with coronary artery disease, hypertension with dysadaptation syndrome is characterized by frequent recurrences of angina, rhythm disorders, cerebral symptoms, vascular crisis, violations in the field of psycho-emotional area and other disorders. These meteopathies are eliminated with high efficiency using the MDMK-4 apparatus in individually selected modes at the planned rate of prophylaxis for 10 procedures. In order to urgent MPR prevention the procedures can be used situationally. The high preventive and curative effects of transcranial electric-pulse meso-diencephalic modulation of the MDMK-4 apparatus is shown by positive dynamics of the clinical status of patients, including data on the MPR test survey, the Kerdem vegetative index, rheoencephalography indicators, electrocardiography, neurovascular reactivity, Holter monitoring of blood pressure and ECG. For children with respiratory diseases PSRIC developed a number of effective methods to increase organism resistance to the effects of environmental factors through the use of artificial microclimate chambers and methods of climatic treatment. Thus, a comprehensive study has expanded our understanding of the impact of the environment on human health, to refine the criteria of selected biotropic situations related to the influence of atmospheric pollution, to improve the efficiency of the MWF system in mountain resorts of the North Caucasus, to develop ways to prevent meteopathies of patients with cardio-vascular and respiratory systems. The investigation was fulfilled in the frames of Program of Presidium of the Russian Academy of Sciences "Basic Sciences - for Medicine" and RFBR grant No. 07-05-12069-ofi_a.
C3Winds: A Novel 3D Wind Observing System to Characterize Severe Weather Events
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Wu, D. L.; Yee, J. H.; Boldt, J.; Demajistre, R.; Reynolds, E.; Tripoli, G. J.; Oman, L.; Prive, N.; Heidinger, A. K.; Wanzong, S.
2015-12-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to resolve high-resolution 3D dynamic structures of severe wind events. Rapid evolution of severe weather events highlights the need for high-resolution mesoscale wind observations. Yet mesoscale observations of severe weather dynamics are quite rare, especially over the ocean where extratropical and tropical cyclones (ETCs and TCs) can undergo explosive development. Measuring wind velocity at the mesoscale from space remains a great challenge, but is critically needed to understand and improve prediction of severe weather and tropical cyclones. Based on compact, visible/IR imagers and a mature stereoscopic technique, C3Winds has the capability to measure high-resolution (~2 km) cloud motion vectors and cloud geometric heights accurately by tracking cloud features from two formation-flying CubeSats, separated by 5-15 minutes. Complementary to lidar wind measurements from space, C3Winds will provide high-resolution wind fields needed for detailed investigations of severe wind events in occluded ETCs, rotational structures inside TC eyewalls, and ozone injections associated with tropopause folding events. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with the potential for increased diurnal sampling via CubeSat constellation.
Dynamic soil properties in response to anthropogenic disturbance
NASA Astrophysics Data System (ADS)
Vanacker, Veerle; Ortega, Raúl
2013-04-01
Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedbacks between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. Here, we study dynamic soil properties for a rapidly changing anthropogenic landscape, and focus on the coupling between physical erosion, soil production and soil chemical weathering. The archaeological site of Santa Maria de Melque (Toledo, Central Spain) was selected for its remarkably long occupation history dating back to the 7th century AD. As part of the agricultural complex, four retention reservoirs were built in the Early Middle Ages. The sedimentary archive was used to track the evolution in sedimentation rates and geochemical properties of the sediment. Catchment-wide soil erosion rates vary slightly between the various occupation phases (7th century-now), but are of the same magnitude as the cosmogenic nuclide-derived erosion rates. However, there exists large spatial variation in physical erosion rates that are coupled with chemical weathering intensities. The sedimentary records suggest that there are important changes in the spatial pattern of sediment source areas through time as a result of changing land use patterns
Radiation Environment at GEO from the FY2G Satellite Observations
NASA Astrophysics Data System (ADS)
Wang, C.
2016-12-01
WANG Chun-Qin1,2*, Zhang Shen-Yi1,2 Jing Tao1,2, Zhang Huan-Xin1,2 Li Jia-Wei3 Zhang Xiao-Xin3 Sun Yue-Qiang1,2 Liang Jin-Bao1,2 Wei Fei1,2 Shen Guo-Hong1,2 Huang Cong3 Shi Chun-Yan1,21.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 2.Beijing Key Laboratory of Space Environment Exploration, Beijing 100190,China 3.National Satellite Meteorological Center, National Center for Space Weather, Beijing 100081, China; Abstract Recent measurements of the high energy electrons and protons with energetic particle instrument carried on the FY-2G satellite are presented. The instrument consist of two detectors-the high energy electrons instrument which can measure 200keV to greater than 4MeV electrons with eleven channels, and the high energy protons and heavy ions instrument which mainly senses incident flux of solar protons with seven channels from 4MeV to 300 MeV. The paper shows electrons and protons observations from Jan 2015 until Oct 2015. A precise description and preliminary analysis of particle dynamic during disturbances of magnetic storms、substorms and solar eruptions suggest that both of the detectors show accurate response to various disturbances and provide refined particles data. Comparison results of FY2G satellite with GOES series satellites reflect obvious local difference in particle flux evolvement especially during intensive disturbances time, which can be helpful for data assimilation of multi-satellite as well as further research in more complicated magnetosphere energy particle dynamic.
Local Data Integration in East Central Florida
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Manobianco, John T.
1999-01-01
The Applied Meteorology Unit has configured a Local Data Integration System (LDIS) for east central Florida which assimilates in-situ and remotely-sensed observational data into a series of high-resolution gridded analyses. The ultimate goal for running LDIS is to generate products that may enhance weather nowcasts and short-range (less than 6 h) forecasts issued in support of the 45th Weather Squadron (45 WS), Spaceflight Meteorology Group (SMG), and the Melbourne National Weather Service (NWS MLB) operational requirements. LDIS has the potential to provide added value for nowcasts and short-ten-n forecasts for two reasons. First, it incorporates all data operationally available in east central Florida. Second, it is run at finer spatial and temporal resolutions than current national-scale operational models such as the Rapid Update Cycle and Eta models. LDIS combines all available data to produce grid analyses of primary variables (wind, temperature, etc.) at specified temporal and spatial resolutions. These analyses of primary variables can be used to compute diagnostic quantities such as vorticity and divergence. This paper demonstrates the utility of LDIS over east central Florida for a warm season case study. The evolution of a significant thunderstorm outflow boundary is depicted through horizontal and vertical cross section plots of wind speed, divergence, and circulation. In combination with a suitable visualization too], LDIS may provide users with a more complete and comprehensive understanding of evolving mesoscale weather than could be developed by individually examining the disparate data sets over the same area and time.
The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.
2004-01-01
The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.
Overview of Hydrometeorologic Forecasting Procedures at BC Hydro
NASA Astrophysics Data System (ADS)
McCollor, D.
2004-12-01
Energy utility companies must balance production from limited sources with increasing demand from industrial, business, and residential consumers. The utility planning process requires a balanced, efficient, and effective distribution of energy from source to consumer. Therefore utility planners must consider the impact of weather on energy production and consumption. Hydro-electric companies should be particularly tuned to weather because their source of energy is water, and water supply depends on precipitation. BC Hydro operates as the largest hydro-electric company in western Canada, managing over 30 reservoirs within the province of British Columbia, and generating electricity for 1.6 million people. BC Hydro relies on weather forecasts of watershed precipitation and temperature to drive hydrologic reservoir inflow models and of urban temperatures to meet energy demand requirements. Operations and planning specialists in the company rely on current, value-added weather forecasts for extreme high-inflow events, daily reservoir operations planning, and long-term water resource management. Weather plays a dominant role for BC Hydro financial planners in terms of sensitive economic responses. For example, a two percent change in hydropower generation, due in large part to annual precipitation patterns, results in an annual net change of \\50 million in earnings. A five percent change in temperature produces a \\5 million change in yearly earnings. On a daily basis, significant precipitation events or temperature extremes involve potential profit/loss decisions in the tens of thousands of dollars worth of power generation. These factors are in addition to environmental and societal costs that must be considered equally as part of a triple bottom line reporting structure. BC Hydro water resource managers require improved meteorological information from recent advancements in numerical weather prediction. At BC Hydro, methods of providing meteorological forecast data are changing as new downscaling and ensemble techniques evolve to improve environmental information supplied to water managers.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toriyama, Koichi; Oguchi, Akihide; Morinaga, Atsuo
2011-12-15
We investigate the phenomenon that a Berry phase evolving linearly in time induces a frequency shift of the resonance transition between two eigenstates, regardless of whether or not they are superposed. Using the magnetic-field-insensitive two-photon microwave--radio-frequency transition, which is free of any other dynamical frequency shift, we demonstrate that the frequency shift caused by a uniform rotation of the magnetic field corresponds to the derivative of the Berry phase with respect to time and depends on the direction of rotation of the magnetic field.
Modeling apple surface temperature dynamics based on weather data.
Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng
2014-10-27
The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.
Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic
NASA Astrophysics Data System (ADS)
Lalic, B.; Jankovic, D.; Dekic, Lj; Eitzinger, J.; Firanj Sremac, A.
2017-02-01
Use of monthly weather forecast as input meteorological data for agrometeorological forecasting, crop modelling and plant protection can foster promising applications in agricultural production. Operational use of monthly or seasonal weather forecast can help farmers to optimize field operations (fertilizing, irrigation) and protection measures against plant diseases and pests by taking full advantage of monthly forecast information in predicting plant development, pest and disease risks and yield potentials few weeks in advance. It can help producers to obtain stable or higher yield with the same inputs and to minimise losses caused by weather. In Central and South-Eastern Europe ongoing climate change lead to shifts of crops phenology dynamics (i.e. in Serbia 4-8 weeks earlier in 2016 than in previous years) and brings this subject in the front of agronomy science and practice. Objective of this study is to test efficacy of monthly forecast in predicting phenology dynamics of different winter wheat varieties, using phenological model developed by Forecasting and Warning Service of Serbia in plant protection. For that purpose, historical monthly forecast for four months (March 1, 2005 - June 30, 2005) was assimilated from ECMWF MARS archive for 50 ensemble members and control run. Impact of different agroecological conditions is tested by using observed and forecasted data for two locations - Rimski Sancevi (Serbia) and Groß-Enzersdorf (Austria).
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
Modeling Apple Surface Temperature Dynamics Based on Weather Data
Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng
2014-01-01
The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management. PMID:25350507
The role of sediments stored in valleys in modulating the Quaternary weathering flux variations
NASA Astrophysics Data System (ADS)
Carretier, Sebastien; Goddéris, Yves; Vigier, Nathalie; Maffre, Pierre
2017-04-01
Silicate weathering is known to be central to the regulation of atmospheric CO2. Yet it is unclear how weathering responds to climatic variations. Data sets based on different proxies in sediment cores suggest either negligible Quaternary silicate weathering variations, or more weathering during wet and hot periods, or even the reverse. For example, a recent study based on d7Li in clay of Himalayan river terraces suggests, counter-intuitively, a less intense weathering during hot and wet periods compared to dry periods for the last 40 ka, with no clear physical explanation. We analyse catchment scale weathering signals using the numerical model Cidre, coupling landscape evolution with chemical weathering. Chemical weathering occurs within a regolith, either produced in situ at a rate depending on regolith thickness, temperature and precipitation, or corresponding to a deposit. The chemical flux is calculated from the dissolution of granitoid clasts, first exhumed on the hillslopes and then transported and potentially stocked in the valleys. This approach accounts for part of the stochastic nature of grain weathering within a catchment. We prescribe an uplift to an initial horizontal surface to reach a dynamic equilibrium under a constant climate. Then, we vary the precipitation rate and the temperature, alternating cold and dry periods with hot and wet periods (10 to 400 ka tested). When these variations are applied to an equilibrium mountain covered by a regolith ("transport-limited"), the weathering outlfux and the erosion flux are larger during wet and hot periods. On the contrary, for less weatherable conditions such that the mountain is not covered by regolith ("kinetically-limited"), the weathering is the highest at the beginning of the dry, cold and low erosive periods. This apparent paradox is explained by the temporary accumulation of sediment in the valleys in response to the drought. The hillslopes being striped, these valley deposits constitute the only weathering reservoir, whose large volume compensates for the unfavourable climatic conditions. Such a behaviour explains out-of-phase weathering signals, and suggests that the dominant weathering reservoir goes back and forth between the hillslopes and the valleys during climatic oscillations.
Stochastic Parameterization: Toward a New View of Weather and Climate Models
Berner, Judith; Achatz, Ulrich; Batté, Lauriane; ...
2017-03-31
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen
Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complexmore » interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.« less
Stochastic Parameterization: Toward a New View of Weather and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berner, Judith; Achatz, Ulrich; Batté, Lauriane
The last decade has seen the success of stochastic parameterizations in short-term, medium-range, and seasonal forecasts: operational weather centers now routinely use stochastic parameterization schemes to represent model inadequacy better and to improve the quantification of forecast uncertainty. Developed initially for numerical weather prediction, the inclusion of stochastic parameterizations not only provides better estimates of uncertainty, but it is also extremely promising for reducing long-standing climate biases and is relevant for determining the climate response to external forcing. This article highlights recent developments from different research groups that show that the stochastic representation of unresolved processes in the atmosphere, oceans,more » land surface, and cryosphere of comprehensive weather and climate models 1) gives rise to more reliable probabilistic forecasts of weather and climate and 2) reduces systematic model bias. We make a case that the use of mathematically stringent methods for the derivation of stochastic dynamic equations will lead to substantial improvements in our ability to accurately simulate weather and climate at all scales. Recent work in mathematics, statistical mechanics, and turbulence is reviewed; its relevance for the climate problem is demonstrated; and future research directions are outlined« less
Climate Shocks and Migration: An Agent-Based Modeling Approach.
Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-09-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.
Climate Shocks and Migration: An Agent-Based Modeling Approach
Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-01-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725
Investigation and evaluation of a computer program to minimize three-dimensional flight time tracks
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
The program for the DC 8-D3 flight planning was slightly modified for the three dimensional flight planning for DC 10 aircrafts. Several test runs of the modified program over the North Atlantic and North America were made for verifying the program. While geopotential height and temperature were used in a previous program as meteorological data, the modified program uses wind direction and speed and temperature received from the National Weather Service. A scanning program was written to collect required weather information from the raw data received in a packed decimal format. Two sets of weather data, the 12-hour forecast and 24-hour forecast based on 0000 GMT, are used for dynamic processes in testruns. In order to save computing time only the weather data of the North Atlantic and North America is previously stored in a PCF file and then scanned one by one.
NASA Astrophysics Data System (ADS)
Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.
2014-01-01
The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.
Catching Galactic open clusters in advanced stages of dynamical evolution
NASA Astrophysics Data System (ADS)
Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.
2018-04-01
During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely: ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7 and ESO 065-7. We employed Markov chain Monte-Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams (CMDs) cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12 and NGC 6573 resulted to be of nearly the same young age (8.2 ≤log(t yr-1) ≤ 8.3); ESO 260-7 and ESO065-7 are of intermediate age (9.2 ≤log(t yr-1) ≤ 9.4). All studied OCs are located at similar Galactocentric distances (RG ˜ 6 - 6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.
Catching Galactic open clusters in advanced stages of dynamical evolution
NASA Astrophysics Data System (ADS)
Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.
2018-07-01
During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7, and ESO 065-7. We employed Markov chain Monte Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12, and NGC 6573 resulted to be of nearly the same young age [8.2 ≤log(t yr-1) ≤ 8.3]; ESO 260-7 and ESO065-7 are of intermediate age [9.2 ≤log(t yr-1) ≤ 9.4]. All studied OCs are located at similar Galactocentric distances (RG ˜6-6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.
The Dynamical Classification of Centaurs which Evolve into Comets
NASA Astrophysics Data System (ADS)
Wood, Jeremy R.; Horner, Jonathan; Hinse, Tobias; Marsden, Stephen; Swinburne University of Technology
2016-10-01
Centaurs are small Solar system bodies with semi-major axes between Jupiter and Neptune and perihelia beyond Jupiter. Centaurs can be further subclassified into two dynamical categories - random walk and resonance hopping. Random walk Centaurs have mean square semi-major axes (< a2 >) which vary in time according to a generalized diffusion equation where < a2 > ~t2H. H is the Hurst exponent with 0 < H < 1, and t is time. The behavior of < a2 > for resonance hopping Centaurs is not well described by generalized diffusion.The aim of this study is to determine which dynamical type of Centaur is most likely to evolve into each class of comet. 31,722 fictional massless test particles were integrated for 3 Myr in the 6-body problem (Sun, Jovian planets, test particle). Initially each test particle was a member of one of four groups. The semi-major axes of all test particles in a group were clustered within 0.27 au from a first order, interior Mean Motion resonance of Neptune. The resonances were centered at 18.94 au, 22.95 au, 24.82 au and 28.37 au.If the perihelion of a test particle reached < 4 au then the test particle was considered to be a comet and classified as either a random walk or resonance hopping Centaur. The results showed that over 4,000 test particles evolved into comets within 3 Myr. 59% of these test particles were random walk and 41% were resonance hopping. The behavior of the semi-major axis in time was usually well described by generalized diffusion for random walk Centaurs (ravg = 0.98) and poorly described for resonance hopping Centaurs (ravg = 0.52). The average Hurst exponent was 0.48 for random walk Centaurs and 0.20 for resonance hopping Centaurs. Random walk Centaurs were more likely to evolve into short period comets while resonance hopping Centaurs were more likely to evolve into long period comets. For each initial cluster, resonance hopping Centaurs took longer to evolve into comets than random walk Centaurs. Overall the population of random walk Centaurs averaged 143 kyr to evolve into comets, and the population of resonance hopping Centaurs averaged 164 kyr.
Two-rate periodic protocol with dynamics driven through many cycles
NASA Astrophysics Data System (ADS)
Kar, Satyaki
2017-02-01
We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.
GEOSS interoperability for Weather, Ocean and Water
NASA Astrophysics Data System (ADS)
Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian
2013-04-01
"Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.
An analysis of high-impact, low-predictive skill severe weather events in the northeast U.S
NASA Astrophysics Data System (ADS)
Vaughan, Matthew T.
An objective evaluation of Storm Prediction Center slight risk convective outlooks, as well as a method to identify high-impact severe weather events with poor-predictive skill are presented in this study. The objectives are to assess severe weather forecast skill over the northeast U.S. relative to the continental U.S., build a climatology of high-impact, low-predictive skill events between 1980--2013, and investigate the dynamic and thermodynamic differences between severe weather events with low-predictive skill and high-predictive skill over the northeast U.S. Severe storm reports of hail, wind, and tornadoes are used to calculate skill scores including probability of detection (POD), false alarm ratio (FAR) and threat scores (TS) for each convective outlook. Low predictive skill events are binned into low POD (type 1) and high FAR (type 2) categories to assess temporal variability of low-predictive skill events. Type 1 events were found to occur in every year of the dataset with an average of 6 events per year. Type 2 events occur less frequently and are more common in the earlier half of the study period. An event-centered composite analysis is performed on the low-predictive skill database using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5° gridded dataset to analyze the dynamic and thermodynamic conditions prior to high-impact severe weather events with varying predictive skill. Deep-layer vertical shear between 1000--500 hPa is found to be a significant discriminator in slight risk forecast skill where high-impact events with less than 31-kt shear have lower threat scores than high-impact events with higher shear values. Case study analysis of type 1 events suggests the environment over which severe weather occurs is characterized by high downdraft convective available potential energy, steep low-level lapse rates, and high lifting condensation level heights that contribute to an elevated risk of severe wind.
NASA Astrophysics Data System (ADS)
Lin, S. J.
2015-12-01
The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured within the targeted high resolution region.
Murray, Kris A.; Skerratt, Lee F.; Garland, Stephen; Kriticos, Darren; McCallum, Hamish
2013-01-01
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline. PMID:23613783
Observational Simulation of Icing in Extreme Weather Conditions
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel
2017-04-01
Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft icing will be provided in detail. Overall, based on these results, scientific challenges related to icing environments will be emphasized for Arctic and cold environments in future projects in the ACE CWT.
NASA Technical Reports Server (NTRS)
Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave
2014-01-01
Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use cases.
Improved Weather Forecasting for the Dynamic Scheduling System of the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Henry, Kari; Maddalena, Ronald
2018-01-01
The Robert C Byrd Green Bank Telescope (GBT) uses a software system that dynamically schedules observations based on models of vertical weather forecasts produced by the National Weather Service (NWS). The NWS provides hourly forecasted values for ~60 layers that extend into the stratosphere over the observatory. We use models, recommended by the Radiocommunication Sector of the International Telecommunications Union, to derive the absorption coefficient in each layer for each hour in the NWS forecasts and for all frequencies over which the GBT has receivers, 0.1 to 115 GHz. We apply radiative transfer models to derive the opacity and the atmospheric contributions to the system temperature, thereby deriving forecasts applicable to scheduling radio observations for up to 10 days into the future. Additionally, the algorithms embedded in the data processing pipeline use historical values of the forecasted opacity to calibrate observations. Until recently, we have concentrated on predictions for high frequency (> 15 GHz) observing, as these need to be scheduled carefully around bad weather. We have been using simple models for the contribution of rain and clouds since we only schedule low-frequency observations under these conditions. In this project, we wanted to improve the scheduling of the GBT and data calibration at low frequencies by deriving better algorithms for clouds and rain. To address the limitation at low frequency, the observatory acquired a Radiometrics Corporation MP-1500A radiometer, which operates in 27 channels between 22 and 30 GHz. By comparing 16 months of measurements from the radiometer against forecasted system temperatures, we have confirmed that forecasted system temperatures are indistinguishable from those measured under good weather conditions. Small miss-calibrations of the radiometer data dominate the comparison. By using recalibrated radiometer measurements, we looked at bad weather days to derive better models for forecasting the contribution of clouds to the opacity and system temperatures. We will show how these revised algorithms should help us improve both data calibration and the accuracy of scheduling low-frequency observations.
Dimensions and dynamics of citizen observatories: The case of online amateur weather networks
NASA Astrophysics Data System (ADS)
Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter
2016-04-01
Crowd-sourced environmental observations are being increasingly considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public (so-called citizen science) and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated citizen observatories as one of the oldest and most widely practiced citizen science activities. The objective of this paper is to introduce a conceptual framework that enables a systematic review of different dimensions of these mushrooming/expanding networks. These dimensions include the geographic scope and types of network participants; the network's establishment mechanism, revenue stream(s) and existing communication paradigm; efforts required by citizens and support offered by platform providers; and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run these networks, sustainability of the platforms, data ownership and level of transparency of each network. This framework is then utilized to perform a critical and normative review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) There are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks. (2) The revenue stream(s) of online amateur weather networks is one of the least discussed but most important dimensions that is crucial for the sustainability of these networks. (3) Although all of the networks included in this study have one or more explicit pattern of two-way communications, there is no sign (yet) of interactive information exchange among the triangle of weather observers, data aggregators and policy makers. KEYWORDS Citizen Science, Citizen Observatories, ICT-enabled citizen participation, online amateur weather networks
NASA Astrophysics Data System (ADS)
Hancock, G. S.; Huettenmoser, J.; Shobe, C. M.; Eppes, M. C.
2016-12-01
Rock erodibility in channels is a primary control on the stresses required to erode bedrock (e.g., Sklar and Dietrich, 2001). Erodibility tends to be treated as a uniform and fixed variable at the scale of channel cross-sections, particularly in models of channel profile evolution. Here we present field data supporting the hypothesis (Hancock et al., 2011) that erodibility is a dynamic variable, driven by the interplay between erosion rate and weathering processes within cross-sections. We hypothesize that rock weathering varies in cross-sections from virtually unweathered in the thalweg, where frequent stripping removes weathered rock, to a degree of weathering determined by the frequency of erosive events higher on the channel margin. We test this hypothesis on three tributaries to the Potomac River underlain by similar bedrock but with varying erosion rates ( 0.01 to 0.8 m/ky). At multiple heights within three cross-sections on three tributaries, we measured compressive strength with a Schmidt hammer, surface roughness with a contour gage, and density and length of visible cracks. Compressive strength decreased with height in all nine cross-sections by 10% to 50%, and surface roughness increased with height in seven cross-sections by 25% - 45%, with the remaining two showing minimal change. Crack density increased with height in the three cross-sections measured. Taken together these data demonstrate increases in weathering intensity, and presumably, rock erodibility, with height. The y-intercept of the relation between height and the three measured variables were nearly identical, suggesting that thalweg erodibility was similar on each channel, as predicted, even though erodibility higher in the cross-section were markedly different. The rate at which the three variables changed with height in each cross-section is strongly related to stream power. Assuming stream power is a reasonable surrogate for erosion rate, this result implies that erosion rate can be a primary influence on the distribution of erodibility within channel cross-sections. We conclude that the interplay between rates of erosion and weathering produces spatial as well as temporal variability in erodibility which, in turn, influences channel form and gradient.
NASA Astrophysics Data System (ADS)
Pandey, S.; Rajaram, H.
2015-12-01
This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most pronounced in the fractured systems, with a departure from the maximum system-averaged dissolution rate occurring after ~100 kyr followed by a gradual decrease in the reaction rate with time that persists beyond 104 kyr.
Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A
2017-08-01
The need to increase the peak wet weather secondary treatment capacity of the City of Akron, Ohio, Water Reclamation Facility (WRF) provided the opportunity to test an integrated methodology for maximizing the peak wet weather secondary treatment capacity of activated sludge systems. An initial investigation, consisting of process modeling of the secondary treatment system and computational fluid dynamics (CFD) analysis of the existing relatively shallow secondary clarifiers (3.3 and 3.7 m sidewater depth in 30.5 m diameter units), indicated that a significant increase in capacity from 416 000 to 684 000 m3/d or more was possible by adding step feed capabilities to the existing bioreactors and upgrading the existing secondary clarifiers. One of the six treatment units at the WRF was modified, and an extensive 2-year testing program was conducted to determine the total peak wet weather secondary treatment capacity achievable. The results demonstrated that a peak wet weather secondary treatment capacity approaching 974 000 m3/d is possible as long as secondary clarifier solids and hydraulic loadings could be separately controlled using the step feed capability provided. Excellent sludge settling characteristics are routinely experienced at the City of Akron WRF, raising concerns that the identified peak wet weather secondary treatment capacity could not be maintained should sludge settling characteristics deteriorate for some reason. Computational fluid dynamics analysis indicated that the impact of the deterioration of sludge settling characteristics could be mitigated and the identified peak wet weather secondary treatment capacity maintained by further use of the step feed capability provided to further reduce secondary clarifier solids loading rates at the identified high surface overflow rates. The results also demonstrated that effluent limits not only for total suspended solids (TSS) and five-day carbonaceous biochemical oxygen demand (cBOD5) could be maintained, but also for ammonia-nitrogen and total phosphorous (TP). Although hydraulic limitations in other parts of the WRP prevent this full capacity to be realized, the City is proceeding to implement the modifications identified using this integrated methodology.
Land plants, weathering, and Paleozoic climatic evolution
NASA Astrophysics Data System (ADS)
Goddéris, Yves; Maffre, Pierre; Donnadieu, Yannick; Carretier, Sébastien
2017-04-01
At the end of the Paleozoic, the Earth plunged into the longest and most severe glaciation of the Phanerozoic eon (Montanez et al., 2013). The triggers for this event (called the Late Paleozoic Ice Age, LPIA) are still debated. Based on field observations and laboratory experiments showing that CO2 consumption by rock weathering is enhanced by the presence of plants, the onset of the LPIA has been related to the colonization of the continents by vascular plants in the latest Devonian. By releasing organic acids, concentrating respired CO2 in the soil, and by mechanically breaking rocks with their roots, land plants may have increased the weatherability of the continental surfaces. The "greening" of the continents may also have contributed to an enhanced burial of organic carbon in continental sedimentary basins, assuming that lignin decomposers have not yet evolved (Berner, 2004). As a consequence, CO2 went down, setting the conditions for the onset of the LPIA. This scenario is now widely accepted in the scientific community, and reinforces the feeling that biotic evolutionary steps are main drivers of the long-term climatic evolution. Although appealing, this scenario suffers from some weaknesses. The timing of the continent colonization by vascular plants was achieved in the late Devonian, several tens of million years before the onset of the LPIA (Davies and Gibling, 2013). Second, lignin decomposer fungi were present at the beginning of the Carboniferous, 360 million years ago while the LPIA started around 340-330 Ma (Nelsen et al., 2016). Land plants have also decreased the continental albedo, warming the Earth surface and promoting runoff. Weathering was thus facilitated and CO2 went down. Yet, temperature may have stayed constant, the albedo change compensating for the CO2 fall (Le Hir et al., 2010). From a modelling point of view, the effect of land plants on CO2 consumption by rock weathering is accounted for by forcing the weatherability of the continents to rise by a factor of 6 (Berner, 2004). This factor has been inferred from studies of the weathering rate of rocks in young environments, such as recent lava flows colonized by the vegetation (e.g. Moulton et al., 2001). Nevertheless, present-day continental areas displaying a dense vegetal cover (equatorial forests) are characterized by low weathering rates (West, 2012). Indeed, the development of thick and depleted weathering profiles has shifted those systems into a supply-limited regime. The arising questions are thus: is the land plant effect on CO2 consumption by weathering only transient, and if yes, how long does it last? Thousand, million, or tens of million years? Is a world fully vegetated weathering faster than a naked world? Those questions will be investigated through a modelling study simulating the colonization of the continents by land plants in the late Paleozoic using a simple cellular automata algorithm, coupled to a weathering model accounting for the role of the regolith thickness on the weathering regime.
USDA-ARS?s Scientific Manuscript database
The brown stink bug (BSB), Euschistus servus (Say) (Hemiptera: Pentatomidae), is a serious economic pest of corn production in the Southeastern U. S. The BSB population dynamics was monitored for 17 wks from tasseling to pre-harvest of corn plants (i.e., late May to mid-September) using pheromone ...
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less
History and Evolution of the Johnson Criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjaardema, Tracy A.; Smith, Collin S.; Birch, Gabriel Carisle
The Johnson Criteria metric calculates probability of detection of an object imaged by an optical system, and was created in 1958 by John Johnson. As understanding of target detection has improved, detection models have evolved to better model additional factors such as weather, scene content, and object placement. The initial Johnson Criteria, while sufficient for technology and understanding at the time, does not accurately reflect current research into target acquisition and technology. Even though current research shows a dependence on human factors, there appears to be a lack of testing and modeling of human variability.
Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation
NASA Technical Reports Server (NTRS)
Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael
2018-01-01
This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team
2009-09-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.
NASA Astrophysics Data System (ADS)
Stevens, M. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.; Szabo, A.; Biesecker, D. A.; Prchlik, J.
2017-12-01
At this moment in time, four observatories with similar instrumentation- Wind, ACE, DSCOVR, and SoHO- are stationed directly upstream of the Earth and making continuous observations. They are separated by drift-time baselines of seconds to minutes, timescales on which MHD instabilities in the solar wind are known to grow and evolve, and spatial baselines of tens to 200 earth radii, length scales relevant to the Earth's magnetosphere. By comparing measurements of matched solar wind structures from the four vantage points, the form of structures and associated dynamics on these scales is illuminated. Our targets include shocks and MHD discontinuities, stream fronts, locii of reconnection and exhaust flow boundary layers, plasmoids, and solitary structures born of nonlinear instability. We use the tetrahedral quality factors and other conventions adopted for Cluster to identify periods where the WADS constellation is suitably non-degenerate and arranged in such a way as to enable specific types of spatial, temporal, or spatiotemporal inferences. We present here an overview of the geometries accessible to the L1 constellation and timing-based and plasma-based observations of solar wind structures from 2016-17. We discuss the unique potential of the constellation approach for space physics and space weather forecasting at 1 AU.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita
2007-01-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.
Landscape evolution (A Review)
Sharp, Robert P.
1982-01-01
Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images
Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing
NASA Astrophysics Data System (ADS)
LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.
2017-12-01
With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.
2012-08-01
concentrated in four geographic areas (Coolgardie Mesa, Paradise Valley, Brinkman Wash-Montana Mine , and the Gemini Conservation Area; Fig. 1) that total...data for 2003, and from 2007 through 2009 were generated by the remote automated weather station (RAWS) at Opal Mountain CA (35°09´N; 117°10´W; 980...m.). This weather station is approximately 30 km SW of UCLA’s milkvetch study sites. Opal Mountain and Goldstone monthly precipitation from 1992
NASA Astrophysics Data System (ADS)
Wu, Yanling
2018-05-01
In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.
NASA Astrophysics Data System (ADS)
Winnick, M.; Carroll, R. W. H.; Williams, K. H.; Maxwell, R. M.; Maher, K.
2016-12-01
Although important for solute production and transport, the varied interactions between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the headwaters of the East River, CO, a high-elevation shale-dominated catchment system in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with well-defined clockwise hysteresis, indicating the mobilization and depletion of DOC in the upper soil horizons and highlighting the importance of shallow flowpaths through the snowmelt period. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both carbonic acid and sulfuric acid derived from oxidation of pyrite in the shale bedrock. Sulfuric acid weathering in the deep subsurface dominates during base flow conditions when waters have infiltrated below the hypothesized pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during the snowmelt period as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This increase in CO2(aq) at the expense of HCO3- results in outgassing of CO2 when waters equilibrate to surface conditions, and reduces the export of carbon and alkalinity from the East River by roughly 33% annually. Future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering therefore have the capacity to substantially alter the cycling of carbon in the East River catchment. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.
NASA Astrophysics Data System (ADS)
Wobus, C.; Tucker, G.; Anderson, R.; Kean, J.; Small, E.; Hancock, G.
2007-12-01
The cross-sectional form of a natural river channel controls the capacity of the system to carry water off a landscape, to convey sediment derived from hillslopes, and to erode its bed and banks. Numerical models that describe the response of a landscape to changes in climate or tectonics therefore require formulations that can accommodate changes in channel cross-sectional geometry through time. We have developed a 2D numerical model that computes the formation of a channel in a cohesive, detachment-limited substrate subject to steady, unidirectional flow. Boundary shear stress is calculated using a simple approximation of the flow field in which log-velocity profiles are assumed to apply along vectors that are perpendicular to the local boundary surface. The resulting model predictions for the velocity structure, peak boundary shear stress, and equilibrium channel shape compare well with the predictions of a more sophisticated but more computationally demanding ray-isovel model. For example, the mean velocities computed by the two models are consistent to within ~3%, and the predicted peak shear stress is consistent to within ~7%. The efficiency of our model makes it suitable for calculations of long-term morphologic change both in single cross-sections and in series of cross-sections arrayed downstream. For a uniform substrate, the model predicts a strong tendency toward a fixed width-to-depth ratio, regardless of gradient or discharge. The model predicts power-law relationships between width and discharge with an exponent near 2/5, and between width and gradient with an exponent near -1/5. Recent enhancements to the model include the addition of sediment, which increases the width-to-depth ratio at steady state by favoring erosion of the channel walls relative to the channel bed (the "cover effect"). Inclusion of a probability density function of discharges with a simple parameterization of weathering along channel banks leads to the formation of model strath terraces. Downstream changes in substrate erodibility or tectonic uplift rate lead to step-function changes in channel width, consistent with empirical observations. Finally, explicit inclusion of bedload transport allows channel width, gradient, and the pattern of sediment flux to evolve dynamically, allowing us to explore the response of bedrock channels to both spatial patterns of rock uplift, and temporal variations in sediment input.
Multiple Weather Factors Affect Apparent Survival of European Passerine Birds
Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang
2013-01-01
Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for phenotypic and microevolutionary adaptations. PMID:23593131
SHARPs - A Near-Real-Time Space Weather Data Product from HMI
NASA Astrophysics Data System (ADS)
Bobra, M.; Turmon, M.; Baldner, C.; Sun, X.; Hoeksema, J. T.
2012-12-01
A data product from the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), called Space-weather HMI Active Region Patches (SHARPs), is now available through the SDO Joint Science Operations Center (JSOC) and the Virtual Solar Observatory. SHARPs are magnetically active regions identified on the solar disk and tracked automatically in time. SHARP data are processed within a few hours of the observation time. The SHARP data series contains active region-sized disambiguated vector magnetic field data in both Lambert Cylindrical Equal-Area and CCD coordinates on a 12 minute cadence. The series also provides simultaneous HMI maps of the line-of-sight magnetic field, continuum intensity, and velocity on the same ~0.5 arc-second pixel grid. In addition, the SHARP data series provides space weather quantities computed on the inverted, disambiguated, and remapped data. The values for each tracked region are computed and updated in near real time. We present space weather results for several X-class flares; furthermore, we compare said space weather quantities with helioseismic quantities calculated using ring-diagram analysis.
Schroth, A.W.; Crusius, John; Chever, F.; Bostick, B.C.; Rouxel, O.J.
2011-01-01
Riverine iron (Fe) derived from glacial weathering is a critical micronutrient source to ecosystems of the Gulf of Alaska (GoA). Here we demonstrate that the source and chemical nature of riverine Fe input to the GoA could change dramatically due to the widespread watershed deglaciation that is underway. We examine Fe size partitioning, speciation, and isotopic composition in tributaries of the Copper River which exemplify a long-term GoA watershed evolution from one strongly influenced by glacial weathering to a boreal-forested watershed. Iron fluxes from glacierized tributaries bear high suspended sediment and colloidal Fe loads of mixed valence silicate species, with low concentrations of dissolved Fe and dissolved organic carbon (DOC). Iron isotopic composition is indicative of mechanical weathering as the Fe source. Conversely, Fe fluxes from boreal-forested systems have higher dissolved Fe concentrations corresponding to higher DOC concentrations. Iron colloids and suspended sediment consist of Fe (hydr)oxides and organic complexes. These watersheds have an iron isotopic composition indicative of an internal chemical processing source. We predict that as the GoA watershed evolves due to deglaciation, so will the source, flux, and chemical nature of riverine Fe loads, which could have significant ramifications for Alaskan marine and freshwater ecosystems.
A primer on clothing systems for cold-weather field work
Denner, Jon
1990-01-01
Conducting field work in cold weather is a demanding task. The most important safety consideration for field personnel is to maintain normal body temperature and avoid hypothermia.The human body adjusts to cold temperatures through different physiological processes. Heat production is enhanced by increases in the rates of basal metabolism, specific dynamic action, and physical exercise, and heat loss is reduced by vasoconstriction.Physiological adaptations alone are inadequate to stop rapid heat loss in cold temperatures. Additional insulation in the form of cold-weather clothing is necessary to retain heat.The most practical method of dressing for winter conditions is the layering system. Wearing multiple thin layers allows one to fine tune the insulation needed for different temperatures and activity levels.
The Unifying Principle of Coordinated Measurements in Geospace Science
NASA Astrophysics Data System (ADS)
Lotko, William
2017-04-01
Space scientists recognize geospace as a coupled dynamical system extending from the Earth's upper atmosphere, ionosphere, and magnetosphere, through interplanetary space to the Sun. The weather in geospace describes variability in the electromagnetic fields, particle radiation, plasmas, and gases permeating it, usually in response to solar disturbances. Severe space weather poses a significant threat to human activities in space and to modern technological systems deployed both in space and at Earth. The challenge of characterizing and predicting space weather requires widely distributed, coordinated observations. Partnerships among government agencies, international consortia, and the private sector are developing creative solutions to address this challenge. This brief commentary highlights some of the coordinated measurements and data systems that are unifying knowledge of the geospace environment.
[Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].
Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A
2015-01-01
The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.
The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)
NASA Technical Reports Server (NTRS)
Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.;
2011-01-01
The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.
Monitoring software development through dynamic variables
NASA Technical Reports Server (NTRS)
Doerflinger, Carl W.; Basili, Victor R.
1983-01-01
Research conducted by the Software Engineering Laboratory (SEL) on the use of dynamic variables as a tool to monitor software development is described. Project independent measures which may be used in a management tool for monitoring software development are identified. Several FORTRAN projects with similar profiles are examined. The staff was experienced in developing these types of projects. The projects developed serve similar functions. Because these projects are similar some underlying relationships exist that are invariant between projects. These relationships, once well defined, may be used to compare the development of different projects to determine whether they are evolving the same way previous projects in this environment evolved.
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity
O'Meara, Brian C.; Smith, Stacey D.; Armbruster, W. Scott; Harder, Lawrence D.; Hardy, Christopher R.; Hileman, Lena C.; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A.; Stevens, Peter F.; Fenster, Charles B.; Diggle, Pamela K.
2016-01-01
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. PMID:27147092
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
Evolutionary dynamics of giant viruses and their virophages.
Wodarz, Dominik
2013-07-01
Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested.
Quantum trajectory analysis of multimode subsystem-bath dynamics.
Wyatt, Robert E; Na, Kyungsun
2002-01-01
The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an active mode (the subsystem) with an M-mode harmonic reservoir (the bath). Equations of motion for the position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian (moving with the fluid) picture of quantum hydrodynamics. These fluid elements are coupled through the Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Computational results are presented for three systems involving the interaction on an active mode with M=1, 10, and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum results on some types of open quantum systems that are not amenable to standard quantum approaches involving basis set expansions or Eulerian space-fixed grids.
Evolutionary dynamics of giant viruses and their virophages
Wodarz, Dominik
2013-01-01
Giant viruses contain large genomes, encode many proteins atypical for viruses, replicate in large viral factories, and tend to infect protists. The giant virus replication factories can in turn be infected by so called virophages, which are smaller viruses that negatively impact giant virus replication. An example is Mimiviruses that infect the protist Acanthamoeba and that are themselves infected by the virophage Sputnik. This study examines the evolutionary dynamics of this system, using mathematical models. While the models suggest that the virophage population will evolve to increasing degrees of giant virus inhibition, it further suggests that this renders the virophage population prone to extinction due to dynamic instabilities over wide parameter ranges. Implications and conditions required to avoid extinction are discussed. Another interesting result is that virophage presence can fundamentally alter the evolutionary course of the giant virus. While the giant virus is predicted to evolve toward increasing its basic reproductive ratio in the absence of the virophage, the opposite is true in its presence. Therefore, virophages can not only benefit the host population directly by inhibiting the giant viruses but also indirectly by causing giant viruses to evolve toward weaker phenotypes. Experimental tests for this model are suggested. PMID:23919155
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K
2016-05-11
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).
Cai, X.; Yang, Z. -L.; Fisher, J. B.; ...
2016-01-15
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, X.; Yang, Z. -L.; Fisher, J. B.
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multi-parameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Research and Forecasting meteorological model and for the operational weather/climate models in the National Centers for Environmental Prediction. Here in this study, we add a capability to Noah-MP to simulate nitrogen dynamics by coupling the Fixation and Uptake of Nitrogen (FUN) plant model and the Soilmore » and Water Assessment Tool (SWAT) soil nitrogen dynamics. This model development incorporates FUN's state-of-the-art concept of carbon cost theory and SWAT's strength in representing the impacts of agricultural management on the nitrogen cycle. Parameterizations for direct root and mycorrhizal-associated nitrogen uptake, leaf retranslocation, and symbiotic biological nitrogen fixation are employed from FUN, while parameterizations for nitrogen mineralization, nitrification, immobilization, volatilization, atmospheric deposition, and leaching are based on SWAT. The coupled model is then evaluated at the Kellogg Biological Station – a Long Term Ecological Research site within the US Corn Belt. Results show that the model performs well in capturing the major nitrogen state/flux variables (e.g., soil nitrate and nitrate leaching). Furthermore, the addition of nitrogen dynamics improves the modeling of net primary productivity and evapotranspiration. The model improvement is expected to advance the capability of Noah-MP to simultaneously predict weather and water quality in fully coupled Earth system models.« less
The Dynamics of Phonological Planning
ERIC Educational Resources Information Center
Roon, Kevin D.
2013-01-01
This dissertation proposes a dynamical computational model of the timecourse of phonological parameter setting. In the model, phonological representations embrace phonetic detail, with phonetic parameters represented as activation fields that evolve over time and determine the specific parameter settings of a planned utterance. Existing models of…
Sayed-Hossein Sadeghi; Troy R. Peters; Mohammad Z. Amini; Sparkle L. Malone; Hank W. Loescher
2015-01-01
The increased need for water and food security requires the development of new approaches to save water through irrigation management strategies, particularly for center pivot irrigation. To do so entails monitoring of the dynamic variation in wind drift and evaporation losses (WDELs) of irrigation systems under different weather conditions and for relatively long time...
Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.
2014-10-01
The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.
NASA Astrophysics Data System (ADS)
Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.
2015-05-01
The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.
Carbon Dioxide Cycling And The Climate of Ancient Earth
NASA Technical Reports Server (NTRS)
Zahnle, Kevin; Sleep, Norman H.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.
Carbon Dioxide Cycling and the Climate of Ancient Earth
NASA Technical Reports Server (NTRS)
Zahnle, Kevin; Sleep, Norman H.
2001-01-01
The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early Sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.
NASA Astrophysics Data System (ADS)
Liu, Yushi; Poh, Hee Joo
2014-11-01
The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.
Observational evidence of European summer weather patterns predictable from spring
NASA Astrophysics Data System (ADS)
Ossó, Albert; Sutton, Rowan; Shaffrey, Len; Dong, Buwen
2018-01-01
Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation––the summer East Atlantic (SEA) pattern––is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March–April can predict the SEA pattern in July–August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.
Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory
NASA Astrophysics Data System (ADS)
Troch, P. A. A.
2015-12-01
Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.
Geocoronal Imaging from the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Waldrop, L.; Immel, T.; Clarke, J.; Fillingim, M.; Rider, K.; Qin, J.; Bhattacharyya, D.; Doe, R.
2018-02-01
UV imaging of geocoronal emission at high spatial and temporal resolution from deep space would provide crucial new constraints on global exospheric structure and dynamics, significantly advancing models of space weather and atmospheric escape.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
A Method for Estimating Meteorite Fall Mass from Weather Radar Data
NASA Technical Reports Server (NTRS)
Laird, C.; Fries, M.; Matson, R.
2017-01-01
Techniques such as weather RADAR, seismometers, and all-sky cameras allow new insights concerning the physics of meteorite fall dynamics and fragmentation during "dark flight", the period of time between the end of the meteor's luminous flight and the concluding impact on the Earth's surface. Understanding dark flight dynamics enables us to rapidly analyze the characteristics of new meteorite falls. This analysis will provide essential information to meteorite hunters to optimize recovery, increasing the frequency and total mass of scientifically important freshly-fallen meteorites available to the scientific community. We have developed a mathematical method to estimate meteorite fall mass using reflectivity data as recorded by National Oceanic and Atmospheric Administration (NOAA) Next Generation RADAR (NEXRAD) stations. This study analyzed eleven official and one unofficial meteorite falls in the United States and Canada to achieve this purpose.
Interactive and Stereoscopic Hybrid 3D Viewer of Radar Data with Gesture Recognition
NASA Astrophysics Data System (ADS)
Goenetxea, Jon; Moreno, Aitor; Unzueta, Luis; Galdós, Andoni; Segura, Álvaro
This work presents an interactive and stereoscopic 3D viewer of weather information coming from a Doppler radar. The hybrid system shows a GIS model of the regional zone where the radar is located and the corresponding reconstructed 3D volume weather data. To enhance the immersiveness of the navigation, stereoscopic visualization has been added to the viewer, using a polarized glasses based system. The user can interact with the 3D virtual world using a Nintendo Wiimote for navigating through it and a Nintendo Wii Nunchuk for giving commands by means of hand gestures. We also present a dynamic gesture recognition procedure that measures the temporal advance of the performed gesture postures. Experimental results show how dynamic gestures are effectively recognized so that a more natural interaction and immersive navigation in the virtual world is achieved.
Fixed points, stable manifolds, weather regimes, and their predictability.
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-12-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas; ...
2016-11-14
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less
Moran, Kelly R.; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y.
2016-01-01
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. PMID:28830111
Quantization of systems with temporally varying discretization. II. Local evolution moves
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.
2014-10-01
Several quantum gravity approaches and field theory on an evolving lattice involve a discretization changing dynamics generated by evolution moves. Local evolution moves in variational discrete systems (1) are a generalization of the Pachner evolution moves of simplicial gravity models, (2) update only a small subset of the dynamical data, (3) change the number of kinematical and physical degrees of freedom, and (4) generate a dynamical (or canonical) coarse graining or refining of the underlying discretization. To systematically explore such local moves and their implications in the quantum theory, this article suitably expands the quantum formalism for global evolution moves, constructed in Paper I [P. A. Höhn, "Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces," J. Math. Phys. 55, 083508 (2014); e-print arXiv:1401.6062 [gr-qc
Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations
NASA Technical Reports Server (NTRS)
McNally, B. David; Love, John
2011-01-01
The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today's integrated FMS/datalink. Auxiliary(lat/long) waypoints define a minimum delay reroute between current position and a downstream capture fix beyond the weather. These auxiliary waypoints can be uplinked to equipped aircraft and auto-loaded into the FMS. Alternatively, for unequipped aircraft, auxiliary waypoints can be replaced by nearby named fixes, but this could reduce potential savings. The presentation includes an overview of the automation approach and focuses on several cases in terms of potential savings, reroute complexity, best auxiliary waypoint solution vs. named fix solution, and other metrics.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Yang, L.; Gao, F.
2017-02-27
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Hirschi, M.; Spirig, C.
2014-12-01
To quantify impact of the climate change on a specific pest (or any weather-dependent process) in a specific site, we may use a site-calibrated pest (or other) model and compare its outputs obtained with site-specific weather data representing present vs. perturbed climates. The input weather data may be produced by the stochastic weather generator. Apart from the quality of the pest model, the reliability of the results obtained in such experiment depend on an ability of the generator to represent the statistical structure of the real world weather series, and on the sensitivity of the pest model to possible imperfections of the generator. This contribution deals with the multivariate HOWGH weather generator, which is based on a combination of parametric and non-parametric statistical methods. Here, HOWGH is used to generate synthetic hourly series of three weather variables (solar radiation, temperature and precipitation) required by a dynamic pest model SOPRA to simulate the development of codling moth. The contribution presents results of the direct and indirect validation of HOWGH. In the direct validation, the synthetic series generated by HOWGH (various settings of its underlying model are assumed) are validated in terms of multiple climatic characteristics, focusing on the subdaily wet/dry and hot/cold spells. In the indirect validation, we assess the generator in terms of characteristics derived from the outputs of SOPRA model fed by the observed vs. synthetic series. The weather generator may be used to produce weather series representing present and future climates. In the latter case, the parameters of the generator may be modified by the climate change scenarios based on Global or Regional Climate Models. To demonstrate this feature, the results of codling moth simulations for future climate will be shown. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).
Green roofs'retention performances in different climates
NASA Astrophysics Data System (ADS)
Viola, Francesco; Hellies, Matteo; Deidda, Roberto
2017-04-01
The ongoing process of global urbanization contributes to increasing stormwater runoff from impervious surfaces, threatening also water quality. Green roofs have been proved to be an innovative stormwater management tool to partially restore natural state, enhancing interception, infiltration and evapotranspiration fluxes. The amount of water that is retained within green roofs depends mainly on both soil properties and climate. The evaluation of the retained water is not trivial since it depends on the stochastic soil moisture dynamics. The aim of this work is to explore performances of green roofs, in terms of water retention, as a function of their depth considering different climate regimes. The role of climate in driving water retention has been mainly represented by rainfall and potential evapotranspiration dynamics, which are simulated by a simple conceptual weather generator at daily time scale. The model is able to describe seasonal (in-phase and counter-phase) and stationary behaviors of climatic forcings. Model parameters have been estimated on more than 20,000 historical time series retrieved worldwide. Exemplifying cases are discussed for five different climate scenarios, changing the amplitude and/or the phase of daily mean rainfall and evapotranspiration forcings. The first scenario represents stationary climates, in two other cases the daily mean rainfall or the potential evapotranspiration evolve sinusoidally. In the latter two cases, we simulated the in-phase or in counter-phase conditions. Stochastic forcings have been then used as an input to a simple conceptual hydrological model which simulate soil moisture dynamics, evapotranspiration fluxes, runoff and leakage from soil pack at daily time scale. For several combinations of annual rainfall and potential evapotranspiration, the analysis allowed assessing green roofs' retaining capabilities, at annual time scale. Provided abacus allows a first approximation of possible hydrological benefits deriving from the implementation of intensive or extensive green roofs in different world areas, i.e. less input to sewer systems.
Transformational Education for Psychotherapy and Counselling: A Relational Dynamic Approach
ERIC Educational Resources Information Center
Macaskie, Jane; Meekums, Bonnie; Nolan, Greg
2013-01-01
An evolving relational dynamic approach to psychotherapy and counselling education is described. Key themes integrated within the approach are the learning community and transformational relationships. Learning is a reciprocal change process involving students, teachers, supervisors and therapists in overlapping learning communities. Drawing on…
Environmental Fluid Dynamics Code
The Environmental Fluid Dynamics Code (EFDC)is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodyn...
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
NASA Astrophysics Data System (ADS)
Zhao, Naizhuo; Cao, Guofeng; Vanos, Jennifer K.; Vecellio, Daniel J.
2018-01-01
The environmental drivers and mechanisms of influenza dynamics remain unclear. The recent development of influenza surveillance-particularly the emergence of digital epidemiology-provides an opportunity to further understand this puzzle as an area within applied human biometeorology. This paper investigates the short-term weather effects on human influenza activity at a synoptic scale during cold seasons. Using 10 years (2005-2014) of municipal level influenza surveillance data (an adjustment of the Google Flu Trends estimation from the Centers for Disease Control's virologic surveillance data) and daily spatial synoptic classification weather types, we explore and compare the effects of weather exposure on the influenza infection incidences in 79 cities across the USA. We find that during the cold seasons the presence of the polar [i.e., dry polar (DP) and moist polar (MP)] weather types is significantly associated with increasing influenza likelihood in 62 and 68% of the studied cities, respectively, while the presence of tropical [i.e., dry tropical (DT) and moist tropical (MT)] weather types is associated with a significantly decreasing occurrence of influenza in 56 and 43% of the cities, respectively. The MP and the DP weather types exhibit similar close positive correlations with influenza infection incidences, indicating that both cold-dry and cold-moist air provide favorable conditions for the occurrence of influenza in the cold seasons. Additionally, when tropical weather types are present, the humid (MT) and the dry (DT) weather types have similar strong impacts to inhibit the occurrence of influenza. These findings suggest that temperature is a more dominating atmospheric factor than moisture that impacts the occurrences of influenza in cold seasons.
Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics
Goldbogen, Jeremy A.
2017-01-01
Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr, reaching their extreme in today's baleen whales (Mysticeti). Hypotheses for the evolution of exceptionally large size in mysticetes range from niche partitioning to predator avoidance, but there has been no quantitative examination of body size evolutionary dynamics in this clade and it remains unclear when, why or how gigantism evolved. By fitting phylogenetic macroevolutionary models to a dataset consisting of living and extinct species, we show that mysticetes underwent a clade-wide shift in their mode of body size evolution during the Plio-Pleistocene. This transition, from Brownian motion-like dynamics to a trended random walk towards larger size, is temporally linked to the onset of seasonally intensified upwelling along coastal ecosystems. High prey densities resulting from wind-driven upwelling, rather than abundant resources alone, are the primary determinant of efficient foraging in extant mysticetes and Late Pliocene changes in ocean dynamics may have provided an ecological pathway to gigantism in multiple independent lineages. PMID:28539520
Understanding dynamic friction through spontaneously evolving laboratory earthquakes
Rubino, V.; Rosakis, A. J.; Lapusta, N.
2017-01-01
Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876
Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics.
Slater, Graham J; Goldbogen, Jeremy A; Pyenson, Nicholas D
2017-05-31
Vertebrates have evolved to gigantic sizes repeatedly over the past 250 Myr, reaching their extreme in today's baleen whales (Mysticeti). Hypotheses for the evolution of exceptionally large size in mysticetes range from niche partitioning to predator avoidance, but there has been no quantitative examination of body size evolutionary dynamics in this clade and it remains unclear when, why or how gigantism evolved. By fitting phylogenetic macroevolutionary models to a dataset consisting of living and extinct species, we show that mysticetes underwent a clade-wide shift in their mode of body size evolution during the Plio-Pleistocene. This transition, from Brownian motion-like dynamics to a trended random walk towards larger size, is temporally linked to the onset of seasonally intensified upwelling along coastal ecosystems. High prey densities resulting from wind-driven upwelling, rather than abundant resources alone, are the primary determinant of efficient foraging in extant mysticetes and Late Pliocene changes in ocean dynamics may have provided an ecological pathway to gigantism in multiple independent lineages. © 2017 The Author(s).
Evolutionary Dynamics and Diversity in Microbial Populations
NASA Astrophysics Data System (ADS)
Thompson, Joel; Fisher, Daniel
2013-03-01
Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.
NASA Astrophysics Data System (ADS)
Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi
2016-04-01
Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. First, we present our newly established method which can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only GCM/RCM simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the UK 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change is of similar magnitude using either observed or seasonal forecast SSTs. While FAR is assumed to be independent from event-specific dynamic contributions due to anomalous circulation patterns as a first approximation, the risk of an event to occur under current conditions is clearly a function of the state of the atmosphere. The shorter the event, the more it is a result of chaotic internal weather variability. Hence we are interested to (1) attribute the event to thermodynamic and dynamic causes and to (2) establish a sensible time-scale for which we can make a useful and potentially robust attribution statement with regard to event-specific dynamics. Having tested the dynamic response of our model to SST conditions in January 2014, we find that observed SSTs are required to establish a discernible link between anomalous ocean temperatures and the atmospheric circulation over the North Atlantic in general and the UK in particular. However, for extreme events occurring under strongly anomalous SST patterns, associated with known low-frequency climate modes such as El Nino or La Nina, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.
Static and Dynamic Traversable Wormholes
NASA Astrophysics Data System (ADS)
Adamiak, Jaroslaw P.
2008-09-01
The aim of this work is to discuss the effects found in static and dynamic wormholes that occur as a solution of Einstein equations in general relativity. The ground is prepared by presentation of faster than light effects, then the focus is narrowed to Morris-Thorne framework for a static spherically symmetric wormhole. Two types of dynamic worm-holes, evolving and rotating, are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Pavel V., E-mail: pvm@ispms.tsc.ru
An evolutionary approach to earthquake development is proposed. A medium under loading is treated as a multiscale nonlinear dynamic system. Its failure involves a number of stages typical of any dynamic system: dynamic chaos, self-organized criticality, and global stability loss in the final stage of its evolution. In the latter stage, the system evolves in a blow-up mode accompanied by catastrophic superfast movements of the elements of this geomedium.
Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.
Menge, Duncan N L; Hedin, Lars O; Pacala, Stephen W
2012-01-01
Nutrient limitation to net primary production (NPP) displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast) to litter turnover (fast) to plant mortality (intermediate) to plant-unavailable nutrient loss (slow) to weathering (very slow). Young ecosystems are N limited when symbiotic N fixation (SNF) is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries) because P is mineralized faster than N. Over long timescales (centuries and longer) this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition) are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
Subject Matter Expert Evaluation of Multi-Flight Common Route Advisories
NASA Technical Reports Server (NTRS)
Bilimoria, Karl; Hayashi, Miwa; Sheth, Kapil S.
2017-01-01
Traffic flow management seeks to balance the demand for National Airspace System (NAS) flight resources, such as airspace and airports, with the available supply. When forecasted weather blocks nominal air traffic routes, traffic managers must re-route affected flights for weather avoidance. Depending on the nature and scope of the weather, traffic managers may use pre-coordinated re-routes such as Playbook Routes or Coded Departure Routes, or may design ad hoc local re-routes. The routes of affected flights are modified accordingly. These weather avoidance routes will, of course, be less efficient than the nominal routes due to increased flight time and fuel burn. In current traffic management operations, the transition into a weather avoidance re-routing initiative is typically implemented more aggressively than the transition out of that initiative after the weather has dissipated or moved away. For example, strategic large-scale Playbook re-routes are sometimes left in place (as initially implemented) for many hours before being lifted entirely when the weather dissipates. There is an opportunity to periodically modify the re-routing plan as weather evolves, thereby attenuating its adverse impact on flight time and fuel consumption; this is called delay recovery. Multi-Flight Common Routes (MFCR) is a NASA-developed operational concept and associated decision support tool for delay recovery, designed to assist traffic managers to efficiently update weather avoidance traffic routes after the original re-routes have become stale due to subsequent evolution of the convective weather system. MFCR groups multiple flights to reduce the number of advisories that the traffic manager needs to evaluate, and also merges these flights on a common route segment to provide an orderly flow of re-routed traffic. The advisory is presented to the appropriate traffic manager who evaluates it and has the option to modify it using MFCRs graphical user interface. If the traffic manager finds the advisory to be operationally appropriate, he or she would coordinate with the Area Supervisor(s) of the sectors that currently control the flights in the advisory. When the traffic manager accepts the MFCR advisory via the user interface, the corresponding flight plan amendments would be sent to the displays of the appropriate sector controllers, using the Airborne Re-Routing (ABRR) capability which is scheduled for nationwide operation in 2017. The sector controllers would then offer this time-saving route modification to the pilots of the affected flights via datalink (or voice), and implement the corresponding flight plan amendment if the pilots accept it. MFCR is implemented as an application in the software environment of the Future Air traffic management Concepts Evaluation Tool (FACET). This paper focuses on an initial subject matter expert (SME) evaluation of MFCR. The evaluation covers MFCRs operational concept, algorithm, and user interface.
Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time.
Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G
2014-01-20
Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of "biologically basic to socially specific" information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four. Copyright © 2014 Elsevier Ltd. All rights reserved.
From tectonics to tractors: New insight into Earth's changing surface
NASA Astrophysics Data System (ADS)
Larsen, I. J.
2017-12-01
Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally-induced topsoil loss in the Midwestern U.S., and discuss the economic and carbon cycle implications. These findings - in some cases unanticipated and exciting - highlight opportunities that stem from using a multi-faceted approach to gain new insights into the physical and chemical processes that modify Earth's changing surface.
Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest
NASA Astrophysics Data System (ADS)
Filjar, R.; Filic, M.; Milinkovic, F.
2017-12-01
Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.
Arctic-midlatitude weather linkages in North America
NASA Astrophysics Data System (ADS)
Overland, James E.; Wang, Muyin
2018-06-01
There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.
The Complex Relationship between Weather and Dengue Virus Transmission in Thailand
Campbell, Karen M.; Lin, C. D.; Iamsirithaworn, Sopon; Scott, Thomas W.
2013-01-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983–2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission “weather-space,” basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27–29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively. PMID:23958906
Future Missions for Space Weather Specifications and Forecasts
NASA Astrophysics Data System (ADS)
Onsager, T. G.; Biesecker, D. A.; Anthes, R. A.; Maier, M. W.; Gallagher, F. W., III; St Germain, K.
2017-12-01
The progress of technology and the global integration of our economic and security infrastructures have introduced vulnerabilities to space weather that demand a more comprehensive ability to specify and to predict the dynamics of the space environment. This requires a comprehensive network of real-time space-based and ground-based observations with long-term continuity. In order to determine the most cost effective space architectures for NOAA's weather, space weather, and environmental missions, NOAA conducted the NOAA Satellite Observing System Architecture (NSOSA) study. This presentation will summarize the process used to document the future needs and the relative priorities for NOAA's operational space-based observations. This involves specifying the most important observations, defining the performance attributes at different levels of capability, and assigning priorities for achieving the higher capability levels. The highest priority observations recommended by the Space Platform Requirements Working Group (SPRWG) for improvement above a minimal capability level will be described. Finally, numerous possible satellite architectures have been explored to assess the costs and benefits of various architecture configurations.
Liu, Ying D; Luhmann, Janet G; Kajdič, Primož; Kilpua, Emilia K J; Lugaz, Noé; Nitta, Nariaki V; Möstl, Christian; Lavraud, Benoit; Bale, Stuart D; Farrugia, Charles J; Galvin, Antoinette B
2014-03-18
Space weather refers to dynamic conditions on the Sun and in the space environment of the Earth, which are often driven by solar eruptions and their subsequent interplanetary disturbances. It has been unclear how an extreme space weather storm forms and how severe it can be. Here we report and investigate an extreme event with multi-point remote-sensing and in situ observations. The formation of the extreme storm showed striking novel features. We suggest that the in-transit interaction between two closely launched coronal mass ejections resulted in the extreme enhancement of the ejecta magnetic field observed near 1 AU at STEREO A. The fast transit to STEREO A (in only 18.6 h), or the unusually weak deceleration of the event, was caused by the preconditioning of the upstream solar wind by an earlier solar eruption. These results provide a new view crucial to solar physics and space weather as to how an extreme space weather event can arise from a combination of solar eruptions.
The complex relationship between weather and dengue virus transmission in Thailand.
Campbell, Karen M; Lin, C D; Iamsirithaworn, Sopon; Scott, Thomas W
2013-12-01
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively.
Issues in subsurface exploration of ice sheets
NASA Technical Reports Server (NTRS)
French, L.; Carsey, F.; Zimmerman, W.
2000-01-01
Exploration of the deep subsurface ice sheets of Earth, Mars, Europa, and Titan has become a major consideration in addressing scientific objectives in climate change, extremophile biology, exobiology,chemical weathering, planetary evolution and ice dynamics.
Technical product bulletin: this water-based surface washing agent is used in oil spill cleanups on rocks and beaches/sand or any other surface in fresh or salt water. allow soaking, and reapplication may be necessary for heavily weathered oil.
Oxidative Alteration of Ferrous Smectites: A Formation Pathway for Martian Nontronite?
NASA Technical Reports Server (NTRS)
Chemtob, S. M.; Catalano, J. G.; Nickerson, R. D.; Morris, R. V.; Agresti, D. G.; Rivera-Banuchi, V.; Liu, W.; Yee, N.
2017-01-01
Ferric (Fe3+-bearing) smectites, including nontronite, constitute the majority of hydrous mineral exposures observed on Mars. These smectite exposures are commonly interpreted as weathering products of Martian basaltic crust. However, ferrous (Fe2+-dominated) smectites, not ferric, are the thermo-dynamically predicted products of weathering in anoxic conditions, as predicted for early Mars. Earth was anoxic until the Proterozoic Great Oxidation Event; Mars likely experienced an analogous oxidative evolution to its present oxidized state, but the timing of this evolution is unresolved. We hypothesize that Fe3+-smectites observed by orbital spectroscopy are not the initial products of Noachian-era chemical weathering, but are instead the oxidative products of primary Fe2+-smectites. To test this hypothesis experimentally, we synthesized ferrous smectites and exposed them to Mars-relevant oxidants.
Influence of cirrus clouds on weather and climate processes A global perspective
NASA Technical Reports Server (NTRS)
Liou, K.-N.
1986-01-01
Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
NASA Technical Reports Server (NTRS)
Reinmann, J. J.
1991-01-01
The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids.
iGlobe Interactive Visualization and Analysis of Spatial Data
NASA Technical Reports Server (NTRS)
Hogan, Patrick
2012-01-01
iGlobe is open-source software built on NASA World Wind virtual globe technology. iGlobe provides a growing set of tools for weather science, climate research, and agricultural analysis. Up until now, these types of sophisticated tools have been developed in isolation by national agencies, academic institutions, and research organizations. By providing an open-source solution to analyze and visualize weather, climate, and agricultural data, the scientific and research communities can more readily advance solutions needed to understand better the dynamics of our home planet, Earth
Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven;
2012-01-01
The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.
Shanlei Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter V. Caldwell; Kai Duan; Yang Zhang
2016-01-01
Quantifying the potential impacts of climatechange on water yield and ecosystem productivity is essential to developing sound watershed restoration plans, andecosystem adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and StressIndex, WaSSI) with WRF (Weather Research and Forecasting Model) using dynamically downscaled...
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
In frequent fire forests of the western United States, a legacy of fire suppression coupled with increases in fire weather severity have altered fire regimes and vegetation dynamics. When coupled with projected climate change, these conditions have the potential to lead to vegetation type change and altered carbon (C) dynamics. In the Sierra Nevada, fuels...
Observations and modeling of cool, evolved stars: from chromospheric to wind regions
NASA Astrophysics Data System (ADS)
Rau, Gioia; Carpenter, Ken G.; Nielsen, Krister E.; Kober, Gladys V.; Josef Hron, Bernard Aringer, Kjell Eriksson, Paola Marigo, Claudia Paladini
2018-01-01
Evolved stars are fundamental contributors to the enrichment of the interstellar medium, via their mass loss, with heavy elements produced in their interior, and with the dust formed in their envelope. We present the results of the first systematic comparison (Rau et al. 2017, 2015) of multi-technique observations of a sample of C-rich Mira, semi-regular and irregular stars with the predictions from dynamic model atmospheres (Mattsson et al. 2010) and simpler models based on hydrostatic atmospheres combined with dusty envelopes. The chromosphere, located in the outer atmosphere of these stars, plays a crucial role in driving the mass loss in evolved K-M giant stars (see e.g. Carpenter et al. 2014, 1988). Despite recent efforts, details of the mass-loss scenario remain mysterious, as well as a complete understanding of the dynamic line formation regions, profiles, and structures. To solve these riddles, we present observation of flow and turbulent velocities, together with preliminary derivation of thermodynamic constraints for theoretical models (Rau, Carpenter, et al., in prep).
Cabrera, V E
2018-01-01
The objective of this review paper is to describe the development and application of a suite of more than 40 computerized dairy farm decision support tools contained at the University of Wisconsin-Madison (UW) Dairy Management website http://DairyMGT.info. These data-driven decision support tools are aimed to help dairy farmers improve their decision-making, environmental stewardship and economic performance. Dairy farm systems are highly dynamic in which changing market conditions and prices, evolving policies and environmental restrictions together with every time more variable climate conditions determine performance. Dairy farm systems are also highly integrated with heavily interrelated components such as the dairy herd, soils, crops, weather and management. Under these premises, it is critical to evaluate a dairy farm following a dynamic integrated system approach. For this approach, it is crucial to use meaningful data records, which are every time more available. These data records should be used within decision support tools for optimal decision-making and economic performance. Decision support tools in the UW-Dairy Management website (http://DairyMGT.info) had been developed using combination and adaptation of multiple methods together with empirical techniques always with the primary goal for these tools to be: (1) highly user-friendly, (2) using the latest software and computer technologies, (3) farm and user specific, (4) grounded on the best scientific information available, (5) remaining relevant throughout time and (6) providing fast, concrete and simple answers to complex farmers' questions. DairyMGT.info is a translational innovative research website in various areas of dairy farm management that include nutrition, reproduction, calf and heifer management, replacement, price risk and environment. This paper discusses the development and application of 20 selected (http://DairyMGT.info) decision support tools.
Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J
2012-02-19
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.
Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.
2012-01-01
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Chang, T. C.; Fowler, M. G.; Gloersen, P.; Kuhn, P. M.; Ramseier, R. O.; Ross, D. B.; Stambach, G.; Webster, W. J., Jr.; Wilheit, T. T.
1974-01-01
The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea ice cover. The ice cover was very complex in structure, being made up of five ice types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea ice option flights, and ship weather, and drift data give a detailed description of mesoscale ice dynamics which correlates well with the macroscale view: anticyclonic activity advects the ice southward with strong ice divergence and a regular lead and polynya pattern; cyclonic activity advects the ice northward with ice convergence, or slight divergence, and a random lead and polynya pattern.
Surrogate Based Uni/Multi-Objective Optimization and Distribution Estimation Methods
NASA Astrophysics Data System (ADS)
Gong, W.; Duan, Q.; Huo, X.
2017-12-01
Parameter calibration has been demonstrated as an effective way to improve the performance of dynamic models, such as hydrological models, land surface models, weather and climate models etc. Traditional optimization algorithms usually cost a huge number of model evaluations, making dynamic model calibration very difficult, or even computationally prohibitive. With the help of a serious of recently developed adaptive surrogate-modelling based optimization methods: uni-objective optimization method ASMO, multi-objective optimization method MO-ASMO, and probability distribution estimation method ASMO-PODE, the number of model evaluations can be significantly reduced to several hundreds, making it possible to calibrate very expensive dynamic models, such as regional high resolution land surface models, weather forecast models such as WRF, and intermediate complexity earth system models such as LOVECLIM. This presentation provides a brief introduction to the common framework of adaptive surrogate-based optimization algorithms of ASMO, MO-ASMO and ASMO-PODE, a case study of Common Land Model (CoLM) calibration in Heihe river basin in Northwest China, and an outlook of the potential applications of the surrogate-based optimization methods.
Post, Eric; Forchhammer, Mads C
2004-06-22
According to ecological theory, populations whose dynamics are entrained by environmental correlation face increased extinction risk as environmental conditions become more synchronized spatially. This prediction is highly relevant to the study of ecological consequences of climate change. Recent empirical studies have indicated, for example, that large-scale climate synchronizes trophic interactions and population dynamics over broad spatial scales in freshwater and terrestrial systems. Here, we present an analysis of century-scale, spatially replicated data on local weather and the population dynamics of caribou in Greenland. Our results indicate that spatial autocorrelation in local weather has increased with large-scale climatic warming. This increase in spatial synchrony of environmental conditions has been matched, in turn, by an increase in the spatial synchrony of local caribou populations toward the end of the 20th century. Our results indicate that spatial synchrony in environmental conditions and the populations influenced by them are highly variable through time and can increase with climatic warming. We suggest that if future warming can increase population synchrony, it may also increase extinction risk.
NASA Technical Reports Server (NTRS)
Tobiska, W. Kent
2008-01-01
Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.
Geospace monitoring for space weather research and operation
NASA Astrophysics Data System (ADS)
Nagatsuma, Tsutomu
2017-10-01
Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.
Singer, Burton
2018-01-01
Abduction is the process of generating and choosing models, hypotheses and data analyzed in response to surprising findings. All good empirical economists abduct. Explanations usually evolve as studies evolve. The abductive approach challenges economists to step outside the framework of received notions about the “identification problem” that rigidly separates the act of model and hypothesis creation from the act of inference from data. It asks the analyst to engage models and data in an iterative dynamic process, using multiple models and sources of data in a back and forth where both models and data are augmented as learning evolves. PMID:29430020
Evolving Multi Rover Systems in Dynamic and Noisy Environments
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Agogino, Adrian
2005-01-01
In this chapter, we address how to evolve control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Addressing such problems by directly applying a global evolutionary algorithm to a population of collectives is unworkable because the search space is prohibitively large. Instead, we focus on evolving control policies for each member of the collective, where each member is trying to maximize the fitness of its own population. The main difficulty with this approach is creating fitness evaluation functions for the members of the collective that induce the collective to achieve high performance with respect to the system level goal. To overcome this difficulty, we derive member evaluation functions that are both aligned with the global evaluation function (ensuring that members trying to achieve high fitness results in a collective with high fitness) and sensitive to the fitness of each member (a member's fitness depends more on its own actions than on actions of other members). In a difficult rover coordination problem in dynamic and noisy environments, we show how to construct evaluation functions that lead to good collective behavior. The control policy evolved using aligned and member-sensitive evaluations outperforms global evaluation methods by up to a factor of four. in addition we show that the collective continues to perform well in the presence of high noise levels and when the environment is highly dynamic. More notably, in the presence of a larger number of rovers or rovers with noisy sensors, the improvements due to the proposed method become significantly more pronounced.
History of special metallurgical (SM) building remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maul, G.F. Jr.
1996-12-31
Throughout most of the 1960s the SM-Building was a very busy and undoubtedly exciting place to work. The SNAP Program was in full swing then, producing heat sources, first for demonstration purposes, then for communications and weather satellites. As the program evolved, Mound was engaged in producing plutonium-powered heat sources for medical applications, including the famous cardiac pacemaker, which supplied rhythmic electrical pulses to the human heart in order to regulate the heart beat. This paper reviews the steps the building went through in the process of being shut down, decommissioned, and finally removed.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Inside the Astrotech Payload Processing Facility on Vandenberg Air Force Base in California, workers hold the Wide Field Camera that they will install on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft at right. CALIPSO will fly in combination with the CloudSat satellite to provide never-before-seen 3-D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat will join three other satellites in orbit to enhance understanding of climate systems. The launch date for CALIPSO/CloudSat is no earlier than Aug. 22.
Lämke, Jörn; Bäurle, Isabel
2017-06-27
Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini; Lloyd, Seth; Caravelli, Francesco; Severini, Simone; Markström, Klas
2010-05-01
We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.
Autonomous Evolution of Dynamic Gaits with Two Quadruped Robots
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.; Takamura, Seichi; Yamamoto, Takashi; Fujita, Masahiro
2004-01-01
A challenging task that must be accomplished for every legged robot is creating the walking and running behaviors needed for it to move. In this paper we describe our system for autonomously evolving dynamic gaits on two of Sony's quadruped robots. Our evolutionary algorithm runs on board the robot and uses the robot's sensors to compute the quality of a gait without assistance from the experimenter. First we show the evolution of a pace and trot gait on the OPEN-R prototype robot. With the fastest gait, the robot moves at over 10/min/min., which is more than forty body-lengths/min. While these first gaits are somewhat sensitive to the robot and environment in which they are evolved, we then show the evolution of robust dynamic gaits, one of which is used on the ERS-110, the first consumer version of AIBO.
Prediction Activities at NASA's Global Modeling and Assimilation Office
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2010-01-01
The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the climate community. An improved understanding of the nature of decadal variability and its predictability has important implications for efforts to assess the impacts of global change in the coming decades. In fact, the GMAO has taken on the challenge of carrying out experimental decadal predictions in support of the IPCC AR5 effort.
NASA Astrophysics Data System (ADS)
Eigenbrode, J. L.; Steele, A.; Summons, R. E.; Sutter, B.; McAdam, A.; Franz, H. B.; Mahaffy, P. R.; Conrad, P. G.; Freissinet, C.; Glavin, D. P.; Millan, M.; Ming, D. W.
2015-12-01
Volatiles from high-temperature (above 500°C) pyrolysis of drilled and sieved deltaic/lacustrine mudstones at Yellowknife Bay and Pahrump Hills were detected by the Sample Analysis at Mars (SAM) instrument's evolved gas analysis experiment onboard the Curiosity rover in Gale Crater, Mars. Mass fragments detected from the mudstones are consistent with C1-C4 alkyl and single-ring aromatic components that evolve at different temperatures and often in multiple phases. Concurrent release of oxidized sulfur (sulfur dioxide and sulfur trioxide), sulfide gases (hydrogen sulfide, carbonyl sulfide, carbon disulfide, dimethylsulfide or thiol, and thiophene) suggest that either these gases are evolving directly from the mudstone or are products of gas phase reactions in the SAM oven, or both. Multiple chlorohydrocarbon releases are also observed in analysis of the Mojave mudstone indicating punctuated organic releases from the sample. The organic signatures observed are unique to specific samples and are not observed in blanks or all samples, nor can the SAM background explain them. These results suggest that geologically refractory organic matter has been preserved in some Hesperian mudstones despite possible acid-sulfate weathering (as suggested by jarosite in Mojave) and exposure to ionizing cosmic rays after exhumation. We will report on ongoing study of these samples.
Nikolay Strigul; Jean Lienard
2015-01-01
Forest inventory datasets offer unprecedented opportunities to model forest dynamics under evolving environmental conditions but they are analytically challenging due to irregular sampling time intervals of the same plot, across the years. We propose here a novel method to model dynamic changes in forest biomass and basal area using forest inventory data. Our...
Effect of natural weathering conditions on the dynamic behavior of woven aramid composites
NASA Astrophysics Data System (ADS)
Kaya, A. I.; Kısa, M.; Özen, M.
2018-02-01
In this study, aging of woven aramid/epoxy composites under different natural conditions were studied. Composite beams were manufactured by Vacuum Assisted Resin Infusion Method (VARIM). Composites were cut into specimen according to ASTM D3039 and vibration tests. Elastic moduli of reference composites were found according to ASTM D3039 standard. Validation of methodology was performed numerically in Ansys software before aging process. An algorithm, which is predicated on FFT (Fast Fourier Transforms), was composed in Matlab to process output of vibration analysis data so as to identify natural frequencies of beams. Composites were aged for 12 months and various natural weathering aging conditions effects on woven aramid composite beams were surveyed through vibration analysis with 3 months interval. Five specimens of woven aramid beams were considered for dynamic tests and effect of aging on first three natural frequencies were determined.
Sporulation dynamics of poultry Eimeria oocysts in Chennai.
Venkateswara Rao, P; Raman, M; Gomathinayagam, S
2015-12-01
The infective form of Eimeria is the highly resistant oocyst, which is shed in the faeces of infected animals. Present study was carried out to understand the sporulation dynamics of six Eimeria oocysts viz. E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix and E. tenella in Chennai. Faecal samples of poultry were collected from various poultry farms located in and around Tamil Nadu. Oocysts of various Eimeria species were examined microscopically for sporulation on a 6 h interval basis till complete sporulation is acheived. The sporulation time recorded was 168, 120, 216, 192, 96 and 96 h for E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix and E. tenella respectively. It can be concluded on comparison with previous studies that humid weather conditions delay the sporulation time and dry weather and wet litter is the ideal condition for rapid sporulation.
Adaptive measurements of urban runoff quality
NASA Astrophysics Data System (ADS)
Wong, Brandon P.; Kerkez, Branko
2016-11-01
An approach to adaptively measure runoff water quality dynamics is introduced, focusing specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a static schedule or flow-weighted sampling, which can miss important water quality dynamics if parameterized inadequately, novel Internet-enabled sensor nodes are used to autonomously adapt their measurement frequency to real-time weather forecasts and hydrologic conditions. This dynamic approach has the potential to significantly improve the use of constrained experimental resources, such as automated grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in situ sensors are not available. Compared to conventional flow-weighted or time-weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were autonomously triggered in response to features in the underlying hydrograph and real-time weather forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context of larger sensor network deployments, as well the potential to improving control of urban water quality.
Asteroid age distributions determined by space weathering and collisional evolution models
NASA Astrophysics Data System (ADS)
Willman, Mark; Jedicke, Robert
2011-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. [2005]. Icarus 175 (1), 111-140; Nesvorný, D., Jedicke, R., Whiteley, R.J., Ivezić, Ž. [2005]. Icarus 173, 132-152) is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model (e.g. Willman, M., Jedicke, R., Moskovitz, N., Nesvorný, D., Vokrouhlický, D., Mothé-Diniz, T. [2010]. Icarus 208, 758-772; Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezić, Ž., Jurić, M. [2004]. Nature 429, 275-277; Willman, M., Jedicke, R., Nesvorny, D., Moskovitz, N., Ivezić, Ž., Fevig, R. [2008]. Icarus 195, 663-673. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and u, g, r, i, z filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The u, g, r, i, z filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the 'dual τ' space weathering model of Willman et al. (2010). We fit the size-age distribution to the enhanced dual τ model and found characteristic weathering and gardening times of τw = 2050 ± 80 Myr and τg=4400-500+700Myr respectively. The fit also suggests an initial principal component color of -0.05 ± 0.01 for fresh asteroid surface with a maximum possible change of the probable color due to weathering of Δ PC = 1.34 ± 0.04. Our predicted color of fresh asteroid surface matches the color of fresh ordinary chondritic surface of PC1 = 0.17 ± 0.39.
NASA Astrophysics Data System (ADS)
Kim, Hyojin; Bishop, James K. B.; Dietrich, William E.; Fung, Inez Y.
2014-09-01
Significant solute flux from the weathered bedrock zone - which underlies soils and saprolite - has been suggested by many studies. However, controlling processes for the hydrochemistry dynamics in this zone are poorly understood. This work reports the first results from a four-year (2009-2012) high-frequency (1-3 day) monitoring of major solutes (Ca, Mg, Na, K and Si) in the perched, dynamic groundwater in a 4000 m2 zero-order basin located at the Angelo Coast Range Reserve, Northern California. Groundwater samples were autonomously collected at three wells (downslope, mid-slope, and upslope) aligned with the axis of the drainage. Rain and throughfall samples, profiles of well headspace pCO2, vertical profiles and time series of groundwater temperature, and contemporaneous data from an extensive hydrologic and climate sensor network provided the framework for data analysis. All runoff at this soil-mantled site occurs by vertical unsaturated flow through a 5-25 m thick weathered argillite and then by lateral flows to the adjacent channel as groundwater perched over fresher bedrock. Driven by strongly seasonal rainfall, over each of the four years of observations, the hydrochemistry of the groundwater at each well repeats an annual cycle, which can be explained by two end-member processes. The first end-member process, which dominates during the winter high-flow season in mid- and upslope areas, is CO2 enhanced cation exchange reaction in the vadose zone in the more shallow conductive weathered bedrock. This process rapidly increases the cation concentrations of the infiltrated rainwater, which is responsible for the lowest cation concentration of groundwater. The second-end member process occurs in the deeper perched groundwater and either dominates year-round (at the downslope well) or becomes progressively dominant during low flow season at the two upper slope wells. This process is the equilibrium reaction with minerals such as calcite and clay minerals, but not with primary minerals, suggesting the critical role of the residence time of the water. Collectively, our measurements reveal that the hydrochemistry dynamics of the groundwater in the weathered bedrock zone is governed by two end-member processes whose dominance varies with critical zone structure, the relative importance of vadose versus groundwater zone processes, and thus with the seasonal variation of the chemistry of recharge and runoff.
Dynamic Systems Modeling in Educational System Design & Policy
ERIC Educational Resources Information Center
Groff, Jennifer Sterling
2013-01-01
Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…
Information Processing and Dynamics in Minimally Cognitive Agents
ERIC Educational Resources Information Center
Beer, Randall D.; Williams, Paul L.
2015-01-01
There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we…
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
Loyd, S J
2017-01-01
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling. © 2016 John Wiley & Sons Ltd.
The problem of predicting the size distribution of sediment supplied by hillslopes to rivers
NASA Astrophysics Data System (ADS)
Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane
2017-01-01
Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.
Atmosphere-Ionosphere Coupling due to Atmospheric Tides (Julius Bartels Medal Lecture)
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey M.
2016-04-01
Within the last decade, a new realization has arrived on the scene of ionosphere-thermosphere (IT) science: terrestrial weather significantly influences space weather. The aspect of space weather referred to here consists of electron density variability that translates to uncertainties in navigation and communications systems, and neutral density variability that translates to uncertainties in orbital and reentry predictions. In the present context "terrestrial weather" primarily refers to the meteorological conditions that determine the spatial-temporal distribution of tropospheric water vapor and latent heating associated with tropical convection, and the middle atmosphere disturbances associated with sudden stratosphere warmings. The net effect of these processes is a spatially- and temporally-evolving spectrum of waves (gravity waves, tides, planetary waves, Kelvin waves) that grows in amplitude with height and enters the IT system near ~100 km. Some members of the wave spectrum penetrate all the way to the base of the exosphere (ca. 500 km). Along the way, nonlinear interactions between different wave components occur, modifying the interacting waves and giving rise to secondary waves. Finally, the IT wind perturbations carried by the waves can redistribute ionospheric plasma, either through the electric fields generated via the dynamo mechanism between 100 and 150 km, or directly by moving plasma along magnetic field lines at higher levels. Additionally, the signatures of wave-driven dynamo currents are reflected in magnetic perturbations observed at the ground. This is how terrestrial atmospheric variability, through the spectrum of vertically- propagating waves that it produces, can effectively drive IT space weather. The primary objective of this Julius Bartels Lecture is to provide an overview of the global observational evidence for the IT consequences of these upward-propagating waves. In honor of Julius Bartels, who performed much research (including his habilitation thesis) on atmospheric and geomagnetic tides, this talk will emphasize the tidal part of the wave spectrum and its effects on the upper atmosphere.
Collective Langevin dynamics of conformational motions in proteins
NASA Astrophysics Data System (ADS)
Lange, Oliver F.; Grubmüller, Helmut
2006-06-01
Functionally relevant slow conformational motions of proteins are, at present, in most cases inaccessible to molecular dynamics (MD) simulations. The main reason is that the major part of the computational effort is spend for the accurate description of a huge number of high frequency motions of the protein and the surrounding solvent. The accumulated influence of these fluctuations is crucial for a correct treatment of the conformational dynamics; however, their details can be considered irrelevant for most purposes. To accurately describe long time protein dynamics we here propose a reduced dimension approach, collective Langevin dynamics (CLD), which evolves the dynamics of the system within a small subspace of relevant collective degrees of freedom. The dynamics within the low-dimensional conformational subspace is evolved via a generalized Langevin equation which accounts for memory effects via memory kernels also extracted from short explicit MD simulations. To determine the memory kernel with differing levels of regularization, we propose and evaluate two methods. As a first test, CLD is applied to describe the conformational motion of the peptide neurotensin. A drastic dimension reduction is achieved by considering one single curved conformational coordinate. CLD yielded accurate thermodynamical and dynamical behaviors. In particular, the rate of transitions between two conformational states agreed well with a rate obtained from a 150ns reference molecular dynamics simulation, despite the fact that the time scale of the transition (˜50ns) was much longer than the 1ns molecular dynamics simulation from which the memory kernel was extracted.
Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost
2012-02-01
We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.
Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost
2012-01-01
We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038
Singularity perturbed zero dynamics of nonlinear systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Sastry, S. S.; Kokotovic, P. V.; Byrnes, C. I.
1992-01-01
Stability properties of zero dynamics are among the crucial input-output properties of both linear and nonlinear systems. Unstable, or 'nonminimum phase', zero dynamics are a major obstacle to input-output linearization and high-gain designs. An analysis of the effects of regular perturbations in system equations on zero dynamics shows that whenever a perturbation decreases the system's relative degree, it manifests itself as a singular perturbation of zero dynamics. Conditions are given under which the zero dynamics evolve in two timescales characteristic of a standard singular perturbation form that allows a separate analysis of slow and fast parts of the zero dynamics.
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-10-01
While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.
Weather-centric rangeland revegetation planning
Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.
2018-01-01
Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.
NASA Technical Reports Server (NTRS)
Chandrasekar, V.; Hou, Arthur; Smith, Eric; Bringi, V. N.; Rutledge, S. A.; Gorgucci, E.; Petersen, W. A.; SkofronickJackson, Gail
2008-01-01
Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed.
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
Andersen, D.C.; Nelson, S.M.
2006-01-01
Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by ∼20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10–40% of initial values. The pattern of OM and N losses suggested most N would be released outside the flood season, when retention within the floodplain would be likely. The exclusion of macroinvertebrates modestly reduced the rate of OM loss (by about 10%) but had no effect on N dynamics over nine months. Immersion in floodwater accelerated OM loss, but modest variation in litter quality did not affect the breakdown rate. These results are consistent with the concept that decomposition on desert floodplains progresses much as does litter processing in desert uplands, but with periodic bouts of processing typical of aquatic environments when litter is inundated by floodwaters. The strong dependence of litter breakdown rate on weather and floods means that climate change or river flow management can easily disrupt floodplain nutrient dynamics.
Cloud and ice in the planetary scale circulation and in climate
NASA Technical Reports Server (NTRS)
Herman, G. F.; Houghton, D. D.; Kutzbach, J. E.; Suomi, V. E.
1984-01-01
The roles of the cryosphere, and of cloud-radiative interactions are investigated. The effects clouds and ice have in the climate system are examined. The cloud radiation research attempts explain the modes of interaction (feedback) between raditive transfer, cloud formation, and atmospheric dynamics. The role of sea ice in weather and climate is also discussed. Models are used to describe the ice and atmospheric dynamics under study.
Reagan, Andrew J; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth's weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.
Reagan, Andrew J.; Dubief, Yves; Dodds, Peter Sheridan; Danforth, Christopher M.
2016-01-01
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction. PMID:26849061
Horanont, Teerayut; Phithakkitnukoon, Santi; Leong, Tuck W; Sekimoto, Yoshihide; Shibasaki, Ryosuke
2013-01-01
This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM-1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics.
Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds
NASA Astrophysics Data System (ADS)
Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea
2013-04-01
Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.
Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.
Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien
2016-08-01
Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.
Leong, Tuck W.; Sekimoto, Yoshihide; Shibasaki, Ryosuke
2013-01-01
This study explores the effects that the weather has on people's everyday activity patterns. Temperature, rainfall, and wind speed were used as weather parameters. People's daily activity patterns were inferred, such as place visited, the time this took place, the duration of the visit, based on the GPS location traces of their mobile phones overlaid upon Yellow Pages information. Our analysis of 31,855 mobile phone users allowed us to infer that people were more likely to stay longer at eateries or food outlets, and (to a lesser degree) at retail or shopping areas when the weather is very cold or when conditions are calm (non-windy). When compared to people's regular activity patterns, certain weather conditions affected people's movements and activities noticeably at different times of the day. On cold days, people's activities were found to be more diverse especially after 10AM, showing greatest variations between 2PM and 6PM. A similar trend is observed between 10AM and midnight on rainy days, with people's activities found to be most diverse on days with heaviest rainfalls or on days when the wind speed was stronger than 4 km/h, especially between 10AM–1AM. Finally, we observed that different geographical areas of a large metropolis were impacted differently by the weather. Using data of urban infrastructure to characterize areas, we found strong correlations between weather conditions upon people's accessibility to trains. This study sheds new light on the influence of weather conditions on human behavior, in particular the choice of daily activities and how mobile phone data can be used to investigate the influence of environmental factors on urban dynamics. PMID:24367481
Ionosphere-related products for communication and navigation
NASA Astrophysics Data System (ADS)
Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.
2011-12-01
Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.
Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng
2017-12-01
Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX): First results
NASA Astrophysics Data System (ADS)
Craig, George; Schäfler, Andreas; Ament, Felix; Arbogast, Philippe; Crewell, Susanne; Doyle, James; Hirsch, Lutz; Mayer, Bernhard; McTaggart-Cowan, Ron; Methven, John; Rahm, Stephan; Rautenhaus, Marc; Reitebuch, Oliver; Rivière, Gwendal; Vaughan, Geraint; Wendisch, Manfred; Wernli, Heini; Wirth, Martin; Witschas, Benjamin
2017-04-01
First results will be presented from the NAWDEX experiment, an international field campaign with the overall goal of increasing the physical understanding and quantifying the effects of diabatic processes on disturbances to the jet stream over the North Atlantic, their influence on downstream propagation, and consequences for high-impact weather in Europe. The campaign took place from 19 September to 18 October 2016, and deployed a variety of remote-sensing and in-situ instruments that provided an extraordinarily detailed picture of the interacting dynamics and thermodynamics. Thirteen intensive observation periods took place over the course of the campaign, including moisture inflow and diabatic processes in warm conveyor belts, cloud and dynamical structure in outflow and ridge-building events, as well as other events This presentation will briefly review the weather events that were observed during NAWDEX and give a preliminary evaluation of how the observations contribute to new understanding of midlatitude weather systems. As an example, an analysis of the structure and evolution of ex-Tropical Storm Karl will be presented. This system was observed by a sequence of aircraft flights over a period of six days, as it moved from the subtropics into the midlatitudes off the coast of North America, reintensified explosively as a midlatitude cyclone south of Greenland, and eventually contributed to poor precipitation forecasts for Norway.
Imholt, Christian; Reil, Daniela; Eccard, Jana A; Jacob, Daniela; Hempelmann, Nils; Jacob, Jens
2015-02-01
Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. © 2014 Society of Chemical Industry.
The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations
NASA Astrophysics Data System (ADS)
Walters, David; Boutle, Ian; Brooks, Malcolm; Melvin, Thomas; Stratton, Rachel; Vosper, Simon; Wells, Helen; Williams, Keith; Wood, Nigel; Allen, Thomas; Bushell, Andrew; Copsey, Dan; Earnshaw, Paul; Edwards, John; Gross, Markus; Hardiman, Steven; Harris, Chris; Heming, Julian; Klingaman, Nicholas; Levine, Richard; Manners, James; Martin, Gill; Milton, Sean; Mittermaier, Marion; Morcrette, Cyril; Riddick, Thomas; Roberts, Malcolm; Sanchez, Claudio; Selwood, Paul; Stirling, Alison; Smith, Chris; Suri, Dan; Tennant, Warren; Vidale, Pier Luigi; Wilkinson, Jonathan; Willett, Martin; Woolnough, Steve; Xavier, Prince
2017-04-01
We describe Global Atmosphere 6.0 and Global Land 6.0 (GA6.0/GL6.0): the latest science configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) land surface model developed for use across all timescales. Global Atmosphere 6.0 includes the ENDGame (Even Newer Dynamics for General atmospheric modelling of the environment) dynamical core, which significantly increases mid-latitude variability improving a known model bias. Alongside developments of the model's physical parametrisations, ENDGame also increases variability in the tropics, which leads to an improved representation of tropical cyclones and other tropical phenomena. Further developments of the atmospheric and land surface parametrisations improve other aspects of model performance, including the forecasting of surface weather phenomena. We also describe GA6.1/GL6.1, which includes a small number of long-standing differences from our main trunk configurations that we continue to require for operational global weather prediction. Since July 2014, GA6.1/GL6.1 has been used by the Met Office for operational global numerical weather prediction, whilst GA6.0/GL6.0 was implemented in its remaining global prediction systems over the following year.
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence
McLeish, Tom C. B.
2015-01-01
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity—the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity—essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution. PMID:26640648
Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.
McLeish, Tom C B
2015-12-06
We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.
Idea Project Final Report, Distributed Input/ Output Subsystem For Traffic Signal Control
DOT National Transportation Integrated Search
1995-07-01
IN AN EFFORT TO ADD MORE AND MORE FEATURES (PREEMPTION, MALFUNCTION MANAGEMENT, WEATHER MONITORING, AND DYNAMIC LANE ASSIGNMENT, AMONG OTHERS) TO TRAFFIC SIGNAL SYSTEMS, THE TRAFFIC SIGNAL CABINET HAS BECOME VERY : COMPLICATED (FIGURE 1). FURTHERMORE...
3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement
Morgan, Nathaniel Ray; Waltz, Jacob I.
2017-03-02
The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less
NASA Astrophysics Data System (ADS)
Ardanuy, Philip; Bensman, Ed; Bergen, Bill; Chen, Bob; Griffith, Frank; Sutton, Cary; Hood, Carroll; Ritchie, Adrian; Tarro, Andre
2006-08-01
This paper considers an evolved technique for significantly enhanced enterprise-level data processing, reprocessing, archival, dissemination, and utilization. There is today a robust working paradigm established with the Advanced Weather Interactive Processing System (AWIPS)-NOAA/NWS's information integration and fusion capability. This process model extends vertically, and seamlessly, from environmental sensing through the direct delivery of societal benefit. NWS, via AWIPS, is the primary source of weather forecast and warning information in the nation. AWIPS is the tested and proven "the nerve center of operations" at all 122 NWS Weather Forecast Offices (WFOs) and 13 River Forecast Centers (RFCs). However, additional line organizations whose role in satisfying NOAA's five mission goals (ecosystems, climate, weather & water, commerce & transportation, and mission support) in multiple program areas might be facilitated through utilization of AWIPS-like functionalities, including the National Marine Fisheries Service (NMFS); National Environmental Satellite, Data, and Information Service (NESDIS); Office of Oceanic & Atmospheric Research (OAR); and the National Ocean Service (NOS). In addition to NOAA's mission goals, there are nine diverse, recommended, and important societal benefit areas in the US Integrated Earth Observation System (IEOS). This paper shows how the satisfaction of this suite of goals and benefit areas can be optimized by leveraging several key ingredients: (1) the evolution of AWIPS towards a net-centric system of services concept of operations; (2) infusion of technologies and concepts from pathfinder systems; (3) the development of new observing systems targeted at deliberate, and not just serendipitous, societal benefit; and (4) the diverse, nested local, regional, national, and international scales of the different benefits and goal areas, and their interoperability and interplay across the system of systems.
An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers
NASA Technical Reports Server (NTRS)
Short, David A.; Wells, Leonard A.; Merceret, Francis J.; Roeder, William P.
2005-01-01
This study focuses on a comparison of peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. The legacy mechanical wind instruments on CCAFS/KSC and VAFB weather towers are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. The wind tower networks on KSC/CCAFS and VAFB have 41 and 27 towers, respectively. Launch Weather Officers, forecasters, and Range Safety analysts at both locations need to understand the performance of the new wind sensors for a myriad of reasons that include weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The Legacy sensors measure wind speed and direction mechanically. The ultrasonic RSA sensors have no moving parts. Ultrasonic sensors were originally developed to measure very light winds (Lewis and Dover 2004). The technology has evolved and now ultrasonic sensors provide reliable wind data over a broad range of wind speeds. However, because ultrasonic sensors respond more quickly than mechanical sensors to rapid fluctuations in speed, characteristic of gusty wind conditions, comparisons of data from the two sensor types have shown differences in the statistics of peak wind speeds (Lewis and Dover 2004). The 45th Weather Squadron (45 WS) and the 30 WS requested the Applied Meteorology Unit (AMU) to compare data from RSA and Legacy sensors to determine if there are significant differences in peak wind speed information from the two systems.