Sample records for evolving feature usefulness

  1. A method of evolving novel feature extraction algorithms for detecting buried objects in FLIR imagery using genetic programming

    NASA Astrophysics Data System (ADS)

    Paino, A.; Keller, J.; Popescu, M.; Stone, K.

    2014-06-01

    In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.

  2. Improving Naive Bayes with Online Feature Selection for Quick Adaptation to Evolving Feature Usefulness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pon, R K; Cardenas, A F; Buttler, D J

    The definition of what makes an article interesting varies from user to user and continually evolves even for a single user. As a result, for news recommendation systems, useless document features can not be determined a priori and all features are usually considered for interestingness classification. Consequently, the presence of currently useless features degrades classification performance [1], particularly over the initial set of news articles being classified. The initial set of document is critical for a user when considering which particular news recommendation system to adopt. To address these problems, we introduce an improved version of the naive Bayes classifiermore » with online feature selection. We use correlation to determine the utility of each feature and take advantage of the conditional independence assumption used by naive Bayes for online feature selection and classification. The augmented naive Bayes classifier performs 28% better than the traditional naive Bayes classifier in recommending news articles from the Yahoo! RSS feeds.« less

  3. Texture segmentation by genetic programming.

    PubMed

    Song, Andy; Ciesielski, Vic

    2008-01-01

    This paper describes a texture segmentation method using genetic programming (GP), which is one of the most powerful evolutionary computation algorithms. By choosing an appropriate representation texture, classifiers can be evolved without computing texture features. Due to the absence of time-consuming feature extraction, the evolved classifiers enable the development of the proposed texture segmentation algorithm. This GP based method can achieve a segmentation speed that is significantly higher than that of conventional methods. This method does not require a human expert to manually construct models for texture feature extraction. In an analysis of the evolved classifiers, it can be seen that these GP classifiers are not arbitrary. Certain textural regularities are captured by these classifiers to discriminate different textures. GP has been shown in this study as a feasible and a powerful approach for texture classification and segmentation, which are generally considered as complex vision tasks.

  4. Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms.

    PubMed

    Yedid, G; Ofria, C A; Lenski, R E

    2008-09-01

    Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.

  5. Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks

    USGS Publications Warehouse

    Yoshizaki, J.; Pollock, K.H.; Brownie, C.; Webster, R.A.

    2009-01-01

    Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (<0.2) or low misidentification rates (<2.5%). ?? 2009 by the Ecological Society of America.

  6. Modeling the Chinese language as an evolving network

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Shi, Yuming; Huang, Qiuling

    2014-01-01

    The evolution of Chinese language has three main features: the total number of characters is gradually increasing, new words are generated in the existing characters, and some old words are no longer used in daily-life language. Based on the features, we propose an evolving language network model. Finally, we use this model to simulate the character co-occurrence networks (nodes are characters, and two characters are connected by an edge if they are adjacent to each other) constructed from essays in 11 different periods of China, and find that characters that appear with high frequency in old words are likely to be reused when new words are formed.

  7. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor.

    PubMed

    Kivell, Tracy L; Schmitt, Daniel

    2009-08-25

    Despite decades of debate, it remains unclear whether human bipedalism evolved from a terrestrial knuckle-walking ancestor or from a more generalized, arboreal ape ancestor. Proponents of the knuckle-walking hypothesis focused on the wrist and hand to find morphological evidence of this behavior in the human fossil record. These studies, however, have not examined variation or development of purported knuckle-walking features in apes or other primates, data that are critical to resolution of this long-standing debate. Here we present novel data on the frequency and development of putative knuckle-walking features of the wrist in apes and monkeys. We use these data to test the hypothesis that all knuckle-walking apes share similar anatomical features and that these features can be used to reliably infer locomotor behavior in our extinct ancestors. Contrary to previous expectations, features long-assumed to indicate knuckle-walking behavior are not found in all African apes, show different developmental patterns across species, and are found in nonknuckle-walking primates as well. However, variation among African ape wrist morphology can be clearly explained if we accept the likely independent evolution of 2 fundamentally different biomechanical modes of knuckle-walking: an extended wrist posture in an arboreal environment (Pan) versus a neutral, columnar hand posture in a terrestrial environment (Gorilla). The presence of purported knuckle-walking features in the hominin wrist can thus be viewed as evidence of arboreality, not terrestriality, and provide evidence that human bipedalism evolved from a more arboreal ancestor occupying the ecological niche common to all living apes.

  9. ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION

    PubMed Central

    Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.

    2012-01-01

    Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561

  10. The Changing Face of the Novel

    ERIC Educational Resources Information Center

    Serafini, Frank; Blasingame, James

    2012-01-01

    This article uses Dresang's dimensions of radical change to call attention to the evolving structures and features of novels for young readers being published today. The controversial topics and elaborate design features contained in contemporary novels, for example, the expansion of dystopic fiction, the disruption of traditional narrative…

  11. Revised Thorium Abundances for Lunar Red Spots

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.; Lawrence, D. J.; Elphic, R. C.; Feldman, W. C.; Vaniman, D. T.; Hawke, B. R.

    2005-01-01

    Lunar red spots are features on the nearside of the Moon that are characterized by high albedo and by a strong absorption in the ultraviolet. These red spots include the Gruithuisen domes, the Mairan domes, Hansteen Alpha, the southern portion of Montes Riphaeus, Darney Chi and Tau, Helmet, and an area near the Lassell crater. It has been suggested that many of the red spots are extrusive, nonmare, volcanic features that could be composed of an evolved lithlogy enriched in thorium. In fact, Hawke et al. used morphological characteristics to show that Hansteen Alpha is a nonmare volcanic construct. However, because the apparent Th abundances (6 - 7 ppm) were lower than that expected for evolved rock types, Hawke et al. concluded that Hansteen Alpha was composed of an unknown rock type. Subsequent studies by Lawrence et al. used improved knowledge of the Th spatial distribution for small area features on the lunar surface to revisit the interpretation of Th abundances at the Hansteen Alpha red spot. As part of their study, Lawrence et al. used a forward modeling technique to show that the Th abundance at Hansteen Alpha is not 6 ppm, but is more likely closer to 25 ppm, a value consistent with evolved lithologies. This positive correlation between the morphology and composition of Hansteen Alpha provides support for the presence of evolved lithologies on the lunar surface. It is possible, however, that Hansteen Alpha represents an isolated occurrence of non-mare volcanism. That is why we have chosen to use the forward modeling technique of Lawrence et al. to investigate the Th abundances at other lunar red spots, starting with the Gruithuisen domes. Additional information is included in the original extended abstract.

  12. How Physician Perspectives on E-Prescribing Evolve over Time

    PubMed Central

    Patel, Vaishali; Pfoh, Elizabeth R.; Kaushal, Rainu

    2016-01-01

    Summary Background Physicians are expending tremendous resources transitioning to new electronic health records (EHRs), with electronic prescribing as a key functionality of most systems. Physician dissatisfaction post-transition can be quite marked, especially initially. However, little is known about how physicians’ experiences using new EHRs for e-prescribing evolve over time. We previously published a qualitative case study about the early physician experience transitioning from an older to a newer, more robust EHR, in the outpatient setting, focusing on their perceptions of the electronic prescribing functionality. Objective Our current objective was to examine how perceptions about using the new HER evolved over time, again with a focus on electronic prescribing. Methods We interviewed thirteen internists at an academic medical center-affiliated ambulatory care clinic who transitioned to the new EHR two years prior. We used a grounded theory approach to analyze semi-structured interviews and generate key themes. Results We identified five themes: efficiency and usability, effects on safety, ongoing training requirements, customization, and competing priorities for the EHR. We found that for even experienced e-prescribers, achieving prior levels of perceived prescribing efficiency took nearly two years. Despite the fact that speed in performing prescribing-related tasks was highly important, most were still not utilizing system short cuts or customization features designed to maximize efficiency. Alert fatigue remained common. However, direct transmission of prescriptions to pharmacies was highly valued and its benefits generally outweighed the other features considered poorly designed for physician workflow. Conclusions Ensuring that physicians are able to do key prescribing tasks efficiently is critical to the perceived value of e-prescribing applications. However, successful transitions may take longer than expected and e-prescribing system features that do not support workflow or require constant upgrades may further prolong the process. Additionally, as system features continually evolve, physicians may need ongoing training and support to maintain efficiency. PMID:27786335

  13. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric deformation (such as arachnoids), and end with coronae (with mostly concentric deformation). The model predicts that the highlands evolve on a timescale of order 10 Ma, and the smaller-scale features evolve in a 100 Ma timescale.

  14. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    PubMed

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  15. Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.

    PubMed

    Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke

    2016-01-01

    Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.

  16. Responsiveness-to-Intervention and School-Wide Positive Behavior Supports: Integration of Multi-Tiered System Approaches

    ERIC Educational Resources Information Center

    Sugai, George; Horner, Robert H.

    2009-01-01

    The Individuals with Disabilities Education Act and No Child Left Behind emphasize the use of scientifically based research to improve outcomes for students. From this emphasis, response-to-intervention has evolved. We present one perspective on the defining features of response-to-intervention and application of those features to school-wide…

  17. Civil aeromedical standards for general-use aerospace transportation vehicles : the space-shuttle follow-on.

    DOT National Transportation Integrated Search

    1971-07-01

    Second-generation general-use aerospace transportation vehicles will evolve, and aerospace medical specialists must provide timely medical criteria for (a) occupant selection, (b) vehicle design features, and (c) operational guidelines. Incorporation...

  18. REM Sleep Behavior Disorder: Updated Review of the Core Features, the RBD-Neurodegenerative Disease Association, Evolving Concepts, Controversies, and Future Directions

    PubMed Central

    Boeve, Bradley F.

    2010-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia manifested by vivid, often frightening dreams associated with simple or complex motor behavior during REM sleep. Patients appear to “act out their dreams,” in which the exhibited behaviors mirror the content of the dreams, and the dream content often involves a chasing or attacking theme. The polysomnographic features of RBD include increased electromyographic tone +/- dream enactment behavior during REM sleep. Management with counseling and pharmacologic measures is usually straight-forward and effective. In this review, the terminology, clinical and polysomnographic features, demographic and epidemiologic features, diagnostic criteria, differential diagnosis, and management strategies are discussed. Recent data on the suspected pathophysiologic mechanisms of RBD are also reviewed. The literature and our institutional experience on RBD are next discussed, with an emphasis on the RBD-neurodegenerative disease association and particularly the RBD-synucleinopathy association. Several issues relating to evolving concepts, controversies, and future directions are then reviewed, with an emphasis on idiopathic RBD representing an early feature of a neurodegenerative disease and particularly an evolving synucleinopathy. Planning for future therapies that impact patients with idiopathic RBD is reviewed in detail. PMID:20146689

  19. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  20. Maximizing the Adjacent Possible in Automata Chemistries.

    PubMed

    Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter

    2016-01-01

    Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.

  1. Identification of dual-tropic HIV-1 using evolved neural networks.

    PubMed

    Fogel, Gary B; Lamers, Susanna L; Liu, Enoch S; Salemi, Marco; McGrath, Michael S

    2015-11-01

    Blocking the binding of the envelope HIV-1 protein to immune cells is a popular concept for development of anti-HIV therapeutics. R5 HIV-1 binds CCR5, X4 HIV-1 binds CXCR4, and dual-tropic HIV-1 can bind either coreceptor for cellular entry. R5 viruses are associated with early infection and over time can evolve to X4 viruses that are associated with immune failure. Dual-tropic HIV-1 is less studied; however, it represents functional antigenic intermediates during the transition of R5 to X4 viruses. Viral tropism is linked partly to the HIV-1 envelope V3 domain, where the amino acid sequence helps dictate the receptor a particular virus will target; however, using V3 sequence information to identify dual-tropic HIV-1 isolates has remained difficult. Our goal in this study was to elucidate features of dual-tropic HIV-1 isolates that assist in the biological understanding of dual-tropism and develop an approach for their detection. Over 1559 HIV-1 subtype B sequences with known tropisms were analyzed. Each sequence was represented by 73 structural, biochemical and regional features. These features were provided to an evolved neural network classifier and evaluated using balanced and unbalanced data sets. The study resolved R5X4 viruses from R5 with an accuracy of 81.8% and from X4 with an accuracy of 78.8%. The approach also identified a set of V3 features (hydrophobicity, structural and polarity) that are associated with tropism transitions. The ability to distinguish R5X4 isolates will improve computational tropism decisions for R5 vs. X4 and assist in HIV-1 research and drug development efforts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Multi-gene phylogenetic analysis reveals the multiple origin and evolution of mangrove physiological traits through exaptation

    NASA Astrophysics Data System (ADS)

    Sahu, Sunil Kumar; Singh, Reena; Kathiresan, Kandasamy

    2016-12-01

    Mangroves are taxonomically diverse group of salt-tolerant, mainly arboreal, flowering plants that grow in tropical and sub-tropical regions and have adapted themselves to thrive in such obdurate surroundings. While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose and the co-opted features are called exaptations. Thus, one of the fundamental issues is what features of mangroves have evolved through exaptation. We attempt to address these questions through molecular phylogenetic approach using chloroplast and nuclear markers. First, we determined if these mangroves specific traits have evolved multiple times in the phylogeny. Once the multiple origins were established, we then looked at related non-mangrove species for characters that could have been co-opted by mangrove species. We also assessed the efficacy of these molecular sequences in distinguishing mangroves at the species level. This study revealed the multiple origin of mangroves and shed light on the ancestral characters that might have led certain lineages of plants to adapt to estuarine conditions and also traces the evolutionary history of mangroves and hitherto unexplained theory that mangroves traits (aerial roots and viviparous propagules) evolved as a result of exaptation rather than adaptation to saline habitats.

  3. Comparison of the Features of EPUB E-Book and SCORM E-Learning Content Model

    ERIC Educational Resources Information Center

    Chang, Hsuan-Pu; Hung, Jason C.

    2018-01-01

    E-books nowadays have greatly evolved in its presentation and functions, however its features for education need to be investigated and inspired because people who are accustomed to using printed books may consider and approach it in the same way as they do printed ones. Therefore, the authors compared the EPUB e-book content model with the SCORM…

  4. Binary Image Classification: A Genetic Programming Approach to the Problem of Limited Training Instances.

    PubMed

    Al-Sahaf, Harith; Zhang, Mengjie; Johnston, Mark

    2016-01-01

    In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.

  5. Blended particle filters for large-dimensional chaotic dynamical systems

    PubMed Central

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  6. Evolving Patient Compliance Trends: Integrating Clinical, Insurance, and Extrapolated Socioeconomic Data

    PubMed Central

    Klobusicky, Joseph J.; Aryasomayajula, Arun; Marko, Nicholas

    2015-01-01

    Efforts toward improving patient compliance in medication focus on either identifying trends in patient features or studying changes through an intervention. Our study seeks to provide an important link between these two approaches through defining trends of evolving compliance. In addition to using clinical covariates provided through insurance claims and health records, we also extracted census based data to provide socioeconomic covariates such as income and population density. Through creating quadrants based on periods of medicine intake, we derive several novel definitions of compliance. These definitions revealed additional compliance trends through considering refill histories later in a patient’s length of therapy. These results suggested that the link between patient features and compliance includes a temporal component, and should be considered in policymaking when identifying compliant subgroups. PMID:26958212

  7. Rejoice in unexpected gifts from parrots and butterflies

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    2016-04-01

    New biological structures usually evolve from gradual modifications of old structures. Sometimes, biological structures contain hidden features, possibly vestigial. In addition to learning about functionalities, mechanisms, and structures readily apparent in nature, one must be alive to hidden features that could be useful. This aspect of engineered biomimicry is exemplified by two optical structures of psittacine and lepidopteran provenances. In both examples, a schemochrome is hidden by pigments.

  8. Do Online Voting Patterns Reflect Evolved Features of Human Cognition? An Exploratory Empirical Investigation.

    PubMed

    Priestley, Maria; Mesoudi, Alex

    2015-01-01

    Online votes or ratings can assist internet users in evaluating the credibility and appeal of the information which they encounter. For example, aggregator websites such as Reddit allow users to up-vote submitted content to make it more prominent, and down-vote content to make it less prominent. Here we argue that decisions over what to up- or down-vote may be guided by evolved features of human cognition. We predict that internet users should be more likely to up-vote content that others have also up-voted (social influence), content that has been submitted by particularly liked or respected users (model-based bias), content that constitutes evolutionarily salient or relevant information (content bias), and content that follows group norms and, in particular, prosocial norms. 489 respondents from the online social voting community Reddit rated the extent to which they felt different traits influenced their voting. Statistical analyses confirmed that norm-following and prosociality, as well as various content biases such as emotional content and originality, were rated as important motivators of voting. Social influence had a smaller effect than expected, while attitudes towards the submitter had little effect. This exploratory empirical investigation suggests that online voting communities can provide an important test-bed for evolutionary theories of human social information use, and that evolved features of human cognition may guide online behaviour just as it guides behaviour in the offline world.

  9. Data warehousing with Oracle

    NASA Astrophysics Data System (ADS)

    Shahzad, Muhammad A.

    1999-02-01

    With the emergence of data warehousing, Decision support systems have evolved to its best. At the core of these warehousing systems lies a good database management system. Database server, used for data warehousing, is responsible for providing robust data management, scalability, high performance query processing and integration with other servers. Oracle being the initiator in warehousing servers, provides a wide range of features for facilitating data warehousing. This paper is designed to review the features of data warehousing - conceptualizing the concept of data warehousing and, lastly, features of Oracle servers for implementing a data warehouse.

  10. High resolution spectroscopy of the disk chromosphere. II - Time sequence observations of Ca II H and K emissions.

    NASA Technical Reports Server (NTRS)

    Wilson, P. R.; Rees, D. E.; Beckers, J. M.; Brown, D. R.

    1972-01-01

    Two independent sets of high resolution time series spectra of the Ca II H and K emission obtained at the Solar Tower and at the Big Dome of the Sacramento Peak Observatory on September 11th, 1971 are reported. The evolutionary behavior of the emission first reported by Wilson and Evans is confirmed, but the detail of the evolution is found to be more complex. In one case, a doubly peaked feature showing some K3 emission evolves into a single K2 (red) peak with no K3 emission. Coincidentally, a neighboring doubly peaked feature evolves to a very strong blue peak. In an entirely independent sequence a doubly peaked feature evolves into a single red peak. The K2 emission then fades completely although the continuum threads are still strong. Finally a strong K2 blue peak appears. It is concluded that the observed evolution of the K2 emission is due to temporal variations in the physical conditions which give rise to them.

  11. Reconsidering Simulations in Science Education at a Distance: Features of Effective Use

    ERIC Educational Resources Information Center

    Blake, C.; Scanlon, E.

    2007-01-01

    This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…

  12. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model

    PubMed Central

    DeLeon, Orlando; Hodis, Hagit; O’Malley, Yunxia; Johnson, Jacklyn; Salimi, Hamid; Zhai, Yinjie; Winter, Elizabeth; Remec, Claire; Eichelberger, Noah; Van Cleave, Brandon; Puliadi, Ramya; Harrington, Robert D.; Stapleton, Jack T.; Haim, Hillel

    2017-01-01

    The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. PMID:28384158

  13. Stewardship of the Evolving Scholarly Record: From the Invisible Hand to Conscious Coordination

    ERIC Educational Resources Information Center

    Lavoie, Brian; Malpas, Constance

    2015-01-01

    The long-term future of the scholarly record in its fullest expression cannot be effectively secured with stewardship strategies designed for print materials. The features of the evolving scholarly record suggest that traditional stewardship strategies, built on an "invisible hand" approach that relies on the uncoordinated,…

  14. Did Language Evolve Like the Vertebrate Eye?

    ERIC Educational Resources Information Center

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  15. Spectra from the IRS of Bright Oxygen-Rich Evolved Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, Greg; Wood, Peter

    2016-06-01

    We have used Spitzer's Infrared Spectrograph (IRS) to obtain spectra of stars in the Small Magellanic Cloud (SMC). The targets were chosen from the Point Source Catalog of the Mid-Course Space Experiment (MSX), which detected the 243 brightest infrared sources in the SMC. Our SMC sample of oxygen-rich evolved stars shows more dust than found in previous samples, and the dust tends to be dominated by silicates, with little contribution from alumina. Both results may arise from the selection bias in the MSX sample and our sample toward more massive stars. Additionally, several sources show peculiar spectral features such as PAHs, crystalline silicates, or both carbon-rich and silicate features. The spectrum of one source, MSX SMC 145, is a combination of an ordinary AGB star and a background galaxy at z~0.16, rather than an OH/IR star as previously suggested.

  16. Using Measurements of Topography to Infer Rates of Crater Degradation and Surface Evolution on the Moon and Mercury

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb; Crowley, Lindy; Leight, Clarissa; Dyar, Darby; Minton, David; Hirabayashi, Toshi; Thomson, Brad; Watters, Wesley

    2017-01-01

    Motivating questions: 1. How does the topography of airless bodies evolve? 2. What is the relative rate on the Moon and Mercury? 3. Can we constrain the age of features and units from their topography?

  17. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  18. A Hyper-Heuristic Ensemble Method for Static Job-Shop Scheduling.

    PubMed

    Hart, Emma; Sim, Kevin

    2016-01-01

    We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conquer approach in which each heuristic solves a unique subset of the instance set considered. NELLI-GP extends an existing ensemble method called NELLI by introducing a novel heuristic generator that evolves heuristics composed of linear sequences of dispatching rules: each rule is represented using a tree structure and is itself evolved. Following a training period, the ensemble is shown to outperform both existing dispatching rules and a standard genetic programming algorithm on a large set of new test instances. In addition, it obtains superior results on a set of 210 benchmark problems from the literature when compared to two state-of-the-art hyper-heuristic approaches. Further analysis of the relationship between heuristics in the evolved ensemble and the instances each solves provides new insights into features that might describe similar instances.

  19. Reproductive Physiology of Marsupials

    ERIC Educational Resources Information Center

    Sharman, G. B.

    1970-01-01

    Describes some unique features of marsupial reproduction which include (1) chromosomal sex determination, (2) reproductive system, (3) birth, (4) location, and (5) embryonic diapause. These features suggest that viviparity evolved separately in eutherian and marsupial stocks after their derivation from a common oviparous ancestor. Bibliography.…

  20. Effect of sex, age, and breed on genetic recombination features in cattle

    USDA-ARS?s Scientific Manuscript database

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  1. Biological robustness.

    PubMed

    Kitano, Hiroaki

    2004-11-01

    Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution. Such a mutually beneficial process is made possible by specific architectural features observed in robust systems. But there are trade-offs between robustness, fragility, performance and resource demands, which explain system behaviour, including the patterns of failure. Insights into inherent properties of robust systems will provide us with a better understanding of complex diseases and a guiding principle for therapy design.

  2. Improve threshold segmentation using features extraction to automatic lung delimitation.

    PubMed

    França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala

    2013-01-01

    With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.

  3. Clicker Evolution: Seeking Intelligent Design

    ERIC Educational Resources Information Center

    Barber, Maryfran; Njus, David

    2007-01-01

    Two years after the first low-cost radio-frequency audience response system using clickers was introduced for college classrooms, at least six different systems are on the market. Their features and user-friendliness are evolving rapidly, driven by competition and improving technology. The proliferation of different systems is putting pressure on…

  4. Surveillance Jumps on the Network

    ERIC Educational Resources Information Center

    Raths, David

    2011-01-01

    Internet protocol (IP) network-based cameras and digital video management software are maturing, and many issues that have surrounded them, including bandwidth, data storage, ease of use, and integration are starting to become clearer as the technology continues to evolve. Prices are going down and the number of features is going up. Many school…

  5. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  6. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    PubMed Central

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  7. Using Malus sieversii Ledeb., the wild apple progenitor of Malus H domestica Borkh., to identify genes contributing to water use efficiency and potential drought resistance

    USDA-ARS?s Scientific Manuscript database

    Dehydration is a feature of many abiotic stresses, but is more often an agricultural threat in its own right. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular biological responses. These mechanisms are complex and involve vari...

  8. Feature Selection for Evolutionary Commercial-off-the-Shelf Software: Studies Focusing on Time-to-Market, Innovation and Hedonic-Utilitarian Trade-Offs

    ERIC Educational Resources Information Center

    Kakar, Adarsh Kumar

    2013-01-01

    Feature selection is one of the most important decisions made by product managers. This three article study investigates the concepts, tools and techniques for making trade-off decisions of introducing new features in evolving Commercial-Off-The-Shelf (COTS) software products. The first article investigates the efficacy of various feature…

  9. Allergic contact dermatitis from color film developers: clinical and histologic features.

    PubMed

    Brancaccio, R R; Cockerell, C J; Belsito, D; Ostreicher, R

    1993-05-01

    We evaluated two patients with allergic contact dermatitis that resulted from exposure to color film developers. A lichenoid eruption developed in one patient, whereas an eruption more characteristic of an acute spongiotic dermatitis developed in the second patient. Histologic findings in the first case were those of a "lichenoid dermatitis" but with features distinct from classic lichen planus. The biopsy specimens from the second patient showed a subacute spongiotic process with a bandlike infiltrate suggestive of an evolving lichenoid process. Contact allergy to color developers may result in eruptions similar to lichen planus. This process appears to evolve from an acute spongiotic dermatitis in its early phase to a lichenoid dermatitis in fully developed and more chronic forms. Although the histologic features are those of a "lichenoid" dermatitis, some features, such as the presence of spongiosis, eosinophils, and a less intense inflammatory infiltrate, may enable distinction between lichenoid allergic contact dermatitis and true lichen planus. In addition, clinicopathologic correlation with patch test results should permit accurate diagnosis in most cases.

  10. SHARDS: Survey for High-z Absorption Red & Dead Sources

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  11. Merged or monolithic? Using machine-learning to reconstruct the dynamical history of simulated star clusters

    NASA Astrophysics Data System (ADS)

    Pasquato, Mario; Chung, Chul

    2016-05-01

    Context. Machine-learning (ML) solves problems by learning patterns from data with limited or no human guidance. In astronomy, ML is mainly applied to large observational datasets, e.g. for morphological galaxy classification. Aims: We apply ML to gravitational N-body simulations of star clusters that are either formed by merging two progenitors or evolved in isolation, planning to later identify globular clusters (GCs) that may have a history of merging from observational data. Methods: We create mock-observations from simulated GCs, from which we measure a set of parameters (also called features in the machine-learning field). After carrying out dimensionality reduction on the feature space, the resulting datapoints are fed in to various classification algorithms. Using repeated random subsampling validation, we check whether the groups identified by the algorithms correspond to the underlying physical distinction between mergers and monolithically evolved simulations. Results: The three algorithms we considered (C5.0 trees, k-nearest neighbour, and support-vector machines) all achieve a test misclassification rate of about 10% without parameter tuning, with support-vector machines slightly outperforming the others. The first principal component of feature space correlates with cluster concentration. If we exclude it from the regression, the performance of the algorithms is only slightly reduced.

  12. Dynamical injections as the source of near geostationary quiet time particle spatial boundaries

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Meng, C. I.

    1983-01-01

    The question whether the noon-dusk feature is a manifestation of the spatial structures that should arise from quasi-stationary convection is examined. The key consideration here is whether the energy dispersion of the feature can be explained. It is shown that the observed energy dispersion cannot be attributed to the standard stationary convection configurations, either perturbed or unperturbed. It is also demonstrated, using a detailed computer simulation, that the nighttime, double-spiral-shaped injection boundary (used previously to reproduce the fast changing nighttime features) is successful at reproducing the noon-dusk feature by allowing the particles to evolve for periods of 12 to 36 hours after the injection. It is stressed that the portion of the injection boundary responsible for the feature looks very different from the standard convection boundaries configuration. Conclusions are offered concerning the importance of quasi-stationary convection as the mechanism by which the near geostationary regions are populated.

  13. Economic Modeling and Analysis of Educational Vouchers

    ERIC Educational Resources Information Center

    Epple, Dennis; Romano, Richard

    2012-01-01

    The analysis of educational vouchers has evolved from market-based analogies to models that incorporate distinctive features of the educational environment. These distinctive features include peer effects, scope for private school pricing and admissions based on student characteristics, the linkage of household residential and school choices in…

  14. Clinical implications of antimitochondrial antibody seropositivity in autoimmune hepatitis: a multicentre study.

    PubMed

    Muratori, Paolo; Efe, Cumali; Muratori, Luigi; Ozaslan, Ersan; Schiano, Thomas; Yoshida, Eric M; Heurgué-Berlot, Alexandra; Lalanne, Claudine; Lenzi, Marco; Wahlin, Staffan

    2017-07-01

    Antimitochondrial antibody (AMA) positivity is the serological marker of primary biliary cholangitis (PBC), but can also be sporadically detected in autoimmune hepatitis (AIH). Little is known about the clinical significance of AMA in AIH. We recruited 47 AMA-positive AIH cases from several centres and compared them with 264 well-characterized Italian AIH patients. Cases with any features of PBC were excluded. In univariate analysis, AMA-positive AIH patients were older (46 vs. 36, P=0.002) and more responsive to immunosuppression (74 vs. 59%, P=0.05), but no differences were observed between the two groups after logistic regression using AMA as a dependent variable. None of the AMA-positive AIH patients showed signs of evolving PBC features after a median follow-up of up 47 months. AMA was detected in combination with all serological AIH markers except antiliver kidney microsome type 1 and antiliver cytosol type 1. AMA was the only marker of autoimmunity in eight cases. We found no differences between AIH with and without AMA. The groups had similar clinical, biochemical and histological features. AMA-positive AIH patients did not evolve towards PBC. In some cases, AMA was the only autoantibody.

  15. Q&A: What is human language, when did it evolve and why should we care?

    PubMed

    Pagel, Mark

    2017-07-24

    Human language is unique among all forms of animal communication. It is unlikely that any other species, including our close genetic cousins the Neanderthals, ever had language, and so-called sign 'language' in Great Apes is nothing like human language. Language evolution shares many features with biological evolution, and this has made it useful for tracing recent human history and for studying how culture evolves among groups of people with related languages. A case can be made that language has played a more important role in our species' recent (circa last 200,000 years) evolution than have our genes.

  16. HDF Update

    NASA Technical Reports Server (NTRS)

    Pourmal, Elena

    2016-01-01

    The HDF Group maintains and evolves HDF software used by NASA ESDIS program to manage remote sense data. In this talk we will discuss new features of HDF (Virtual Datasets, Single writerMultiple reader access, Community supported HDF5 compression filters) that address storage and IO performance requirements of the applications that work with the ESDIS data products.

  17. Technology Transience and Learner Data: Shifting Notions of Privacy in Online Learning

    ERIC Educational Resources Information Center

    Dennen, Vanessa P.

    2015-01-01

    The technologies that support online learning are continuously evolving, providing instructors and students with a continuous stream of new tools, features, and functionalities for existing tools. During an online course, instructors and students generate and share a tremendous amount of data using these tools. These data are often created in…

  18. Discursive Roles and Responsibilities: A Study of Interactions in Chinese Immigrant Households

    ERIC Educational Resources Information Center

    He, Agnes Weiyun

    2016-01-01

    This study examines features of communication in American households where Chinese is used as a heritage language against the backdrop of global migration and technological advancement. It aims to elucidate how meaning emerges and evolves through repeated and varied performance by multiple participants over time, through mundane and iterative…

  19. Some Features of Human Adolescence Viewed in Evolutionary Perspective.

    ERIC Educational Resources Information Center

    Weisfeld, G. E.; Berger, J. M.

    1983-01-01

    Focuses on some apparently evolved features of human adolescence and their possible functions, including the pubertal growth spurt, sexual size dimorphism and bimaturism, the greater aggressiveness of males, heightened concern with one's social standing and the factors affecting it, intergenerational friction, same-sex aggregations and solidarity,…

  20. Pixel by pixel: the evolving landscapes of remote sensing.

    Treesearch

    Sally Duncan

    1999-01-01

    This issue of "Science Findings" focuses on remote sensing research and how it can be used to assess a landscape. The work of PNW Research Station scientists Tom Spies and Warren Cohen and their use of satellite technology in developing the coastal landscape analysis and modeling study (CLAMS) is featured. The CLAMS study area includes more than 5 million...

  1. A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Dutton, Kenneth

    2005-01-01

    The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.

  2. Discriminatively learning for representing local image features with quadruplet model

    NASA Astrophysics Data System (ADS)

    Zhang, Da-long; Zhao, Lei; Xu, Duan-qing; Lu, Dong-ming

    2017-11-01

    Traditional hand-crafted features for representing local image patches are evolving into current data-driven and learning-based image feature, but learning a robust and discriminative descriptor which is capable of controlling various patch-level computer vision tasks is still an open problem. In this work, we propose a novel deep convolutional neural network (CNN) to learn local feature descriptors. We utilize the quadruplets with positive and negative training samples, together with a constraint to restrict the intra-class variance, to learn good discriminative CNN representations. Compared with previous works, our model reduces the overlap in feature space between corresponding and non-corresponding patch pairs, and mitigates margin varying problem caused by commonly used triplet loss. We demonstrate that our method achieves better embedding result than some latest works, like PN-Net and TN-TG, on benchmark dataset.

  3. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    NASA Technical Reports Server (NTRS)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  4. Belief Revision in Children: The Role of Prior Knowledge and Strategies for Generating Evidence.

    ERIC Educational Resources Information Center

    Schauble, Leona

    1990-01-01

    Evolving beliefs and reasoning strategies of 22 fifth and sixth graders working on a causal reasoning problem were observed. Children conducted experiments to learn about relations between design features and speed of race cars in a computerized "microworld." Subjects did not attain full understanding of features disconfirming their…

  5. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  6. SHARDS: a spectro-photometric analysis of distant red and dead massive galaxies

    NASA Astrophysics Data System (ADS)

    Pérez-González, P. G.; Cava, A.; The Shards Team

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey carried out with GTC/OSIRIS and designed to select and study massive passively evolving galaxies at z= 1.0--2.5 in the GOODS-N field. The survey uses a set of 24 medium band filters (FWHM ˜15 nm) covering the 500--950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ˜280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) construct for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg(UV) or D(4000) indices; (3) measure their redshift with an accuracy Δ z/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  7. Development of a Computerized In-Basket Exercise for the Classroom: A Sales Management Example

    ERIC Educational Resources Information Center

    Pearson, Michael M.; Barnes, John W.; Onken, Marina H.

    2006-01-01

    This article follows the development of a sales management in-basket exercise for use in the classroom. The authors have computerized the exercise and added features to allow for additional and more quantitative input from the students. The exercise has evolved and been tested in numerous classroom situations. The computerized in-basket exercise…

  8. WebCT: A Major Shift of Emphasis

    ERIC Educational Resources Information Center

    Morningstar, Barbara; Schubert, Jeremy; Thibeault, Kristine

    2004-01-01

    The evaluation reports in this series usually feature several products at once. The current review, however, comes at a time when one of the most widely used (and expensive) online learning management systems is undergoing a major change in its marketing strategy and corporate focus. "WebCT" is currently evolving to a new version ("WebCT Vista"),…

  9. Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers.

    PubMed

    Pearce, Oliver M T; Delaine-Smith, Robin M; Maniati, Eleni; Nichols, Sam; Wang, Jun; Böhm, Steffen; Rajeeve, Vinothini; Ullah, Dayem; Chakravarty, Probir; Jones, Roanne R; Montfort, Anne; Dowe, Tom; Gribben, John; Jones, J Louise; Kocher, Hemant M; Serody, Jonathan S; Vincent, Benjamin G; Connelly, John; Brenton, James D; Chelala, Claude; Cutillas, Pedro R; Lockley, Michelle; Bessant, Conrad; Knight, Martin M; Balkwill, Frances R

    2018-03-01

    We have profiled, for the first time, an evolving human metastatic microenvironment by measuring gene expression, matrisome proteomics, cytokine and chemokine levels, cellularity, extracellular matrix organization, and biomechanical properties, all on the same sample. Using biopsies of high-grade serous ovarian cancer metastases that ranged from minimal to extensive disease, we show how nonmalignant cell densities and cytokine networks evolve with disease progression. Multivariate integration of the different components allowed us to define, for the first time, gene and protein profiles that predict extent of disease and tissue stiffness, while also revealing the complexity and dynamic nature of matrisome remodeling during development of metastases. Although we studied a single metastatic site from one human malignancy, a pattern of expression of 22 matrisome genes distinguished patients with a shorter overall survival in ovarian and 12 other primary solid cancers, suggesting that there may be a common matrix response to human cancer. Significance: Conducting multilevel analysis with data integration on biopsies with a range of disease involvement identifies important features of the evolving tumor microenvironment. The data suggest that despite the large spectrum of genomic alterations, some human malignancies may have a common and potentially targetable matrix response that influences the course of disease. Cancer Discov; 8(3); 304-19. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 253 . ©2017 American Association for Cancer Research.

  10. Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.

    PubMed

    Ming, Yue; Wang, Guangchao; Fan, Chunxiao

    2015-01-01

    With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.

  11. Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    PubMed Central

    Josef, Noam; Amodio, Piero; Fiorito, Graziano; Shashar, Nadav

    2012-01-01

    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer. PMID:22649542

  12. Doing Being Reprehensive: Some Interactional Features of English as a Lingua Franca in a Chat Room

    ERIC Educational Resources Information Center

    Jenks, Christopher Joseph

    2012-01-01

    Great diversity exists in the way English is being used in the world today. It is now not uncommon to hear a Korean and a Brazilian do business in English, or a Syrian and a Norwegian debating politics in an English-speaking chat room. As opportunities to use English increase and evolve, researchers are left with the difficult challenge of…

  13. Making Productive Use of Four Models of School English: A Case Study Revisited

    ERIC Educational Resources Information Center

    Macken-Horarik, Mary

    2014-01-01

    At a time when political leaders and media pundits seek to narrow the English curriculum and reduce its knowledge structure to the "basics," it is helpful to revisit the potential of different approaches to learning in English that have evolved over time. In this paper I reflect on the semantic features of personal growth, cultural…

  14. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.

    PubMed

    Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik

    2018-05-18

    Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.

  15. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  16. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  17. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less

  18. Rheological Investigation of Cryovolcanic Slurries

    NASA Astrophysics Data System (ADS)

    Morrison, A. A.; Whittington, A. G.; Zhong, F.; Mitchell, K. L.; Carey, E. M.

    2018-06-01

    Subliquidus rheological experiments will be conducted for briny cryovolcanic compositions. Understanding how these materials move, deform, and evolve upon crystallizing will help constrain what morphological features can form by various compositions.

  19. Enabling Future Robotic Missions with Multicore Processors

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.; Johnson, Michael A.; Wilmot, Jonathan; Some, Raphael; Gostelow, Kim P.; Reeves, Glenn; Doyle, Richard J.

    2011-01-01

    Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, HyperX) have provided an option for high performance embedded computing that rivals the performance attainable with FPGA-based reconfigurable computing architectures. Furthermore, these processors offer more straightforward and streamlined application development by allowing the use of conventional programming languages and software tools in lieu of hardware design languages such as VHDL and Verilog. With these advantages, multicore processors can significantly enhance the capabilities of future robotic space missions. This paper will discuss these benefits, along with onboard processing applications where multicore processing can offer advantages over existing or competing approaches. This paper will also discuss the key artchitecural features of current commercial multicore processors. In comparison to the current art, the features and advancements necessary for spaceflight multicore processors will be identified. These include power reduction, radiation hardening, inherent fault tolerance, and support for common spacecraft bus interfaces. Lastly, this paper will explore how multicore processors might evolve with advances in electronics technology and how avionics architectures might evolve once multicore processors are inserted into NASA robotic spacecraft.

  20. Rings in Evolved Stars: Fingerprints of Their Mass-Loss History

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, Gerardo; Santamaria, Edgar; Sabin, Laurence; Guerrero, Martin; Marquez-Lugo, Alejandro

    2015-08-01

    The majority of intermediate mass evolved stars i.e. asymptotic giant branch (AGB) stars, post-AGB and pre-planetary nebulae (PPN) are well known for been characterized by external structures such as knots, arcs, ansae, jets, haloes, shells and even annular enhancements in intensity -features which are commonly referred to as rings. These are well described either as spherical bubbles of periodic isotropic nuclear mass pulsations (Balick, Wilson & Hajian 2001) or projections of spherical shells onto the plane of the sky by Kwok (2001).These interesting structures are part of the AGB wind, suggesting that this wind comes in a series of semi periodic lapses, indicating that the outflow has quasi-periodic oscillations.After an extensive analysis in the Hubble Space Telescope (HST) archives we found new ring-like structures in several evolved stars. Following the image analysis procedure described by Corradi et al. (2004), and using unsharp masking techniques it was possible to enhance the ring structures, and to obtain an effective removal of the underlying halo emission.Our new findings will help first to constrain the physical processes responsible for the rings creation and then to better understand the mass loss activity in these evolved stars.

  1. WebQuests: a new instructional strategy for nursing education.

    PubMed

    Lahaie, Ulysses

    2007-01-01

    A WebQuest is a model or framework for designing effective Web-based instructional strategies featuring inquiry-oriented activities. It is an innovative approach to learning that is enhanced by the use of evolving instructional technology. WebQuests have invigorated the primary school (grades K through 12) educational sector around the globe, yet there is sparse evidence in the literature of WebQuests at the college and university levels. WebQuests are congruent with pedagogical approaches and cognitive activities commonly used in nursing education. They are simple to construct using a step-by-step approach, and nurse educators will find many related resources on the Internet to help them get started. Included in this article are a discussion of the critical attributes and main features of WebQuests, construction tips, recommended Web sites featuring essential resources, a discussion of WebQuest-related issues identified in the literature, and some suggestions for further research.

  2. Ankylosaurid dinosaur tail clubs evolved through stepwise acquisition of key features.

    PubMed

    Arbour, Victoria M; Currie, Philip J

    2015-10-01

    Ankylosaurid ankylosaurs were quadrupedal, herbivorous dinosaurs with abundant dermal ossifications. They are best known for their distinctive tail club composed of stiff, interlocking vertebrae (the handle) and large, bulbous osteoderms (the knob), which may have been used as a weapon. However, tail clubs appear relatively late in the evolution of ankylosaurids, and seemed to have been present only in a derived clade of ankylosaurids during the last 20 million years of the Mesozoic Era. New evidence from mid Cretaceous fossils from China suggests that the evolution of the tail club occurred at least 40 million years earlier, and in a stepwise manner, with early ankylosaurids evolving handle-like vertebrae before the distal osteoderms enlarged and coossified to form a knob. © 2015 Anatomical Society.

  3. Precursors to language: Social cognition and pragmatic inference in primates.

    PubMed

    Seyfarth, Robert M; Cheney, Dorothy L

    2017-02-01

    Despite their differences, human language and the vocal communication of nonhuman primates share many features. Both constitute forms of coordinated activity, rely on many shared neural mechanisms, and involve discrete, combinatorial cognition that includes rich pragmatic inference. These common features suggest that during evolution the ancestors of all modern primates faced similar social problems and responded with similar systems of communication and cognition. When language later evolved from this common foundation, many of its distinctive features were already present.

  4. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  5. The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features

    PubMed Central

    Ribeiro, Haroldo V.; Mukherjee, Satyam; Zeng, Xiao Han T.

    2016-01-01

    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called “home advantage phenomenon” date back to the 70’s and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the “microscopic” dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004–05 to 2013–14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games. PMID:27015636

  6. The Advantage of Playing Home in NBA: Microscopic, Team-Specific and Evolving Features.

    PubMed

    Ribeiro, Haroldo V; Mukherjee, Satyam; Zeng, Xiao Han T

    2016-01-01

    The idea that the success rate of a team increases when playing home is broadly accepted and documented for a wide variety of sports. Investigations on the so-called "home advantage phenomenon" date back to the 70's and ever since has attracted the attention of scholars and sport enthusiasts. These studies have been mainly focused on identifying the phenomenon and trying to correlate it with external factors such as crowd noise and referee bias. Much less is known about the effects of home advantage in the "microscopic" dynamics of the game (within the game) or possible team-specific and evolving features of this phenomenon. Here we present a detailed study of these previous features in the National Basketball Association (NBA). By analyzing play-by-play events of more than sixteen thousand games that span thirteen NBA seasons, we have found that home advantage affects the microscopic dynamics of the game by increasing the scoring rates and decreasing the time intervals between scores of teams playing home. We verified that these two features are different among the NBA teams, for instance, the scoring rate of the Cleveland Cavaliers team is increased ≈0.16 points per minute (on average the seasons 2004-05 to 2013-14) when playing home, whereas for the New Jersey Nets (now the Brooklyn Nets) this rate increases in only ≈0.04 points per minute. We further observed that these microscopic features have evolved over time in a non-trivial manner when analyzing the results team-by-team. However, after averaging over all teams some regularities emerge; in particular, we noticed that the average differences in the scoring rates and in the characteristic times (related to the time intervals between scores) have slightly decreased over time, suggesting a weakening of the phenomenon. This study thus adds evidence of the home advantage phenomenon and contributes to a deeper understanding of this effect over the course of games.

  7. WalkThrough Example Procedures for MAMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggiero, Christy E.; Gaschen, Brian Keith; Bloch, Jeffrey Joseph

    This documentation is a growing set of walk through examples of analyses using the MAMA V2.0 software. It does not cover all the features or possibilities with the MAMA software, but will address using many of the basic analysis tools to quantify particle size and shape in an image. This document will continue to evolve as additional procedures and examples are added. The starting assumption is that the MAMA software has been successfully installed.

  8. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed

    Gadd, C S; Baskaran, P; Lobach, D F

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings.

  9. Quasi-soliton scattering in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Vlijm, R.; Ganahl, M.; Fioretto, D.; Brockmann, M.; Haque, M.; Evertz, H. G.; Caux, J.-S.

    2015-12-01

    The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows for the study of scattering displacements from spin-block states, showing similar scattering displacement features.

  10. Processing of presolar grains around post-AGB stars: SiC as the carrier of the ``21''μ m feature

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.; Speck, A. K.

    2003-12-01

    Intermediate mass stars (0.8-8.0 Msolar) eventually evolve on the H-R diagram, up the asymptotic giant branch (AGB). The intensive mass loss which characterizes the AGB produces a circumstellar shell of dust and neutral gas. At the end of the AGB, mass loss virtually stops and the circumstellar shell begins to drift away from the star. At the same time the central star begins to shrink and heat up. This is the proto-planetary nebula (PPN) phase. Some PPNe exhibit an enigmatic feature in their infrared (IR) spectra at ˜21μ m. This feature is not seen in the spectra of either the precursors to PPNe, the AGB stars, or the successors of PPNe, ``normal'' planetary nebulae (PNe). However the ``21''μ m feature has been seen in the spectra of PNe with Wolf-Rayet central stars. Therefore the carrier of this feature is unlikely to be a transient species that only exists in the PPNe phase. This feature has been attributed to various molecular and solid state species, none of which satisfy all constraints, although titanium carbide (TiC) and polycyclic aromatic hydrocarbons (PAHs) have seemed the most viable. We present new laboratory data for silicon carbide (SiC) and show that it has a spectral feature which is a good candidate for the carrier of the 21μ m feature. The SiC spectral feature appears at approximately the same wavelength (depending on polytype/grain size) and has the same asymmetric profile as the observed astronomical feature. We suggest that processing and cooling of the SiC grains known to exist around carbon-rich AGB stars are responsible for the emergence of the enigmatic 21μ m feature. The emergence of this feature in the spectra of post-AGB stars demonstrates the processing of dust due to the changing physical environments around evolving stars.

  11. Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1992-01-01

    Using experimental evidence that under highly oxidizing conditions gamma-Fe2O3 (maghemite) and Fe3O4 display refractory behavior, it is proposed that very low C/O ratios, that could be unique to evolving AGB stars, induce nonequilibrium formation of ferromagnetic iron oxide grains along with chondritic dust. The oxides are preferentially fractionated from chondritic dust in the stellar magnetic field which could account for the observed extreme iron underabundance in their photosphere. A search for the 1-2.5-micron IR absorption feature, or for diagnostic magnetite and maghemite IR absorption features, could show the validity of the model proposed.

  12. A comparative study on the forming limit diagram prediction between Marciniak-Kuczynski model and modified maximum force criterion by using the evolving non-associated Hill48 plasticity model

    NASA Astrophysics Data System (ADS)

    Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian

    2018-05-01

    Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.

  13. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    PubMed Central

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  14. Understanding squeezing of quantum states with the Wigner function

    NASA Technical Reports Server (NTRS)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  15. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  16. Detection of genomic rearrangements in cucumber using genomecmp software

    NASA Astrophysics Data System (ADS)

    Kulawik, Maciej; Pawełkowicz, Magdalena Ewa; Wojcieszek, Michał; PlÄ der, Wojciech; Nowak, Robert M.

    2017-08-01

    Comparative genomic by increasing information about the genomes sequences available in the databases is a rapidly evolving science. A simple comparison of the general features of genomes such as genome size, number of genes, and chromosome number presents an entry point into comparative genomic analysis. Here we present the utility of the new tool genomecmp for finding rearrangements across the compared sequences and applications in plant comparative genomics.

  17. Biomimetics of fetal alveolar flow phenomena using microfluidics.

    PubMed

    Tenenbaum-Katan, Janna; Fishler, Rami; Rothen-Rutishauser, Barbara; Sznitman, Josué

    2015-01-01

    At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.

  18. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Herman, Frédéric; Fellin, Maria Giuditta; Maden, Colin

    2018-01-01

    The Namche Barwa Syntaxis, as one of the most tectonically active regions, remains an appropriate place to explore the relationship between tectonics, surface processes, and landscape evolution. Two leading models have been proposed for the formation and evolution of this syntaxis, including the tectonic aneurysm model and the syntaxis expansion model. Here we use a multi-disciplinary approach based on low-temperature thermochronometry, numerical modeling, river profile and topographic analyses to investigate the interactions between tectonics, erosion, and landscape evolution and to test these models. Our results emphasize the presence of young cooling ages (i.e., < 1 Ma) along the Parlung River, to the north of the syntaxis. Using numerical modeling we argue that a recent increase in exhumation rate is required to expose these young ages. Our river analysis reveals spatial variations in channel steepness, which we interpret to reflect the rock uplift pattern. By establishing the relationship between erosion rates and topographic features, we find that erosion rates are poorly to weakly correlated with topographic features, suggesting that the landscape is still evolving. Altogether, these results seem better explained by a mechanism that involves a northward expansion of the syntaxis, which causes high rock uplift rates to the north of the syntaxis and a transient state of topography adjusting to an evolving tectonic setting.

  19. FORCAST Observations of Galactic Evolved Stars: Measurements of Carbonaceous Dust, Crystalline Silicates, and Fullerenes from SOFIA

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen; Sloan, G. C.; Keller, L. D.; Groenewegen, M. A. T.

    2018-01-01

    We present preliminary results from two projects to observe the mid-infrared spectra of evolved stars in the Milky Way using the FORCAST instrument on SOFIA. In the first project, we observed a set of 31 carbon stars over the course of three cycles (government shutdowns contributed to the delays in the program execution), covering a wavelength range of 5-13.7 μm, which includes prominent dust and gas diagnostics. The sources were selected to sample portions of period and flux phase space which were not covered in existing samples from older telescopes such as the Infrared Space Observatory (ISO) or Infrared Astronomical Satellite (IRAS). In the second project, we searched for fullerene emission (C60) at 18.9 μm in Galactic sources with crystalline silicate emission. Although most evolved stars are either carbon-rich or oxygen- (silicate-) rich, fullerenes, a carbon-rich molecule, have been observed in several oxygen-rich evolved stars whose silicate emission features are crystalline rather than the more usual amorphous types. None of our targets show clear signatures of fullerene emission.Support for this work was provided by NASA through awards SOF 03-0079, SOF 03-0104, and SOF 04-0129 issued by USRA.

  20. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  1. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  2. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.

    PubMed

    Agarwalla, Swapna; Sarma, Kandarpa Kumar

    2016-06-01

    Automatic Speaker Recognition (ASR) and related issues are continuously evolving as inseparable elements of Human Computer Interaction (HCI). With assimilation of emerging concepts like big data and Internet of Things (IoT) as extended elements of HCI, ASR techniques are found to be passing through a paradigm shift. Oflate, learning based techniques have started to receive greater attention from research communities related to ASR owing to the fact that former possess natural ability to mimic biological behavior and that way aids ASR modeling and processing. The current learning based ASR techniques are found to be evolving further with incorporation of big data, IoT like concepts. Here, in this paper, we report certain approaches based on machine learning (ML) used for extraction of relevant samples from big data space and apply them for ASR using certain soft computing techniques for Assamese speech with dialectal variations. A class of ML techniques comprising of the basic Artificial Neural Network (ANN) in feedforward (FF) and Deep Neural Network (DNN) forms using raw speech, extracted features and frequency domain forms are considered. The Multi Layer Perceptron (MLP) is configured with inputs in several forms to learn class information obtained using clustering and manual labeling. DNNs are also used to extract specific sentence types. Initially, from a large storage, relevant samples are selected and assimilated. Next, a few conventional methods are used for feature extraction of a few selected types. The features comprise of both spectral and prosodic types. These are applied to Recurrent Neural Network (RNN) and Fully Focused Time Delay Neural Network (FFTDNN) structures to evaluate their performance in recognizing mood, dialect, speaker and gender variations in dialectal Assamese speech. The system is tested under several background noise conditions by considering the recognition rates (obtained using confusion matrices and manually) and computation time. It is found that the proposed ML based sentence extraction techniques and the composite feature set used with RNN as classifier outperform all other approaches. By using ANN in FF form as feature extractor, the performance of the system is evaluated and a comparison is made. Experimental results show that the application of big data samples has enhanced the learning of the ASR system. Further, the ANN based sample and feature extraction techniques are found to be efficient enough to enable application of ML techniques in big data aspects as part of ASR systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Solving a real-world problem using an evolving heuristically driven schedule builder.

    PubMed

    Hart, E; Ross, P; Nelson, J

    1998-01-01

    This work addresses the real-life scheduling problem of a Scottish company that must produce daily schedules for the catching and transportation of large numbers of live chickens. The problem is complex and highly constrained. We show that it can be successfully solved by division into two subproblems and solving each using a separate genetic algorithm (GA). We address the problem of whether this produces locally optimal solutions and how to overcome this. We extend the traditional approach of evolving a "permutation + schedule builder" by concentrating on evolving the schedule builder itself. This results in a unique schedule builder being built for each daily scheduling problem, each individually tailored to deal with the particular features of that problem. This results in a robust, fast, and flexible system that can cope with most of the circumstances imaginable at the factory. We also compare the performance of a GA approach to several other evolutionary methods and show that population-based methods are superior to both hill-climbing and simulated annealing in the quality of solutions produced. Population-based methods also have the distinct advantage of producing multiple, equally fit solutions, which is of particular importance when considering the practical aspects of the problem.

  4. Women's health nursing in the context of the National Health Information Infrastructure.

    PubMed

    Jenkins, Melinda L; Hewitt, Caroline; Bakken, Suzanne

    2006-01-01

    Nurses must be prepared to participate in the evolving National Health Information Infrastructure and the changes that will consequently occur in health care practice and documentation. Informatics technologies will be used to develop electronic health records with integrated decision support features that will likely lead to enhanced health care quality and safety. This paper provides a summary of the National Health Information Infrastructure and highlights electronic health records and decision support systems within the context of evidence-based practice. Activities at the Columbia University School of Nursing designed to prepare nurses with the necessary informatics competencies to practice in a National Health Information Infrastructure-enabled health care system are described. Data are presented from electronic (personal digital assistant) encounter logs used in our Women's Health Nurse Practitioner program to support evidence-based advanced practice nursing care. Implications for nursing practice, education, and research in the evolving National Health Information Infrastructure are discussed.

  5. Electroclinical overlap of two types of epileptic encephalopathy occurring in the same children in a certain age period?

    PubMed

    Caraballo, Roberto Horacio; Soraru, Alejandra; Cersósimo, Ricardo Oscar

    2012-08-01

    In this study, we describe three patients who each had an electroclinical overlap of two different epileptic encephalopathies (EE), with onset in a certain age period. Patient 1 had electroclinical features compatible with continuous spikes and waves during slow sleep (CSWSS) syndrome that changed into Lennox-Gastaut syndrome (LGS) (symptomatic, cause porencephalic cyst) at the age of 8.5 years. Patient 2 had LGS which evolved into CSWSS at the age of 6 years (symptomatic, cause polymicrogyria). The third patient had cryptogenic CSWSS syndrome at age the age of 7 years which evolved into LGS at the age of 7.5 years. All three patients could be considered to have two EE: CSWSS syndrome and LGS or to have had overlapping features of these epileptic syndromes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  7. Orthogonal Pilot Channel Using Combination of FDMA and CDMA in Single-Carrier FDMA-Based Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru

    In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.

  8. Atomic insights into nanoparticle formation of hydroxyfluorinated anatase featuring titanium vacancies

    DOE PAGES

    Li, Wei; Body, Monique; Legein, Christophe; ...

    2016-06-28

    Anatase TiO 2 with exposed highly reactive (001) surface is commonly prepared using solution-based synthesis in the presence of a fluorinating agent acting as a structure directing agent. Here, the solvothermal reaction of titanium tetraisopropoxide in the presence of aqueous HF has resulted in the stabilization of an oxyhydroxyfluorinated anatase phase featuring cationic vacancies. In the present work, we have studied its formation mechanism, revealing a solid-state transformation of a highly defective anatase phase having a hydroxyfluoride composition that subsequently evolves through an oxolation reaction into an oxyhydroxyfluoride phase. Importantly, this work confirms that titanium alkoxide precursors can react withmore » HF via a fluorolysis process yielding fluorinated molecular precursors, which further condense to produce new composition and structural features deviating from a well ordered anatase network.« less

  9. Symmetry of interactions rules in incompletely connected random replicator ecosystems.

    PubMed

    Kärenlampi, Petri P

    2014-06-01

    The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.

  10. "Krokodil"--Satire for the Soviets.

    ERIC Educational Resources Information Center

    Pehowski, Marian

    1978-01-01

    Describes features of the successful Soviet humor magazine "Krokodil" and concludes that the secret of its success is that it has evolved a strong, recognizable, appealing character over the years, maintaining its familiar identity while also being innovative and fresh. (GT)

  11. Gradual and contingent evolutionary emergence of leaf mimicry in butterfly wing patterns.

    PubMed

    Suzuki, Takao K; Tomita, Shuichiro; Sezutsu, Hideki

    2014-11-25

    Special resemblance of animals to natural objects such as leaves provides a representative example of evolutionary adaptation. The existence of such sophisticated features challenges our understanding of how complex adaptive phenotypes evolved. Leaf mimicry typically consists of several pattern elements, the spatial arrangement of which generates the leaf venation-like appearance. However, the process by which leaf patterns evolved remains unclear. In this study we show the evolutionary origin and process for the leaf pattern in Kallima (Nymphalidae) butterflies. Using comparative morphological analyses, we reveal that the wing patterns of Kallima and 45 closely related species share the same ground plan, suggesting that the pattern elements of leaf mimicry have been inherited across species with lineage-specific changes of their character states. On the basis of these analyses, phylogenetic comparative methods estimated past states of the pattern elements and enabled reconstruction of the wing patterns of the most recent common ancestor. This analysis shows that the leaf pattern has evolved through several intermediate patterns. Further, we use Bayesian statistical methods to estimate the temporal order of character-state changes in the pattern elements by which leaf mimesis evolved, and show that the pattern elements changed their spatial arrangement (e.g., from a curved line to a straight line) in a stepwise manner and finally establish a close resemblance to a leaf venation-like appearance. Our study provides the first evidence for stepwise and contingent evolution of leaf mimicry.  Leaf mimicry patterns evolved in a gradual, rather than a sudden, manner from a non-mimetic ancestor. Through a lineage of Kallima butterflies, the leaf patterns evolutionarily originated through temporal accumulation of orchestrated changes in multiple pattern elements.

  12. A single molecule perspective on the functional diversity of in vitro evolved β-glucuronidase.

    PubMed

    Liebherr, Raphaela B; Renner, Max; Gorris, Hans H

    2014-04-23

    The mechanisms that drive the evolution of new enzyme activity have been investigated by comparing the kinetics of wild-type and in vitro evolved β-glucuronidase (GUS) at the single molecule level. Several hundred single GUS molecules were separated in large arrays of 62,500 ultrasmall reaction chambers etched into the surface of a fused silica slide to observe their individual substrate turnover rates in parallel by fluorescence microscopy. Individual GUS molecules feature long-lived but divergent activity states, and their mean activity is consistent with classic Michaelis-Menten kinetics. The large number of single molecule substrate turnover rates is representative of the activity distribution within an entire enzyme population. Partially evolved GUS displays a much broader activity distribution among individual enzyme molecules than wild-type GUS. The broader activity distribution indicates a functional division of work between individual molecules in a population of partially evolved enzymes that-as so-called generalists-are characterized by their promiscuous activity with many different substrates.

  13. Developing a Taxonomy of Characteristics and Features of Learning Systems and Internet Gaming Environments

    DTIC Science & Technology

    2006-09-01

    Learning methodologies have been developed over a number of years and it has evolved as technologies advance and new learning theories emerge. We...can be used to justify learning systems. Many theories are developed . We introduce significant learning theories in this section. 2.1 Behaviorism...not fitting well with traditional classroom environment. 3 2.3 Cognitivism Piaget believed that humans desire a state of cognitive balance or

  14. Recovering faces from memory: the distracting influence of external facial features.

    PubMed

    Frowd, Charlie D; Skelton, Faye; Atherton, Chris; Pitchford, Melanie; Hepton, Gemma; Holden, Laura; McIntyre, Alex H; Hancock, Peter J B

    2012-06-01

    Recognition memory for unfamiliar faces is facilitated when contextual cues (e.g., head pose, background environment, hair and clothing) are consistent between study and test. By contrast, inconsistencies in external features, especially hair, promote errors in unfamiliar face-matching tasks. For the construction of facial composites, as carried out by witnesses and victims of crime, the role of external features (hair, ears, and neck) is less clear, although research does suggest their involvement. Here, over three experiments, we investigate the impact of external features for recovering facial memories using a modern, recognition-based composite system, EvoFIT. Participant-constructors inspected an unfamiliar target face and, one day later, repeatedly selected items from arrays of whole faces, with "breeding," to "evolve" a composite with EvoFIT; further participants (evaluators) named the resulting composites. In Experiment 1, the important internal-features (eyes, brows, nose, and mouth) were constructed more identifiably when the visual presence of external features was decreased by Gaussian blur during construction: higher blur yielded more identifiable internal-features. In Experiment 2, increasing the visible extent of external features (to match the target's) in the presented face-arrays also improved internal-features quality, although less so than when external features were masked throughout construction. Experiment 3 demonstrated that masking external-features promoted substantially more identifiable images than using the previous method of blurring external-features. Overall, the research indicates that external features are a distractive rather than a beneficial cue for face construction; the results also provide a much better method to construct composites, one that should dramatically increase identification of offenders.

  15. Identification of design features to enhance utilization and acceptance of systems for Internet-based decision support at the point of care.

    PubMed Central

    Gadd, C. S.; Baskaran, P.; Lobach, D. F.

    1998-01-01

    Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings. Images Figure 1 PMID:9929188

  16. An Evolving Worldview: Making Open Source Easy

    NASA Astrophysics Data System (ADS)

    Rice, Z.

    2017-12-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. Community developers are able to track upcoming features, collaborate on them and make their own contributions. Developers who discover issues are able to address those issues and submit a fix. This reduces the time it takes for a project developer to reproduce an issue or develop a new feature. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. After witnessing potential outside contributors struggle, a focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straightforward commands to clone, configure, install and run. This presentation will emphasize our focus to simplify and standardize Worldview's open source code so that more people are able to contribute. The more people who contribute, the better the application will become over time.

  17. Low X/Y divergence in four pairs of papaya sex-linked genes.

    PubMed

    Yu, Qingyi; Hou, Shaobin; Feltus, F Alex; Jones, Meghan R; Murray, Jan E; Veatch, Olivia; Lemke, Cornelia; Saw, Jimmy H; Moore, Richard C; Thimmapuram, Jyothi; Liu, Lei; Moore, Paul H; Alam, Maqsudul; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2008-01-01

    Sex chromosomes in flowering plants, in contrast to those in animals, evolved relatively recently and only a few are heteromorphic. The homomorphic sex chromosomes of papaya show features of incipient sex chromosome evolution. We investigated the features of paired X- and Y-specific bacterial artificial chromosomes (BACs), and estimated the time of divergence in four pairs of sex-linked genes. We report the results of a comparative analysis of long contiguous genomic DNA sequences between the X and hermaphrodite Y (Y(h)) chromosomes. Numerous chromosomal rearrangements were detected in the male-specific region of the Y chromosome (MSY), including inversions, deletions, insertions, duplications and translocations, showing the dynamic evolutionary process on the MSY after recombination ceased. DNA sequence expansion was documented in the two regions of the MSY, demonstrating that the cytologically homomorphic sex chromosomes are heteromorphic at the molecular level. Analysis of sequence divergence between four X and Y(h) gene pairs resulted in a estimated age of divergence of between 0.5 and 2.2 million years, supporting a recent origin of the papaya sex chromosomes. Our findings indicate that sex chromosomes did not evolve at the family level in Caricaceae, and reinforce the theory that sex chromosomes evolve at the species level in some lineages.

  18. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation

    PubMed Central

    Blackstone, Neil W.

    2013-01-01

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly. PMID:23754817

  19. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation.

    PubMed

    Blackstone, Neil W

    2013-07-19

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly.

  20. Complex network view of evolving manifolds

    NASA Astrophysics Data System (ADS)

    da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2018-03-01

    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.

  1. Lunar and Venusian radar bright rings

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Saunders, R. S.; Weissman, D. E.

    1986-01-01

    Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.

  2. Web Based Semi-automatic Scientific Validation of Models of the Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    MacNeice, P. J.; Chulaki, A.; Taktakishvili, A.; Kuznetsova, M. M.

    2013-12-01

    Validation is a critical step in preparing models of the corona and inner heliosphere for future roles supporting either or both the scientific research community and the operational space weather forecasting community. Validation of forecasting quality tends to focus on a short list of key features in the model solutions, with an unchanging order of priority. Scientific validation exposes a much larger range of physical processes and features, and as the models evolve to better represent features of interest, the research community tends to shift its focus to other areas which are less well understood and modeled. Given the more comprehensive and dynamic nature of scientific validation, and the limited resources available to the community to pursue this, it is imperative that the community establish a semi-automated process which engages the model developers directly into an ongoing and evolving validation process. In this presentation we describe the ongoing design and develpment of a web based facility to enable this type of validation of models of the corona and inner heliosphere, on the growing list of model results being generated, and on strategies we have been developing to account for model results that incorporate adaptively refined numerical grids.

  3. An Evaluation of optional timing/synchronization features to support selection of an optimum design for the DCS digital communication network

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Cain, J. B., III; Williard, M. W.

    1978-01-01

    The task was to evaluate the ability of a set of timing/synchronization subsystem features to provide a set of desirable characteristics for the evolving Defense Communications System digital communications network. The set of features related to the approaches by which timing/synchronization information could be disseminated throughout the network and the manner in which this information could be utilized to provide a synchronized network. These features, which could be utilized in a large number of different combinations, included mutual control, directed control, double ended reference links, independence of clock error measurement and correction, phase reference combining, and self organizing.

  4. Beyond the pleistocene: using phylogeny and constraint to inform the evolutionary psychology of human mating.

    PubMed

    Eastwick, Paul W

    2009-09-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.

  5. Biological adaptations for functional features of language in the face of cultural evolution.

    PubMed

    Christiansen, Morten H; Reali, Florencia; Chater, Nick

    2011-04-01

    Although there may be no true language universals, it is nonetheless possible to discern several family resemblance patterns across the languages of the world. Recent work on the cultural evolution of language indicates the source of these patterns is unlikely to be an innate universal grammar evolved through biological adaptations for arbitrary linguistic features. Instead, it has been suggested that the patterns of resemblance emerge because language has been shaped by the brain, with individual languages representing different but partially overlapping solutions to the same set of nonlinguistic constraints. Here, we use computational simulations to investigate whether biological adaptation for functional features of language, deriving from cognitive and communicative constraints, may nonetheless be possible alongside rapid cultural evolution. Specifically, we focus on the Baldwin effect as an evolutionary mechanism by which previously learned linguistic features might become innate through natural selection across many generations of language users. The results indicate that cultural evolution of language does not necessarily prevent functional features of language from becoming genetically fixed, thus potentially providing a particularly informative source of constraints on cross-linguistic resemblance patterns.

  6. Use of feature extraction techniques for the texture and context information in ERTS imagery: Spectral and textural processing of ERTS imagery. [classification of Kansas land use

    NASA Technical Reports Server (NTRS)

    Haralick, R. H. (Principal Investigator); Bosley, R. J.

    1974-01-01

    The author has identified the following significant results. A procedure was developed to extract cross-band textural features from ERTS MSS imagery. Evolving from a single image texture extraction procedure which uses spatial dependence matrices to measure relative co-occurrence of nearest neighbor grey tones, the cross-band texture procedure uses the distribution of neighboring grey tone N-tuple differences to measure the spatial interrelationships, or co-occurrences, of the grey tone N-tuples present in a texture pattern. In both procedures, texture is characterized in such a way as to be invariant under linear grey tone transformations. However, the cross-band procedure complements the single image procedure by extracting texture information and spectral information contained in ERTS multi-images. Classification experiments show that when used alone, without spectral processing, the cross-band texture procedure extracts more information than the single image texture analysis. Results show an improvement in average correct classification from 86.2% to 88.8% for ERTS image no. 1021-16333 with the cross-band texture procedure. However, when used together with spectral features, the single image texture plus spectral features perform better than the cross-band texture plus spectral features, with an average correct classification of 93.8% and 91.6%, respectively.

  7. A compact circumstellar shell as the source of high-velocity features in SN 2011fe

    NASA Astrophysics Data System (ADS)

    Mulligan, Brian W.; Wheeler, J. Craig

    2018-05-01

    High-velocity features (HVFs), especially of Ca II, are frequently seen in Type Ia supernova observed prior to B-band maximum (Bmax). These HVFs evolve in velocity from more than 25 000 km s-1, in the days after first light, to about 18 000 km s-1 near Bmax. To recreate the evolution of the Ca II near-infrared triplet (CaNIR) HVFs in SN 2011fe, we consider the interaction between a model Type Ia supernova and compact circumstellar shells with masses between 0.003 and 0.012 M⊙. We fit the observed CaNIR feature using synthetic spectra generated from the models using SYN++. The CaNIR feature is better explained by the supernova model interacting with a shell than the model without a shell, with a shell of mass 0.005 M⊙ tending to be better fitting than the other shells. The evolution of the optical depth of CaNIR suggests that the ionization state of calcium within the ejecta and shell is not constant. We discuss the method used to measure the observed velocity of CaNIR and other features and conclude that HVFs or other components can be falsely identified. We briefly discuss the possible origin of the shells and the implications for the progenitor system of the supernova.

  8. Searching for the Advantages of Virus Sex

    NASA Astrophysics Data System (ADS)

    Turner, Paul E.

    2003-02-01

    Sex (genetic exchange) is a nearly universal phenomenon in biological populations. But this is surprising given the costs associated with sex. For example, sex tends to break apart co-adapted genes, and sex causes a female to inefficiently contribute only half the genes to her offspring. Why then did sex evolve? One famous model poses that sex evolved to combat Muller's ratchet, the mutational load that accrues when harmful mutations drift to high frequencies in populations of small size. In contrast, the Fisher-Muller Hypothesis predicts that sex evolved to promote genetic variation that speeds adaptation in novel environments. Sexual mechanisms occur in viruses, which feature high rates of deleterious mutation and frequent exposure to novel or changing environments. Thus, confirmation of one or both hypotheses would shed light on the selective advantages of virus sex. Experimental evolution has been used to test these classic models in the RNA bacteriophage φ6, a virus that experiences sex via reassortment of its chromosomal segments. Empirical data suggest that sex might have originated in φ6 to assist in purging deleterious mutations from the genome. However, results do not support the idea that sex evolved because it provides beneficial variation in novel environments. Rather, experiments show that too much sex can be bad for φ6 promiscuity allows selfish viruses to evolve and spread their inferior genes to subsequent generations. Here I discuss various explanations for the evolution of segmentation in RNA viruses, and the added cost of sex when large numbers of viruses co-infect the same cell.

  9. Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish.

    PubMed

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H

    2013-07-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms.

  10. A harmonic linear dynamical system for prominent ECG feature extraction.

    PubMed

    Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc

    2014-01-01

    Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.

  11. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  12. Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.

    PubMed

    Kohn, Jessica R; Heath, Sarah L; Behnia, Rudy

    2018-01-01

    Confronted with an ever-changing visual landscape, animals must be able to detect relevant stimuli and translate this information into behavioral output. A visual scene contains an abundance of information: to interpret the entirety of it would be uneconomical. To optimally perform this task, neural mechanisms exist to enhance the detection of important features of the sensory environment while simultaneously filtering out irrelevant information. This can be accomplished by using a circuit design that implements specific "matched filters" that are tuned to relevant stimuli. Following this rule, the well-characterized visual systems of insects have evolved to streamline feature extraction on both a structural and functional level. Here, we review examples of specialized visual microcircuits for vital behaviors across insect species, including feature detection, escape, and estimation of self-motion. Additionally, we discuss how these microcircuits are modulated to weigh relevant input with respect to different internal and behavioral states.

  13. Lysosomal storage disorders: A review of the musculoskeletal features.

    PubMed

    James, Rebecca A; Singh-Grewal, Davinder; Lee, Senq-J; McGill, Jim; Adib, Navid

    2016-03-01

    The lysosomal storage disorders are a collection of progressive, multisystem disorders that frequently present in childhood. Their timely diagnosis is paramount as they are becoming increasingly treatable. Musculoskeletal manifestations often occur early in the disease course, hence are useful as diagnostics clues. Non-inflammatory joint stiffness or pain, carpal tunnel syndrome, trigger fingers, unexplained pain crises and short stature should all prompt consideration of a lysosomal storage disorder. Recurrent ENT infections, hepatosplenomegaly, recurrent hernias and visual/hearing impairment - especially when clustered together - are important extra-skeletal features. As diagnostic and therapeutic options continue to evolve, children with lysosomal storage disorders and their families are facing more sophisticated options for screening and treatment. The aim of this article is to highlight the paediatric presentations of lysosomal storage disorders, with an emphasis on the musculoskeletal features. © 2016 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  14. China's New National Curriculum Reform: Innovation, Challenges and Strategies

    ERIC Educational Resources Information Center

    Guan, Qun; Meng, Wanjin

    2007-01-01

    This paper presents systematically China's New National Curriculum Reform (CNNCR). It covers the background, origin, essence, goals, features, evolvement, schedule, implementation, the alignment in primary, secondary and middle schools' curricula and inter-subjects, the outcomes and the challenges and strategies of CNNCR.

  15. An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.

    PubMed

    Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin

    2015-07-01

    We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.

  16. Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction.

    PubMed

    Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter

    2017-02-01

    Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A phylogenetic test for adaptive convergence in rock-dwelling lizards.

    PubMed

    Revell, Liam J; Johnson, Michele A; Schulte, James A; Kolbe, Jason J; Losos, Jonathan B

    2007-12-01

    Phenotypic similarity of species occupying similar habitats has long been taken as strong evidence of adaptation, but this approach implicitly assumes that similarity is evolutionarily derived. However, even derived similarities may not represent convergent adaptation if the similarities did not evolve as a result of the same selection pressures; an alternative possibility is that the similar features evolved for different reasons, but subsequently allowed the species to occupy the same habitat, in which case the convergent evolution of the same feature by species occupying similar habitats would be the result of exaptation. Many lizard lineages have evolved to occupy vertical rock surfaces, a habitat that places strong functional and ecological demands on lizards. We examined four clades in which species that use vertical rock surfaces exhibit long hindlimbs and flattened bodies. Morphological change on the phylogenetic branches leading to the rock-dwelling species in the four clades differed from change on other branches of the phylogeny; evolutionary transitions to rock-dwelling generally were associated with increases in limb length and decreases in head depth. Examination of particular characters revealed several different patterns of evolutionary change. Rock-dwelling lizards exhibited similarities in head depth as a result of both adaptation and exaptation. Moreover, even though rock-dwelling species generally had longer limbs than their close relatives, clade-level differences in limb length led to an overall lack of difference between rock- and non-rock-dwelling lizards. These results indicate that evolutionary change in the same direction in independent lineages does not necessarily produce convergence, and that the existence of similar advantageous structures among species independently occupying the same environment may not indicate adaptation.

  18. Evolution of cultural traits occurs at similar relative rates in different world regions.

    PubMed

    Currie, Thomas E; Mace, Ruth

    2014-11-22

    A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles.

  19. Evolution of cultural traits occurs at similar relative rates in different world regions

    PubMed Central

    Currie, Thomas E.; Mace, Ruth

    2014-01-01

    A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles PMID:25297866

  20. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2004-12-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  1. New approach for segmentation and recognition of handwritten numeral strings

    NASA Astrophysics Data System (ADS)

    Sadri, Javad; Suen, Ching Y.; Bui, Tien D.

    2005-01-01

    In this paper, we propose a new system for segmentation and recognition of unconstrained handwritten numeral strings. The system uses a combination of foreground and background features for segmentation of touching digits. The method introduces new algorithms for traversing the top/bottom-foreground-skeletons of the touched digits, and for finding feature points on these skeletons, and matching them to build all the segmentation paths. For the first time a genetic representation is used to show all the segmentation hypotheses. Our genetic algorithm tries to search and evolve the population of candidate segmentations and finds the one with the highest confidence for its segmentation and recognition. We have also used a new method for feature extraction which lowers the variations in the shapes of the digits, and then a MLP neural network is utilized to produce the labels and confidence values for those digits. The NIST SD19 and CENPARMI databases are used for evaluating the system. Our system can get a correct segmentation-recognition rate of 96.07% with rejection rate of 2.61% which compares favorably with those that exist in the literature.

  2. Recent inner ear specialization for high-speed hunting in cheetahs.

    PubMed

    Grohé, Camille; Lee, Beatrice; Flynn, John J

    2018-02-02

    The cheetah, Acinonyx jubatus, is the fastest living land mammal. Because of its specialized hunting strategy, this species evolved a series of specialized morphological and functional body features to increase its exceptional predatory performance during high-speed hunting. Using high-resolution X-ray computed micro-tomography (μCT), we provide the first analyses of the size and shape of the vestibular system of the inner ear in cats, an organ essential for maintaining body balance and adapting head posture and gaze direction during movement in most vertebrates. We demonstrate that the vestibular system of modern cheetahs is extremely different in shape and proportions relative to other cats analysed (12 modern and two fossil felid species), including a closely-related fossil cheetah species. These distinctive attributes (i.e., one of the greatest volumes of the vestibular system, dorsal extension of the anterior and posterior semicircular canals) correlate with a greater afferent sensitivity of the inner ear to head motions, facilitating postural and visual stability during high-speed prey pursuit and capture. These features are not present in the fossil cheetah A. pardinensis, that went extinct about 126,000 years ago, demonstrating that the unique and highly specialized inner ear of the sole living species of cheetah likely evolved extremely recently, possibly later than the middle Pleistocene.

  3. An Evolving Worldview: Making Open Source Easy

    NASA Technical Reports Server (NTRS)

    Rice, Zachary

    2017-01-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. New developers are able to track upcoming features, collaborate on them and make their own contributions. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. A focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straight forward commands to clone, configure, install and run. This presentation will emphasis our focus to simplify and standardize Worldview's open source code so more people are able to contribute. The more people who contribute, the better the application will become over time.

  4. Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex

    PubMed Central

    Radzvilavicius, Arunas L.; Blackstone, Neil W.

    2015-01-01

    Roughly 1.5–2.0 Gya, the eukaryotic cell evolved from an endosymbiosis of an archaeal host and proteobacterial symbionts. The timing of this endosymbiosis relative to the evolution of eukaryotic features remains subject to considerable debate, yet the evolutionary process itself constrains the timing of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediation (e.g. signalling with calcium and soluble adenylyl cyclase, substrate carriers, adenine nucleotide translocase, uncouplers) led to metabolic homeostasis in the eukaryotic cell. Later mechanisms (e.g. mitochondrial gene loss) contributed to the chimeric eukaryotic genome. These integral features of eukaryotes were derived because of, and therefore subsequent to, endosymbiosis. Perhaps the greatest opportunity for conflict arose with the emergence of eukaryotic sex, involving whole-cell fusion. A simple model demonstrates that competition on the lower level severely hinders the evolution of sex. Cytoplasmic mixing, however, is beneficial for non-cooperative endosymbionts, which could have used their aerobic metabolism to manipulate the life history of the host. While early evolution of sex may have facilitated symbiont acquisition, sex would have also destabilized the subsequent endosymbiosis. More plausibly, the evolution of sex and the true nucleus concluded the transition. PMID:26468067

  5. Conflict and cooperation in eukaryogenesis: implications for the timing of endosymbiosis and the evolution of sex.

    PubMed

    Radzvilavicius, Arunas L; Blackstone, Neil W

    2015-10-06

    Roughly 1.5-2.0 Gya, the eukaryotic cell evolved from an endosymbiosis of an archaeal host and proteobacterial symbionts. The timing of this endosymbiosis relative to the evolution of eukaryotic features remains subject to considerable debate, yet the evolutionary process itself constrains the timing of these events. Endosymbiosis entailed levels-of-selection conflicts, and mechanisms of conflict mediation had to evolve for eukaryogenesis to proceed. The initial mechanisms of conflict mediation (e.g. signalling with calcium and soluble adenylyl cyclase, substrate carriers, adenine nucleotide translocase, uncouplers) led to metabolic homeostasis in the eukaryotic cell. Later mechanisms (e.g. mitochondrial gene loss) contributed to the chimeric eukaryotic genome. These integral features of eukaryotes were derived because of, and therefore subsequent to, endosymbiosis. Perhaps the greatest opportunity for conflict arose with the emergence of eukaryotic sex, involving whole-cell fusion. A simple model demonstrates that competition on the lower level severely hinders the evolution of sex. Cytoplasmic mixing, however, is beneficial for non-cooperative endosymbionts, which could have used their aerobic metabolism to manipulate the life history of the host. While early evolution of sex may have facilitated symbiont acquisition, sex would have also destabilized the subsequent endosymbiosis. More plausibly, the evolution of sex and the true nucleus concluded the transition. © 2015 The Author(s).

  6. Stepwise Evolution of Nonliving to Living Chemical Systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Paul A.

    2004-08-01

    Steps by which a nonliving chemical system could have transformed into a living system are described and discussed, assuming general features of Wächtershäuser's chemo-autotrophic surface theory of the origin of life. Environmental species such as CO2 and H2S are proposed to have reacted to form a quasi-steady state metal-bound intermediate (CH3-M) that slowly decayed into waste (CH4). Unpredictable dispersive reactions expanded the system to include surface-bound forms of the citric acid cycle intermediates (oxaloacetate --> citrate). Further reaction yielded an autocatalytic system in which raw materials are converted into the system at exponential rates. Combinatorial dispersive reactions that improved the performance of this system were automatically selected and incorporated into it. Systems evolved critical features of living systems (proteins, membranes, proteins, nucleic acids, etc.) using two related mechanisms called grafting and waste-conversion. Such living systems were transformed from less recognizable types (characterized by autocatalytic spreading, decentralization, poorly defined boundaries, etc.) into more recognizable ones (encapsulated by membranes, controlled by single-molecule genomes, etc.) that self-replicated by a cell division cycle and could evolve by the standard gene-based Darwinian mechanism. The resulting systems are viewed as having an autocatalytic network composed of three linked autocatalytic subreactions.

  7. Fractal active contour model for segmenting the boundary of man-made target in nature scenes

    NASA Astrophysics Data System (ADS)

    Li, Min; Tang, Yandong; Wang, Lidi; Shi, Zelin

    2006-02-01

    In this paper, a novel geometric active contour model based on the fractal dimension feature to extract the boundary of man-made target in nature scenes is presented. In order to suppress the nature clutters, an adaptive weighting function is defined using the fractal dimension feature. Then the weighting function is introduced into the geodesic active contour model to detect the boundary of man-made target. Curve driven by our proposed model can evolve gradually from the initial position to the boundary of man-made target without being disturbed by nature clutters, even if the initial curve is far away from the true boundary. Experimental results validate the effectiveness and feasibility of our model.

  8. Nicholas J. Nagle | NREL

    Science.gov Websites

    presentation. Featured Publications "Impact of biomass processing, blending and densification, on J. Nagle Photo of Nicholas J. Nagle Nicholas Nagle Researcher IV-Chemical Engineering Nick.Nagle impact on lignin upgrading post conversion. As feedstocks rapidly evolve into new formats, such as

  9. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks

    PubMed Central

    Albergante, Luca; Blow, J Julian; Newman, Timothy J

    2014-01-01

    The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. DOI: http://dx.doi.org/10.7554/eLife.02863.001 PMID:25182846

  10. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks.

    PubMed

    Albergante, Luca; Blow, J Julian; Newman, Timothy J

    2014-09-02

    The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. Copyright © 2014, Albergante et al.

  11. Passive dynamics is a good basis for robot design and control, not!

    NASA Astrophysics Data System (ADS)

    Ruina, Andy

    Many airplanes can, or nearly can, glide stably without control. So, it seems natural that the first successful powered flight followed from mastery of gliding. Many bicycles can, or nearly can, balance themselves when in motion. Bicycle design seems to have evolved to gain this feature. Also, we can make toys and 'robots' that, like a stable glider or coasting bicycle, stably walk without motors or control in a remarkably human-like way. Again, it seems to make sense to use `passive-dynamics' as a core for developing the control of walking robots and to gain understanding of the control of walking people. That's what I used to think. But, so far, this has not led to robust walking robots. What about human evolution? We didn't evolve dynamic bodies and then learn to control them. Rather, people had elaborate control systems way back when we were fish and even worms. However: if control is paramount, why is it that uncontrolled passive-dynamic walkers walk so much like humans? It seems that energy optimal, yet robust, control, perhaps a proxy for evolutionary development, arrives at solutions that have some features in common with passive-dynamics. Rather than thinking of good powered walking as passive walking with a small amount of control added, I now think of good powered walking, human or robotic, as highly controlled, while optimized for, in part, minimal actuator use. Thus, much of the motor effort, always at the ready, is usually titrated out.

  12. Perforating neutrophilic and granulomatous dermatitis of the newborn--a clue to immunodeficiency.

    PubMed

    Torrelo, Antonio; Vera, Angel; Portugués, Mar; de Prada, Inmaculada; Sanz, Andrés; Colmenero, Isabel; Zulaica, Ander; de Lucas, Raúl; Fraga, Javier; Pedraz, Javier; Fontán, Sindo; Zambrano, Antonio

    2007-01-01

    We report two newborns with a widespread cutaneous eruption consisting of discrete papules which evolved into vesicles, pustules, crusts, and ulcers. These healed over a 2-week period with scarring. Histopathology showed three main features--histiocytic granulomas, neutrophilic infiltration, and transepidermal elimination of degenerated collagen and debris through hair follicles. Both patients had congenital immunodeficiency. This skin condition of the newborn, with distinct clinical and histopathologic features, is a manifestation of immunodeficiency that has not been previously described.

  13. New clinical opportunities for retinal vascular imaging: adaptive optics to OCT angiography

    NASA Astrophysics Data System (ADS)

    Rosen, Richard; Chui, Toco; Weitz, Rishard; Dubra, Alfredo; Carroll, Joseph; Garcia, Patricia; Pinhas, Alexander; Scripsema, Nicole; Mo, Shelley; Agemy, Steven; Krawitz, Brian

    2018-03-01

    As techniques of retinal imaging have evolved, anatomic features that were only assessable in the laboratory have become available in the clinic for patient care. The retinal capillaries were initially described on microscope sections in the pathology laboratory. As optical methods have advanced these features have become part of the routine clinical landscape inspected daily by physicians. This paper briefly traces the evolution of these techniques and shows how they fit into the modern diagnostic armamentarium of ophthalmic retinal care.

  14. Brain enlargement and dental reduction were not linked in hominin evolution

    PubMed Central

    Smaers, Jeroen B.; Holloway, Ralph L.

    2017-01-01

    The large brain and small postcanine teeth of modern humans are among our most distinctive features, and trends in their evolution are well studied within the hominin clade. Classic accounts hypothesize that larger brains and smaller teeth coevolved because behavioral changes associated with increased brain size allowed a subsequent dental reduction. However, recent studies have found mismatches between trends in brain enlargement and posterior tooth size reduction in some hominin species. We use a multiple-variance Brownian motion approach in association with evolutionary simulations to measure the tempo and mode of the evolution of endocranial and dental size and shape within the hominin clade. We show that hominin postcanine teeth have evolved at a relatively consistent neutral rate, whereas brain size evolved at comparatively more heterogeneous rates that cannot be explained by a neutral model, with rapid pulses in the branches leading to later Homo species. Brain reorganization shows evidence of elevated rates only much later in hominin evolution, suggesting that fast-evolving traits such as the acquisition of a globular shape may be the result of direct or indirect selection for functional or structural traits typical of modern humans. PMID:28049819

  15. Evolving effective behaviours to interact with tag-based populations

    NASA Astrophysics Data System (ADS)

    Yucel, Osman; Crawford, Chad; Sen, Sandip

    2015-07-01

    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  16. Advanced aerosense display interfaces

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  17. Netgram: Visualizing Communities in Evolving Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2015-01-01

    Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538

  18. Forming limit prediction by an evolving non-quadratic yield criterion considering the anisotropic hardening and r-value evolution

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian

    2018-05-01

    The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.

  19. On the evolution of intergenerational division of labor, menopause and transfers among adults and offspring

    PubMed Central

    Cyrus Chu, C.Y.; Lee, Ronald D.

    2013-01-01

    We explain how upward transfers from adult children to their elderly parents might evolve as an interrelated feature of a deepening intergenerational division of labor. Humans have a particularly long period of juvenile dependence requiring both food and care time provided mainly by younger and older adults. We suggest that the division of labor evolves to exploit comparative advantage between young and old adults in fertility, childcare and foraging. Eventually the evolving division of labor reaches a limit when the grandmother's fertility reaches zero (menopause). Continuing, it may hit another limit when the grandmother's foraging time has been reduced to her subsistence needs. Further specialization can occur only with food transfers to the grandmother, enabling her to reduce her foraging time to concentrate on additional childcare. We prove that this outcome can arise only after menopause has evolved. We describe the conditions necessary for both group selection (comparative steady state reproductive fitness) and individual selection (successful invasion by a mutation), and interpret these conditions in terms of comparative advantages. PMID:23648187

  20. Why Do Corals Bleach? Conflict and Conflict Mediation in a Host/Symbiont Community.

    PubMed

    Blackstone, Neil W; Golladay, Jeff M

    2018-06-26

    Coral bleaching has attracted considerable study, yet one central question remains unanswered: given that corals and their Symbiodinium symbionts have co-evolved for millions of years, why does this clearly maladaptive process occur? Bleaching may result from evolutionary conflict between the host corals and their symbionts. Selection at the level of the individual symbiont favors using the products of photosynthesis for selfish replication, while selection at the higher level favors using these products for growth of the entire host/symbiont community. To hold the selfish lower-level units in check, mechanisms of conflict mediation must evolve. Fundamental features of photosynthesis have been co-opted into conflict mediation so that symbionts that fail to export these products produce high levels of reactive oxygen species and undergo programmed cell death. These mechanisms function very well under most environmental conditions, but under conditions particularly detrimental to photosynthesis, it is these mechanisms of conflict mediation that trigger bleaching. © 2018 WILEY Periodicals, Inc.

  1. Feature issue introduction: halide perovskites for optoelectronics.

    PubMed

    White, Thomas P; Deleporte, Emmanuelle; Sum, Tze-Chien

    2018-01-22

    This joint Optics Express and Optical Materials Express feature issue presents a collection of nine papers on the topic of halide perovskites for optoelectronics. Perovskite materials have attracted significant attention over the past four years, initially for their outstanding performance in thin film solar cells, but more recently for applications in light-emitting devices (LEDs and lasers), photodetectors and nonlinear optics. At the same time, there is still much more to learn about the fundamental properties of these materials, and how these depend on composition, processing, and exposure to the environment. This feature issue provides a snapshot of some of the latest research in this rapidly-evolving multidisciplinary field.

  2. Stochastic approximation methods-Powerful tools for simulation and optimization: A survey of some recent work on multi-agent systems and cyber-physical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, George; Wang, Le Yi; Zhang, Hongwei

    2014-12-10

    Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomlymore » switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided.« less

  3. Estimating the Diets of Animals Using Stable Isotopes and a Comprehensive Bayesian Mixing Model

    PubMed Central

    Hopkins, John B.; Ferguson, Jake M.

    2012-01-01

    Using stable isotope mixing models (SIMMs) as a tool to investigate the foraging ecology of animals is gaining popularity among researchers. As a result, statistical methods are rapidly evolving and numerous models have been produced to estimate the diets of animals—each with their benefits and their limitations. Deciding which SIMM to use is contingent on factors such as the consumer of interest, its food sources, sample size, the familiarity a user has with a particular framework for statistical analysis, or the level of inference the researcher desires to make (e.g., population- or individual-level). In this paper, we provide a review of commonly used SIMM models and describe a comprehensive SIMM that includes all features commonly used in SIMM analysis and two new features. We used data collected in Yosemite National Park to demonstrate IsotopeR's ability to estimate dietary parameters. We then examined the importance of each feature in the model and compared our results to inferences from commonly used SIMMs. IsotopeR's user interface (in R) will provide researchers a user-friendly tool for SIMM analysis. The model is also applicable for use in paleontology, archaeology, and forensic studies as well as estimating pollution inputs. PMID:22235246

  4. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.

  5. Tetrametallic molecular catalysts for photochemical water oxidation.

    PubMed

    Sartorel, Andrea; Bonchio, Marcella; Campagna, Sebastiano; Scandola, Franco

    2013-03-21

    Among molecular water oxidation catalysts (WOCs), those featuring a reactive set of four multi-redox transition metals can leverage an extraordinary interplay of electronic and structural properties. These are of particular interest, owing to their close structural, and possibly functional, relationship to the oxygen evolving complex of natural photosynthesis. In this review, special attention is given to two classes of tetrametallic molecular WOCs: (i) M(4)O(4) cubane-type structures stabilized by simple organic ligands, and (ii) systems in which a tetranuclear metal core is stabilized by coordination of two polyoxometalate (POM) ligands. Recent work in this rapidly evolving field is reviewed, with particular emphasis on photocatalytic aspects. Special attention is given to studies addressing the mechanistic complexity of these systems, sometimes overlooked in the rush for oxygen evolving performance. The complementary role of molecular WOCs and their relationship with bulk oxides and heterogeneous catalysis are discussed.

  6. The Coevolution of Digital Ecosystems

    ERIC Educational Resources Information Center

    SungYong, Um

    2016-01-01

    Digital ecosystems are one of the most important strategic issues in the current digital economy. Digital ecosystems are dynamic and generative. They evolve as new firms join and as heterogeneous systems are integrated into other systems. These features digital ecosystems determine economic and technological success in the competition among…

  7. A systematic approach to evolve aptamers with new specificities

    USDA-ARS?s Scientific Manuscript database

    Aptamers are single-stranded nucleic acids with high affinities and specificities for the targets against which they are selected. Both features, along with an ability to be integrated into a large variety of sensors, make possible a wide-range of aptamer applications. However, changing aptamer sp...

  8. Evidence for network evolution in an arabidopsis interactome map

    USDA-ARS?s Scientific Manuscript database

    Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...

  9. Managing the Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Wagner, June G.

    2002-01-01

    The feature story in this issue, "Managing the Collaborative Learning Environment," focuses on the growing emphasis on teamwork in the workplace. It discusses how the concept of empowering employees in the workplace is evolving and the benefits--faster decision making, lower costs and absenteeism, higher productivity and quality, and…

  10. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    NASA Astrophysics Data System (ADS)

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  11. Experimental evolution under hyper-promiscuity in Drosophila melanogaster.

    PubMed

    Perry, Jennifer C; Joag, Richa; Hosken, David J; Wedell, Nina; Radwan, Jacek; Wigby, Stuart

    2016-06-16

    The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic manipulations of animal social and sexual environments coupled with experimental evolution.

  12. Pediatric Glioma at the Optic Pathway and Thalamus

    PubMed Central

    Park, Eun Suk; Park, Jun Bum; Ra, Young-Shin

    2018-01-01

    Gliomas are the most common pediatric tumors of the central nervous system. In this review, we discuss the clinical features, treatment paradigms, and evolving concepts related to two types of pediatric gliomas affecting two main locations: the optic pathway and thalamus. In particular, we discuss recently revised pathologic classification, which adopting molecular parameter. We believe that our review contribute to the readers’ better understanding of pediatric glioma because pediatric glioma differs in many ways from adult glioma according to the newest advances in molecular characterization of this tumor. A better understanding of current and evolving issues in pediatric glioma is needed to ensure effective management decision. PMID:29742884

  13. Feature saltation and the evolution of mimicry.

    PubMed

    Gamberale-Stille, Gabriella; Balogh, Alexandra C V; Tullberg, Birgitta S; Leimar, Olof

    2012-03-01

    In Batesian mimicry, a harmless prey species imitates the warning coloration of an unpalatable model species. A traditional suggestion is that mimicry evolves in a two-step process, in which a large mutation first achieves approximate similarity to the model, after which smaller changes improve the likeness. However, it is not known which aspects of predator psychology cause the initial mutant to be perceived by predators as being similar to the model, leaving open the question of how the crucial first step of mimicry evolution occurs. Using theoretical evolutionary simulations and reconstruction of examples of mimicry evolution, we show that the evolution of Batesian mimicry can be initiated by a mutation that causes prey to acquire a trait that is used by predators as a feature to categorize potential prey as unsuitable. The theory that species gain entry to mimicry through feature saltation allows us to formulate scenarios of the sequence of events during mimicry evolution and to reconstruct an initial mimetic appearance for important examples of Batesian mimicry. Because feature-based categorization by predators entails a qualitative distinction between nonmimics and passable mimics, the theory can explain the occurrence of imperfect mimicry. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  14. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  15. SU-E-QI-17: Dependence of 3D/4D PET Quantitative Image Features On Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, J; Budzevich, M; Zhang, G

    2014-06-15

    Purpose: Quantitative imaging is a fast evolving discipline where a large number of features are extracted from images; i.e., radiomics. Some features have been shown to have diagnostic, prognostic and predictive value. However, they are sensitive to acquisition and processing factors; e.g., noise. In this study noise was added to positron emission tomography (PET) images to determine how features were affected by noise. Methods: Three levels of Gaussian noise were added to 8 lung cancer patients PET images acquired in 3D mode (static) and using respiratory tracking (4D); for the latter images from one of 10 phases were used. Amore » total of 62 features: 14 shape, 19 intensity (1stO), 18 GLCM textures (2ndO; from grey level co-occurrence matrices) and 11 RLM textures (2ndO; from run-length matrices) features were extracted from segmented tumors. Dimensions of GLCM were 256×256, calculated using 3D images with a step size of 1 voxel in 13 directions. Grey levels were binned into 256 levels for RLM and features were calculated in all 13 directions. Results: Feature variation generally increased with noise. Shape features were the most stable while RLM were the most unstable. Intensity and GLCM features performed well; the latter being more robust. The most stable 1stO features were compactness, maximum and minimum length, standard deviation, root-mean-squared, I30, V10-V90, and entropy. The most stable 2ndO features were entropy, sum-average, sum-entropy, difference-average, difference-variance, difference-entropy, information-correlation-2, short-run-emphasis, long-run-emphasis, and run-percentage. In general, features computed from images from one of the phases of 4D scans were more stable than from 3D scans. Conclusion: This study shows the need to characterize image features carefully before they are used in research and medical applications. It also shows that the performance of features, and thereby feature selection, may be assessed in part by noise analysis.« less

  16. The ID Database: Managing the Instructional Development Process

    ERIC Educational Resources Information Center

    Piña, Anthony A.; Sanford, Barry K.

    2017-01-01

    Management is evolving as a foundational domain to the field of instructional design and technology. However, there are few tools dedicated to the management of instructional design and development projects and activities. In this article, we describe the development, features and implementation of an instructional design database--built from a…

  17. Remote control flare stack igniter for combustible gases

    NASA Technical Reports Server (NTRS)

    Ray, W. L.

    1972-01-01

    Device has been designed and developed for igniting nonrecoverable combustible gases and sustaining combustion of gases evolving from various gas vent stacks. Igniter is superior to existing systems because of simplicity of operation, low cost fabrication, installation, operational and maintainability features, and excellent reliability in all phases of required operations.

  18. STARS[R] Spring 2012 Quarterly Review: Framing Campus Sustainability

    ERIC Educational Resources Information Center

    Urbanski, Monika

    2012-01-01

    The Spring 2012 SQR: "Framing Campus Sustainability," features stories that frame the evolving concept of sustainability in higher education. Included in this issue are a snapshot of ratings-to-date, a focus on credits within the Operations (OP) category, and insights into how institutions are defining and interpreting the evolving…

  19. History of Physics and Conceptual Constructions: The Case of Magnetism

    ERIC Educational Resources Information Center

    Voutsina, Lambrini; Ravanis, Konstantinos

    2011-01-01

    This study documents the mental representations of magnetism constructed by students aged 15-17 and attempts to investigate whether these display the characteristics of models with an inner cohesiveness and constancy; whether they share common features with typical historical models of the Sciences; and whether they evolve through conventional…

  20. Understanding the New Job-Analysis Technology.

    ERIC Educational Resources Information Center

    Aho, Kaye L.

    1989-01-01

    The author examines such trends as rapid job change, organizational decentralization, the need for increased productivity, legal challenges, and changing work force needs; the evolving job-analysis technology; and the potential impact of this technology on human resources professionals. She also summarizes the key features to look for in a…

  1. Political Communication Yearbook 1984.

    ERIC Educational Resources Information Center

    Sanders, Keith R., Ed.; And Others

    Focusing on current scholarship in the evolving field of political communication, this publication is organized in three sections. Part 1, "Current Perspectives on the Spiral of Silence," features essays by Charles T. Salmon and F. Gerald Kline, Klaus Merten, Carroll J. Glynn and Jack M. McLeod, and a response by the theory's original…

  2. Evolution of the Eye Transcriptome under Constant Darkness in Sinocyclocheilus Cavefish

    PubMed Central

    Meng, Fanwei; Braasch, Ingo; Phillips, Jennifer B.; Lin, Xiwen; Titus, Tom; Zhang, Chunguang; Postlethwait, John H.

    2013-01-01

    In adaptating to perpetual darkness, cave species gradually lose eyes and body pigmentation and evolve alternatives for exploring their environments. Although troglodyte features evolved independently many times in cavefish, we do not yet know whether independent evolution of these characters involves common genetic mechanisms. Surface-dwelling and many cave-dwelling species make the freshwater teleost genus Sinocyclocheilus an excellent model for studying the evolution of adaptations to life in constant darkness. We compared the mature retinal histology of surface and cave species in Sinocyclocheilus and found that adult cavefish showed a reduction in the number and length of photoreceptor cells. To identify genes and genetic pathways that evolved in constant darkness, we used RNA-seq to compare eyes of surface and cave species. De novo transcriptome assemblies were developed for both species, and contigs were annotated with gene ontology. Results from cave-dwelling Sinocyclocheilus revealed reduced transcription of phototransduction and other genes important for retinal function. In contrast to the blind Mexican tetra cavefish Astyanax mexicanus, our results on morphologies and gene expression suggest that evolved retinal reduction in cave-dwelling Sinocyclocheilus occurs in a lens-independent fashion by the reduced proliferation and downregulation of transcriptional factors shown to have direct roles in retinal development and maintenance, including cone-rod homeobox (crx) and Wnt pathway members. These results show that the independent evolution of retinal degeneration in cavefish can occur by different developmental genetic mechanisms. PMID:23612715

  3. HIV is Now a Manageable Long-Term Condition, But What Makes it Unique? A Qualitative Study Exploring Views About Distinguishing Features from Multi-Professional HIV Specialists in North West England.

    PubMed

    Jelliman, Pauline; Porcellato, Lorna

    HIV is evolving from a life-threatening infection to a long-term, manageable condition because of medical advances, radical changes in health and social care policy, and the impact of an aging population. However, HIV remains complex, presenting unique characteristics distinguishing it from other long-term conditions (LTCs). Our aim in this qualitative descriptive study was to identify and explore these features in the context of LTCs. A focus group (FG) method was used to gather the views and experiences of multi-professional HIV specialists who worked in North West England. Twenty-four staff participated in FGs (n = 3), which were audio recorded, manually transcribed, and thematically analyzed. We found four main themes: (a) stigma, (b) challenges faced by HIV specialists, (c) lack HIV-related knowledge, and (d) unique features, termed "stand alone." We concluded that these distinguishing features hindered full recognition and acceptance of HIV as an LTC. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Deep-sea geohazards in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  5. Spatially-Resolved Observations of Giant Stars with SPHERE

    NASA Astrophysics Data System (ADS)

    Khouri, Theo

    2018-04-01

    SPHERE on the VLT is an extreme adaptive optics instrument that produces images with unprecedented angular resolution at visible and near-infrared wavelengths. Its primary goal is imaging, low-resolution spectroscopic, and polarimetric characterization of extra-solar planetary systems. Nonetheless, the high spatial resolution and the instrument design optimized for observations in a narrow field of view around bright targets make SPHERE the perfect instrument for obtaining spatially-resolved images of close-by giant, evolved stars. This is particularly true at the shortest wavelengths available with SPHERE, where the angular resolution is best (> 20 mas) and these stars appear larger (< 70 mas). In this talk, I will review how SPHERE has been used to study the surfaces and extended atmospheres of evolved stars and how these observations advance our understanding of the stellar pulsations and convective motions that shape these stars. Moreover, I will present recent results from a monitoring campaign of the star R Doradus using SPHERE with observations taken at twelve epochs over eight months that reveal features on the stellar disc varying on timescales of a few weeks. Finally, I will present quasi-simultaneous observations with SPHERE and ALMA that spatially resolve the stellar discs of two asymptotic giant branch stars, Mira and R Doradus, and discuss what such multi-wavelength observation campaigns can teach us about the processes that shape evolved stars.

  6. Institutions and the implementation of tobacco control in Brazil.

    PubMed

    Lencucha, Raphael; Drope, Jeffrey; Bialous, Stella Aguinaga; Richter, Ana Paula; Silva, Vera Luiza da Costa E

    2017-10-19

    This research examines the institutional features of Brazil's National Commission for the Implementation of the Framework Convention on Tobacco Control (CONICQ) and how these institutional features have facilitated and hindered its ability to foster intersectoral tobacco control. In particular, we evaluate the key institutional features of CONICQ starting from when it was one of the key drivers of change and improvements in early tobacco control policies, which helped to make Brazil a world leader in this area. We also examine how the committee has evolved, as tobacco control has improved and particularly elucidate some of the major challenges that it faces to bring together often disparate government sectors to generate public health policies.

  7. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Schegerer, A. A.; Wolf, S.; Hummel, C. A.; Quanz, S. P.; Richichi, A.

    2009-07-01

    Aims: We investigate the nature of the innermost regions with radii of several AUs of seven circumstellar disks around pre-main-sequence stars, T Tauri stars in particular. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects (YSOs). When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10 μm feature should additionally be investigated. Methods: We performed interferometric observations in N band (8-13 μm) with the Mid-Infrared Interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) using baseline lengths of between 54 m and 127 m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the spectral energy distribution (SED), N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Results: Spatially resolved mid-infrared (MIR) emission was detected in all objects. For four objects (DR Tau, RU Lup, S CrA N, and S CrA S), the observed N band visibilities and corresponding SEDs could be simultaneously simulated using a parameterized active disk-model. For the more evolved objects of our sample, HD 72106 and HBC 639, a purely passive disk-model provides the closest fit. The visibilities inferred for the source RU Lup allow the presence of an inner disk gap. For the YSO GW Ori, one of two visibility measurements could not be simulated by our modeling approach. All uncorrelated spectra reveal the 10 μm silicate emission feature. In contrast to this, some correlated spectra of the observations of the more evolved objects do not show this feature, indicating a lack of small silicates in the inner versus the outer regions of these disks. We conclude from this observational result that more evolved dust grains can be found in the more central disk regions. Based on observations made with Telescopes of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 074.C-0342(A), 075.C-0064(A,B), 075.C-0413(A,B), and 076.C-0356(A). Appendix A is only available in electronic form at http://www.aanda.org

  8. Enlightenment from ancient Chinese urban and rural stormwater management practices.

    PubMed

    Wu, Che; Qiao, Mengxi; Wang, Sisi

    2013-01-01

    Hundreds of years ago, the ancient Chinese implemented several outstanding projects to cope with the changing climate and violent floods. Some of these projects are still in use today. These projects evolved from the experience and knowledge accumulated through the long coexistence of people with nature. The concepts behind these ancient stormwater management practices, such as low-impact development and sustainable drainage systems, are similar to the technology applied in modern stormwater management. This paper presents the cases of the Hani Terrace in Yunnan and the Fushou drainage system of Ganzhou in Jiangxi. The ancient Chinese knowledge behind these cases is seen in the design concepts and the features of these projects. These features help us to understand better their applications in the contemporary environment. In today's more complex environment, integrating traditional and advanced philosophy with modern technologies is extremely useful in building urban and rural stormwater management systems in China.

  9. Neutron Tomography and X-ray Tomography as Tools for the Morphological Investigation of Non-mammalian Synapsids

    NASA Astrophysics Data System (ADS)

    Laaß, Michael; Schillinger, Burkhard; Werneburg, Ingmar

    As having evolved on the stem line of mammals, the taxonomy and phylogeny of therapsids (Synapsida) are of special interest with respect to early mammalian evolution. Due to the fact that in most cases soft tissue of fossil vertebrates is not preserved, species can only be distinguished by diagnosis of morphological features of the skeleton. Moreover, investigations of vertebrate fossils are often obstructed, because internal cranial anatomy is usually hidden and parts of the fossils may be embedded in stone matrix. As a consequence, most species of non-mammalian synapsids were only defined on the basis of external skeletal features. Our investigations on Diictodon skulls (Therapsida, Anomodontia) show that non-destructive methods are very useful to clearly distinguish fossil species. We, therefore, propose using modern non-destructive techniques such as neutron tomography, synchrotron tomography, and micro-computed tomography (μCT) as standard tools for the investigation and virtual reconstruction of fossils and to include features of the internal cranial anatomy into morphological descriptions and phylogenetic analyses of fossil vertebrates.

  10. Laser safety management.

    PubMed

    Champion, J

    2000-08-01

    LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. Since the first working laser was demonstrated in 1960 the laser has evolved from being viewed as a weapon, courtesy of the film industry, to its current position as a commonplace medical device within the healthcare industry. As perioperative staff we have become very familiar with the therapeutic use of this device. It is my experience however that, just occasionally, we are guilty of the old adage 'familiarity breeds contempt'. We must remember that the very same features which make lasers so useful in healthcare may also represent major health hazards to patients, staff and others.

  11. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  12. Design, Fabrication, and Calibration of an Embedded Piezoceramic Actuator for Active Control Applications

    NASA Technical Reports Server (NTRS)

    Koopmann, Gary H.; Lesieutre, George A.; Yoshikawa, Shoko; Chen, Weicheng; Fahnline, John B.; Pai, Suresh; Dershem, Brian

    1996-01-01

    In this presentation, the authors describe the design and fabrication processes for a PZT strain actuator that evolved during the initial stages of a research effort to synthesize and process intelligent, cost effective structures (SPICES). The actuator performance requirements were similar to those of conventional actuators, e.g., it had to be robust, highly efficient with adequate force and stroke, as lightweight as possible, and most importantly, affordable. Further, since the actuator was to be integrated within a composite structure, it had to be compatible with the host material and easily embeddable during the fabrication process. In control applications employing strain devices as actuators, a good bond between this actuator and host material is critical to their successful operation. This criterion is often difficult to achieve when attempting to join ceramics with metals or polymers with dissimilar properties such as Young's moduli, thermal expansion coefficients, etc. One unique feature of the actuator design that evolved in this project is that the need for direct bonding between the PZT ceramic and polymers was circumvented, i.e. the strain transfer to the host material was achieved via a frame surrounding the ceramic. Consequently, the frame material could be selected (or coated) for compatibility with the host material. A second feature is that the frame enclosed a co-fired, multilayered, PZT stack that was used to minimize the voltage requirements while maximizing the output strain.

  13. Discovery radiomics via evolutionary deep radiomic sequencer discovery for pathologically proven lung cancer detection.

    PubMed

    Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander

    2017-10-01

    While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.

  14. PREAL: prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection

    PubMed Central

    2013-01-01

    Background Assessment of potential allergenicity of protein is necessary whenever transgenic proteins are introduced into the food chain. Bioinformatics approaches in allergen prediction have evolved appreciably in recent years to increase sophistication and performance. However, what are the critical features for protein's allergenicity have been not fully investigated yet. Results We presented a more comprehensive model in 128 features space for allergenic proteins prediction by integrating various properties of proteins, such as biochemical and physicochemical properties, sequential features and subcellular locations. The overall accuracy in the cross-validation reached 93.42% to 100% with our new method. Maximum Relevance Minimum Redundancy (mRMR) method and Incremental Feature Selection (IFS) procedure were applied to obtain which features are essential for allergenicity. Results of the performance comparisons showed the superior of our method to the existing methods used widely. More importantly, it was observed that the features of subcellular locations and amino acid composition played major roles in determining the allergenicity of proteins, particularly extracellular/cell surface and vacuole of the subcellular locations for wheat and soybean. To facilitate the allergen prediction, we implemented our computational method in a web application, which can be available at http://gmobl.sjtu.edu.cn/PREAL/index.php. Conclusions Our new approach could improve the accuracy of allergen prediction. And the findings may provide novel insights for the mechanism of allergies. PMID:24565053

  15. Compositional Encounters: Evolvement of Secondary Students' Narratives While Making Historical Desktop Documentaries

    ERIC Educational Resources Information Center

    Schul, James E.

    2012-01-01

    The increased popularity of desktop documentary making among both teachers and students in history classrooms warrants an examination of its integration into classroom instruction. This multiple case study focused on two secondary students in an AP European History course during a unit that featured desktop documentary making. Employing Cultural…

  16. Apple (Malus H domestica Borkh.) responds to a simulated severe drought: genes common and unique to leaves and bark

    USDA-ARS?s Scientific Manuscript database

    Dehydration is feature of many abiotic stresses, but is more often an agricultural threat on its own. Plants have evolved numerous mechanisms for coping with dehydration, including morphological, biochemical, and molecular genetic responses. These mechanisms are complex and involve various combina...

  17. Family Environments, Adrenarche, and Sexual Maturation: A Longitudinal Test of a Life History Model

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Essex, Marilyn J.

    2007-01-01

    Life history theorists have proposed that humans have evolved to be sensitive to specific features of early childhood environments and that exposure to different environments biases children toward development of different reproductive strategies, including differential pubertal timing. The current research provides a longitudinal test of this…

  18. Blue Ribbon Web Sites Contest Winners.

    ERIC Educational Resources Information Center

    Southworth, Samuel A.

    2001-01-01

    Presents a collection of prize-winning Web sites created by K-8 teachers nationwide. Some of the unique features of the Web sites include an online student-written newspaper; a sing-along section; a chronicle of the past 3 years of classes to see how the classes have evolved; and student art and writing projects. (SM)

  19. Principles for Designing Pragmatic Knowledge Management Systems

    ERIC Educational Resources Information Center

    Cavaleri, Steven A.

    2004-01-01

    Knowledge management continues to evolve as a discipline, yet even basic features that define a discipline have to be established. Developing a shared understanding of core concepts, such as the meaning of "knowledge", has been elusive in this field. In the absence of reaching a universal definition, surrogates for knowledge are adopted because of…

  20. Agents Control in Intelligent Learning Systems: The Case of Reactive Characteristics

    ERIC Educational Resources Information Center

    Laureano-Cruces, Ana Lilia; Ramirez-Rodriguez, Javier; de Arriaga, Fernando; Escarela-Perez, Rafael

    2006-01-01

    Intelligent learning systems (ILSs) have evolved in the last few years basically because of influences received from multi-agent architectures (MAs). Conflict resolution among agents has been a very important problem for multi-agent systems, with specific features in the case of ILSs. The literature shows that ILSs with cognitive or pedagogical…

  1. Eeny, Meeny, Miny, Mo...

    ERIC Educational Resources Information Center

    Montgomery, Malcolm

    2008-01-01

    As technology and teaching requirements continue to evolve, one would think the choice of which data projector to buy would be easier because there now are more products with more capabilities. Yet just the opposite is true: The sheer number of projectors and myriad combinations of available features can be overwhelming, making it really tough to…

  2. Promoting Access through Segregation: The Emergence of the "Prioritized Curriculum" Class

    ERIC Educational Resources Information Center

    Bacon, Jessica; Ferri, Beth A.; Rood, Carrie E.

    2016-01-01

    The continuously evolving standards-based reform (SBR) movement is one of the most prominent features of today's educational policy landscape. As SBR has continued to drive educational policy, local schools and districts have adopted many approaches to comply with legal mandates. This paper critically examines one particular resultant phenomenon…

  3. Community Development: A 4-H Intern Report.

    ERIC Educational Resources Information Center

    Scheneman, C. Stephen

    State progress reports on the 4-H/Community Development program, a 1973 nationwide Federally sponsored program facilitating youth in community decision-making processes, indicate that the program appears to be evolving into a viable and integral part of the total 4-H program. Although the report describes unique program features of various States,…

  4. A Child's Garden of Books: Children's Literature Featured in Library Exhibition.

    ERIC Educational Resources Information Center

    Lamolinara, Guy

    1998-01-01

    Describes an exhibition at the Library of Congress called "From Sea to Shining Sea: An American Sampler" that contains a sampling of children's books that are representative of American life and show how children's literature has evolved over the centuries. Illustrations from several of the books are included. (LRW)

  5. Database and online map service on unstable rock slopes in Norway - From data perpetuation to public information

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bobo; Bunkholt, Halvor; Nicolaisen, Magnus; Jarna, Alexandra; Iversen, Sverre; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2015-11-01

    The unstable rock slope database is developed and maintained by the Geological Survey of Norway as part of the systematic mapping of unstable rock slopes in Norway. This mapping aims to detect catastrophic rock slope failures before they occur. More than 250 unstable slopes with post-glacial deformation are detected up to now. The main aims of the unstable rock slope database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, as well as hazard and risk classification. Feature classes and tables linked to the main feature class include different scenarios of an unstable rock slope, field observation points, sampling points for dating, displacement measurement stations, lineaments, unstable areas, run-out areas, areas affected by secondary effects, along with tables for hazard and risk classification and URL links to further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through an online map service. Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site. Areas of possible rock avalanche run-out and their secondary effects displayed in the online map service, along with hazard and risk assessments, will become important tools for land-use planning. The present database will further evolve in the coming years as the systematic mapping progresses and as available techniques and tools evolve.

  6. The adaptation of polar fishes to climatic changes: Structure, function and phylogeny of haemoglobin.

    PubMed

    Verde, Cinzia; Giordano, Daniela; di Prisco, Guido

    2008-01-01

    In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.

  7. Minority games, evolving capitals and replicator dynamics

    NASA Astrophysics Data System (ADS)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-11-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent.

  8. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  9. Bright Feature Appears in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Two Synthetic Aperture Radar (SAR) images from the radar experiment on NASA's Cassini spacecraft show that, between May 2013 and August 2014, a bright feature appeared in Kraken Mare, the largest hydrocarbon sea on Saturn's moon Titan. Researchers think the bright feature is likely representative of something on the hydrocarbon sea's surface, such as waves or floating debris. A similar feature appeared in Ligea Mare, another Titan sea, and was seen to evolve in appearance between 2013 and 2014 (see PIA18430). The image at left was taken on May 23, 2013 at an incidence angle of 56 degrees; the image at right was taken on August 21, 2014 at an incidence angle of 5 degrees. Incidence angle refers to the angle at which the radar beam strikes the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19047

  10. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  11. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  12. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  13. Mutualism and evolutionary multiplayer games: revisiting the Red King.

    PubMed

    Gokhale, Chaitanya S; Traulsen, Arne

    2012-11-22

    Coevolution of two species is typically thought to favour the evolution of faster evolutionary rates helping a species keep ahead in the Red Queen race, where 'it takes all the running you can do to stay where you are'. In contrast, if species are in a mutualistic relationship, it was proposed that the Red King effect may act, where it can be beneficial to evolve slower than the mutualistic species. The Red King hypothesis proposes that the species which evolves slower can gain a larger share of the benefits. However, the interactions between the two species may involve multiple individuals. To analyse such a situation, we resort to evolutionary multiplayer games. Even in situations where evolving slower is beneficial in a two-player setting, faster evolution may be favoured in a multiplayer setting. The underlying features of multiplayer games can be crucial for the distribution of benefits. They also suggest a link between the evolution of the rate of evolution and group size.

  14. A TALE OF THREE MYSTERIOUS SPECTRAL FEATURES IN CARBON-RICH EVOLVED STARS: THE 21 μm, 30 μm, AND “UNIDENTIFIED INFRARED” EMISSION FEATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ajay; Li, Aigen; Jiang, B. W., E-mail: amishra@mail.missouri.edu, E-mail: lia@missouri.edu, E-mail: bjiang@bnu.edu.cn

    2015-03-20

    The mysterious “21 μm” emission feature seen almost exclusively in the short-lived protoplanetary nebula (PPN) phase of stellar evolution remains unidentified since its discovery two decades ago. This feature is always accompanied by the equally mysterious, unidentified “30 μm” feature and the so-called “unidentified infrared” (UIR) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm which are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The 30 μm feature is commonly observed in all stages of stellar evolution from the asymptotic giant branch through PPN to the planetary nebula phase. We explore the interrelations among the mysterious 21, 30 μm,more » and UIR features of the 21 μm sources. We derive the fluxes emitted in the observed UIR, 21, and 30 μm features from published Infrared Space Observatory or Spitzer/IRS spectra. We find that none of these spectral features correlate with each other. This argues against a common carrier (e.g., thiourea) for both the 21 μm feature and the 30 μm feature. This also does not support large PAH clusters as a possible carrier for the 21 μm feature.« less

  15. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed Central

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-01-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences. PMID:12136032

  16. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data.

    PubMed

    Drummond, Alexei J; Nicholls, Geoff K; Rodrigo, Allen G; Solomon, Wiremu

    2002-07-01

    Molecular sequences obtained at different sampling times from populations of rapidly evolving pathogens and from ancient subfossil and fossil sources are increasingly available with modern sequencing technology. Here, we present a Bayesian statistical inference approach to the joint estimation of mutation rate and population size that incorporates the uncertainty in the genealogy of such temporally spaced sequences by using Markov chain Monte Carlo (MCMC) integration. The Kingman coalescent model is used to describe the time structure of the ancestral tree. We recover information about the unknown true ancestral coalescent tree, population size, and the overall mutation rate from temporally spaced data, that is, from nucleotide sequences gathered at different times, from different individuals, in an evolving haploid population. We briefly discuss the methodological implications and show what can be inferred, in various practically relevant states of prior knowledge. We develop extensions for exponentially growing population size and joint estimation of substitution model parameters. We illustrate some of the important features of this approach on a genealogy of HIV-1 envelope (env) partial sequences.

  17. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Why language really is not a communication system: a cognitive view of language evolution

    PubMed Central

    Reboul, Anne C.

    2015-01-01

    While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features—semanticity, discrete infinity, and decoupling—that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems—the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor’s (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought. PMID:26441802

  19. Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution.

    PubMed

    Laughney, Ashley M; Elizalde, Sergi; Genovese, Giulio; Bakhoum, Samuel F

    2015-08-04

    Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Computational fluid dynamics tools can be used to predict the progression of coronary artery disease

    NASA Astrophysics Data System (ADS)

    Coşkun, A. Ümit; Chen, Caixia; Stone, Peter H.; Feldman, Charles L.

    2006-03-01

    Atherosclerosis is focal and individual plaques evolve in an independent manner. The endothelium regulates arterial behavior by responding to its local shear stress. In vitro studies indicate that low endothelial shear stress (ESS) upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic ESS is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High ESS promotes platelet aggregation. ESS and vascular wall morphology along the course of human coronary arteries can now be characterized in vivo, and may predict the focal areas in which atherosclerosis progression occurs. Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic factors likely responsible for progression of coronary disease in man. These new diagnostic modalities allow for identification of plaque progression. Accurate identification of arterial segments at high-risk for progression may permit pre-emptive intervention strategies to avoid adverse coronary events.

  1. Complex Formation History of Highly Evolved Basaltic Shergottite, Zagami

    NASA Technical Reports Server (NTRS)

    Niihara, T.; Misawa, K.; Mikouchi, T.; Nyquist, L. E.; Park, J.; Hirata, D.

    2012-01-01

    Zagami, a basaltic shergottite, contains several kinds of lithologies such as Normal Zagami consisting of Fine-grained (FG) and Coarse-grained (CG), Dark Mottled lithology (DML), and Olivine-rich late-stage melt pocket (DN). Treiman and Sutton concluded that Zagami (Normal Zagami) is a fractional crystallization product from a single magma. It has been suggested that there were two igneous stages (deep magma chamber and shallow magma chamber or surface lava flow) on the basis of chemical zoning features of pyroxenes which have homogeneous Mg-rich cores and FeO, CaO zoning at the rims. Nyquist et al. reported that FG has a different initial Sr isotopic ratio than CG and DML, and suggested the possibility of magma mixing on Mars. Here we report new results of petrology and mineralogy for DML and the Olivine-rich lithology (we do not use DN here), the most evolved lithology in this rock, to understand the relationship among lithologies and reveal Zagami s formation history

  2. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  3. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  4. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts.

    PubMed

    Iglesias, Teresa L; Dornburg, Alex; Warren, Dan L; Wainwright, Peter C; Schmitz, Lars; Economo, Evan P

    2018-05-28

    Understanding how organismal design evolves in response to environmental challenges is a central goal of evolutionary biology. In particular, assessing the extent to which environmental requirements drive general design features among distantly related groups is a major research question. The visual system is a critical sensory apparatus that evolves in response to changing light regimes. In vertebrates, the optic tectum is the primary visual processing centre of the brain and yet it is unclear how or whether this structure evolves while lineages adapt to changes in photic environment. On one hand, dim-light adaptation is associated with larger eyes and enhanced light-gathering power that could require larger information processing capacity. On the other hand, dim-light vision may evolve to maximize light sensitivity at the cost of acuity and colour sensitivity, which could require less processing power. Here, we use X-ray microtomography and phylogenetic comparative methods to examine the relationships between diel activity pattern, optic morphology, trophic guild and investment in the optic tectum across the largest radiation of vertebrates-teleost fishes. We find that despite driving the evolution of larger eyes, enhancement of the capacity for dim-light vision generally is accompanied by a decrease in investment in the optic tectum. These findings underscore the importance of considering diel activity patterns in comparative studies and demonstrate how vision plays a role in brain evolution, illuminating common design principles of the vertebrate visual system. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  5. A Serious Games Platform for Cognitive Rehabilitation with Preliminary Evaluation.

    PubMed

    Rego, Paula Alexandra; Rocha, Rui; Faria, Brígida Mónica; Reis, Luís Paulo; Moreira, Pedro Miguel

    2017-01-01

    In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients' attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.

  6. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  7. Optimizing computer-aided colonic polyp detection for CT colonography by evolving the Pareto front1

    PubMed Central

    Li, Jiang; Huang, Adam; Yao, Jack; Liu, Jiamin; Van Uitert, Robert L.; Petrick, Nicholas; Summers, Ronald M.

    2009-01-01

    A multiobjective genetic algorithm is designed to optimize a computer-aided detection (CAD) system for identifying colonic polyps. Colonic polyps appear as elliptical protrusions on the inner surface of the colon. Curvature-based features for colonic polyp detection have proved to be successful in several CT colonography (CTC) CAD systems. Our CTC CAD program uses a sequential classifier to form initial polyp detections on the colon surface. The classifier utilizes a set of thresholds on curvature-based features to cluster suspicious colon surface regions into polyp candidates. The thresholds were previously chosen experimentally by using feature histograms. The chosen thresholds were effective for detecting polyps sized 10 mm or larger in diameter. However, many medium-sized polyps, 6–9 mm in diameter, were missed in the initial detection procedure. In this paper, the task of finding optimal thresholds as a multiobjective optimization problem was formulated, and a genetic algorithm to solve it was utilized by evolving the Pareto front of the Pareto optimal set. The new CTC CAD system was tested on 792 patients. The sensitivities of the optimized system improved significantly, from 61.68% to 74.71% with an increase of 13.03% (95% CI [6.57%, 19.5%], p=7.78×10−5) for the size category of 6–9 mm polyps, from 65.02% to 77.4% with an increase of 12.38% (95% CI [6.23%, 18.53%], p=7.95×10−5) for polyps 6 mm or larger, and from 82.2% to 90.58% with an increase of 8.38% (95%CI [0.75%, 16%], p=0.03) for polyps 8 mm or larger at comparable false positive rates. The sensitivities of the optimized system are nearly equivalent to those of expert radiologists. PMID:19235388

  8. Application of Fe-Ti oxide dissolution experiments to the petrogenesis of the Ekati Diamond Mine kimberlites, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Kressall, R.; Fedortchouk, Y.; McCammon, C. A.

    2015-12-01

    Composition of kimberlites is ambiguous due to assimilation and fractional crystallization. We propose that the evolution history of minerals can be used to decipher the magmatic history of kimberlites. We use Fe-Ti oxides (chromite and ilmenite) from six kimberlites from the Ekati Diamond Mine and dissolution experiments to elucidate the petrogenesis of kimberlites. Experiments at 0.1 MPa and variable ƒO2s in a diopside-anorthite melt show that the dissolution rate of ilmenite is highly sensitive to ƒO2. No significant difference was observed in chromite. Zoning in chromite is related to the Fe-content and oxidation state of the melt. Experiments at 1 GPa explore the development of chromite surface resorption features in the system Ca-Mg-Si-H-C-O. Five kimberlites contain a low abundance of ilmenite, owing to a relatively high ƒO2, though ilmenite constituted 65% of oxide macocrysts in one kimberlite. Chromite compositions evolve from Mg-chromite to magnesio-ulvöspinel-magnetite (MUM) in all but one kimberlite where chromite evolves to a pleonaste composition perhaps as a result of rapid emplacement. The high abundance of MUM spinel and low abundance of ilmenite in the matrix could be related to the change in the stable Ti-phase with increasing ƒO2. Core compositions of macrocrysts vary for different mantle sources but rims converge to a composition slightly more oxidized and Mg-rich than chromite from depleted peridotite. Ilmenite commonly has rims composed of perovskite, titanite and MUM. We suggest a model where the kimberlite melt composition is controlled by the co-dissolution and co-precipitation of silicates (predominantly orthopyroxene and olivine) to explain chromite evolution in kimberlites. Resorption-related surface features on chromite macrocrysts show trigon protrusions-depressions on {111} faces and step-like features along the crystal edges resembling products of experiments in H2O fluid. We propose predominantly H2O magmatic fluid in Ekati kimberlites.

  9. Quantum biology of the retina.

    PubMed

    Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J

    2014-08-01

    The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  10. Short interspersed element (SINE) depletion and long interspersed element (LINE) abundance are not features universally required for imprinting.

    PubMed

    Cowley, Michael; de Burca, Anna; McCole, Ruth B; Chahal, Mandeep; Saadat, Ghazal; Oakey, Rebecca J; Schulz, Reiner

    2011-04-20

    Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting.

  11. Disarming the Red Queen: plant invasions, novel weapons, species coexistence, and microevolution

    USDA-ARS?s Scientific Manuscript database

    This paper is a commentary on the importance of the featured paper in the issue. The authors found that an invasive species and a co-occurring native species had evolved to coexist with one another in the space of 50 years. The rapid evolution of tolerance (as opposed to arms race style escalation) ...

  12. The Design and Organisation Features of Two Online Courses: A Case Study of Their Emergence and Evolution

    ERIC Educational Resources Information Center

    Richards, Kari

    2017-01-01

    This study reports the findings of a qualitative case study that examined how elements of design and organization were conceptualized and enacted in two graduate level online courses, and, how these conceptualizations and enactments evolved. Data was collected through interviews and "think-alouds" with the course instructors and through…

  13. Word Meanings Evolve to Selectively Preserve Distinctions on Salient Dimensions

    ERIC Educational Resources Information Center

    Silvey, Catriona; Kirby, Simon; Smith, Kenny

    2015-01-01

    Words refer to objects in the world, but this correspondence is not one-to-one: Each word has a range of referents that share features on some dimensions but differ on others. This property of language is called underspecification. Parts of the lexicon have characteristic patterns of underspecification; for example, artifact nouns tend to specify…

  14. Evolution of Apprenticeships and Traineeships in Australia: An Unfinished History. Occasional Paper

    ERIC Educational Resources Information Center

    Knight, Brian

    2012-01-01

    This paper traces the evolution of Australia's apprenticeship and traineeship system since permanent European settlement in 1788. The system was imported from Great Britain; it has evolved and diverged in some areas but retains many of the features of the British model. Most major changes have occurred in the last 25 years. The apprenticeship…

  15. A World Order Perspective on Authoritarian Tendencies. World Order Models Project. Working Paper Number Ten.

    ERIC Educational Resources Information Center

    Falk, Richard A.

    This paper discusses five main patterns of authoritarian government rule that are currently prominent in international society. The first pattern is "Brazilianization" which has evolved as a model for rightist, capitalist elites in the more industrialized countries of the Third World (e.g. Iran, Indonesia, and Argentina). A common feature of these…

  16. About Our Agency | National Oceanic and Atmospheric Administration

    Science.gov Websites

    our agency Mission & vision Our commitment to science Our history Leadership RDML Tim Gallaudet our evolving planet View our featured experts Our history A weather kite being prepared for launching with kite-reel house in the background. NOAA's history is an intrinsic part of the history of the

  17. The History of College Health Nursing

    ERIC Educational Resources Information Center

    Crihfield, Connie; Grace, Ted W.

    2011-01-01

    Almost from the beginning of formal college health programs in the second half of the 19th century, college health nurses were there to care for students in college and university settings. By the end of the 20th century, the role of college health nurses had evolved with the nursing field in general, but with enough unique features for the…

  18. Walking Through History. The Seaports of Black Rock and Southport.

    ERIC Educational Resources Information Center

    Brilvitch, Charles

    This document is a tour guide to the historical features of the seaports of Black Rock and Southport in the town of Fairfield, Connecticut. It is designed to acquaint visitors and residents with the stages of development that shaped both ports and the way that Fairfield has evolved through wars, depressions, and periods of prosperity over the…

  19. Teen Sexual Behavior. A Leader's Resource of Practical Strategies with Youth.

    ERIC Educational Resources Information Center

    Berne, Linda A.; Wild, Pamela

    The purpose of this book is to assist leaders in a variety of settings to address young people on the critical issues of teenage sexuality. The units are presented in a sequential pattern which covers teenage sexual behavior as it naturally evolves. Detailed information and precise directions for presenting the lessons are featured. The curriculum…

  20. Multi-mission Ni-H2 battery cell for the 1990's

    NASA Technical Reports Server (NTRS)

    Miller, Lee; Brill, Jack; Dodson, Gary

    1989-01-01

    A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analyses and validation test cells demonstrate improved performance plus attractive specific-energy characteristics will be achieved.

  1. The Mairan domes: silicic volcanic constructs on the Moon

    USGS Publications Warehouse

    Glotch, Timothy D.; Hagerty, Justin J.; Lucey, Paul G.; Hawke, B. Ray; Giguere, Thomas A.; Arnold, Jessica A.; Williams, Jean-Pierre; Jolliff, Bradley L.; Paige, David A.

    2011-01-01

    The Mairan domes are four features located in northern Oceanus Procellarum at ∼312.3E, 41.4N on the Moon. High resolution visible imagery, visible-to-mid-IR spectra, and Lunar Prospector Th abundance data all indicate that these four domes have a composition that is consistent with derivation from a Si-rich, highly evolved magma.

  2. Converging Higher Education Systems in a Global Setting: The Example of France and India

    ERIC Educational Resources Information Center

    Pilkington, Marc

    2014-01-01

    We present a comparative survey between the French and Indian higher education systems. In spite of their respective idiosyncratic features, we show that the two countries have both evolved comprehensively toward a knowledge-based society, in order to ensure the prosperity of their citizens. Secondly, we single out a threefold convergence between…

  3. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    Treesearch

    Frank O. Aylward; Garret Suen; Peter H. Biedermann; Aaron S. Adams; Jarrod J. Scott; Stephanie A. Malfatti; Tijana Glavina del Rio; Susannah G. Tringe; Michael Poulsen; Kenneth F. Raffa; Kier D. Kelpzig; Cameron R. Currie

    2014-01-01

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite...

  4. Organizational Models and Mythologies of the American Research University. ASHE 1986 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Alpert, Daniel

    Features of the matrix model of the research university and myths about the academic enterprise are described, along with serious dissonances in the U.S. university system. The linear model, from which the matrix model evolved, describes the university's structure, perceived mission, and organizational behavior. A matrix model portrays in concise,…

  5. Structural optimization of large ocean-going structures

    NASA Technical Reports Server (NTRS)

    Hughes, O. F.

    1984-01-01

    Ocean-going vehicles and platforms are among the largest structures in the world and are subjected to relatively harsh conditions of motions and loads. Some of them, such as semi-submersible platforms, are a relatively new type of structure and hence there is no formal, well evolved and established structural design code as there is for more traditional structures. More recently, efforts have also been made to develop a design method of this type for ships and other ocean structures. One of the many advantages of a rationally based design method is versatility; it can be used for structures that have widely differing purposes, measures of merit, shapes and sizes. The purpose is to describe a rationally based design method that has been developed within the field of ocean structures, in order that persons dealing with other types of structure can judge whether and to what extent its various features may be useful for those other types. Also, even though some features may not be applicable they might stimulate some useful ideas.

  6. Dust emission in simulated dwarf galaxies using GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Santos-Santos, I. M.; Domínguez-Tenreiro, R.; Granato, G. L.; Brook, C. B.; Obreja, A.

    2017-03-01

    Recent Herschel observations of dwarf galaxies have shown a wide diversity in the shapes of their IR-submm spectral energy distributions as compared to more massive galaxies, presenting features that cannot be explained with the current models. In order to understand the physics driving these differences, we have computed the emission of a sample of simulated dwarf galaxies using the radiative transfer code GRASIL-3D. This code separately treats the radiative transfer in dust grains from molecular clouds and cirri. The simulated galaxies have masses ranging from 10^6-10^9 M_⊙ and have evolved within a Local Group environment by using CLUES initial conditions. We show that their IR band luminosities are in agreement with observations, with their SEDs reproducing naturally the particular spectral features observed. We conclude that the GRASIL-3D two-component model gives a physical interpretation to the emission of dwarf galaxies, with molecular clouds (cirri) as the warm (cold) dust components needed to recover observational data.

  7. Solute transport by flow yields geometric shocks in shape evolution

    NASA Astrophysics Data System (ADS)

    Huang, Jinzi (Mac); Davies Wykes, Megan; Hajjar, George; Ristroph, Leif; Shelley, Michael

    2017-11-01

    Geological processes such as erosion and dissolution of surfaces often lead to striking shapes with strikingly sharp features. We present observations of such features forming in dissolution under gravity. In our experiment, a dissolving body with initially smooth surface evolves into an increasingly sharp needle shape. A mathematical model of its shape dynamics, derived from a boundary layer theory, predicts that a geometric shock forms at the tip of dissolved body, with the tip curvature becoming infinite in finite time. We further discuss the model's application to similar processes, such as flow driven erosion which can yield corners.

  8. Driving profile modeling and recognition based on soft computing approach.

    PubMed

    Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya

    2009-04-01

    Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.

  9. Stability Analysis of Algebraic Reconstruction for Immersed Boundary Methods with Application in Flow and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Battiato, I.

    2017-12-01

    Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.

  10. Classification of early-stage non-small cell lung cancer by weighing gene expression profiles with connectivity information.

    PubMed

    Zhang, Ao; Tian, Suyan

    2018-05-01

    Pathway-based feature selection algorithms, which utilize biological information contained in pathways to guide which features/genes should be selected, have evolved quickly and become widespread in the field of bioinformatics. Based on how the pathway information is incorporated, we classify pathway-based feature selection algorithms into three major categories-penalty, stepwise forward, and weighting. Compared to the first two categories, the weighting methods have been underutilized even though they are usually the simplest ones. In this article, we constructed three different genes' connectivity information-based weights for each gene and then conducted feature selection upon the resulting weighted gene expression profiles. Using both simulations and a real-world application, we have demonstrated that when the data-driven connectivity information constructed from the data of specific disease under study is considered, the resulting weighted gene expression profiles slightly outperform the original expression profiles. In summary, a big challenge faced by the weighting method is how to estimate pathway knowledge-based weights more accurately and precisely. Only until the issue is conquered successfully will wide utilization of the weighting methods be impossible. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Meeting Report: Tissue-based Image Analysis.

    PubMed

    Saravanan, Chandra; Schumacher, Vanessa; Brown, Danielle; Dunstan, Robert; Galarneau, Jean-Rene; Odin, Marielle; Mishra, Sasmita

    2017-10-01

    Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists' daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.

  12. Microphysical characteristics of squall-line stratiform precipitation and transition zones inferred using an ice particle property-evolving model

    NASA Astrophysics Data System (ADS)

    Jensen, A. A.; Harrington, J. Y.; Morrison, H.

    2017-12-01

    A quasi-idealized 3D squall line (based on a June 2007 Oklahoma case) is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties, such as mass, shape, maximum diameter, density, and fall speed, are tracked as these properties evolve from vapor growth, sublimation, riming, and melting. Thus, ice properties evolve from various microphysical processes without needing separate unrimed and rimed ice categories. Simulation results show that ISHMAEL produces both a squall-line transition zone and an enhanced stratiform precipitation region. The ice particle properties produced in this simulation are analyzed and compared to observations to determine the characteristics of ice that lead to the development of these squall-line features. It is shown that rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The development of the transition zone results from hydrometer sorting: the evolution of ice particle properties in the convective region produces specific fall speeds that favor significant ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Microphysical sensitivity studies, for example turning rime splintering off, that lead to changes in ice particle properties reveal that the fall speed of ice particles largely determines both the location of the enhanced stratiform precipitation region and whether or not a transition zone forms.

  13. ACR Imaging IT Reference Guide: Image Sharing: Evolving Solutions in the Age of Interoperability

    PubMed Central

    Erickson, Bradley J.; Choy, Garry

    2014-01-01

    Interoperability is a major focus of the quickly evolving world of Health Information Technology. Easy, yet secure and confidential exchange of imaging exams and the associated reports must be a part of the solutions that are implemented. The availability of historical exams is essential in providing a quality interpretation and reducing inappropriate utilization of imaging services. Today exchange of imaging exams is most often achieved via a CD. We describe the virtues of this solution as well as challenges that have surfaced. Internet and cloud based technologies employed for many consumer services can provide a better solution. Vendors are making these solutions available. Standards for internet based exchange are emerging. Just as Radiology converged on DICOM as a standard to store and view images we need a common exchange standard. We will review the existing standards, and how they are organized into useful workflows through Integrating the Healthcare Enterprise (IHE) profiles. IHE and standards development processes are discussed. Healthcare and the domain of Radiology must stay current with quickly evolving internet standards. The successful use of the “cloud” will depend upon both the technologies we discuss and the policies put into place around these technologies. We discuss both aspects. The Radiology community must lead the way and provide a solution that works for radiologists and clinicians in the Electronic Medical Record (EMR). Lastly we describe the features we believe radiologists should consider when considering adding internet based exchange solutions to their practice. PMID:25467903

  14. The capuchin monkey as a flight candidate

    NASA Technical Reports Server (NTRS)

    Winget, C. M.

    1977-01-01

    The highly evolved nervous system and associated complex behavioral capabilities of the nonhuman primates make them good candidates for certain studies in the space environment since deleterious changes in these more complex aspects of a biological status can only be demonstrated by species which share such highly evolved features with man. Important assets which urge the selection of the capuchin monkey for space experiments include his small size, high intelligence, relative disease resistance, nutritional requirements, and lower volume life support systems. The species is particularly suited for experiments on the nervous system or on process under neural control because of the similarity of capuchin and human blood chemistry profiles and endocrine systems involved in the maintenance of homeostasis and vasomotor tone.

  15. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  16. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, Stephen

    1987-01-01

    The evolution of individual cyclone waves is studied in order to see how well quasi-geostrophic (QG) dynamics can simulate the behavior of primitive equations (PE) dynamics. This work is an extension of a similar study (Mudrick, 1982); emphasis is placed here on adding a frontal zone and other more diverse features to the basic states used. In addition, sets of PE integrations, with and without friction, are used to study the formation of surface occluded fronts within the evolving cyclones. Results of the study are summarized at the beginning of the report.

  17. Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations.

    PubMed

    Marini, Carla; Romoli, Michele; Parrini, Elena; Costa, Cinzia; Mei, Davide; Mari, Francesco; Parmeggiani, Lucio; Procopio, Elena; Metitieri, Tiziana; Cellini, Elena; Virdò, Simona; De Vita, Dalila; Gentile, Mattia; Prontera, Paolo; Calabresi, Paolo; Guerrini, Renzo

    2017-12-01

    To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations. Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel. The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism. KCNB1 -related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment.

  18. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology.

    PubMed

    Hunt, Kevin D

    2016-04-01

    Apes, members of the superfamily Hominoidea, possess a distinctive suite of anatomical and behavioral characters which appear to have evolved relatively late and relatively independently. The timing of paleontological events, extant cercopithecine and hominoid ecomorphology and other evidence suggests that many distinctive ape features evolved to facilitate harvesting ripe fruits among compliant terminal branches in tree edges. Precarious, unpredictably oriented, compliant supports in the canopy periphery require apes to maneuver using suspensory and non-sterotypical postures (i.e. postures with eccentric limb orientations or extreme joint excursions). Diet differences among extant species, extant species numbers and evidence of cercopithecoid diversification and expansion, in concert with a reciprocal decrease in hominoid species, suggest intense competition between monkeys and apes over the last 20 Ma. It may be that larger body masses allow great apes to succeed in contest competitions for highly desired food items, while the ability of monkeys to digest antifeedant-rich unripe fruits allows them to win scramble competitions. Evolutionary trends in morphology and inferred ecology suggest that as monkeys evolved to harvest fruit ever earlier in the fruiting cycle they broadened their niche to encompass first more fibrous, tannin- and toxin-rich unripe fruits and later, for some lineages, mature leaves. Early depletion of unripe fruit in the central core of the tree canopy by monkeys leaves a hollow sphere of ripening fruits, displacing antifeedant-intolerant, later-arriving apes to small-diameter, compliant terminal branches. Hylobatids, orangutans, Pan species, gorillas and the New World atelines may have each evolved suspensory behavior independently in response to local competition from an expanding population of monkeys. Genetic evidence of rapid evolution among chimpanzees suggests that adaptations to suspensory behavior, vertical climbing, knuckle-walking, consumption of terrestrial piths and intercommunity violence had not yet evolved or were still being refined when panins (chimpanzees and bonobos) and hominins diverged. © 2016 Anatomical Society.

  19. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili

    PubMed Central

    Rudall, Paula J.; Bateman, Richard M.

    2010-01-01

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867

  20. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili.

    PubMed

    Rudall, Paula J; Bateman, Richard M

    2010-02-12

    Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.

  1. Co-evolving prisoner's dilemma: Performance indicators and analytic approaches

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Choi, C. W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2017-02-01

    Understanding the intrinsic relation between the dynamical processes in a co-evolving network and the necessary ingredients in formulating a reliable theory is an important question and a challenging task. Using two slightly different definitions of performance indicator in the context of a co-evolving prisoner's dilemma game, it is shown that very different cooperative levels result and theories of different complexity are required to understand the key features. When the payoff per opponent is used as the indicator (Case A), non-cooperative strategy has an edge and dominates in a large part of the parameter space formed by the cutting-and-rewiring probability and the strategy imitation probability. When the payoff from all opponents is used (Case B), cooperative strategy has an edge and dominates the parameter space. Two distinct phases, one homogeneous and dynamical and another inhomogeneous and static, emerge and the phase boundary in the parameter space is studied in detail. A simple theory assuming an average competing environment for cooperative agents and another for non-cooperative agents is shown to perform well in Case A. The same theory, however, fails badly for Case B. It is necessary to include more spatial correlation into a theory for Case B. We show that the local configuration approximation, which takes into account of the different competing environments for agents with different strategies and degrees, is needed to give reliable results for Case B. The results illustrate that formulating a proper theory requires both a conceptual understanding of the effects of the adaptive processes in the problem and a delicate balance between simplicity and accuracy.

  2. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Diagnosis and Challenges of Polycystic Ovary Syndrome in Adolescence

    PubMed Central

    Agapova, Sophia E.; Cameo, Tamara; Sopher, Aviva B.; Oberfield, Sharon E.

    2015-01-01

    Although the diagnostic criteria for polycystic ovary syndrome (PCOS) have become less stringent over the years, determination of the minimum diagnostic features in adolescents is still an area of controversy. Of particular concern is that many of the features considered to be diagnostic for PCOS may evolve over time and change during the first few years after menarche. Nonetheless, attempts to define young women who may be at risk for development of PCOS is pertinent since associated morbidity such as obesity, insulin resistance, and dyslipidemia may benefit from early intervention. The relative utility of diagnostic tools such as persistence of anovulatory cycles, hyperandrogenemia, hyperandrogenism (hirsutism, acne, or alopecia), or ovarian findings on ultrasound is not established in adolescents. Some suggest that even using the strictest criteria, the diagnosis of PCOS may not valid in adolescents younger than 18 years. In addition, evidence does not necessarily support that lack of treatment of PCOS in younger adolescents will result in untoward outcomes since features consistent with PCOS often resolve with time. The presented data will help determine if it is possible to establish firm criteria which may be used to reliably diagnose PCOS in adolescents. PMID:24715514

  4. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach.

    PubMed

    Ellis, Michael J; Leddy, John; Willer, Barry

    2016-01-01

    Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach.

  5. Multi-Disciplinary Management of Athletes with Post-Concussion Syndrome: An Evolving Pathophysiological Approach

    PubMed Central

    Ellis, Michael J.; Leddy, John; Willer, Barry

    2016-01-01

    Historically, patients with sports-related concussion (SRC) have been managed in a uniform fashion consisting mostly of prescribed physical and cognitive rest with the expectation that all symptoms will spontaneously resolve with time. Although this approach will result in successful return to school and sports activities in the majority of athletes, an important proportion will develop persistent concussion symptoms characteristic of post-concussion syndrome (PCS). Recent advances in exercise science, neuroimaging, and clinical research suggest that the clinical manifestations of PCS are mediated by unique pathophysiological processes that can be identified by features of the clinical history and physical examination as well as the use of graded aerobic treadmill testing. Athletes who develop PCS represent a unique population whose care must be individualized and must incorporate a rehabilitative strategy that promotes enhanced recovery of concussion-related symptoms while preventing physical deconditioning. In this review, we present our evolving evidence-based approach to evaluation and management of athletes with PCS that aims to identify the pathophysiological mechanisms mediating persistent concussion symptoms and guides the initiation of individually tailored rehabilitation programs that target these processes. In addition, we outline the important qualified roles that multi-disciplinary healthcare professionals can play in the management of this patient population, and discuss where future research efforts must be focused to further evaluate this evolving pathophysiological approach. PMID:27605923

  6. "Daring to Volunteer": Some Reflections on Geographers, Geography Students and Evolving Institutional Support for Community Engagement in Higher Education

    ERIC Educational Resources Information Center

    Spalding, Richard

    2013-01-01

    Volunteering with our local community organizations (many of them charitable) is clearly set to become more of a feature of our lives as staff and students working in higher education. This activity is seen as potentially valuable in enhancing the student experience, particularly through a strengthening of students' employability prospects. This…

  7. Apparent foraging success reflects habitat quality in an irruptive species, the Black-backed Woodpecker

    Treesearch

    Christopher T. Rota; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler; Joshua J. Millspaugh

    2015-01-01

    Dramatic fluctuations in food resources are a key feature of many habitats, and many species have evolved a movement strategy to exploit food resources that are unpredictable in space and time. The availability of food resources may be a particularly strong determinant of habitat quality for irruptive bird species. We studied the apparent foraging success of Black-...

  8. Cell biology: scaling and the emergence of evolutionary cell biology.

    PubMed

    Phillips, Patrick C; Bowerman, Bruce

    2015-03-16

    A new study investigating the origins of diversity in the structure of the mitotic spindle in nematode embryos, at timescales spanning a few generations to hundreds of millions of years, finds that most features of the spindle evolve via a scaling relationship generated by natural selection acting directly upon embryo size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Information Security: A Scientometric Study of the Profile, Structure, and Dynamics of an Emerging Scholarly Specialty

    ERIC Educational Resources Information Center

    Olijnyk, Nicholas Victor

    2014-01-01

    The central aim of the current research is to explore and describe the profile, dynamics, and structure of the information security specialty. This study's objectives are guided by four research questions: 1. What are the salient features of information security as a specialty? 2. How has the information security specialty emerged and evolved from…

  10. School Leadership and Educational Change: Tools and Practices in Shared School Leadership Development

    ERIC Educational Resources Information Center

    Hauge, Trond Eiliv; Norenes, Svein Olav; Vedøy, Gunn

    2014-01-01

    This study examines the features of school leadership as it evolved in an upper secondary school attempting to enhance school improvement through a dedicated team of developmental leaders. We study the team leadership's tools and design over one school year and report on the evolution of a collective approach to leadership for school…

  11. The New Metrics of Scholarly Authority

    ERIC Educational Resources Information Center

    Jensen, Michael

    2007-01-01

    As the Web evolves, so will the ways people measure scholarly authority. Scholarly authority is being influenced by many of the features that have collectively been dubbed Web 2.0 by Tim O'Reilly and others, and what the author will call Authority 2.0 in order to explore more fully the shifts that seem likely in the near future. In Web 1.0,…

  12. A Market Analysis of the Latter Half of the Nineteenth-Century American Higher Education Sector

    ERIC Educational Resources Information Center

    Edirisooriya, Gunapala

    2009-01-01

    Most of the basic features of the American higher education sector started to evolve during the latter half of the nineteenth century. In response to the deficient demand in higher education, the suppliers (higher education institutions) adopted various marketing strategies to stay afloat in the market. Such strategies not only contributed a great…

  13. The multigenic nature of the differences in pathogenicity of H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The Eurasian H5N1 highly pathogenic avian influenza (HPAI) viruses have evolved into many genetic lineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic waterfowl. The pathogenicity of H5N1 HPAI vi...

  14. Multi-mission Ni-H2 battery cells for the 1990's

    NASA Technical Reports Server (NTRS)

    Miller, Lee; Brill, Jack; Dodson, Gary

    1989-01-01

    A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analysis and validation test cells demonstrate that improved performance plus attractive specific-energy characteristics will be achieved.

  15. Toward geodesign for watershed restoration on the Fremont-Winema National Forest, Pacific Northwest, USA

    Treesearch

    Keith Reynolds; Philip Murphy; Steven Paplanus

    2017-01-01

    Spatial decision support systems for forest management have steadily evolved over the past 20+ years in order to better address the complexities of contemporary forest management issues such as the sustainability and resilience of ecosystems on forested landscapes. In this paper, we describe and illustrate new features of the Ecosystem Management Decision Support (EMDS...

  16. Social Identity and Sound Change: The Case of "Wo" in Shanghainese

    ERIC Educational Resources Information Center

    Liu, Guo-qiang

    2012-01-01

    Research has shown that language change is driven on one hand by forces internal to language itself such as grammar-internal systematic pressure, and on the other hand by social motives such as social identity. Language contact presents new features, but why is it that some of them are incorporated as variation and evolving into language change,…

  17. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  18. Accessing Earth science data from the EOS data and information system

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kenneth R.; Calvo, Sherri

    1993-01-01

    An overview of the Earth Observing System Data and Information System (EOSDIS) is presented, concentrating on the users' interactions with the system and highlighting those features that are driven by the unique requirements of the Global Change Research Program and the supported science community. However, a basic premise of the EOSDIS is that the system must evolve to meet changes in user needs and to incorporate advances in data system technology. Therefore, the development process which is being used to accommodate these changes and some of the potential areas of change are also addressed.

  19. Continuous Pre-Hospital Data as a Predictor of Outcome Following Major Trauma: A Study Using Improved and Expanded Data, Phase 2

    DTIC Science & Technology

    2010-03-01

    and the data m anagement proce sses and procedures practiced by the SA EMS system were evolving, with changes and im provements in both variables...but limited) new monitor configuration and SA EMS processes a nd procedures adapted to the features of the new monitor. The first of the three... procedures for both the new m onitor and the S A EMS system over the upcom ing year. The two remaining data co llection inte rvals planned f or Phase 2 w ere

  20. Pilot-optimal augmentation synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1978-01-01

    An augmentation synthesis method usable in the absence of quantitative handling qualities specifications, and yet explicitly including design objectives based on pilot-rating concepts, is presented. The algorithm involves the unique approach of simultaneously solving for the stability augmentation system (SAS) gains, pilot equalization and pilot rating prediction via optimal control techniques. Simultaneous solution is required in this case since the pilot model (gains, etc.) depends upon the augmented plant dynamics, and the augmentation is obviously not a priori known. Another special feature is the use of the pilot's objective function (from which the pilot model evolves) to design the SAS.

  1. RELAP-7 Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Ray Alden; Zou, Ling; Zhao, Haihua

    This document summarizes the physical models and mathematical formulations used in the RELAP-7 code. In summary, the MOOSE based RELAP-7 code development is an ongoing effort. The MOOSE framework enables rapid development of the RELAP-7 code. The developmental efforts and results demonstrate that the RELAP-7 project is on a path to success. This theory manual documents the main features implemented into the RELAP-7 code. Because the code is an ongoing development effort, this RELAP-7 Theory Manual will evolve with periodic updates to keep it current with the state of the development, implementation, and model additions/revisions.

  2. An active second dihydrofolate reductase enzyme is not a feature of rat and mouse, but they do have activity in their mitochondria.

    PubMed

    Hughes, Linda; Carton, Robert; Minguzzi, Stefano; McEntee, Gráinne; Deinum, Eva E; O'Connell, Mary J; Parle-McDermott, Anne

    2015-07-08

    The identification of a second functional dihydrofolate reductase enzyme in humans, DHFRL1, led us to consider whether this is also a feature of rodents. We demonstrate that dihydrofolate reductase activity is also a feature of the mitochondria in both rat and mouse but this is not due to a second enzyme. While our phylogenetic analysis revealed that RNA-mediated DHFR duplication events did occur across the mammal tree, the duplicates in brown rat and mouse are likely to be processed pseudogenes. Humans have evolved the need for two separate enzymes while laboratory rats and mice have just one. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Sentinel-3A Views Ocean Variability More Accurately at Finer Resolution

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Sánchez-Román, A.; Pascual, A.; Rodríguez, D.; Reeve, K. A.; Faugère, Y.; Raynal, M.

    2017-12-01

    This is the first multiplatform evaluation involving data from the new Sentinel-3A altimeter. An experiment was undertaken in the Algerian Basin, employing an ocean glider and a ship mission, along the same track and synchronous with an overpass of the Sentinel-3A mission. This provided three independent views of the ocean velocity field, along a section that encompassed three different oceanographic regimes. The results demonstrate the capacity of Sentinel-3A to retrieve fine-scale oceanographic features ( 20 km). The intercomparison with in situ platforms showed a significant improvement, order 30% in resolution and 42% in velocity accuracy using a synthetic aperture radar mode with respect to lower-resolution mode of conventional altimetry. In addition, the three-platform view provided valuable insight into the variability of evolving oceanographic features, in an area of the Mediterranean that remains chronically under sampled.

  4. Enzyme-Less Growth in Chara and Terrestrial Plants

    DOE PAGES

    Boyer, John S.

    2016-06-21

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wallmore » features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Furthermore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion.« less

  5. Identifying and Synchronizing Health Information Technology (HIT) Events from FDA Medical Device Reports.

    PubMed

    Kang, Hong; Wang, Frank; Zhou, Sicheng; Miao, Qi; Gong, Yang

    2017-01-01

    Health information technology (HIT) events, a subtype of patient safety events, pose a major threat and barrier toward a safer healthcare system. It is crucial to gain a better understanding of the nature of the errors and adverse events caused by current HIT systems. The scarcity of HIT event-exclusive databases and event reporting systems indicates the challenge of identifying the HIT events from existing resources. FDA Manufacturer and User Facility Device Experience (MAUDE) database is a potential resource for HIT events. However, the low proportion and the rapid evolvement of HIT-related events present challenges for distinguishing them from other equipment failures and hazards. We proposed a strategy to identify and synchronize HIT events from MAUDE by using a filter based on structured features and classifiers based on unstructured features. The strategy will help us develop and grow an HIT event-exclusive database, keeping pace with updates to MAUDE toward shared learning.

  6. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems.

    PubMed

    Demchak, Barry; Krüger, Ingolf

    2012-07-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime , thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime.

  7. Giraffe genome sequence reveals clues to its unique morphology and physiology

    PubMed Central

    Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.

    2016-01-01

    The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213

  8. Femtosecond stimulated Raman evidence for charge-transfer character in pentacene singlet fission.

    PubMed

    Hart, Stephanie M; Silva, W Ruchira; Frontiera, Renee R

    2018-02-07

    Singlet fission is a spin-allowed process in which an excited singlet state evolves into two triplet states. We use femtosecond stimulated Raman spectroscopy, an ultrafast vibrational technique, to follow the molecular structural evolution during singlet fission in order to determine the mechanism of this process. In crystalline pentacene, we observe the formation of an intermediate characterized by pairs of excited state peaks that are red- and blue-shifted relative to the ground state features. We hypothesize that these features arise from the formation of cationic and anionic species due to partial transfer of electron density from one pentacene molecule to a neighboring molecule. These observations provide experimental evidence for the role of states with significant charge-transfer character which facilitate the singlet fission process in pentacene. Our work both provides new insight into the singlet fission mechanism in pentacene and demonstrates the utility of structurally-sensitive time-resolved spectroscopic techniques in monitoring ultrafast processes.

  9. Enzyme-Less Growth in Chara and Terrestrial Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, John S.

    Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wallmore » features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Furthermore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion.« less

  10. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.

    PubMed

    Stendahl, John C; Sinusas, Albert J

    2015-10-01

    Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Using cellular automata to generate image representation for biological sequences.

    PubMed

    Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C

    2005-02-01

    A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.

  12. Geological features and evolution history of Sinus Iridum, the Moon

    NASA Astrophysics Data System (ADS)

    Qiao, Le; Xiao, Long; Zhao, Jiannan; Huang, Qian; Haruyama, Junichi

    2014-10-01

    The Sinus Iridum region is one of the important candidate landing areas for the future Chinese lunar robotic and human missions. Considering its flat topography, abundant geomorphic features and complex evolutionary history, this region shows great significance to both lunar science and landing exploration, including powered descent, surface trafficability and in-situ exploration. First, we use Lunar Reconnaissance Orbiter (LRO) Altimeter (LOLA) and Camera (LROC) data to characterize regional topographic and geomorphological features within Sinus Iridum, e.g., wrinkle ridges and sinuous rilles. Then, we deduce the iron and titanium content for the mare surface using the Clementine ultraviolet-visible (UVVIS) data and generate mineral absorption features using the Chandrayaan-1 Moon Mineralogy Mapper (M3) spectrometer data. Later, we date the mare surface using crater size-frequency distribution (CSFD) method. CSFD measurements show that this region has experienced four major lava infilling events with model ages ranging from 3.32 Ga to 2.50 Ga. The regional magmatic activities evolved from Imbrian-aged low-titanium to Eratosthenian-aged medium-titanium. The inner Sinus Iridum is mainly composed of pyroxene-rich basalts with olivine abundance increasing with time, while the surrounding highlands have a feldspar-dominated composition. In the northern wall of Sinus Iridum, some potential olivine-rich materials directly excavated from the lunar mantle are visible. The Sinus Iridum region is an ideal target for future landing exploration, we propose two candidate landing sites for the future Chinese robotic and human missions.

  13. A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass using surface sensitive shallow angle X-ray diffraction.

    PubMed

    Martin, R A; Twyman, H; Qiu, D; Knowles, J C; Newport, R J

    2009-04-01

    Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass((R)) [(CaO)(26.9)(Na(2)O)(24.4)(SiO(2))(46.1)(P(2)O(5))(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass((R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass((R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass((R)) is dominated by a broad amorphous feature around 2.2 A(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass((R)) in SBF a second broad amorphous feature evolves ~1.6 A(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass((R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

  14. Extended spider cognition.

    PubMed

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  15. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In addition, two mass extinction events appear as "pinch points" in the network.

  16. Dynamic Nucleotide Mutation Gradients and Control Region Usage in Squamate Reptile Mitochondrial Genomes

    PubMed Central

    Castoe, T.A.; Gu, W.; de Koning, A.P.J.; Daza, J.M.; Jiang, Z.J.; Parkinson, C.L.; Pollock, D.D.

    2010-01-01

    Gradients of nucleotide bias and substitution rates occur in vertebrate mitochondrial genomes due to the asymmetric nature of the replication process. The evolution of these gradients has previously been studied in detail in primates, but not in other vertebrate groups. From the primate study, the strengths of these gradients are known to evolve in ways that can substantially alter the substitution process, but it is unclear how rapidly they evolve over evolutionary time or how different they may be in different lineages or groups of vertebrates. Given the importance of mitochondrial genomes in phylogenetics and molecular evolutionary research, a better understanding of how asymmetric mitochondrial substitution gradients evolve would contribute key insights into how this gradient evolution may mislead evolutionary inferences, and how it may also be incorporated into new evolutionary models. Most snake mitochondrial genomes have an additional interesting feature, 2 nearly identical control regions, which vary among different species in the extent that they are used as origins of replication. Given the expanded sampling of complete snake genomes currently available, together with 2 additional snakes sequenced in this study, we reexamined gradient strength and CR usage in alethinophidian snakes as well as several lizards that possess dual CRs. Our results suggest that nucleotide substitution gradients (and corresponding nucleotide bias) and CR usage is highly labile over the ∼200 m.y. of squamate evolution, and demonstrates greater overall variability than previously shown in primates. The evidence for the existence of such gradients, and their ability to evolve rapidly and converge among unrelated species suggests that gradient dynamics could easily mislead phylogenetic and molecular evolutionary inferences, and argues strongly that these dynamics should be incorporated into phylogenetic models. PMID:20215734

  17. SU-E-QI-16: Reproducibility of Computed Tomography Quantitative Structural Features Using the FDA Thoracic Phantom Image Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzevich, M; Grove, O; Balagurunathan, Y

    Purpose: To assess the reproducibility of quantitative structural features using images from the computed tomography thoracic FDA phantom database under different scanning conditions. Methods: Development of quantitative image features to describe lesion shape and size, beyond conventional RECIST measures, is an evolving area of research in need of benchmarking standards. Gavrielides et al. (2010) scanned a FDA-developed thoracic phantom with nodules of various Hounsfield units (HU) values, shapes and sizes close to vascular structures using several scanners and varying scanning conditions/parameters; these images are in the public domain. We tested six structural features, namely, Convexity, Perimeter, Major Axis, Minor Axis,more » Extent Mean and Eccentricity, to characterize lung nodules. Convexity measures lesion irregularity referenced to a convex surface. Previously, we showed it to have prognostic value in lung adenocarcinoma. The above metrics and RECIST measures were evaluated on three spiculated (8mm/-300HU, 12mm/+30HU and 15mm/+30HU) and two non-spiculated (8mm/+100HU and 10mm/+100HU) nodules (from layout 2) imaged at three different mAs values: 25, 100 and 200 mAs; on a Phillips scanner (16-slice Mx8000-IDT; 3mm slice thickness). The nodules were segmented semi-automatically using a commercial software tool; the same HU range was used for all nodules. Results: Analysis showed convexity having the lowest maximum coefficient of variation (MCV): 1.1% and 0.6% for spiculated and non-spiculated nodules, respectively, much lower compared to RECIST Major and Minor axes whose MCV were 10.1% and 13.4% for spiculated, and 1.9% and 2.3% for non-spiculated nodules, respectively, across the various mAs. MCVs were consistently larger for speculated nodules. In general, the dependence of structural features on mAs (noise) was low. Conclusion: The FDA phantom CT database may be used for benchmarking of structural features for various scanners and scanning conditions; we used only a small fraction of available data. Our feature convexity outperformed other structural features including RECIST measures.« less

  18. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo

    PubMed Central

    Roach, Neil T.; Venkadesan, Madhusudhan; Rainbow, Michael J.; Lieberman, Daniel E.

    2013-01-01

    Although some primates, including chimpanzees, throw objects occasionally1,2, only humans regularly throw projectiles with high speed and great accuracy. Darwin noted that humans’ unique throwing abilities, made possible when bipedalism emancipated the arms, enabled foragers to effectively hunt using projectiles3. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence on when, how, and why hominins evolved the ability to generate high-speed throws4-8. Here, we show using experimental studies of throwers that human throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately two million years ago in the species Homo erectus. Given archaeological evidence that suggests hunting activity intensified around this time9, we conclude that selection for throwing in order to hunt likely played an important role in the evolution of the human genus. PMID:23803849

  19. Positioning activated carbon amendment technologies in a novel framework for sediment management.

    PubMed

    Kupryianchyk, Darya; Rakowska, Magdalena I; Reible, Danny; Harmsen, Joop; Cornelissen, Gerard; van Veggel, Marc; Hale, Sarah E; Grotenhuis, Tim; Koelmans, Albert A

    2015-04-01

    Contaminated sediments can pose serious threats to human health and the environment by acting as a source of toxic chemicals. The amendment of contaminated sediments with strong sorbents like activated C (AC) is a rapidly developing strategy to manage contaminated sediments. To date, a great deal of attention has been paid to the technical and ecological features and implications of sediment remediation with AC, although science in this field still is rapidly evolving. This article aims to provide an update on the recent literature on these features, and provides a comparison of sediment remediation with AC to other sediment management options, emphasizing their full-scale application. First, a qualitative overview of advantages of current alternatives to remediate contaminated sediments is presented. Subsequently, AC treatment technology is critically reviewed, including current understanding of the effectiveness and ecological safety for the use of AC in natural systems. Finally, this information is used to provide a novel framework for supporting decisions concerning sediment remediation and beneficial reuse. © 2015 SETAC.

  20. Evolution of Biological Image Stabilization.

    PubMed

    Hardcastle, Ben J; Krapp, Holger G

    2016-10-24

    The use of vision to coordinate behavior requires an efficient control design that stabilizes the world on the retina or directs the gaze towards salient features in the surroundings. With a level gaze, visual processing tasks are simplified and behaviorally relevant features from the visual environment can be extracted. No matter how simple or sophisticated the eye design, mechanisms have evolved across phyla to stabilize gaze. In this review, we describe functional similarities in eyes and gaze stabilization reflexes, emphasizing their fundamental role in transforming sensory information into motor commands that support postural and locomotor control. We then focus on gaze stabilization design in flying insects and detail some of the underlying principles. Systems analysis reveals that gaze stabilization often involves several sensory modalities, including vision itself, and makes use of feedback as well as feedforward signals. Independent of phylogenetic distance, the physical interaction between an animal and its natural environment - its available senses and how it moves - appears to shape the adaptation of all aspects of gaze stabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ultraconserved words point to deep language ancestry across Eurasia.

    PubMed

    Pagel, Mark; Atkinson, Quentin D; S Calude, Andreea; Meade, Andrew

    2013-05-21

    The search for ever deeper relationships among the World's languages is bedeviled by the fact that most words evolve too rapidly to preserve evidence of their ancestry beyond 5,000 to 9,000 y. On the other hand, quantitative modeling indicates that some "ultraconserved" words exist that might be used to find evidence for deep linguistic relationships beyond that time barrier. Here we use a statistical model, which takes into account the frequency with which words are used in common everyday speech, to predict the existence of a set of such highly conserved words among seven language families of Eurasia postulated to form a linguistic superfamily that evolved from a common ancestor around 15,000 y ago. We derive a dated phylogenetic tree of this proposed superfamily with a time-depth of ~14,450 y, implying that some frequently used words have been retained in related forms since the end of the last ice age. Words used more than once per 1,000 in everyday speech were 7- to 10-times more likely to show deep ancestry on this tree. Our results suggest a remarkable fidelity in the transmission of some words and give theoretical justification to the search for features of language that might be preserved across wide spans of time and geography.

  2. Ultraconserved words point to deep language ancestry across Eurasia

    PubMed Central

    Pagel, Mark; Atkinson, Quentin D.; S. Calude, Andreea; Meade, Andrew

    2013-01-01

    The search for ever deeper relationships among the World’s languages is bedeviled by the fact that most words evolve too rapidly to preserve evidence of their ancestry beyond 5,000 to 9,000 y. On the other hand, quantitative modeling indicates that some “ultraconserved” words exist that might be used to find evidence for deep linguistic relationships beyond that time barrier. Here we use a statistical model, which takes into account the frequency with which words are used in common everyday speech, to predict the existence of a set of such highly conserved words among seven language families of Eurasia postulated to form a linguistic superfamily that evolved from a common ancestor around 15,000 y ago. We derive a dated phylogenetic tree of this proposed superfamily with a time-depth of ∼14,450 y, implying that some frequently used words have been retained in related forms since the end of the last ice age. Words used more than once per 1,000 in everyday speech were 7- to 10-times more likely to show deep ancestry on this tree. Our results suggest a remarkable fidelity in the transmission of some words and give theoretical justification to the search for features of language that might be preserved across wide spans of time and geography. PMID:23650390

  3. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    PubMed

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  4. Animal-Microbial Symbioses in Changing Environments

    PubMed Central

    Carey, Hannah V.; Duddleston, Khrystyne N.

    2014-01-01

    The environments in which animals have evolved and live have profound effects on all aspects of their biology. Predictable rhythmic changes in the physical environment are arguably among the most important forces shaping the evolution of behavior and physiology of animals, and to anticipate and prepare for these predictable changes animals have evolved biological clocks. Unpredictable changes in the physical environment have important impacts on animal biology as well. The ability of animals to cope with and survive unpredictable perturbations depends on phenotypic plasticity and/or microevolution. From the time metazoans first evolved from their protistan ancestors they have lived in close association with a diverse array of microbes that have influenced, in some way, all aspects of the evolution of animal structure, function and behavior. Yet, few studies have addressed whether daily or seasonal rhythms may affect, or be affected by, an animal’s microbial symbionts. This survey highlights how biologists interested in the ecological and evolutionary physiology of animals whose lifestyles are influenced by environmental cycles may benefit from considering whether symbiotic microbes have shaped the features they study. PMID:25086977

  5. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  6. A biomimetic algorithm for the improved detection of microarray features

    NASA Astrophysics Data System (ADS)

    Nicolau, Dan V., Jr.; Nicolau, Dan V.; Maini, Philip K.

    2007-02-01

    One the major difficulties of microarray technology relate to the processing of large and - importantly - error-loaded images of the dots on the chip surface. Whatever the source of these errors, those obtained in the first stage of data acquisition - segmentation - are passed down to the subsequent processes, with deleterious results. As it has been demonstrated recently that biological systems have evolved algorithms that are mathematically efficient, this contribution attempts to test an algorithm that mimics a bacterial-"patented" algorithm for the search of available space and nutrients to find, "zero-in" and eventually delimitate the features existent on the microarray surface.

  7. Somatoparaphrenia: evolving theories and concepts.

    PubMed

    Feinberg, Todd E; Venneri, Annalena

    2014-12-01

    Somatoparaphrenia, a syndrome that involves at a minimum unawareness of ownership of a body part, in addition involves productive features including delusional misidentification and confabulation. In this review we describe some of the clinical and neuroanatomical features of somatoparaphrenia highlighting its delusional and confabulatory aspects. Possible theoretical frameworks are reviewed taking into account cognitive, psychodynamic, and philosophical views. We suggest that future studies should approach this syndrome through investigations of structural and functional connectivity and focus on the possible interplay between alterations in major functional networks of the brain, such as the default mode and salience networks, but also take into account motivational variables. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Social Eavesdropping in Zebrafish: Tuning of Attention to Social Interactions

    PubMed Central

    Abril-de-Abreu, Rodrigo; Cruz, José; Oliveira, Rui F.

    2015-01-01

    Group living animals may eavesdrop on signalling interactions between conspecifics in order to collect adaptively relevant information obtained from others, without incurring in the costs of first-hand information acquisition. This ability (aka social eavesdropping) is expected to impact Darwinian fitness, and hence predicts the evolution of cognitive processes that enable social animals to use public information available in the environment. These adaptive specializations in cognition may have evolved both at the level of learning and memory mechanisms, and at the level of input mechanisms, such as attention, which select the information that is available for learning. Here we used zebrafish to test if attention in a social species is tuned to the exchange of information between conspecifics. Our results show that zebrafish are more attentive towards interacting (i.e. fighting) than towards non-interacting pairs of conspecifics, with the exposure to fighting not increasing activity or stress levels. Moreover, using video playbacks to manipulate form features of the fighting fish, we show that during the assessment phase of the fight, bystanders’ attention is more driven by form features of the interacting opponents; whereas during the post-resolution phase, it is driven by biological movement features of the dominant fish chasing the subordinate fish. PMID:26242246

  9. New CO and HCN sources associated with IRAS carbon stars

    NASA Technical Reports Server (NTRS)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    1987-01-01

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  10. The Edinburgh Electronic Veterinary Curriculum: an online program-wide learning and support environment for veterinary education.

    PubMed

    Ellaway, Rachel; Pettigrew, Graham; Rhind, Susan; Dewhurst, David

    2005-01-01

    The Edinburgh Electronic Veterinary Curriculum (EEVeC) is a purpose-built virtual learning support environment for the veterinary medicine program at the University of Edinburgh. It is Web based and adapted from a system developed for the human medical curriculum. It is built around a set of databases and learning objects and incorporates features such as course materials, personalized timetables, staff and student contact pages, a notice board, and discussion forums. The EEVeC also contains global or generic resources such as information on quality enhancement and research options. Many of these features contribute to the aim of building a learning community, but a challenge has been to introduce specific features that enhance student learning. One of these is a searchable lecture database in which learning activities such as quizzes and computer-aided learning exercises (CALs) can be embedded to supplement a synopsis of the lecture and address the key needs of integration and reinforcement of learning. Statistics of use indicate extensive student activity during evenings and weekends, with a pattern of increased usage over the years as more features become available and staff and students progressively engage with the system. An essential feature of EEVeC is its flexibility and the way in which it is evolving to meet the changing needs of the teaching program.

  11. Adaptive evolution of centromere proteins in plants and animals.

    PubMed

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  12. Adaptive evolution of centromere proteins in plants and animals

    PubMed Central

    Talbert, Paul B; Bryson, Terri D; Henikoff, Steven

    2004-01-01

    Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. PMID:15345035

  13. Computer-based testing of the modified essay question: the Singapore experience.

    PubMed

    Lim, Erle Chuen-Hian; Seet, Raymond Chee-Seong; Oh, Vernon M S; Chia, Boon-Lock; Aw, Marion; Quak, Seng-Hock; Ong, Benjamin K C

    2007-11-01

    The modified essay question (MEQ), featuring an evolving case scenario, tests a candidate's problem-solving and reasoning ability, rather than mere factual recall. Although it is traditionally conducted as a pen-and-paper examination, our university has run the MEQ using computer-based testing (CBT) since 2003. We describe our experience with running the MEQ examination using the IVLE, or integrated virtual learning environment (https://ivle.nus.edu.sg), provide a blueprint for universities intending to conduct computer-based testing of the MEQ, and detail how our MEQ examination has evolved since its inception. An MEQ committee, comprising specialists in key disciplines from the departments of Medicine and Paediatrics, was formed. We utilized the IVLE, developed for our university in 1998, as the online platform on which we ran the MEQ. We calculated the number of man-hours (academic and support staff) required to run the MEQ examination, using either a computer-based or pen-and-paper format. With the support of our university's information technology (IT) specialists, we have successfully run the MEQ examination online, twice a year, since 2003. Initially, we conducted the examination with short-answer questions only, but have since expanded the MEQ examination to include multiple-choice and extended matching questions. A total of 1268 man-hours was spent in preparing for, and running, the MEQ examination using CBT, compared to 236.5 man-hours to run it using a pen-and-paper format. Despite being more labour-intensive, our students and staff prefer CBT to the pen-and-paper format. The MEQ can be conducted using a computer-based testing scenario, which offers several advantages over a pen-and-paper format. We hope to increase the number of questions and incorporate audio and video files, featuring clinical vignettes, to the MEQ examination in the near future.

  14. Data Safe Havens and Trust: Toward a Common Understanding of Trusted Research Platforms for Governing Secure and Ethical Health Research

    PubMed Central

    Nicholls, Jacqueline; Dobbs, Christine; Sethi, Nayha; Cunningham, James; Ainsworth, John; Heaven, Martin; Peacock, Trevor; Peacock, Anthony; Jones, Kerina; Laurie, Graeme; Kalra, Dipak

    2016-01-01

    In parallel with the advances in big data-driven clinical research, the data safe haven concept has evolved over the last decade. It has led to the development of a framework to support the secure handling of health care information used for clinical research that balances compliance with legal and regulatory controls and ethical requirements while engaging with the public as a partner in its governance. We describe the evolution of 4 separately developed clinical research platforms into services throughout the United Kingdom-wide Farr Institute and their common deployment features in practice. The Farr Institute is a case study from which we propose a common definition of data safe havens as trusted platforms for clinical academic research. We use this common definition to discuss the challenges and dilemmas faced by the clinical academic research community, to help promote a consistent understanding of them and how they might best be handled in practice. We conclude by questioning whether the common definition represents a safe and trustworthy model for conducting clinical research that can stand the test of time and ongoing technical advances while paying heed to evolving public and professional concerns. PMID:27329087

  15. Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.

    PubMed

    Bellott, Daniel W; Skaletsky, Helen; Pyntikova, Tatyana; Mardis, Elaine R; Graves, Tina; Kremitzki, Colin; Brown, Laura G; Rozen, Steve; Warren, Wesley C; Wilson, Richard K; Page, David C

    2010-07-29

    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.

  16. Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity

    PubMed Central

    Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio

    2014-01-01

    Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484

  17. Extreme events in a vortex gas simulation of a turbulent half-jet

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Pathikonda, Gokul; Narasimha, Roddam

    2012-11-01

    Extensive simulations [arXiv:1008.2876v1 [physics.flu-dyn], BAPS.2010.DFD.LE.4] have shown that the temporally evolving vortex gas mixing layer has 3 regimes, including one which has a universal spreading rate. The present study explores the development of spatially evolving mixing layers, using a vortex gas model based on Basu et al. (1995 Appl. Math. Modelling). The effects of the velocity ratio (r) are analyzed via the most extensive simulations of this kind till date, involving up to 10000 vortices and averaging over up to 1000 convective times. While the temporal limit is approached as r approaches unity, striking features such as extreme events involving coherent structures, bending, deviation of the convection velocity from mean velocity, spatial feedback and greater sensitivity to downstream and free stream boundary conditions are observed in the half-jet (r = 0) limit. A detailed statistical analysis reveals possible causes for the large scatter across experiments, as opposed to the commonly adopted explanation of asymptotic dependence on initial conditions. Supported in part by contract no. Intel/RN/4288.

  18. Percolation transition in dynamical traffic network with evolving critical bottlenecks.

    PubMed

    Li, Daqing; Fu, Bowen; Wang, Yunpeng; Lu, Guangquan; Berezin, Yehiel; Stanley, H Eugene; Havlin, Shlomo

    2015-01-20

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as "traffic percolation," where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation.

  19. On the Relation of Silicates and SiO Maser in Evolved Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiaming; Jiang, Biwei, E-mail: bjiang@bnu.edu.cn

    2017-04-01

    The SiO molecule is one of the candidates for the seed of silicate dust in the circumstellar envelope of evolved stars, but this opinion is challenged. In this work we investigate the relation of the SiO maser emission power and the silicate dust emission power. With both our own observation by using the PMO/Delingha 13.7 m telescope and archive data, a sample is assembled of 21 SiO v  = 1, J  = 2 − 1 sources and 28 SiO v  = 1, J  = 1 − 0 sources that exhibit silicate emission features in the ISO /SWS spectrum as well. The analysis of their SiO maser and silicatemore » emission power indicates a clear correlation, which is not against the hypothesis that the SiO molecules are the seed nuclei of silicate dust. On the other hand, no correlation is found between SiO maser and silicate crystallinity, which may imply that silicate crystallinity does not correlate with mass-loss rate.« less

  20. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure; Huang, Huang-Chiao; Kuriakose, Jerrin; Liu, Joyce; Hasan, Tayyaba

    2016-06-01

    As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.

  1. Dynamics of solid thin-film dewetting in the silicon-on-insulator system

    NASA Astrophysics Data System (ADS)

    Bussmann, E.; Cheynis, F.; Leroy, F.; Müller, P.; Pierre-Louis, O.

    2011-04-01

    Using low-energy electron microscopy movies, we have measured the dewetting dynamics of single-crystal Si(001) thin films on SiO2 substrates. During annealing (T>700 °C), voids open in the Si, exposing the oxide. The voids grow, evolving Si fingers that subsequently break apart into self-organized three-dimensional (3D) Si nanocrystals. A kinetic Monte Carlo model incorporating surface and interfacial free energies reproduces all the salient features of the morphological evolution. The dewetting dynamics is described using an analytic surface-diffusion-based model. We demonstrate quantitatively that Si dewetting from SiO2 is mediated by surface-diffusion driven by surface free-energy minimization.

  2. Off-Shell Persistence of Composite Pions and Kaons

    DOE PAGES

    Qin, Si -Xue; Chen, Chen; Mezrag, Cedric; ...

    2018-01-17

    In order for a Sullivan-like process to provide reliable access to a meson target as t becomes spacelike, the pole associated with that meson should remain the dominant feature of the quarkantiquark scattering matrix and the wave function describing the related correlation must evolve slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we explore and delineate the circumstances under which these conditions are satisfied: for the pion, this requires -t ≲ 0.6 GeV 2, whereas -t ≲ 0.9 GeV 2 will suffice for the kaon. Furthermore, these results should prove useful in evaluating the potential of numerousmore » experiments at existing and proposed facilities.« less

  3. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1995-01-01

    Research was accomplished during the third year of the grant on: BETA architecture, an FFT array, a feature extractor, the Pentium array and workstation, and a radio astronomy spectrometer. The BETA (this SETI project) system architecture has been evolving generally in the direction of greater robustness against terrestrial interference. The new design adds a powerful state-memory feature, multiple simultaneous thresholds, and the ability to integrate multiple spectra in a flexible state-machine architecture. The FFT array is reported with regards to its hardware verification, array production, and control. The feature extractor is responsible for maintaining a moving baseline, recognizing large spectral peaks, following the progress of previously identified interesting spectral regions, and blocking signals from regions previously identified as containing interference. The Pentium array consists of 21 Pentium-based PC motherboards, each with 16 MByte of RAM and an Ethernet interface. Each motherboard receives and processes the data from a feature extractor/correlator board set, passing on the results of a first analysis to the central Unix workstation (through which each is also booted). The radio astronomy spectrometer is a technological spinoff from SETI work. It is proposed to be a combined spectrometer and power-accumulator, for use at Arecibo Observatory to search for neutral hydrogen emission from condensations of neutral hydrogen at high redshift (z = 5).

  4. Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves

    NASA Astrophysics Data System (ADS)

    Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian

    2017-10-01

    The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.

  5. Measurement of food-related approach-avoidance biases: Larger biases when food stimuli are task relevant.

    PubMed

    Lender, Anja; Meule, Adrian; Rinck, Mike; Brockmeyer, Timo; Blechert, Jens

    2018-06-01

    Strong implicit responses to food have evolved to avoid energy depletion but contribute to overeating in today's affluent environments. The Approach-Avoidance Task (AAT) supposedly assesses implicit biases in response to food stimuli: Participants push pictures on a monitor "away" or pull them "near" with a joystick that controls a corresponding image zoom. One version of the task couples movement direction with image content-independent features, for example, pulling blue-framed images and pushing green-framed images regardless of content ('irrelevant feature version'). However, participants might selectively attend to this feature and ignore image content and, thus, such a task setup might underestimate existing biases. The present study tested this attention account by comparing two irrelevant feature versions of the task with either a more peripheral (image frame color: green vs. blue) or central (small circle vs. cross overlaid over the image content) image feature as response instruction to a 'relevant feature version', in which participants responded to the image content, thus making it impossible to ignore that content. Images of chocolate-containing foods and of objects were used, and several trait and state measures were acquired to validate the obtained biases. Results revealed a robust approach bias towards food only in the relevant feature condition. Interestingly, a positive correlation with state chocolate craving during the task was found when all three conditions were combined, indicative of criterion validity of all three versions. However, no correlations were found with trait chocolate craving. Results provide a strong case for the relevant feature version of the AAT for bias measurement. They also point to several methodological avenues for future research around selective attention in the irrelevant versions and task validity regarding trait vs. state variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The myoseptal system in Chimaera monstrosa: collagenous fiber architecture and its evolution in the gnathostome stem lineage.

    PubMed

    Gemballa, Sven; Hagen, Katja

    2004-01-01

    Recent studies have revealed the 3D morphology and collagen fiber architecture of myosepta in teleostome fishes. Here we present the first data set on the myoseptal structure of a representative of the chondrichthyan clade. We investigate the series of myosepta in the ratfish Chimaera monstrosa (Holocephali) from the anterior to the posterior body using microdissections of cleared and stained specimens, polarized light microscopy of excised myosepta, and histology. The features of the myoseptal system of Chimaera are compared to data from closely related vertebrate groups and are mapped onto a phylogenetic tree to further clarify the characteristics of the myoseptal series in the gnathostome ancestor. The 3D morphology and collagen fiber architecture of the myoseptal series in C. monstrosa resembles that of Teleostomi (Actinopterygii+Sarcopterygii) with regard to several features. Our comparative analysis reveals that some of them have evolved in the gnathostome stem lineage. (1) A series of epineural and epaxial lateral tendons (LTs) along the whole body, and a series of epipleural and hypaxial LTs in the postanal region evolved in the gnathostome stem lineage. (2) The LTs increase in length towards the posterior body (three-fold in Chimaera). Data on Chimaera and some comparative data on actinopterygian fishes indicate that LTs also increase in thickness towards the posterior body, but further data are necessary to test whether this holds true generally. (3) Another conspicuous apomorphic gnathostome feature is represented by multi-layer structures of myosepta. These are formed along the vertebral column by converging medial regions of successive sloping parts of myosepta. (4) The dorsalmost and ventralmost flanking parts of myosepta bear a set of mediolaterally oriented collagen fibers that are present in all gnathostomes but are lacking in outgroups. Preanal hypaxial myosepta are clearly different from epaxial myosepta and postanal hypaxial myosepta in terms of their collagen fiber architecture. In Chimaera, preanal hypaxial myosepta consist of an array of mediolaterally oriented collagen fibers closely resembling the condition in other gnathostome groups and in petromyzontids. Only one series of tendons, the myorhabdoid tendons of the flanking parts of myosepta, have evolved in the stem lineage of Myopterygii (Gnathostomata+Petromyzontida). Similar to LTs, the tendons of this series also increase in length towards the posterior body. In combination with other studies, the present study provides a framework for the design of morphologically based experiments and modeling to further address the function of myosepta and myoseptal tendons in gnathostomes.

  7. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Colour in digital pathology: a review.

    PubMed

    Clarke, Emily L; Treanor, Darren

    2017-01-01

    Colour is central to the practice of pathology because of the use of coloured histochemical and immunohistochemical stains to visualize tissue features. Our reliance upon histochemical stains and light microscopy has evolved alongside a wide variation in slide colour, with little investigation into the implications of colour variation. However, the introduction of the digital microscope and whole-slide imaging has highlighted the need for further understanding and control of colour. This is because the digitization process itself introduces further colour variation which may affect diagnosis, and image analysis algorithms often use colour or intensity measures to detect or measure tissue features. The US Food and Drug Administration have released recent guidance stating the need to develop a method of controlling colour reproduction throughout the digitization process in whole-slide imaging for primary diagnostic use. This comprehensive review introduces applied basic colour physics and colour interpretation by the human visual system, before discussing the importance of colour in pathology. The process of colour calibration and its application to pathology are also included, as well as a summary of the current guidelines and recommendations regarding colour in digital pathology. © 2016 John Wiley & Sons Ltd.

  9. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    PubMed

    Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  10. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-04-01

    Gas giants' early (≲ 5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲ 2 MJ planets interior to 5 AU in the FUV scenario, a sharp concentration of ≲ 3 MJ planets between ≈1.5 - 2 AU in the EUV case, and a relative abundance of ≈2 - 3.5 MJ giants interior to 0.5 AU in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, though our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  11. The comparative effect of FUV, EUV and X-ray disc photoevaporation on gas giant separations

    NASA Astrophysics Data System (ADS)

    Jennings, Jeff; Ercolano, Barbara; Rosotti, Giovanni P.

    2018-07-01

    Gas giants' early (≲5 Myr) orbital evolution occurs in a disc losing mass in part to photoevaporation driven by high energy irradiance from the host star. This process may ultimately overcome viscous accretion to disperse the disc and halt migrating giants by starving their orbits of gas, imprinting on giant planet separations in evolved systems. Inversion of this distribution could then give insight into whether the stellar FUV, EUV or X-ray flux dominates photoevaporation, constraining planet formation and disc evolution models. We use a 1D hydrodynamic code in population syntheses for gas giants undergoing Type II migration in a viscously evolving disc subject to either a primarily FUV, EUV or X-ray flux from a pre-solar T Tauri star. The photoevaporative mass loss profile's unique peak location and width in each energetic regime produces characteristic features in the distribution of giant separations: a severe dearth of ≲2 MJ planets interior to 5 au in the FUV scenario, a sharp concentration of ≲3 MJ planets between ≈1.5-2 au in the EUV case and a relative abundance of ≈2-3.5 MJ giants interior to 0.5 au in the X-ray model. These features do not resemble the observational sample of gas giants with mass constraints, although our results do show some weaker qualitative similarities. We thus assess how the differing photoevaporative profiles interact with migrating giants and address the effects of large model uncertainties as a step to better connect disc models with trends in the exoplanet population.

  12. Long-Term Circulation of Vaccine-Derived Poliovirus That Causes Paralytic Disease

    PubMed Central

    Cherkasova, Elena A.; Korotkova, Ekaterina A.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Chumakov, Konstantin M.; Agol, Vadim I.

    2002-01-01

    Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors ∼2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends. PMID:12050392

  13. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake

    PubMed Central

    Schott, Ryan K.; Müller, Johannes; Yang, Clement G. Y.; Bhattacharyya, Nihar; Chan, Natalie; Xu, Mengshu; Morrow, James M.; Ghenu, Ana-Hermina; Loew, Ellis R.; Tropepe, Vincent; Chang, Belinda S. W.

    2016-01-01

    Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the “transmutation” theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single “cones.” Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality. PMID:26715746

  14. Characterizing the thermal distributions of warm molecular hydrogen in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin

    2016-01-01

    Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. Recent studies done by Hoadley et al. 2015 and Banzatti & Pontipoddan 2015 suggest that gas in the inner disks of PPDs appear to "respond" to the loss of small dust grains with evolving PPD stage, and IR-CO emission may either be thermally or photo-excited by stellar UV radiation, depending on PPD evolutionary stage. Because far-UV H2 emission lines are dominantly photo-excited by stellar HI-Lyman alpha photons, we observe H2 absorption features against the stellar Lyman alpha wings in a large sample of PPDs at various evolutionary stages. We aim to characterize whether the inner disk H2 environment is in thermal equilibrium at various stages of PPD evolution. We use a sophisticated first-principles approach to fitting multiple absorption features along the red- and blue-wings of the observed stellar Lyman alpha profiles to extract column density estimates of H2 along the line of sight to the target. We find that the high kinetic energy H2 observed in absorption against the LyA wing may be described as a part of the thermal distribution with high kinetic temperature - a potential indication of an inner disk molecular hazy "envelope" around the cooler bulk disk. Ongoing research may help determine the state of the gas and whether it evolves with disk evolutionary stage.

  15. Processing of Presolar Grains around Post-Asymptotic Giant Branch Stars: Silicon Carbide as the Carrier of the 21 Micron Feature

    NASA Astrophysics Data System (ADS)

    Speck, Angela K.; Hofmeister, Anne M.

    2004-01-01

    Some proto-planetary nebulae (PPNs) exhibit an enigmatic feature in their infrared spectra at ~21 μm. This feature is not seen in the spectra of either the precursors to PPNs, the asymptotic giant branch (AGB) stars, or the successors of PPNs, ``normal'' planetary nebulae (PNs). However, the 21 μm feature has been seen in the spectra of PNs with Wolf-Rayet central stars. Therefore, the carrier of this feature is unlikely to be a transient species that only exists in the PPN phase. This feature has been attributed to various molecular and solid-state species, none of which satisfy all constraints, although titanium carbide (TiC) and polycyclic aromatic hydrocarbons (PAHs) have seemed the most viable. We present new laboratory data for silicon carbide (SiC) and show that it has a spectral feature that is a good candidate for the carrier of the 21 μm feature. The SiC spectral feature appears at approximately the same wavelength (depending on the polytype/grain size) and has the same asymmetric profile as the observed astronomical feature. We suggest that processing and cooling of the SiC grains known to exist around carbon-rich AGB stars are responsible for the emergence of the enigmatic 21 μm feature. The emergence of this feature in the spectra of post-AGB stars demonstrates the processing of dust due to the changing physical environments around evolving stars.

  16. Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra

    DOE PAGES

    Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...

    2016-07-26

    A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less

  17. Experimental cancer cachexia: Evolving strategies for getting closer to the human scenario.

    PubMed

    Penna, Fabio; Busquets, Sílvia; Argilés, Josep M

    2016-06-01

    Cancer cachexia is a frequent syndrome that dramatically affects patient quality of life, anti-cancer treatment effectiveness, and overall survival. To date, no effective treatment is available and most of the studies are performed in experimental models in order to uncover the underlying mechanisms and to design prospective therapeutic strategies. This review summarizes the most relevant information regarding the use of animal models for studying cancer cachexia. Technical limitations and degree of recapitulation of the features of human cachexia are highlighted, in order to help investigators choose the most suitable model according to study-specific endpoints. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Public Transport Systems in Poland: From Bialystok to Zielona Góra by Bus and Tram Using Universal Statistics of Complex Networks

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, J.; Holyst, J. A.

    2005-05-01

    We have examined a topology of 21 public transport networks in Poland. Our data exhibit several universal features in considered systems when they are analyzed from the point of view of evolving networks. Depending on the assumed definition of a network topology the degree distribution can follow a power law p(k) ˜ k-γ or can be described by an exponential function p(k) ˜ exp (-α k). In the first case one observes that mean distances between two nodes are a linear function of logarithms of their degrees product.

  19. Using the Drosophila Nephrocyte to Model Podocyte Function and Disease

    PubMed Central

    Helmstädter, Martin; Huber, Tobias B.; Hermle, Tobias

    2017-01-01

    Glomerular disorders are a major cause of end-stage renal disease and effective therapies are often lacking. Nephrocytes are considered to be part of the Drosophila excretory system and form slit diaphragms across cellular membrane invaginations. Nehphrocytes have been shown to share functional, morphological, and molecular features with podocytes, which form the glomerular filter in vertebrates. Here, we report the progress and the evolving tool-set of this model system. Combining a functional, accessible slit diaphragm with the power of the genetic tool-kit in Drosophila, the nephrocyte has the potential to greatly advance our understanding of the glomerular filtration barrier in health and disease. PMID:29270398

  20. Tissue classification for laparoscopic image understanding based on multispectral texture analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena

    2016-03-01

    Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.

  1. Reliable samples of quasars and hot stars from a spectrophotometric survey of the U.S. catalogs

    NASA Technical Reports Server (NTRS)

    Mitchell, Kenneth J.

    1987-01-01

    The U.S. survey for blue- and ultraviolet-excess starlike objects is reviewed, focusing on the features which have contributed to its accuracy. The spectrophotometric survey is described in terms of the observational setup and procedures. It is suggested that the survey has produced reliably classified samples of quasars and hot evolved stars and that the procedures used in the study provide a means of deriving distance and luminosity information about these objects. Several cumulative number counts and spectra of a DA white dwarf and a quasar with prominent C IV and C III emission are given as examples.

  2. Enlightenment of old ideas from new investigations: more questions regarding the evolution of bacteriogenic light organs in squids.

    PubMed

    Nishiguchi, M K; Lopez, J E; Boletzky, S v

    2004-01-01

    Bioluminescence is widespread among many different types of marine organisms. Metazoans contain two types of luminescence production, bacteriogenic (symbiotic with bacteria) or autogenic, via the production of a luminous secretion or the intrinsic properties of luminous cells. Several species in two families of squids, the Loliginidae and the Sepiolidae (Mollusca: Cephalopoda) harbor bacteriogenic light organs that are found central in the mantle cavity. These light organs are exceptional in function, that is, the morphology and the complexity suggests that the organ has evolved to enhance and direct light emission from bacteria that are harbored inside. Although light organs are widespread among taxa within the Sepiolidae, the origin and development of this important feature is not well studied. We compared light organ morphology from several closely related taxa within the Sepiolidae and combined molecular phylogenetic data using four loci (nuclear ribosomal 28S rRNA and the mitochondrial cytochrome c oxidase subunit I and 12S and 16S rRNA) to determine whether this character was an ancestral trait repeatedly lost among both families or whether it evolved independently as an adaptation to the pelagic and benthic lifestyles. By comparing other closely related extant taxa that do not contain symbiotic light organs, we hypothesized that the ancestral state of sepiolid light organs most likely evolved from part of a separate accessory gland open to the environment that allowed colonization of bacteria to occur and further specialize in the eventual development of the modern light organ.

  3. An evolutionary link between capsular biogenesis and surface motility in bacteria.

    PubMed

    Agrebi, Rym; Wartel, Morgane; Brochier-Armanet, Céline; Mignot, Tâm

    2015-05-01

    Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus - surface motility and sporulation - are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

  4. Healthcare Reform and Preparing the Future Clinical Child and Adolescent Psychology Workforce.

    PubMed

    Janicke, David M; Fritz, Alyssa M; Rozensky, Ronald H

    2015-01-01

    The healthcare environment is undergoing important changes for both patients and providers, in part due to the Patient Protection and Affordable Care Act (ACA). Ultimately the healthcare delivery system will function very differently by the end of this decade. These changes will have important implications for the education, training, scientific inquiry, and practice of clinical child and adolescent psychologists. In this article we provide a brief description of the fundamental features of the ACA, with a specific focus on critical components of the act that have important, specific implications for clinical child and adolescents psychologists. We then provide recommendations to help position our field to thrive in the evolving healthcare environment to help facilitate further awareness and promote discussion of both challenges and opportunities that face our field in this evolving health care environment.

  5. 'No decision about me, without me': a place for social marketing within the new public health architecture?

    PubMed

    Reynolds, Lucy

    2012-01-01

    July 2011 marked the 40th anniversary of social marketing. However, while the previous Labour administration dedicated sustained resources and support to developing the field of social marketing, this was followed by a time of uncertainty during the Coalition Government's ascent to power. This paper explores the potential future position of social marketing within David Cameron's evolving public health landscape, outlining areas of synergy between social marketing's key features, and the coalition's emergent public health architecture. The paper concludes with an exploration of the development opportunities nascent within social marketing, suggesting that support for the new commissioners (GP and local authority), and an enhanced emphasis on evaluation of financial and social outcomes, will be required if the evidence base for strong practice is to continue to grow and evolve.

  6. Technical Challenges of the U.S. Army’s Ground Combat Vehicle Program

    DTIC Science & Technology

    2012-11-01

    for mine protection and a distinctive armored extension on the top, called the doghouse. Those features optimize it for counterinsurgency operations...vehicles. Less complex approaches have also evolved, such as mines designed to attack the weaker bottoms of vehicles or improvised explosive devices...Improvised Explosive Devices, Suicide Bombers, Unexploded Ordnance, and Mines ,” section I-G-10, “Countermeasures.” See also Clay Wilson, Improvised

  7. The Amber Biomolecular Simulation Programs

    PubMed Central

    CASE, DAVID A.; CHEATHAM, THOMAS E.; DARDEN, TOM; GOHLKE, HOLGER; LUO, RAY; MERZ, KENNETH M.; ONUFRIEV, ALEXEY; SIMMERLING, CARLOS; WANG, BING; WOODS, ROBERT J.

    2006-01-01

    We describe the development, current features, and some directions for future development of the Amber package of computer programs. This package evolved from a program that was constructed in the late 1970s to do Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of proteins, nucleic acids, and carbohydrates. PMID:16200636

  8. Oceanic Chemistry and Biology Group (ONR Code 422CB) Program Science Report, FY 81,

    DTIC Science & Technology

    1982-03-01

    instruments to provide the tools needed by the marine chemical conmunity to address small scale length features and rapidly f evolving phenomena. Underway...Through a combined application of field and laboratory studies an attempt is being made to identify the marine abiotic processes which are potentially...Biodeterioration Dissolved Organics Particulate Matter Bioluminescence HEBBLE Sediment Traps Bioturbation Marine Biology STIE Boring Organisms Marine Chemistry

  9. Conversion of pemphigoid gestationis to bullous pemphigoid--two refractory cases highlighting this association.

    PubMed

    Jenkins, R E; Jones, S A; Black, M M

    1996-10-01

    Pemphigoid gestationis and bullous pemphigoid are autoimmune diseases characterized by subepidermal blisters and antibodies against the hemidesmosomal antigens: BPAG1 and BPAG2. Clinical histological and immunological similarities between pemphigoid gestationis and bullous pemphigoid suggest that they may have common pathogenetic determinants. We report two patients who presented initially with clinico-pathological features characteristic of pemphigoid gestationis but who subsequently evolved into bullous pemphigoid.

  10. [Circulating tumor cells: cornerstone of personalized medicine].

    PubMed

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  11. Naval Research Reviews. Volume XXXIII. Number 2,

    DTIC Science & Technology

    1981-01-01

    and filler metal addition. ratio weld is a characteristic of a keyhole -produced The most distinctive feature of LB welding , weld . T /h III laser Ii...evolved from these radiation for precision operation, such as hole-drill- efforts include a 3kW CO. laser /workstation system ing, trimming, and welding ...asso- Laser Surface Modifications ciated with thick-section welding of naval structure and surface modification for improved corrosion and The high

  12. The IUE Mega Campaign. Modulated Structure in the Wind of HD 64760 (B0.5 Ib)

    NASA Technical Reports Server (NTRS)

    Prinja, Raman K.; Massa, Derck; Fullerton, Alexander W.

    1995-01-01

    We highlight systematic variability in the stellar wind of the early B type supergiant, HD 64760, whose UV line profiles were monitored for almost 16 days in 1995 January as part of the IUE 'MEGA Campaign.' The extensive coverage reveals a pattern of rapidly evolving discrete optical depth changes which typically migrate from approx. - 200 km/s to approx. -1500 km/s in less than 12 hr. These features coexist with more slowly evolving structures lasting several days. Time-series analysis of the Si(IV), Si(III), and N(V) profile variations presents a clear 1.2 day periodicity, which is a quarter of the estimated maximum rotation period of HD 64760. The line profile changes are consistent with an interpretation in terms of a set of corotating wind features which occult the stellar disk at least 3 times during the observing run. These data are combined with UV observations collected in 1993 March to argue in favor of rotationally modulated wind variations in HD 64760. The basic result of very regular, large-scale optical depth variations points to a 'clock' whose origin is on the stellar surface, rather than a mechanism that is entirely intrinsic to the stellar wind.

  13. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    NASA Astrophysics Data System (ADS)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  14. A novel pen-based Bluetooth-enabled insulin delivery system with insulin dose tracking and advice.

    PubMed

    Bailey, Timothy S; Stone, Jenine Y

    2017-05-01

    Diabetes is growing in prevalence internationally. As more individuals require insulin as part of their treatment, technology evolves to optimize delivery, improve adherence, and reduce dosing errors. Insulin pens outperform vial and syringe in simplicity, dosing accuracy, and user preference. Bolus advisors improve dosing confidence and treatment adherence. The InPen System offers a novel approach to treatment via a wireless pen that syncs to a mobile application featuring a bolus advisor, enabling convenient insulin dose tracking and more accurate bolus advice among other features. Areas covered: Existing technology for insulin delivery and bolus advice are reviewed. The mechanics and functionality of the InPen device are delineated. Findings from formative testing and usability studies of the InPen system are reported. Future directions for the InPen system in the treatment of diabetes are discussed. Expert opinion: Diabetes management is complex and largely data-driven. The InPen System offers a promising new opportunity to avail insulin pen-users of features known to improve treatment efficacy, which have otherwise primarily been available to those using pumps. Given that the majority of insulin users do not use insulin pumps, the InPen System is poised to improve glucose control in a significant portion of the diabetes population.

  15. Counterfactual History is Consistent with Physics

    NASA Astrophysics Data System (ADS)

    Patterson, Charmayne; Mickens, Ronald

    Counterfactual histories (CFHs) are histories that did not ``happen''. For this concept to be meaningful, CFHs must correspond to states of the physical universe for which none of the laws of physics are violated. We present arguments to show that CFHs are realizable. Several of their critical features are: (i) their past states (histories) are uniquely determined from any given ``present state'' (ii) the future evolution from any given ``present state'' is non-predictable; and (iii) different trajectories, evolving from a given ``present state'' do not communicate with each other. We demonstrate the validity of these propositions by means of a toy universe that has these features. The general conclusion reached is that CFHs may exist.

  16. Differential memory in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1991-01-01

    The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.

  17. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  18. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report

    NASA Technical Reports Server (NTRS)

    Kumar, P. Senthil; Head, James W., III

    2008-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  19. MDSplus quality improvement project

    DOE PAGES

    Fredian, Thomas W.; Stillerman, Joshua; Manduchi, Gabriele; ...

    2016-05-31

    MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research community. Development began 29 years ago on the OpenVMS operating system. Since that time there have been many new features added and the code has been ported to many different operating systems. There have been contributions to the MDSplus development from the fusion community in the way of feature suggestions, feature implementations, documentation and porting to different operating systems. The bulk of the development and support of MDSplus, however, has been provided by a relatively small core developer group of three or four members. Givenmore » the size of the development team and the large number of users much more effort was focused on providing new features for the community than on keeping the underlying code and documentation up to date with the evolving software development standards. To ensure that MDSplus will continue to provide the needs of the community in the future, the MDSplus development team along with other members of the MDSplus user community has commenced on a major quality improvement project. The planned improvements include changes to software build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code modules using new language features available in modern compilers, using GNU MinGW-w64 to create MS Windows distributions, migrating to a more modern source code management system, improvement of source documentation as well as improvements to the www.mdsplus.org web site documentation and layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to releasing installation kits to the community. This paper should lead to a much more robust product and establish a framework to maintain stability as more enhancements and features are added. Finally, this paper will describe these efforts that are either in progress or planned for the near future.« less

  20. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  1. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  2. An Energy-Based Approach for Detection and Characterization of Subtle Entities Within Laser Scanning Point-Clouds

    NASA Astrophysics Data System (ADS)

    Arav, Reuma; Filin, Sagi

    2016-06-01

    Airborne laser scans present an optimal tool to describe geomorphological features in natural environments. However, a challenge arises in the detection of such phenomena, as they are embedded in the topography, tend to blend into their surroundings and leave only a subtle signature within the data. Most object-recognition studies address mainly urban environments and follow a general pipeline where the data are partitioned into segments with uniform properties. These approaches are restricted to man-made domain and are capable to handle limited features that answer a well-defined geometric form. As natural environments present a more complex set of features, the common interpretation of the data is still manual at large. In this paper, we propose a data-aware detection scheme, unbound to specific domains or shapes. We define the recognition question as an energy optimization problem, solved by variational means. Our approach, based on the level-set method, characterizes geometrically local surfaces within the data, and uses these characteristics as potential field for minimization. The main advantage here is that it allows topological changes of the evolving curves, such as merging and breaking. We demonstrate the proposed methodology on the detection of collapse sinkholes.

  3. The communicative potential of bat echolocation pulses.

    PubMed

    Jones, Gareth; Siemers, Björn M

    2011-05-01

    Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.

  4. Simultaneous 183 GHz H2O maser and SiO observations towards evolved stars using APEX SEPIA Band 5

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Immer, K.; Gray, M. D.; De Beck, E.; Vlemmings, W. H. T.; Baudry, A.; Richards, A. M. S.; Wittkowski, M.; Torstensson, K.; De Breuck, C.; Møller, P.; Etoka, S.; Olberg, M.

    2017-07-01

    Aims: The aim is to investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to observe the 183 GHz H2O line towards two red supergiant (RSG) and three asymptotic giant branch (AGB) stars. Simultaneously, we observed the J = 4-3 line for 28SiO v = 0, 1, 2 and 3, and for 29SiO v = 0 and 1. We compared the results with simulations and radiative transfer models for H2O and SiO, and examined data for the individual linear orthogonal polarizations. Results: We detected the 183 GHz H2O line towards all the stars with peak flux densities >100 Jy, including a new detection from VY CMa. Towards all five targets, the water line had indications of being caused by maser emission and had higher peak flux densities than for the SiO lines. The SiO lines appear to originate from both thermal and maser processes. Comparison with simulations and models indicate that 183 GHz maser emission is likely to extend to greater radii in the circumstellar envelopes than SiO maser emission and to similar or greater radii than water masers at 22, 321 and 325 GHz. We speculate that a prominent blue-shifted feature in the W Hya 183 GHz spectrum is amplifying the stellar continuum, and is located at a similar distance from the star as mainline OH maser emission. We note that the coupling of an SiO maser model to a hydrodynamical pulsating model of an AGB star yields qualitatively similar simulated results to the observations. From a comparison of the individual polarizations, we find that the SiO maser linear polarization fraction of several features exceeds the maximum fraction allowed under standard maser assumptions and requires strong anisotropic pumping of the maser transition and strongly saturated maser emission. The low polarization fraction of the H2O maser however, fits with the expectation for a non-saturated maser. Conclusions: 183 GHz H2O masers can provide strong probes of the mass loss process of evolved stars. Higher angular resolution observations of this line using ALMA Band 5 will enable detailed investigation of the emission location in circumstellar envelopes and can also provide information on magnetic field strength and structure.

  5. Multi-class computational evolution: development, benchmark evaluation and application to RNA-Seq biomarker discovery.

    PubMed

    Crabtree, Nathaniel M; Moore, Jason H; Bowyer, John F; George, Nysia I

    2017-01-01

    A computational evolution system (CES) is a knowledge discovery engine that can identify subtle, synergistic relationships in large datasets. Pareto optimization allows CESs to balance accuracy with model complexity when evolving classifiers. Using Pareto optimization, a CES is able to identify a very small number of features while maintaining high classification accuracy. A CES can be designed for various types of data, and the user can exploit expert knowledge about the classification problem in order to improve discrimination between classes. These characteristics give CES an advantage over other classification and feature selection algorithms, particularly when the goal is to identify a small number of highly relevant, non-redundant biomarkers. Previously, CESs have been developed only for binary class datasets. In this study, we developed a multi-class CES. The multi-class CES was compared to three common feature selection and classification algorithms: support vector machine (SVM), random k-nearest neighbor (RKNN), and random forest (RF). The algorithms were evaluated on three distinct multi-class RNA sequencing datasets. The comparison criteria were run-time, classification accuracy, number of selected features, and stability of selected feature set (as measured by the Tanimoto distance). The performance of each algorithm was data-dependent. CES performed best on the dataset with the smallest sample size, indicating that CES has a unique advantage since the accuracy of most classification methods suffer when sample size is small. The multi-class extension of CES increases the appeal of its application to complex, multi-class datasets in order to identify important biomarkers and features.

  6. 3D variational brain tumor segmentation on a clustered feature set

    NASA Astrophysics Data System (ADS)

    Popuri, Karteek; Cobzas, Dana; Jagersand, Martin; Shah, Sirish L.; Murtha, Albert

    2009-02-01

    Tumor segmentation from MRI data is a particularly challenging and time consuming task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. Our work addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multi-dimensional feature set. Further, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this paper is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to the previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned inside and outside region voxel probabilities in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance, during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters in the ventricles to be in the tumor and hence better disambiguate the tumor from brain tissue. We show the performance of our method on real MRI scans. The experimental dataset includes MRI scans, from patients with difficult instances, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Our method shows good results on these test cases.

  7. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  8. Convergence in Thunniform Anatomy in Lamnid Sharks and Jurassic Ichthyosaurs.

    PubMed

    Lingham-Soliar, Theagarten

    2016-12-01

    Among extinct ichthyosaurs the Jurassic forms Ichthyosaurus and Stenopterygius share a number of anatomical specializations with lamnid sharks, characterized in the white shark, Carcharodon carcharias These features allow their inclusion within the mode of high-speed thunniform swimming to which only two other equally distinctive phylogenetic groups belong, tuna and dolphins-a striking testaments to evolutionary convergence. Jurassic ichthyosaurs evolved from reptiles that had returned to the sea (secondarily adapted) about 250 million years ago (MYA) while lamnid sharks evolved about 50 MYA from early cartilaginous fishes (originating ca. 400 MYA). Their shared independently evolved anatomical characteristics are discussed. These include a deep tear-drop body shape that helped initially define members as thunniform swimmers. Later, other critical structural characteristics were discovered such as the crossed-fiber architecture of the skin, high-speed adapted dorsal and caudal fins, a caudal peduncle and series of ligaments to enable transmission of power from the musculature located anteriorly to the caudal fin. Both groups also share a similar chemistry of the dermal fibers, i.e., the scleroprotein collagen. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. The nature of primary consciousness. A new synthesis.

    PubMed

    Feinberg, Todd E; Mallatt, Jon

    2016-07-01

    While the philosophical puzzles about "life" that once confounded biology have all been solved by science, much of the "mystery of consciousness" remains unsolved due to multiple "explanatory gaps" between the brain and conscious experience. One reason for this impasse is that diverse brain architectures both within and across species can create consciousness, thus making any single neurobiological feature insufficient to explain it. We propose instead that an array of general biological features that are found in all living things, combined with a suite of special neurobiological features unique to animals with consciousness, evolved to create subjective experience. Combining philosophical, neurobiological and evolutionary approaches to consciousness, we review our theory of neurobiological naturalism that we argue closes the "explanatory gaps" between the brain and subjective experience and naturalizes the "experiential gaps" between subjectivity and third-person observation of the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nonequilibrium critical behavior of model statistical systems and methods for the description of its features

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Mamonova, M. V.

    2017-11-01

    This paper reviews features in critical behavior of far-from-equilibrium macroscopic systems and presents current methods of describing them by referring to some model statistical systems such as the three-dimensional Ising model and the two-dimensional XY model. The paper examines the critical relaxation of homogeneous and structurally disordered systems subjected to abnormally strong fluctuation effects involved in ordering processes in solids at second-order phase transitions. Interest in such systems is due to the aging properties and fluctuation-dissipation theorem violations predicted for and observed in systems slowly evolving from a nonequilibrium initial state. It is shown that these features of nonequilibrium behavior show up in the magnetic properties of magnetic superstructures consisting of alternating nanoscale-thick magnetic and nonmagnetic layers and can be observed not only near the film’s critical ferromagnetic ordering temperature Tc, but also over the wide temperature range T ⩽ Tc.

  11. Recognizing Facial Slivers.

    PubMed

    Gilad-Gutnick, Sharon; Harmatz, Elia Samuel; Tsourides, Kleovoulos; Yovel, Galit; Sinha, Pawan

    2018-07-01

    We report here an unexpectedly robust ability of healthy human individuals ( n = 40) to recognize extremely distorted needle-like facial images, challenging the well-entrenched notion that veridical spatial configuration is necessary for extracting facial identity. In face identification tasks of parametrically compressed internal and external features, we found that the sum of performances on each cue falls significantly short of performance on full faces, despite the equal visual information available from both measures (with full faces essentially being a superposition of internal and external features). We hypothesize that this large deficit stems from the use of positional information about how the internal features are positioned relative to the external features. To test this, we systematically changed the relations between internal and external features and found preferential encoding of vertical but not horizontal spatial relationships in facial representations ( n = 20). Finally, we employ magnetoencephalography imaging ( n = 20) to demonstrate a close mapping between the behavioral psychometric curve and the amplitude of the M250 face familiarity, but not M170 face-sensitive evoked response field component, providing evidence that the M250 can be modulated by faces that are perceptually identifiable, irrespective of extreme distortions to the face's veridical configuration. We theorize that the tolerance to compressive distortions has evolved from the need to recognize faces across varying viewpoints. Our findings help clarify the important, but poorly defined, concept of facial configuration and also enable an association between behavioral performance and previously reported neural correlates of face perception.

  12. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  13. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-04-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving).

  14. Evolution of ring-field systems in microlithography

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    1998-09-01

    Offner's ring-field all-reflecting triplet was the first successful projection system used in microlithography. It evolved over several generations, increasing NA and field size, reducing the feature sizes printed from three down to one micron. Because of its relative simplicity, large field size and broad spectral bandwidth it became the dominant optical design used in microlithography until the early 1980's, when the demise of optical lithography was predicted. Rumours of the death of optics turned out to be exaggerated; what happened instead was a metamorphosis to more complex optical designs. A reduction ring-field system was developed, but the inevitable loss of concentricity led to a dramatic increase in complexity. Higher NA reduction projection optics have therefore been full-field, either all-refracting or catadioptric using a beamsplitter and a single mirror. At the present time, the terminal illness of optical lithography is once again being prognosed, but now at 0.1 micro feature sizes early in the next millenium. If optics has a future beyond that, it lies at wavelengths below the practical transmission cut-off of all refracting materials. Scanning all-reflecting ring-field systems are therefore poised for a resurgence, based on their well-established advantage of rotational symmetry and consequent small aberration variations over a small, annular field. This paper explores some such designs that potentially could take optical lithography down to the region of 0.025 micron features.

  15. Automated global structure extraction for effective local building block processing in XCS.

    PubMed

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  16. Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments.

    PubMed

    Lovell, Charles R

    2017-03-01

    Vibrio parahaemolyticus is a commonly encountered and highly successful organism in marine ecosystems. It is a fast-growing, extremely versatile copiotroph that is active over a very broad range of conditions. It frequently occurs suspended in the water column (often attached to particles or zooplankton), and is a proficient colonist of submerged surfaces. This organism is an important pathogen of animals ranging from microcrustaceans to humans and is a causative agent of seafood-associated food poisoning. This review examines specific ecological adaptations of V. parahaemolyticus, including its broad tolerances to temperature and salinity, its utilization of a wide variety of organic carbon and energy sources, and its pervasive colonization of suspended and stationary materials that contribute to its success and ubiquity in temperate and tropical estuarine ecosystems. Several virulence-related features are examined, in particular the thermostable direct hemolysin (TDH), the TDH-related hemolysin (TRH), and the type 3 secretion system, and the possible importance of these features in V. parahaemolyticus pathogenicity is explored. The impact of new and much more effective PCR primers on V. parahaemolyticus detection and our views of virulent strain abundance are also described. It is clear that strains carrying the canonical virulence genes are far more common than previously thought, which opens questions regarding the role of these genes in pathogenesis. It is also clear that virulence is an evolving feature of V. parahaemolyticus and that novel combinations of virulence factors can lead to emergent virulence in which a strain that is markedly more pathogenic evolves and propagates to produce an outbreak. The effects of global climate change on the frequency of epidemic disease, the geographic distribution of outbreaks, and the human impacts of V. parahaemolyticus are increasing and this review provides information on why this ubiquitous human pathogen has increased its footprint and its significance so dramatically.

  17. An upwind method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1992-10-01

    A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

  18. Sphenoid Sinus Myxoma: Case Report and Literature Review

    PubMed Central

    Moore, Brian A.; Wine, Todd; Burkey, Brian B.; Amedee, Ronald G.; Butcher, R. Brent

    2008-01-01

    Objectives: We present the first known case in the English-language literature of a myxoma arising in the sphenoid sinus. By describing the patient's clinical course and the salient features of this rare neoplasm, we seek to increase the awareness of the presentation, histological features, and treatment considerations for myxomas of the head and neck. In the process, we intend to describe the work-up of isolated sphenoid sinus lesions and focus on the varying and evolving techniques for surgical access to the sphenoid sinus. Study Design and Methods: Case report and literature review. Results: We describe the clinical course of a patient with a myxoma of the sphenoid sinus. The patient underwent an external sphenoethmoidectomy through a lateral rhinotomy approach with medial maxillectomy under MRI-guidance. He remains without evidence of recurrent disease after 8 months. Conclusions: Myxomas of the head and neck are rare neoplasms. Their infiltrative nature and tendency to recur demand an aggressive surgical approach that may be accomplished with minimal morbidity using currently available image-guided techniques. PMID:21603497

  19. Long-wave infrared profile feature extractor (PFx) sensor

    NASA Astrophysics Data System (ADS)

    Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David

    2009-05-01

    The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.

  20. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  1. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  2. Immunopharmacology of lipid A mimetics.

    PubMed

    Bowen, William S; Gandhapudi, Siva K; Kolb, Joseph P; Mitchell, Thomas C

    2013-01-01

    The structural core of bacterial lipopolysaccharide, lipid A, has played a role in medicine since the 1890s when William Coley sought to harness its immunostimulatory properties in the form of a crude bacterial extract. Recent decades have brought remarkable clarity to the structure of lipid A and the multicomponent endotoxin receptor system that evolved to detect it. A range of therapeutically useful versions of lipid A now exists, including preparations of detoxified lipid A, synthetic copies of naturally occurring biological intermediates such as lipid IVa, and synthetic mimetics. These agents are finding use as vaccine adjuvants, antagonists and immunostimulants whose structural features have been refined to potentiate efficacy while decreasing the risk of inflammatory side effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. LIGO detector characterization with genetic programming

    NASA Astrophysics Data System (ADS)

    Cavaglia, Marco; Staats, Kai; Errico, Luciano; Mogushi, Kentaro; Gabbard, Hunter

    2017-01-01

    Genetic Programming (GP) is a supervised approach to Machine Learning. GP has for two decades been applied to a diversity of problems, from predictive and financial modelling to data mining, from code repair to optical character recognition and product design. GP uses a stochastic search, tournament, and fitness function to explore a solution space. GP evolves a population of individual programs, through multiple generations, following the principals of biological evolution (mutation and reproduction) to discover a model that best fits or categorizes features in a given data set. We apply GP to categorization of LIGO noise and show that it can effectively be used to characterize the detector non-astrophysical noise both in low latency and offline searches. National Science Foundation award PHY-1404139.

  4. Tribology of hydraulic pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation ofmore » hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.« less

  5. Characterization of geostationary particle signatures based on the 'injection boundary' model

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Meng, C.-I.

    1983-01-01

    A simplified analytical procedure is used to characterize the details of geostationary particle signatures, in order to lend support to the 'injection boundary' concept. The signatures are generated by the time-of-flight effects evolving from an initial sharply defined, double spiraled boundary configuration. Complex and highly variable dispersion patterns often observed by geostationary satellites are successfully reproduced through the exclusive use of the most fundamental convection configuration characteristics. Many of the details of the patterns have not been previously presented. It is concluded that most of the dynamical dispersion features can be mapped to the double spiral boundary without further ad hoc assumptions, and that predicted and observed dispersion patterns exhibit symmetries distinct from those associated with the quasi-stationary particle convection patterns.

  6. Evolution of Self-Organized Task Specialization in Robot Swarms

    PubMed Central

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-01-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. PMID:26247819

  7. Evolution of Self-Organized Task Specialization in Robot Swarms.

    PubMed

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-08-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.

  8. Designing a standardized oral health survey for the tri-services.

    PubMed

    Chisick, M; Arthur, J S; York, A; Poindexter, F

    1994-03-01

    To address a Congressional directive for a comprehensive study of the military medical care system (including dental care), the Tri-Service Dental Chiefs convened a panel of dental epidemiologists to develop a standardized protocol for assessing the oral health of soldiers, sailors, and airmen. This paper discusses previous military and civilian oral health surveys and outlines key design features of the common military protocol that evolved from this critical review of the literature.

  9. Artificial-life researchers try to create social reality.

    PubMed

    Flam, F

    1994-08-12

    Some scientists, among them cosmologist Stephen Hawking, argue that computer viruses are alive. A better case might be made for many of the self-replicating silicon-based creatures featured at the fourth Conference on Artificial Life, held on 5 to 8 July in Boston. Researchers from computer science, biology, and other disciplines presented computer programs that, among other things, evolved cooperative strategies in a selfish world and recreated themselves in ever more complex forms.

  10. European PTTI report

    NASA Technical Reports Server (NTRS)

    Cordara, Franco; Grimaldi, Sabrina; Leschiutta, Sigfrido

    1994-01-01

    Time and frequency metrology in Europe presents some peculiar features in its three main components: research on clocks, comparisons and dissemination methods, and dissemination services. Apart from the usual activities of the national metrological laboratories, an increasing number of cooperation between the European countries are promoted inside some European organizations, such as the ECC, EFTA, EUROMET, and WECC. Cooperation between these organizations is covered. The present, evolving situation will be further influenced by the recent political changes in Eastern Europe.

  11. Classical Gradual-Channel Modeling of Graphene Field-Effect Transistors (FETs)

    DTIC Science & Technology

    2010-08-01

    29  1 1. Introduction Over the past 60 years, a large number of papers have been written about the properties of graphene (1...strongly covalent features of its atomic bonding, properties that it inherits from the semimetal graphite. Indeed, the earliest papers on graphene (2...simplicity of this “single-layer graphite” model, the picture of graphene that evolved from these papers is one of extreme complexity. This is

  12. User Centric Job Monitoring - a redesign and novel approach in the STAR experiment

    NASA Astrophysics Data System (ADS)

    Arkhipkin, D.; Lauret, J.; Zulkarneeva, Y.

    2014-06-01

    User Centric Monitoring (or UCM) has been a long awaited feature in STAR, whereas programs, workflows and system "events" could be logged, broadcast and later analyzed. UCM allows to collect and filter available job monitoring information from various resources and present it to users in a user-centric view rather than an administrative-centric point of view. The first attempt and implementation of "a" UCM approach was made in STAR 2004 using a log4cxx plug-in back-end and then further evolved with an attempt to push toward a scalable database back-end (2006) and finally using a Web-Service approach (2010, CSW4DB SBIR). The latest showed to be incomplete and not addressing the evolving needs of the experiment where streamlined messages for online (data acquisition) purposes as well as the continuous support for the data mining needs and event analysis need to coexists and unified in a seamless approach. The code also revealed to be hardly maintainable. This paper presents the next evolutionary step of the UCM toolkit, a redesign and redirection of our latest attempt acknowledging and integrating recent technologies and a simpler, maintainable and yet scalable manner. The extended version of the job logging package is built upon three-tier approach based on Task, Job and Event, and features a Web-Service based logging API, a responsive AJAX-powered user interface, and a database back-end relying on MongoDB, which is uniquely suited for STAR needs. In addition, we present details of integration of this logging package with the STAR offline and online software frameworks. Leveraging on the reported experience and work from the ATLAS and CMS experience on using the ESPER engine, we discuss and show how such approach has been implemented in STAR for meta-data event triggering stream processing and filtering. An ESPER based solution seems to fit well into the online data acquisition system where many systems are monitored.

  13. Quantification of Degeneracy in Biological Systems for Characterization of Functional Interactions Between Modules

    PubMed Central

    Li, Yao; Dwivedi, Gaurav; Huang, Wen; Yi, Yingfei

    2012-01-01

    There is an evolutionary advantage in having multiple components with overlapping functionality (i.e degeneracy) in organisms. While theoretical considerations of degeneracy have been well established in neural networks using information theory, the same concepts have not been developed for differential systems, which form the basis of many biochemical reaction network descriptions in systems biology. Here we establish mathematical definitions of degeneracy, complexity and robustness that allow for the quantification of these properties in a system. By exciting a dynamical system with noise, the mutual information associated with a selected observable output and the interacting subspaces of input components can be used to define both complexity and degeneracy. The calculation of degeneracy in a biological network is a useful metric for evaluating features such as the sensitivity of a biological network to environmental evolutionary pressure. Using a two-receptor signal transduction network, we find that redundant components will not yield high degeneracy whereas compensatory mechanisms established by pathway crosstalk will. This form of analysis permits interrogation of large-scale differential systems for non-identical, functionally equivalent features that have evolved to maintain homeostasis during disruption of individual components. PMID:22619750

  14. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.

    PubMed

    Bishop, P J; Clemente, C J; Weems, R E; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G

    2017-07-01

    How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods ( p < 0.001), as well as the five tallest bird species studied ( p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history. © 2017 The Author(s).

  15. A new fossil species supports an early origin for toothed whale echolocation.

    PubMed

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  16. Queues on a Dynamically Evolving Graph

    NASA Astrophysics Data System (ADS)

    Mandjes, Michel; Starreveld, Nicos J.; Bekker, René

    2018-04-01

    This paper considers a population process on a dynamically evolving graph, which can be alternatively interpreted as a queueing network. The queues are of infinite-server type, entailing that at each node all customers present are served in parallel. The links that connect the queues have the special feature that they are unreliable, in the sense that their status alternates between `up' and `down'. If a link between two nodes is down, with a fixed probability each of the clients attempting to use that link is lost; otherwise the client remains at the origin node and reattempts using the link (and jumps to the destination node when it finds the link restored). For these networks we present the following results: (a) a system of coupled partial differential equations that describes the joint probability generating function corresponding to the queues' time-dependent behavior (and a system of ordinary differential equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent and stationary) moments, and procedures to compute user-perceived performance measures which facilitate the quantification of the impact of the links' outages, (c) a diffusion limit for the joint queue length process. We include explicit results for a series relevant special cases, such as tandem networks and symmetric fully connected networks.

  17. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less

  18. Type Safe Extensible Programming

    NASA Astrophysics Data System (ADS)

    Chae, Wonseok

    2009-10-01

    Software products evolve over time. Sometimes they evolve by adding new features, and sometimes by either fixing bugs or replacing outdated implementations with new ones. When software engineers fail to anticipate such evolution during development, they will eventually be forced to re-architect or re-build from scratch. Therefore, it has been common practice to prepare for changes so that software products are extensible over their lifetimes. However, making software extensible is challenging because it is difficult to anticipate successive changes and to provide adequate abstraction mechanisms over potential changes. Such extensibility mechanisms, furthermore, should not compromise any existing functionality during extension. Software engineers would benefit from a tool that provides a way to add extensions in a reliable way. It is natural to expect programming languages to serve this role. Extensible programming is one effort to address these issues. In this thesis, we present type safe extensible programming using the MLPolyR language. MLPolyR is an ML-like functional language whose type system provides type-safe extensibility mechanisms at several levels. After presenting the language, we will show how these extensibility mechanisms can be put to good use in the context of product line engineering. Product line engineering is an emerging software engineering paradigm that aims to manage variations, which originate from successive changes in software.

  19. Development of novel vaccines using DNA shuffling and screening strategies.

    PubMed

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  20. A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: Eulophiinae orchids as a case study.

    PubMed

    Bone, Ruth E; Smith, J Andrew C; Arrigo, Nils; Buerki, Sven

    2015-10-01

    Crassulacean acid metabolism (CAM) photosynthesis is an adaptation to water and atmospheric CO2 deficits that has been linked to diversification in dry-adapted plants. We investigated whether CAM evolution can be associated with the availability of new or alternative niches, using Eulophiinae orchids as a case study. Carbon isotope ratios, geographical and climate data, fossil records and DNA sequences were used to: assess the prevalence of CAM in Eulophiinae orchids; characterize the ecological niche of extant taxa; infer divergence times; and estimate whether CAM is associated with niche shifts. CAM evolved in four terrestrial lineages during the late Miocene/Pliocene, which have uneven diversification patterns. These lineages originated in humid habitats and colonized dry/seasonally dry environments in Africa and Madagascar. Additional key features (variegation, heterophylly) evolved in the most species-rich CAM lineages. Dry habitats were also colonized by a lineage that includes putative mycoheterotrophic taxa. These findings indicate that the switch to CAM is associated with environmental change. With its suite of adaptive traits, this group of orchids represents a unique opportunity to study the adaptations to dry environments, especially in the face of projected global aridification. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. A rhythm-based authentication scheme for smart media devices.

    PubMed

    Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.

  2. A Rhythm-Based Authentication Scheme for Smart Media Devices

    PubMed Central

    Lee, Jae Dong; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743

  3. Occurrence of neanderthal features in mandibles from the Atapuerca-SH site.

    PubMed

    Rosas, A

    2001-01-01

    Analysis of variation and distribution of evolutionary novelties is meaningful in understanding evolutionary processes. The mandible, as a morphological complex, comprises a large number of derived Neanderthal features. The present study investigates whether the features usually considered as European lineage apomorphies evolved independently; the occurrence of these features is studied in the mandibles from the Sima de los Huesos (SH) site (Atapuerca, Spain). For comparative purposes, a large sample of Neanderthal mandibles as well as older fossil Homo specimens have been used for the study. Chi-square tests were employed to test for independence. The SH mandibles present a set of features that clearly show the basic architecture of the Neanderthal mandible. A highly significant association is detected in the variation of the position of the mental foramen, the lateral prominence, and the anterior marginal tubercle, as well as in the development of retromolar space. However, a much weaker association is detected in the features of the internal aspect of the mandible, with a few exceptions. Features of the external aspect of the mandible occur chronologically earlier than those observed in the internal aspect. The hypothesis that two distinct and consecutive morphological processes have driven the emergence of the European lineage throughout the Middle Pleistocene is proposed. A first transformation affects the mandible by means of backwards displacement of the structures located at the external aspect, as well as the position of the condyle. A second process would modify the features of the internal aspect of the mandible, in which the relief of the masseteric and pterygoid fossae are affected, in association with a spatial rearrangement of the corpus and ramus. Analyzed individually, some of the considered features may be questioned as Neanderthal apomorphies (Trinkaus,1993; Franciscus and Trinkaus, 995); however, the joint occurrence of many of them suggests that the complex is an evolutionary novelty. Copyright 2001 Wiley-Liss, Inc.

  4. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  5. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.

    PubMed

    Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei

    2011-09-01

    Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.

  6. Understanding the Evolution and Stability of the G-Matrix

    PubMed Central

    Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.

    2011-01-01

    The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631

  7. Enhancer Evolution across 20 Mammalian Species

    PubMed Central

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  8. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    PubMed Central

    Gonzales, Lauren A.; Benefit, Brenda R.; McCrossin, Monte L.; Spoor, Fred

    2015-01-01

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently. PMID:26138795

  9. Evolving from Planning and Scheduling to Real-Time Operations Support: Design Challenges

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Ludowise, Melissa; McCurdy, Michael; Li, Jack

    2010-01-01

    Versions of Scheduling and Planning Interface for Exploration (SPIFe) have supported a variety of mission operations across NASA. This software tool has evolved and matured over several years, assisting planners who develop intricate schedules. While initially conceived for surface Mars missions, SPIFe has been deployed in other domains, where people rather than robotic explorers, execute plans. As a result, a diverse set of end-users has compelled growth in a new direction: supporting real-time operations. This paper describes the new needs and challenges that accompany this development. Among the key features that have been built for SPIFe are current time indicators integrated into the interface and timeline, as well as other plan attributes that enable execution of scheduled activities. Field tests include mission support for the Lunar CRater Observation and Sensing Satellite (LCROSS), NASA Extreme Environment Mission Operations (NEEMO) and Desert Research and Technology Studies (DRATS) campaigns.

  10. Sex determination: why so many ways of doing it?

    PubMed

    Bachtrog, Doris; Mank, Judith E; Peichel, Catherine L; Kirkpatrick, Mark; Otto, Sarah P; Ashman, Tia-Lynn; Hahn, Matthew W; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C

    2014-07-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.

  11. Is the political animal politically ignorant? Applying evolutionary psychology to the study of political attitudes.

    PubMed

    Petersen, Michael Bang; Aarøe, Lene

    2012-12-20

    As evidenced by research in evolutionary psychology, humans have evolved sophisticated psychological mechanisms tailored to solve enduring adaptive problems of social life. Many of these social problems are political in nature and relate to the distribution of costs and benefits within and between groups. In that sense, evolutionary psychology suggests that humans are, by nature, political animals. By implication, a straightforward application of evolutionary psychology to the study of public opinion seems to entail that modern individuals find politics intrinsically interesting. Yet, as documented by more than fifty years of research in political science, people lack knowledge of basic features of the political process and the ability to form consistent political attitudes. By reviewing and integrating research in evolutionary psychology and public opinion, we describe (1) why modern mass politics often fail to activate evolved mechanisms and (2) the conditions in which these mechanisms are in fact triggered.

  12. Sex Determination: Why So Many Ways of Doing It?

    PubMed Central

    Bachtrog, Doris; Mank, Judith E.; Peichel, Catherine L.; Kirkpatrick, Mark; Otto, Sarah P.; Ashman, Tia-Lynn; Hahn, Matthew W.; Kitano, Jun; Mayrose, Itay; Ming, Ray; Perrin, Nicolas; Ross, Laura; Valenzuela, Nicole; Vamosi, Jana C.

    2014-01-01

    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination. PMID:24983465

  13. Diversity and origins of anaerobic metabolism in mitochondria and related organelles

    PubMed Central

    Stairs, Courtney W.; Leger, Michelle M.; Roger, Andrew J.

    2015-01-01

    Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes. PMID:26323757

  14. How could fully scaled carps appear in natural waters in Madagascar?

    PubMed Central

    Hervet, Caroline

    2016-01-01

    The capacity of organisms to rapidly evolve in response to environmental changes is a key feature of evolution, and studying mutation compensation is a way to evaluate whether alternative routes of evolution are possible or not. Common carps (Cyprinus carpio) carrying a homozygous loss-of-function mutation for the scale cover gene fgfr1a1, causing the ‘mirror’ reduced scale cover, were introduced in Madagascar a century ago. Here we show that carps in Malagasy natural waters are now predominantly covered with scales, though they still all carry the homozygous mutation. We also reveal that the number of scales in mutated carps is under strong polygenic genetic control, with a heritability of 0.49. As a whole, our results suggest that carps submitted to natural selection could evolve a wild-type-like scale cover in less than 40 generations from standing polygenic genetic variation, confirming similar findings mainly retrieved from model organisms. PMID:27559059

  15. From a Vital Sign to Vitality: Selling Exercise So Patients Want to Buy It.

    PubMed

    Segar, Michelle L; Guérin, Eva; Phillips, Edward; Fortier, Michelle

    2016-01-01

    Exercise is Medicine (EIM) and physical activity as a vital sign are based on health-focused research and reflect ideal frames and messages for clinicians. However, they are nonoptimal for patients because they do not address what drives patients' decision-making and motivation. With the growing national emphasis on patient-centered and value-based care, it is the perfect time for EIM to evolve and advance a second-level consumer-oriented exercise prescription and communication strategy. Through research on decision-making, motivation, consumer behavior, and meaningful goal pursuit, this article features six evidence-based issues to help clinicians make physical activity more relevant and compelling for patients to sustain in ways that concurrently support patient-centered care. Physical activity prescriptions and counseling can evolve to reflect affective and behavioral science and sell exercise so patients want to buy it.

  16. Survival of the Friendliest: Homo sapiens Evolved via Selection for Prosociality.

    PubMed

    Hare, Brian

    2017-01-03

    The challenge of studying human cognitive evolution is identifying unique features of our intelligence while explaining the processes by which they arose. Comparisons with nonhuman apes point to our early-emerging cooperative-communicative abilities as crucial to the evolution of all forms of human cultural cognition, including language. The human self-domestication hypothesis proposes that these early-emerging social skills evolved when natural selection favored increased in-group prosociality over aggression in late human evolution. As a by-product of this selection, humans are predicted to show traits of the domestication syndrome observed in other domestic animals. In reviewing comparative, developmental, neurobiological, and paleoanthropological research, compelling evidence emerges for the predicted relationship between unique human mentalizing abilities, tolerance, and the domestication syndrome in humans. This synthesis includes a review of the first a priori test of the self-domestication hypothesis as well as predictions for future tests.

  17. Functional diversification of the kinesin-14 family in land plants.

    PubMed

    Gicking, Allison M; Swentowsky, Kyle W; Dawe, R Kelly; Qiu, Weihong

    2018-05-12

    In most eukaryotes, cytoplasmic dynein serves as the primary cytoskeletal motor for minus-end-directed processes along microtubules. However, land plants lack dynein, having instead a large number of kinesin-14s, which suggests that kinesin-14s may have evolved to fill the cellular niche left by dynein. In addition, land plants do not have centrosomes, but contain specialized microtubule-based structures called phragmoplasts that facilitate the formation of new cell walls following cell division. This Review aims to compile the evidence for functional diversification of kinesin-14s in land plants. Known functions include spindle morphogenesis, microtubule-based trafficking, nuclear migration, chloroplast distribution, and phragmoplast expansion. Plant kinesin-14s have also evolved direct roles in chromosome segregation in maize and novel biochemical features such as actin transport and processive motility in the homodimeric state. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. The future is 'ambient'

    NASA Astrophysics Data System (ADS)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  19. Rule-guided human classification of Volunteered Geographic Information

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Loai; Falomir, Zoe; Schmid, Falko; Freksa, Christian

    2017-05-01

    During the last decade, web technologies and location sensing devices have evolved generating a form of crowdsourcing known as Volunteered Geographic Information (VGI). VGI acted as a platform of spatial data collection, in particular, when a group of public participants are involved in collaborative mapping activities: they work together to collect, share, and use information about geographic features. VGI exploits participants' local knowledge to produce rich data sources. However, the resulting data inherits problematic data classification. In VGI projects, the challenges of data classification are due to the following: (i) data is likely prone to subjective classification, (ii) remote contributions and flexible contribution mechanisms in most projects, and (iii) the uncertainty of spatial data and non-strict definitions of geographic features. These factors lead to various forms of problematic classification: inconsistent, incomplete, and imprecise data classification. This research addresses classification appropriateness. Whether the classification of an entity is appropriate or inappropriate is related to quantitative and/or qualitative observations. Small differences between observations may be not recognizable particularly for non-expert participants. Hence, in this paper, the problem is tackled by developing a rule-guided classification approach. This approach exploits data mining techniques of Association Classification (AC) to extract descriptive (qualitative) rules of specific geographic features. The rules are extracted based on the investigation of qualitative topological relations between target features and their context. Afterwards, the extracted rules are used to develop a recommendation system able to guide participants to the most appropriate classification. The approach proposes two scenarios to guide participants towards enhancing the quality of data classification. An empirical study is conducted to investigate the classification of grass-related features like forest, garden, park, and meadow. The findings of this study indicate the feasibility of the proposed approach.

  20. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    PubMed

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  2. Genonets server-a web server for the construction, analysis and visualization of genotype networks.

    PubMed

    Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L

    2016-07-08

    A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Vortex scaling ranges in two-dimensional turbulence

    NASA Astrophysics Data System (ADS)

    Burgess, Helen; Scott, Richard; Dritschel, David

    2017-11-01

    We introduce a scaling theory for vortices in the forced inverse energy cascade of 2D turbulence. Far-from-equilibrium systems generically exhibit multiple scaling regimes associated with transport of conserved quantities. Motivated by this observation, we model a three-part time-evolving vortex number density distribution, n (A) tαiA-ri , i ∈ 1 , 2 , 3 , conserving the first three moments of ωv2n (A) in three distinct scaling ranges. Here ωv2 is the `vortex intensity', or mean square vorticity evaluated over vortices, and areas A are intense regions of vorticity bounded by vorticity isolines. We predict αi and ri by enforcing conservation in `comoving intervals', whose endpoints evolve at the vortex growth rate; this amounts to assuming invariance under the dilatation of flow features associated with the inverse cascade, and that vortex area growth is the appropriate measure of dilatation in all scaling ranges. High resolution numerical simulations verify the predictions, which are insensitive to the vorticity threshold used to isolate the areas. Similar concepts can be applied to model vortices in decaying 2D turbulence, pointing toward a unified description of vortices in both systems.

  4. The Peculiar Characteristics of Fish Type I Interferons

    PubMed Central

    Boudinot, Pierre; Langevin, Christelle; Secombes, Christopher J.; Levraud, Jean-Pierre

    2016-01-01

    Antiviral type I interferons (IFNs) have been discovered in fish. Genomic studies revealed their considerable number in many species; some genes encode secreted and non-secreted isoforms. Based on cysteine motifs, fish type I IFNs fall in two subgroups, which use two different receptors. Mammalian type I IFN genes are intronless while type III have introns; in fish, all have introns, but structurally, both subgroups belong to type I. Type I IFNs likely appeared early in vertebrates as intron containing genes, and evolved in parallel in tetrapods and fishes. The diversity of their repertoires in fish and mammals is likely a convergent feature, selected as a response to the variety of viral strategies. Several alternative nomenclatures have been established for different taxonomic fish groups, calling for a unified system. The specific functions of each type I gene remains poorly understood, as well as their interactions in antiviral responses. However, distinct induction pathways, kinetics of response, and tissue specificity indicate that fish type I likely are highly specialized, especially in groups where they are numerous such as salmonids or cyprinids. Unravelling their functional integration constitutes the next challenge to understand how these cytokines evolved to orchestrate antiviral innate immunity in vertebrates. PMID:27827855

  5. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    PubMed Central

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  6. Relevant Sex Appeals in Advertising: Gender and Commitment Context Differences

    PubMed Central

    Lanseng, Even J.

    2016-01-01

    This research investigates differences in men's and women's attitudes toward ads featuring product-relevant sex appeals. It is found that women, but not men, were more negative toward an ad featuring an attractive opposite-sex model when their commitment thoughts were heightened. Women were also more negative toward an ad with an attractive same-sex model in the presence of commitment thoughts, but only when they scored high on sociosexuality. Men appeared unaffected, regardless of their level of sociosexuality. Commitment thoughts were manipulated by two types of prime, a parenting prime (study1) and a romantic prime (study 2). Results are explained by differences in how men and women react to sexual material and by differences in men's and women's evolved mating preferences. PMID:27746749

  7. The variable presentations and broadening geographic distribution of hepatic fascioliasis.

    PubMed

    Rowan, Sarah E; Levi, Marilyn E; Youngwerth, Jean M; Brauer, Brian; Everson, Gregory T; Johnson, Steven C

    2012-06-01

    We report 2 unrelated cases of hepatic fascioliasis in travelers returning to the United States from Africa and the Middle East. The first case presented with acute infection. Prominent clinical features included abdominal pain, elevated liver transaminases, serpiginous hepatic lesions, pericapsular hematoma, and marked peripheral eosinophilia. The second case was diagnosed in the chronic stage of infection and presented with right upper quadrant abdominal pain, cystic hepatic lesions, and an adult fluke in the common bile duct. We review the life cycle of Fasciola species, the corresponding clinical features during the stages of human infection, diagnostic methods, and the evolving understanding of the epidemiology of human fascioliasis, particularly emphasizing fascioliasis in African countries. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Feminization and marginalization? Women Ayurvedic doctors and modernizing health care in Nepal.

    PubMed

    Cameron, Mary

    2010-03-01

    The important diversity of indigenous medical systems around the world suggests that gender issues, well understood for Western science, may differ in significant ways for non-Western science practices and are an important component in understanding how social dimensions of women's health care are being transformed by global biomedicine. Based on ethnographic research conducted with formally trained women Ayurvedic doctors in Nepal, I identify important features of medical knowledge and practice beneficial to women patients, and I discuss these features as potentially transformed by modernizing health care development. The article explores the indirect link between Ayurveda's feminization and its marginalization, in relation to modern biomedicine, which may evolve to become more direct and consequential for women's health in the country.

  9. Relevant Sex Appeals in Advertising: Gender and Commitment Context Differences.

    PubMed

    Lanseng, Even J

    2016-01-01

    This research investigates differences in men's and women's attitudes toward ads featuring product-relevant sex appeals. It is found that women, but not men, were more negative toward an ad featuring an attractive opposite-sex model when their commitment thoughts were heightened. Women were also more negative toward an ad with an attractive same-sex model in the presence of commitment thoughts, but only when they scored high on sociosexuality. Men appeared unaffected, regardless of their level of sociosexuality. Commitment thoughts were manipulated by two types of prime, a parenting prime (study1) and a romantic prime (study 2). Results are explained by differences in how men and women react to sexual material and by differences in men's and women's evolved mating preferences.

  10. Utilizing Electronic Medical Records to Discover Changing Trends of Medical Behaviors Over Time.

    PubMed

    Yin, Liangying; Huang, Zhengxing; Dong, Wei; He, Chunhua; Duan, Huilong

    2017-05-05

    Medical behaviors are playing significant roles in the delivery of high quality and cost-effective health services. Timely discovery of changing frequencies of medical behaviors is beneficial for the improvement of health services. The main objective of this work is to discover the changing trends of medical behaviors over time. This study proposes a two-steps approach to detect essential changing patterns of medical behaviors from Electronic Medical Records (EMRs). In detail, a probabilistic topic model, i.e., Latent Dirichlet allocation (LDA), is firstly applied to disclose yearly treatment patterns in regard to the risk stratification of patients from a large volume of EMRs. After that, the changing trends by comparing essential/critical medical behaviors in a specific time period are detected and analyzed, including changes of significant patient features with their values, and changes of critical treatment interventions with their occurring time stamps. We verify the effectiveness of the proposed approach on a clinical dataset containing 12,152 patient cases with a time range of 10 years. Totally, 135 patients features and 234 treatment interventions in three treatment patterns were selected to detect their changing trends. In particular, evolving trends of yearly occurring probabilities of the selected medical behaviors were categorized into six content changing patterns (i.e, 112 growing, 123 declining, 43 up-down, 16 down-up, 35 steady, and 40 jumping), using the proposed approach. Besides, changing trends of execution time of treatment interventions were classified into three occurring time changing patterns (i.e., 175 early-implemented, 50 steady-implemented and 9 delay-implemented). Experimental results show that our approach has an ability to utilize EMRs to discover essential evolving trends of medical behaviors, and thus provide significant potential to be further explored for health services redesign and improvement.

  11. REIS: phase II, report I. An overview of the REIS system. [State of Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chervany, N.L.; Naumann, J.D.; Visness, R.D.

    1975-07-01

    The Regional Energy Information System (REIS) is being designed and implemented to collect, organize, store, and report data from the energy supply/distribution/consumption chain in the state of Minnesota. This system will contain: identification data, energy flow data, and end-use data. The REIS system will allow users to have access to the data base in a variety of ways (i.e., periodic reporting, special request reporting, direct access/browsing capabilities, and the creation of machine readable files). The self-contained language feature of SYSTEM 2000 gives the REIS system the flexibility and evolvability necessary to meet the changing data needs of energy management problems.more » (GRA)« less

  12. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  13. Asymmetry, Potential Penetration and Supersonic Speeds in MBX Experiment at High Voltage and Medium Power

    NASA Astrophysics Data System (ADS)

    Quevedo, H. J.; Valanju, P. M.; Bengtson, Roger D.

    2007-06-01

    In MBX, a small mirror machine with a radial electric field creates a rotating plasma that is expected to evolve, under certain conditions, into a self-organizing, detached toroidal plasma ring, a magnetofluid state. In the present stage of the experiment a low density plasma generated by microwaves (1 kW at 2.54 GHz) has been successfully rotated at supersonic speeds using a 1 kV-80 mF capacitor bank with currents ˜5 amps. Under these conditions the plasma presents high asymmetry in the current, plasma potential and consequently rotation with the voltage applied. A simple model is presented to account for these features.

  14. Mapping students' ideas to understand learning in a collaborative programming environment

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd; Leak, Anne Emerson

    2014-07-01

    Recent studies in learning programming have largely focused on high school and college students; less is known about how young children learn to program. From video data of 20 students using a graphical programming interface, we identified ideas that were shared and evolved through an elementary school classroom. In mapping these ideas and their resulting changes in programs and outputs, we were able to identify the contextual features which contributed to how ideas moved through the classroom as students learned. We suggest this process of idea mapping in visual programming environments as a viable method for understanding collaborative, constructivist learning as well as a context under which experiences can be developed to improve student learning.

  15. Evolution of canalizing Boolean networks

    NASA Astrophysics Data System (ADS)

    Szejka, A.; Drossel, B.

    2007-04-01

    Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.

  16. CyanoClust: comparative genome resources of cyanobacteria and plastids.

    PubMed

    Sasaki, Naobumi V; Sato, Naoki

    2010-01-01

    Cyanobacteria, which perform oxygen-evolving photosynthesis as do chloroplasts of plants and algae, are one of the best-studied prokaryotic phyla and one from which many representative genomes have been sequenced. Lack of a suitable comparative genomic database has been a problem in cyanobacterial genomics because many proteins involved in physiological functions such as photosynthesis and nitrogen fixation are not catalogued in commonly used databases, such as Clusters of Orthologous Proteins (COG). CyanoClust is a database of homolog groups in cyanobacteria and plastids that are produced by the program Gclust. We have developed a web-server system for the protein homology database featuring cyanobacteria and plastids. Database URL: http://cyanoclust.c.u-tokyo.ac.jp/.

  17. From proto-mitosis to mitosis — An alternative hypothesis on the origin and evolution of the mitotic spindle

    NASA Astrophysics Data System (ADS)

    Roos, U.-P.

    1984-03-01

    Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.

  18. Enlightenment of old ideas from new investigations: more questions regarding the evolution of bacteriogenic light organs in squids

    PubMed Central

    Nishiguchi, M. K.; Lopez, J. E.; Boletzky, S. v.

    2012-01-01

    Summary Bioluminescence is widespread among many different types of marine organisms. Metazoans contain two types of luminescence production, bacteriogenic (symbiotic with bacteria) or autogenic, via the production of a luminous secretion or the intrinsic properties of luminous cells. Several species in two families of squids, the Loliginidae and the Sepiolidae (Mollusca: Cephalopoda) harbor bacteriogenic light organs that are found central in the mantle cavity. These light organs are exceptional in function, that is, the morphology and the complexity suggests that the organ has evolved to enhance and direct light emission from bacteria that are harbored inside. Although light organs are widespread among taxa within the Sepiolidae, the origin and development of this important feature is not well studied. We compared light organ morphology from several closely related taxa within the Sepiolidae and combined molecular phylogenetic data using four loci (nuclear ribosomal 28S rRNA and the mitochondrial cytochrome c oxidase subunit I and 12S and 16S rRNA) to determine whether this character was an ancestral trait repeatedly lost among both families or whether it evolved independently as an adaptation to the pelagic and benthic lifestyles. By comparing other closely related extant taxa that do not contain symbiotic light organs, we hypothesized that the ancestral state of sepiolid light organs most likely evolved from part of a separate accessory gland open to the environment that allowed colonization of bacteria to occur and further specialize in the eventual development of the modern light organ. PMID:15108817

  19. Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors

    PubMed Central

    Sperschneider, Jana; Ying, Hua; Dodds, Peter N.; Gardiner, Donald M.; Upadhyaya, Narayana M.; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2014-01-01

    Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. PMID:25225496

  20. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    NASA Astrophysics Data System (ADS)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  1. Acetabular rim and surface segmentation for hip surgery planning and dysplasia evaluation

    NASA Astrophysics Data System (ADS)

    Tan, Sovira; Yao, Jianhua; Yao, Lawrence; Summers, Ronald M.; Ward, Michael M.

    2008-03-01

    Knowledge of the acetabular rim and surface can be invaluable for hip surgery planning and dysplasia evaluation. The acetabular rim can also be used as a landmark for registration purposes. At the present time acetabular features are mostly extracted manually at great cost of time and human labor. Using a recent level set algorithm that can evolve on the surface of a 3D object represented by a triangular mesh we automatically extracted rims and surfaces of acetabulae. The level set is guided by curvature features on the mesh. It can segment portions of a surface that are bounded by a line of extremal curvature (ridgeline or crestline). The rim of the acetabulum is such an extremal curvature line. Our material consists of eight hemi-pelvis surfaces. The algorithm is initiated by putting a small circle (level set seed) at the center of the acetabular surface. Because this surface distinctively has the form of a cup we were able to use the Shape Index feature to automatically extract an approximate center. The circle then expands and deforms so as to take the shape of the acetabular rim. The results were visually inspected. Only minor errors were detected. The algorithm also proved to be robust. Seed placement was satisfactory for the eight hemi-pelvis surfaces without changing any parameters. For the level set evolution we were able to use a single set of parameters for seven out of eight surfaces.

  2. Mammographic texture synthesis using genetic programming and clustered lumpy background

    NASA Astrophysics Data System (ADS)

    Castella, Cyril; Kinkel, Karen; Descombes, François; Eckstein, Miguel P.; Sottas, Pierre-Edouard; Verdun, Francis R.; Bochud, François O.

    2006-03-01

    In this work we investigated the digital synthesis of images which mimic real textures observed in mammograms. Such images could be produced in an unlimited number with tunable statistical properties in order to study human performance and model observer performance in perception experiments. We used the previously developed clustered lumpy background (CLB) technique and optimized its parameters with a genetic algorithm (GA). In order to maximize the realism of the textures, we combined the GA objective approach with psychophysical experiments involving the judgments of radiologists. Thirty-six statistical features were computed and averaged, over 1000 real mammograms regions of interest. The same features were measured for the synthetic textures, and the Mahalanobis distance was used to quantify the similarity of the features between the real and synthetic textures. The similarity, as measured by the Mahalanobis distance, was used as GA fitness function for evolving the free CLB parameters. In the psychophysical approach, experienced radiologists were asked to qualify the realism of synthetic images by considering typical structures that are expected to be found on real mammograms: glandular and fatty areas, and fiber crossings. Results show that CLB images found via optimization with GA are significantly closer to real mammograms than previously published images. Moreover, the psychophysical experiments confirm that all the above mentioned structures are reproduced well on the generated images. This means that we can generate an arbitrary large database of textures mimicking mammograms with traceable statistical properties.

  3. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.

  4. Hepatocyte Paraffin 1 Antigen as a Biomarker for Early Diagnosis of Barrett Esophagus

    PubMed Central

    Jeung, Jennifer A.; Coran, Justin J.; Liu, Chen; Cardona, Diana M.

    2013-01-01

    We evaluated hepatocyte paraffin 1 (HepPar1) antigen expression, a sensitive marker of small intestinal differentiation, in combination with morphologic features to demonstrate intestinal differentiation in cases equivocal for Barrett esophagus (BE). Clinicopathologic features and HepPar1 expression were recorded for 54 BE cases, 45 consistent with reflux esophagitis (RE) cases, and 65 “suspicious” for BE (SBE) cases. The SBE category included RE cases with 2 or more morphologic changes associated with BE or metaplastic reaction to injury (eg, multilayered epithelium, squamous islands, goblet cell mimickers, pancreatic metaplasia). HepPar1 was expressed in all 54 BE cases, 4 of 45 RE cases, and 24 of 65 SBE cases. In SBE cases, 2 or more morphologic changes were associated with HepPar1 expression in 37% of cases (24/65), 3 or more features in 59% (13/22), and 4 or more features in 100% (4/4) (P ≤ .004). The combination of certain morphologic changes and HepPar1 expression in clinically suspicious distal esophageal biopsy cases without goblet cells supports the presence of evolving intestinal metaplasia. PMID:22180484

  5. Template-based education toolkit for mobile platforms

    NASA Astrophysics Data System (ADS)

    Golagani, Santosh Chandana; Esfahanian, Moosa; Akopian, David

    2012-02-01

    Nowadays mobile phones are the most widely used portable devices which evolve very fast adding new features and improving user experiences. The latest generation of hand-held devices called smartphones is equipped with superior memory, cameras and rich multimedia features, empowering people to use their mobile phones not only as a communication tool but also for entertainment purposes. With many young students showing interest in learning mobile application development one should introduce novel learning methods which may adapt to fast technology changes and introduce students to application development. Mobile phones become a common device, and engineering community incorporates phones in various solutions. Overcoming the limitations of conventional undergraduate electrical engineering (EE) education this paper explores the concept of template-based based education in mobile phone programming. The concept is based on developing small exercise templates which students can manipulate and revise for quick hands-on introduction to the application development and integration. Android platform is used as a popular open source environment for application development. The exercises relate to image processing topics typically studied by many students. The goal is to enable conventional course enhancements by incorporating in them short hands-on learning modules.

  6. Scientists Develop Precision Maps for Other Planets

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2013-03-01

    Earth and planetary scientists are united by their need for accurate maps. Without them, features studied have no reference point, attempts to understand how our and other planets evolved have no context, and missions flown to other planets lack purpose. "Making maps out of data is critical to further progress in our fields," explained Randolph Kirk of the U.S. Geological Survey's (USGS) Astrogeology Science Center, based in Flagstaff, Ariz. "Building maps helps other people find what's out there."

  7. UV Nebular Absorption in Eta Car and Weigelt D

    NASA Technical Reports Server (NTRS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.

    2004-01-01

    Coronal Mass Ejections (CMEs) are a spectacular manifestation of solar activity. CMEs typically appear as looplike features that disrupt helmet streamers in the solar corona. They are believed to be the primary cause of large, non-recurrent geomagnetic storms. The goal of our research sponsored by NASA's Supporting Research and Technology Program in Solar Physics is to investigate how the corona evolves to produce these eruptions. In the following sections we describe the work performed under this contract.

  8. Prediction of Ripple Properties in Shelf Seas. Mark 2 Predictor for Time Evolution

    DTIC Science & Technology

    2005-12-01

    respectively. It is seen in Figure 15 that the time -evolving ripple predictor manages to predict many of the features seen in the data: the growth from a...UNCLASSIFIED Prediction of Ripple Properties in Shelf Seas Mark 2 Predictor for Time Evolution Final Technical Report Prepared for US Office of Naval...distribution is unlimited j~j HR Wallingford UNCLASSIFIED Prediction of Ripple Properties in Shelf Seas Mark 2 Predictor for Time Evolution

  9. Changes in artistic style and behaviour in Parkinson's disease: dopamine and creativity.

    PubMed

    Kulisevsky, Jaime; Pagonabarraga, Javier; Martinez-Corral, Mercè

    2009-05-01

    We present a PD patient in whom dopamine agonists awoke a hidden creativity that led to a gradual increase in painting productivity evolving to a disruptive impulsive behaviour that shared many features with punding. A dramatic change in painting style related to a more emotional experience during the process of creation developed after treatment onset. This case suggests that changes in creativity in PD seem to be related to dopaminergic imbalance in the limbic system.

  10. Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas.

    PubMed

    Bernal, D; Dickson, K A; Shadwick, R E; Graham, J B

    2001-06-01

    Elasmobranchs and bony fishes have evolved independently for more than 400 million years. However, two Recent groups, the lamnid sharks (Family Lamnidae) and tunas (Family Scombridae), display remarkable similarities in features related to swimming performance. Traits separating these two groups from other fishes include a higher degree of body streamlining, a shift in the position of the aerobic, red, locomotor muscle that powers sustained swimming to a more anterior location in the body and nearer to the vertebral column, the capacity to conserve metabolic heat (i.e. regional endothermy), an increased gill surface area with a decreased blood-water barrier thickness, a higher maximum blood oxygen carrying capacity, and greater muscle aerobic and anaerobic enzyme activities at in vivo temperatures. The suite of morphological, physiological, and biochemical specializations that define "high-performance fishes" have been extensively characterized in the tunas. This review examines the convergent features of lamnid sharks and tunas in order to gain insight into the extent that comparable environmental selection pressures have led to the independent origin of similar suites of functional characteristics in these two distinctly different taxa. We propose that, despite differences between teleost and elasmobranch fishes, lamnid sharks and tunas have evolved morphological and physiological specializations that enhance their swimming performance relative to other sharks and most other high performance pelagic fishes.

  11. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael

    2017-03-20

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less

  12. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi

    2017-03-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  13. The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453

    NASA Technical Reports Server (NTRS)

    Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; hide

    2017-01-01

    We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.

  14. A communication-theory based view on telemedical communication.

    PubMed

    Schall, Thomas; Roeckelein, Wolfgang; Mohr, Markus; Kampshoff, Joerg; Lange, Tim; Nerlich, Michael

    2003-01-01

    Communication theory based analysis sheds new light on the use of health telematics. This analysis of structures in electronic medical communication shows communicative structures with special features. Current and evolving telemedical applications are analyzed. The methodology of communicational theory (focusing on linguistic pragmatics) is used to compare it with its conventional counterpart. The semiotic model, the roles of partners, the respective message and their relation are discussed. Channels, sender, addressee, and other structural roles are analyzed for different types of electronic medical communication. The communicative processes are shown as mutual, rational action towards a common goal. The types of communication/texts are analyzed in general. Furthermore the basic communicative structures of medical education via internet are presented with their special features. The analysis shows that electronic medical communication has special features compared to everyday communication: A third participant role often is involved: the patient. Messages often are addressed to an unspecified partner or to an unspecified partner within a group. Addressing in this case is (at least partially) role-based. Communication and message often directly (rather than indirectly) influence actions of the participants. Communication often is heavily regulated including legal implications like liability, and more. The conclusion from the analysis is that the development of telemedical applications so far did not sufficiently take communicative structures into consideration. Based on these results recommendations for future developments of telemedical applications/services are given.

  15. HESS Opinions Catchments as meta-organisms - a new blueprint for hydrological modelling

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert H. G.; Hrachowitz, Markus

    2017-02-01

    Catchment-scale hydrological models frequently miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem. It manipulates and partitions moisture in a way that supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, establishing a continuous, ever-evolving feedback loop with the landscape and climatic drivers. In brief, hydrological systems are alive and have a strong capacity to adjust themselves to prevailing and changing environmental conditions. Although most models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian theory on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. In addition, catchments, such as many other natural systems, do not only evolve over time, but develop features of spatial organization, including surface or sub-surface drainage patterns, as a by-product of this evolution. Models that fail to account for patterns and the associated feedbacks miss a critical element of how systems at the interface of atmosphere, biosphere and pedosphere function. In contrast to what is widely believed, relatively simple, semi-distributed conceptual models have the potential to accommodate organizational features and their temporal evolution in an efficient way, a reason for that being that because their parameters (and their evolution over time) are effective at the modelling scale, and thus integrate natural heterogeneity within the system, they may be directly inferred from observations at the same scale, reducing the need for calibration and related problems. In particular, the emergence of new and more detailed observation systems from space will lead towards a more robust understanding of spatial organization and its evolution. This will further permit the development of relatively simple time-dynamic functional relationships that can meaningfully represent spatial patterns and their evolution over time, even in poorly gauged environments.

  16. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo

    PubMed Central

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-01-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan–Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  17. Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar

    2017-12-01

    In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.

  18. Spectrum of mucocutaneous manifestations in 277 patients with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Castori, Marco; Dordoni, Chiara; Morlino, Silvia; Sperduti, Isabella; Ritelli, Marco; Valiante, Michele; Chiarelli, Nicola; Zanca, Arianna; Celletti, Claudia; Venturini, Marina; Camerota, Filippo; Calzavara-Pinton, Piergiacomo; Grammatico, Paola; Colombi, Marina

    2015-03-01

    Cutaneous manifestations are a diagnostic criterion of Ehlers-Danlos syndrome, hypermobility type (EDS-HT) and joint hypermobility syndrome (JHS). These two conditions, originally considered different disorders, are now accepted as clinically indistinguishable and often segregate as a single-familial trait. EDS-HT and JHS are still exclusion diagnoses not supported by any specific laboratory test. Accuracy of clinical diagnosis is, therefore, crucial for appropriate patients' classification and management, but it is actually hampered by the low consistency of many applied criteria including the cutaneous one. We report on mucocutaneous findings in 277 patients with JHS/EDS-HT with both sexes and various ages. Sixteen objective and five anamnestic items were selected and ascertained in two specialized outpatient clinics. Feature rates were compared by sex and age by a series of statistical tools. Data were also used for a multivariate correspondence analysis with the attempt to identify non-causal associations of features depicting recognizable phenotypic clusters. Our findings identified a few differences between sexes and thus indicated an attenuated sexual dimorphism for mucocutaneous features in JHS/EDS-HT. Ten features showed significantly distinct rates at different ages and this evidence corroborated the concept of an evolving phenotype in JHS/EDS-HT also affecting the skin. Multivariate correspondence analysis identified three relatively discrete phenotypic profiles, which may represent the cutaneous counterparts of the three disease phases previously proposed for JHS/EDS-HT. These findings could be used for revising the cutaneous criterion in a future consensus for the clinical diagnosis of JHS/EDS-HT. © 2015 Wiley Periodicals, Inc.

  19. Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    PubMed Central

    Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming

    2010-01-01

    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687

  20. Plates and Mantle Convection: A Far-From Equilibrium Self-Organized System

    NASA Astrophysics Data System (ADS)

    King, S. D.; Lowman, J. P.; Gable, C. W.

    2001-12-01

    A common observation of plate tectonics is that plate velocities change over short time scales. Some have speculated that these reorganization events are triggered by evolving plate boundaries. This work presents an alternative mechanism, due to the interaction of mobil plates and internally heated convection. We present numerical models of 3D Cartesian convection in an internally-heated fluid with mobile plates that exhibit rapid changes in plate motion. A persistent feature of these calculations is that plate motion is relatively uniform punctuated by rapid reorganization events where plate speed and direction change over a short time period. The rapid changes in plate motion result solely from the interaction of internally-heated convection and the mobile plates. Without plates, the convective planform of an internally-heated fluid evolves into a pattern with a larger number of small cells. When plates are included, the fluid is dominated by plate-scale structures; however, isolated regions develop where heat builds up. These isolated regions are near the location of mature slabs where the plates are older and thicker. As the system evolves, the temperature (and buoyancy) in these isolated regions increases, they become unstable and, as they rise, the net force on the plate is no longer dominated by `slab pull' from the mature slab. The plate reorganization allows the system to transfer heat from the short-wavelength, internal-heating scale, to the longer-wavelength, plate-cooling scale. As we will demonstrate, the interaction between plate motions and the mantle is sufficiently dynamic that evolving plate boundaries are not necessary to achieve rapid changes in plate motion.

  1. Infrared thermal imaging in medicine.

    PubMed

    Ring, E F J; Ammer, K

    2012-03-01

    This review describes the features of modern infrared imaging technology and the standardization protocols for thermal imaging in medicine. The technique essentially uses naturally emitted infrared radiation from the skin surface. Recent studies have investigated the influence of equipment and the methods of image recording. The credibility and acceptance of thermal imaging in medicine is subject to critical use of the technology and proper understanding of thermal physiology. Finally, we review established and evolving medical applications for thermal imaging, including inflammatory diseases, complex regional pain syndrome and Raynaud's phenomenon. Recent interest in the potential applications for fever screening is described, and some other areas of medicine where some research papers have included thermal imaging as an assessment modality. In certain applications thermal imaging is shown to provide objective measurement of temperature changes that are clinically significant.

  2. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    PubMed Central

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of biological materials with diverse morphologies. The SilkSlider predictor software developed here is available at https://github.com/wwood/SilkSlider. PMID:27415783

  3. Classification of chemical substances, reactions, and interactions: The effect of expertise

    NASA Astrophysics Data System (ADS)

    Stains, Marilyne Nicole Olivia

    2007-12-01

    This project explored the strategies that undergraduate and graduate chemistry students engaged in when solving classification tasks involving microscopic (particulate) representations of chemical substances and microscopic and symbolic representations of different chemical reactions. We were specifically interested in characterizing the basic features to which students pay attention while classifying, identifying the patterns of reasoning that they follow, and comparing the performance of students with different levels of preparation in the discipline. In general, our results suggest that advanced levels of expertise in chemical classification do not necessarily evolve in a linear and continuous way with academic training. Novice students had a tendency to reduce the cognitive demand of the task and rely on common-sense reasoning; they had difficulties differentiating concepts (conceptual undifferentiation) and based their classification decisions on only one variable (reduction). These ways of thinking lead them to consider extraneous features, pay more attention to explicit or surface features than implicit features and to overlook important and relevant features. However, unfamiliar levels of representations (microscopic level) seemed to trigger deeper and more meaningful thinking processes. On the other hand, expert students classified entities using a specific set of rules that they applied throughout the classification tasks. They considered a larger variety of implicit features and the unfamiliarity with the microscopic level of representation did not affect their reasoning processes. Consequently, novices created numerous small groups, few of them being chemically meaningful, while experts created few but large chemically meaningful groups. Novices also had difficulties correctly classifying entities in chemically meaningful groups. Finally, expert chemists in our study used classification schemes that are not necessarily traditionally taught in classroom chemistry (e.g. the structure of substances is more relevant to them than their composition when classifying substances as compounds or elements). This result suggests that practice in the field may develop different types of knowledge framework than those usually presented in chemistry textbooks.

  4. Quantitative analysis of adipose tissue on chest CT to predict primary graft dysfunction in lung transplant recipients: a novel optimal biomarker approach

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Wang, Chuang; Wu, Caiyun; Pednekar, Gargi; Restivo, Michaela D.; Lederer, David J.; Christie, Jason D.; Torigian, Drew A.

    2018-02-01

    In this study, patients who underwent lung transplantation are categorized into two groups of successful (positive) or failed (negative) transplantations according to primary graft dysfunction (PGD), i.e., acute lung injury within 72 hours of lung transplantation. Obesity or being underweight is associated with an increased risk of PGD. Adipose quantification and characterization via computed tomography (CT) imaging is an evolving topic of interest. However, very little research of PGD prediction using adipose quantity or characteristics derived from medical images has been performed. The aim of this study is to explore image-based features of thoracic adipose tissue on pre-operative chest CT to distinguish between the above two groups of patients. 140 unenhanced chest CT images from three lung transplant centers (Columbia, Penn, and Duke) are included in this study. 124 patients are in the successful group and 16 in failure group. Chest CT slices at the T7 and T8 vertebral levels are captured to represent the thoracic fat burden by using a standardized anatomic space (SAS) approach. Fat (subcutaneous adipose tissue (SAT)/ visceral adipose tissue (VAT)) intensity and texture properties (1142 in total) for each patient are collected, and then an optimal feature set is selected to maximize feature independence and separation between the two groups. Leave-one-out and leave-ten-out crossvalidation strategies are adopted to test the prediction ability based on those selected features all of which came from VAT texture properties. Accuracy of prediction (ACC), sensitivity (SEN), specificity (SPE), and area under the curve (AUC) of 0.87/0.97, 0.87/0.97, 0.88/1.00, and 0.88/0.99, respectively are achieved by the method. The optimal feature set includes only 5 features (also all from VAT), which might suggest that thoracic VAT plays a more important role than SAT in predicting PGD in lung transplant recipients.

  5. Diagnosis and Management of Autoimmune Hepatitis: Current Status and Future Directions

    PubMed Central

    Czaja, Albert J.

    2016-01-01

    Autoimmune hepatitis is characterized by autoantibodies, hypergammaglobulinemia, and interface hepatitis on histological examination. The features lack diagnostic specificity, and other diseases that may resemble autoimmune hepatitis must be excluded. The clinical presentation may be acute, acute severe (fulminant), or asymptomatic; conventional autoantibodies may be absent; centrilobular necrosis and bile duct changes may be present; and the disease may occur after liver transplantation or with features that suggest overlapping disorders. The diagnostic criteria have been codified, and diagnostic scoring systems can support clinical judgment. Nonstandard autoantibodies, including antibodies to actin, α-actinin, soluble liver antigen, perinuclear antineutrophil antigen, asialoglycoprotein receptor, and liver cytosol type 1, are tools that can support the diagnosis, especially in patients with atypical features. Prednisone or prednisolone in combination with azathioprine is the preferred treatment, and strategies using these medications in various doses can ameliorate treatment failure, incomplete response, drug intolerance, and relapse after drug withdrawal. Budesonide, mycophenolate mofetil, and calcineurin inhibitors can be considered in selected patients as frontline or salvage therapies. Molecular (recombinant proteins and monoclonal antibodies), cellular (adoptive transfer and antigenic manipulation), and pharmacological (antioxidants, antifibrotics, and antiapoptotic agents) interventions constitute future directions in management. The evolving knowledge of the pathogenic pathways and the advances in technology promise new management algorithms. PMID:26934884

  6. Glycosyltransferase-mediated Sweet Modification in Oral Streptococci.

    PubMed

    Zhu, F; Zhang, H; Wu, H

    2015-05-01

    Bacterial glycosyltransferases play important roles in bacterial fitness and virulence. Oral streptococci have evolved diverse strategies to survive and thrive in the carbohydrate-rich oral cavity. In this review, we discuss 2 important biological processes mediated by 2 distinct groups of glycosyltransferases in oral streptococci that are important for bacterial colonization and virulence. The first process is the glycosylation of highly conserved serine-rich repeat adhesins by a series of glycosyltransferases. Using Streptococcus parasanguinis as a model, we highlight new features of several glycosyltransferases that sequentially modify the serine-rich glycoprotein Fap1. Distinct features of a novel glycosyltransferase fold from a domain of unknown function 1792 are contrasted with common properties of canonical glycosyltransferases. The second biological process we cover is involved in building sticky glucan matrix to establish cariogenic biofilms by an important opportunistic pathogen Streptococcus mutans through the action of a family of 3 glucosyltransferases. We focus on discussing the structural feature of this family as a glycoside hydrolase family of enzymes. While the 2 processes are distinct, they all produce carbohydrate-coated biomolecules, which enable bacteria to stick better in the complex oral microbiome. Understanding the making of the sweet modification presents a unique opportunity to develop novel antiadhesion and antibiofilm strategies to fight infections by oral streptococci and beyond. © International & American Associations for Dental Research 2015.

  7. Glycosyltransferase-mediated Sweet Modification in Oral Streptococci

    PubMed Central

    Zhu, F.; Zhang, H.

    2015-01-01

    Bacterial glycosyltransferases play important roles in bacterial fitness and virulence. Oral streptococci have evolved diverse strategies to survive and thrive in the carbohydrate-rich oral cavity. In this review, we discuss 2 important biological processes mediated by 2 distinct groups of glycosyltransferases in oral streptococci that are important for bacterial colonization and virulence. The first process is the glycosylation of highly conserved serine-rich repeat adhesins by a series of glycosyltransferases. Using Streptococcus parasanguinis as a model, we highlight new features of several glycosyltransferases that sequentially modify the serine-rich glycoprotein Fap1. Distinct features of a novel glycosyltransferase fold from a domain of unknown function 1792 are contrasted with common properties of canonical glycosyltransferases. The second biological process we cover is involved in building sticky glucan matrix to establish cariogenic biofilms by an important opportunistic pathogen Streptococcus mutans through the action of a family of 3 glucosyltransferases. We focus on discussing the structural feature of this family as a glycoside hydrolase family of enzymes. While the 2 processes are distinct, they all produce carbohydrate-coated biomolecules, which enable bacteria to stick better in the complex oral microbiome. Understanding the making of the sweet modification presents a unique opportunity to develop novel antiadhesion and antibiofilm strategies to fight infections by oral streptococci and beyond. PMID:25755271

  8. CD8+ TIL recruitment may revert the association of MAGE A3 with aggressive features in thyroid tumors.

    PubMed

    Martins, Mariana Bonjiorno; Marcello, Marjory Alana; Batista, Fernando de Assis; Cunha, Lucas Leite; Morari, Elaine Cristina; Soares, Fernando Augusto; Vassallo, José; Ward, Laura Sterian

    2014-01-01

    We aimed to investigate a possible role of MAGE A3 and its associations with infiltrated immune cells in thyroid malignancy, analyzing their utility as a diagnostic and prognostic marker. We studied 195 malignant tissues: 154 PTCs and 41 FTCs; 102 benign tissues: 51 follicular adenomas and 51 goiter and 17 normal thyroid tissues. MAGE A3 and immune cell markers (CD4 and CD8) were evaluated using immunohistochemistry and compared with clinical pathological features. The semiquantitative analysis and ACIS III analysis showed similar results. MAGE A3 was expressed in more malignant than in benign lesions (P < 0.0001), also helping to discriminate follicular-patterned lesions. It was also higher in tumors in which there was extrathyroidal invasion (P = 0.0206) and in patients with stage II disease (P = 0.0107). MAGE A3+ tumors were more likely to present CD8+ TIL (P = 0.0346), and these tumors were associated with less aggressive features, that is, extrathyroidal invasion and small size. There was a trend of MAGE A3+ CD8+ tumors to evolve free of disease. We demonstrated that MAGE A3 and CD8+ TIL infiltration may play an important role in malignant thyroid nodules, presenting an interesting perspective for new researches on DTC immunotherapy.

  9. Isolating signatures of major cloud-cloud collisions using position-velocity diagrams

    NASA Astrophysics Data System (ADS)

    Haworth, T. J.; Tasker, E. J.; Fukui, Y.; Torii, K.; Dale, J. E.; Shima, K.; Takahira, K.; Habe, A.; Hasegawa, K.

    2015-06-01

    Collisions between giant molecular clouds are a potential mechanism for triggering the formation of massive stars, or even super star clusters. The trouble is identifying this process observationally and distinguishing it from other mechanisms. We produce synthetic position-velocity diagrams from models of cloud-cloud collisions, non-interacting clouds along the line of sight, clouds with internal radiative feedback and a more complex cloud evolving in a galactic disc, to try and identify unique signatures of collision. We find that a broad bridge feature connecting two intensity peaks, spatially correlated but separated in velocity, is a signature of a high-velocity cloud-cloud collision. We show that the broad bridge feature is resilient to the effects of radiative feedback, at least to around 2.5 Myr after the formation of the first massive (ionizing) star. However for a head-on 10 km s-1 collision, we find that this will only be observable from 20 to 30 per cent of viewing angles. Such broad-bridge features have been identified towards M20, a very young region of massive star formation that was concluded to be a site of cloud-cloud collision by Torii et al., and also towards star formation in the outer Milky Way by Izumi et al.

  10. The 2010 AOP Workshop Summary Report

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Morrow, John H.; Brown, James W.; Firestone, Elaine R.

    2011-01-01

    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT.

  11. Beneficial influences of systemic cooperation and sociological behavior on longevity.

    PubMed

    Mountz, John D; Zant, Gary Van; Allison, David B; Zhang, Huang-Ge; Hsu, Hui-Chen

    2002-04-30

    During his long research career in the field of aging, Dr Bernard Strehler developed a series of theories concerning the identity of genes that can promote longevity and their role in natural selection. As a tribute to Dr Strehler, we have taken this opportunity to summarize a selection of these theories and to illustrate how these insights have influenced our search for longevity genes within the immune system. The identification of longevity genes has proven difficult. We believe that, at least in part, this reflects the emphasis on the concept of survival of the 'physically' fittest. We have used the immune system as a model to demonstrate that, over and above the self-evident advantage of those genes that contribute the attributes commonly associated with survival of the 'physically' fittest, those genes that lead to a predisposition to cooperate also confer a competitive survival advantage. As the acquisition of cooperativity in a society is linked to support mechanisms provided by older individuals, the search for longevity genes should not be limited to those genes that are associated with extended expression of a youthful phenotype. Rather these studies should be expanded to include identification of those genes that regulate physiologic parameters that affect individual longevity, even if they do not correspond with the traditional view of reproductive competitiveness. At the societal level, longevity genes may encode attributes that regulate sociologic or psychological parameters that may contribute to a tendency to non-aggressive or cooperative behavior that leads to achievement of common goals necessary for the survival of the species. This view of the selection for longevity impacts the analysis of longevity genes and aging at the organismal level. Dr Strehler viewed organismal aging as an integrated functional state, in which he conceived the outcome as reflecting the net balance of functional decrementers and evolved compensatory features. We propose that, in more evolved species, the longevity genes will be those genes, or sets of genes, that counterbalance of age-related functional decrementers with the age-related manifestation of evolved compensatory features. Thus, as illustrated here through analysis of the immune system, the longevity genes may well be those genes that promote overall systemic cooperation and compensation within the immune system and associated systems, rather than the genes that prevent age-related alterations in only one or a limited number of pathways.

  12. Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events

    NASA Technical Reports Server (NTRS)

    Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor); Maker, Paul D. (Inventor); Wilson, Daniel W. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

  13. Direct numerical simulation of transitional and turbulent flow over a heated flat plate using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    1995-01-01

    This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.

  14. A new multiscale air quality transport model (Fluidity, 4.1.9) using fully unstructured anisotropic adaptive mesh technology

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-06-01

    A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.

  15. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  16. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    PubMed Central

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375

  17. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.

    PubMed

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi R; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M; Fidler, Isaiah J; Cantley, Lewis C; Locasale, Jason W; Weihua, Zhang

    2015-02-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. ©2014 American Association for Cancer Research.

  18. Rigorously defined hemicrania continua presenting bilaterally.

    PubMed

    Southerland, Andrew M; Login, Ivan S

    2011-10-01

    Hemicrania continua (HC) is a headache syndrome characterized by continuous, unilateral head pain, autonomic features, and a complete therapeutic response to indomethacin. Although HC is classified as a unique entity among primary headache disorders, it clearly shares features with other primary headaches, including trigeminal autonomic cephalalgias, and chronic daily headaches, such as chronic migraine and chronic tension-type headache. In addition, the diagnosis is often delayed secondary to a relatively low incidence and the occurrence of some phenotypic variability as found in previous case series. A 62-year-old woman presented with 5 months of unremitting, bilateral headache with significant autonomic symptoms during exacerbations of pain. Neurological examination and imaging studies were normal. After failure to respond to numerous previous therapeutic medicines and interventions, she experienced complete resolution following administration of indomethacin and eventual remission on sustained treatment. This case demonstrates that hemicrania continua with requisite autonomic features can occur in a purely bilateral form. Although the definitive aspects of HC continue to evolve, a bilateral headache meeting the current criteria warrants a therapeutic trial of indomethacin.

  19. Lithium in giant stars in NGC 752 and M67

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine; Saha, A.; Hobbs, L. M.

    1988-04-01

    Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.

  20. X-ray signatures: New time scales and spectral features

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1977-01-01

    The millisecond bursts from Cyg X-1 are investigated and the overall chaotic variability for the bulk of the Cyg X-1 emission is compared to that of Sco X-1, showing that the essential character is remarkably similar (i.e. shot noise) although the fundamental time scales involved differ widely, from a fraction of a second (for Cyg X-1) to a fraction of a day (for Sco X-1). Recent OSO-8 observations of spectra features attributable to iron are reviewed. In particular, line emission is discussed within the context of a model for thermal radiation by a hot evolved gas in systems as different as supernova remnants and clusters of galaxies. Newly observed spectral structure in the emission from the X-ray pulsar Her X-1 is reported.

  1. SLEEP AND CIRCADIAN RHYTHM DISORDERS IN PARKINSON'S DISEASE.

    PubMed

    Gros, Priti; Videnovic, Aleksandar

    2017-09-01

    Sleep disorders are among the most challenging non-motor features of Parkinson's disease (PD) and significantly affect quality of life. Research in this field has gained recent interest among clinicians and scientists and is rapidly evolving. This review is dedicated to sleep and circadian dysfunction associated with PD. Most primary sleep disorders may co-exist with PD; majority of these disorders have unique features when expressed in the PD population. We discuss the specific considerations related to the common sleep problems in Parkinson's disease including insomnia, rapid eye movement sleep behavior disorder, restless legs syndrome, sleep disordered breathing, excessive daytime sleepiness and circadian rhythm disorders. Within each of these sleep disorders, we present updated definitions, epidemiology, etiology, diagnosis, clinical implications and management. Furthermore, areas of potential interest for further research are outlined.

  2. Colonize, evade, flourish

    PubMed Central

    Rubin, Erica J; Trent, M Stephen

    2013-01-01

    Helicobacter pylori is an adapted gastric pathogen that colonizes the human stomach, causing severe gastritis and gastric cancer. A hallmark of infection is the ability of this organism to evade detection by the human immune system. H. pylori has evolved a number of features to achieve this, many of which involve glyco-conjugates including the lipopolysaccharide, peptidoglycan layer, glycoproteins, and glucosylated cholesterol. These major bacterial components possess unique features from those of other gram-negative organisms, including differences in structure, assembly, and modification. These defining characteristics of H. pylori glycobiology help the pathogen establish a long-lived infection by providing camouflage, modulating the host immune response, and promoting virulence mechanisms. In this way, glyco-conjugates are essential for H. pylori pathogenicity and survival, allowing it to carve out a niche in the formidable environment of the human stomach. PMID:23859890

  3. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  4. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  5. The plight of the bees

    USGS Publications Warehouse

    Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.

    2011-01-01

    The loss of biodiversity is a trend that is garnering much concern. As organisms have evolved mutualistic and synergistic relationships, the loss of one or a few species can have a much wider environmental impact. Since much pollination is facilitated by bees, the reported colony collapse disorder has many worried of widespread agricultural fallout and thus deleterious impact on human foodstocks. In this Feature, Spivak et al. review what is known of the present state of bee populations and provide information on how to mitigate and reverse the trend.

  6. Advances in Machine Technology.

    PubMed

    Clark, William R; Villa, Gianluca; Neri, Mauro; Ronco, Claudio

    2018-01-01

    Continuous renal replacement therapy (CRRT) machines have evolved into devices specifically designed for critically ill over the past 40 years. In this chapter, a brief history of this evolution is first provided, with emphasis on the manner in which changes have been made to address the specific needs of the critically ill patient with acute kidney injury. Subsequently, specific examples of technology developments for CRRT machines are discussed, including the user interface, pumps, pressure monitoring, safety features, and anticoagulation capabilities. © 2018 S. Karger AG, Basel.

  7. The horse-collar aurora - A frequent pattern of the aurora in quiet times

    NASA Technical Reports Server (NTRS)

    Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Evans, D. S.; Newell, P. T.

    1989-01-01

    The frequent appearance of the 'horse-collar aurora' pattern in quiet-time DE 1 images is reported, presenting a two-hour image sequence that displays the basic features and shows that it sometimes evolves toward the theta configuration. There is some evidence for interplanetary magnetic field B(y) influence on the temporal development of the pattern. A preliminary statistical analysis finds the pattern appearing in one-third or more of the image sequences recorded during quiet times.

  8. Empirical justification of the elementary model of money circulation

    NASA Astrophysics Data System (ADS)

    Schinckus, Christophe; Altukhov, Yurii A.; Pokrovskii, Vladimir N.

    2018-03-01

    This paper proposes an elementary model describing the money circulation for a system, composed by a production system, the government, a central bank, commercial banks and their customers. A set of equations for the system determines the main features of interaction between the production and the money circulation. It is shown, that the money system can evolve independently of the evolution of production. The model can be applied to any national economy but we will illustrate our claim in the context of the Russian monetary system.

  9. Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina

    2011-10-01

    A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.

  10. Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos

    DOE PAGES

    Kanungo, R.; Horiuchi, W.; Hagen, Gaute; ...

    2016-09-02

    We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

  11. The Past, Present, and Future of Astronomical Data Formats

    NASA Astrophysics Data System (ADS)

    Mink, J.; Mann, R. G.; Hanisch, R.; Rots, A.; Seaman, R.; Jenness, T.; Thomas, B.; O'Mullane, W.

    2015-09-01

    The future of astronomy is inextricably entwined with the care and feeding of astronomical data products. Community standards such as FITS and NDF have been instrumental in the success of numerous astronomy projects. Their very success challenges us to entertain pragmatic strategies to adapt and evolve the standards to meet the aggressive data-handling requirements of facilities now being designed and built. We discuss characteristics that have made standards successful in the past, as well as desirable features for the future, and an open discussion follows.

  12. Feasibility study of an Integrated Program for Aerospace-vehicle Design (IPAD) system. Volume 4: Design of the IPAD system. Part 1: IPAD system design requirements, phase 1, task 2

    NASA Technical Reports Server (NTRS)

    Garrocq, C. A.; Hurley, M. J.

    1973-01-01

    System requirements, software elements, and hardware equipment required for an IPAD system are defined. An IPAD conceptual design was evolved, a potential user survey was conducted, and work loads for various types of interactive terminals were projected. Various features of major host computing systems were compared, and target systems were selected in order to identify the various elements of software required.

  13. Image processing and 3D visualization in forensic pathologic examination

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Altschuler, Bruce R.

    1996-02-01

    The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing and three-dimensional visualization in the analysis of patterned injuries and tissue damage. While image processing will never replace classical understanding and interpretation of how injuries develop and evolve, it can be a useful tool in helping an observer notice features in an image, may help provide correlation of surface to deep tissue injury, and provide a mechanism for the development of a metric for analyzing how likely it may be that a given object may have caused a given wound. We are also exploring methods of acquiring three-dimensional data for such measurements, which is the subject of a second paper.

  14. High Velocity Horizontal Motions at the Edge of Sunspot Penumbrae

    NASA Astrophysics Data System (ADS)

    Hagenaar-Daggett, Hermance J.; Shine, R.

    2010-05-01

    The outer edges of sunspot penumbrae have long been noted as a region of interesting dynamics including formation of MMFs, extensions and retractions of the penumbral tips, fast moving (2-3 km/s) bright features dubbed"streakers", and localized regions of high speed downflows interpreted as Evershed "sinks". Using 30s cadence movies of high spatial resolution G band and Ca II H images taken by the Hinode SOT/FPP instrument from 5-7 Jan 2007, we have been investigating the penumbra around a sunspot in AR 10933. In addition to the expected phenomena, we also see occasional small dark crescent-shaped features with high horizontal velocities (6.5 km/s) in G band movies. These appear to be emitted from penumbral tips. They travel about 1.5 Mm developing a bright wake that evolves into a slower moving (1-2 km/s) bright feature. In some cases, there may be an earlier outward propagating disturbance within the penumbra. We have also analyzed available Fe 6302 Stokes V images to obtain information on the magnetic field. Although only lower resolution 6302 images made with a slower cadence are available for these particular data sets, we can establish that the features have the opposite magnetic polarity of the sunspot. This observation may be in agreement with simulations showing that a horizontal flux tube develops crests that move outward with a velocity as large as 10 km/s. This work was supported by NASA contract NNM07AA01C.

  15. Exocomet Orbit Fitting: Accelerating Coma Absorption During Transits of β Pictoris

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.

    2018-06-01

    Comets are a remarkable feature in our night sky, visible on their passage through the inner Solar system as the Sun's energy sublimates ices and liberates surface material, generating beautiful comae, dust, and ion tails. Comets are also thought to orbit other stars, and are the most promising interpretation of sporadic absorption features (i.e. transits) seen in spectra of stars such as β Pictoris and 49 Ceti. These "exocomets" are thought to form and evolve in the same way as in the Solar system, and as in the Solar system we may gain insight into their origins by deriving their orbits. In the case of β Pictoris, orbits have been estimated indirectly, using the radial velocity of the absorption features coupled with a physical evaporation model to estimate the stellocentric distance at transit dtr. Here, we note that the inferred dtr imply that some absorption signatures should accelerate over several hours, and show that this acceleration is indeed seen in HARPS spectra. This new constraint means that orbital characteristics can be obtained directly, and the pericentre distance and longitude constrained when parabolic orbits are assumed. The results from fitting orbits to 12 accelerating features, and a handful of non-accelerating ones, are in broad agreement with previous estimates based on an evaporation model, thereby providing some validation of the exocomet hypothesis. A prediction of the evaporation model, that coma absorption is deeper for more distant transits, is also seen here.

  16. Nitrate and Moisture Content of Broad Permafrost Landscape Features in the Barrow Peninsula: Predicting Evolving NO3 Concentrations in a Changing Arctic

    NASA Astrophysics Data System (ADS)

    Arendt, C. A.; Heikoop, J. M.; Newman, B. D.; Wales, N. A.; McCaully, R. E.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    The geochemical evolution of Arctic regions as permafrost degrades, significantly impacts nutrient availability. The release of nitrogen compounds from permafrost degradation fertilizes both microbial decomposition and plant productivity. Arctic warming promotes permafrost degradation, causing geomorphic and hydrologic transitions that have the potential to convert saturated zones to unsaturated zones and subsequently alter the nitrate production capacity of permafrost regions. Changes in Nitrate (NO3-) content associated with shifting moisture regimes are a primary factor determining Arctic fertilization and subsequent primary productivity, and have direct feedbacks to carbon cycling. We have documented a broad survey of co-located soil moisture and nitrate concentration measurements in shallow active layer regions across a variety of topographic features in the expansive continuous permafrost region encompassing the Barrow Peninsula of Alaska. Topographic features of interest are slightly higher relative to surrounding landscapes with drier soils and elevated nitrate, including the rims of low centered polygons, the centers of flat and high centered polygons, the rims of young, old and ancient drain thaw lake basins and drainage slopes that exist across the landscape. With this information, we model the nitrate inventory of the Barrow Peninsula using multiple geospatial approaches to estimate total area cover by unsaturated features of interest and further predict how various drying scenarios increase the magnitude of nitrate produced in degrading permafrost regions across the Arctic. This work is supported by the US Department of Energy Next Generation Ecosystem Experiment, NGEE-Arctic.

  17. A graph-theoretic approach for inparalog detection.

    PubMed

    Tremblay-Savard, Olivier; Swenson, Krister M

    2012-01-01

    Understanding the history of a gene family that evolves through duplication, speciation, and loss is a fundamental problem in comparative genomics. Features such as function, position, and structural similarity between genes are intimately connected to this history; relationships between genes such as orthology (genes related through a speciation event) or paralogy (genes related through a duplication event) are usually correlated with these features. For example, recent work has shown that in human and mouse there is a strong connection between function and inparalogs, the paralogs that were created since the speciation event separating the human and mouse lineages. Methods exist for detecting inparalogs that either use information from only two species, or consider a set of species but rely on clustering methods. In this paper we present a graph-theoretic approach for finding lower bounds on the number of inparalogs for a given set of species; we pose an edge covering problem on the similarity graph and give an efficient 2/3-approximation as well as a faster heuristic. Since the physical position of inparalogs corresponding to recent speciations is not likely to have changed since the duplication, we also use our predictions to estimate the types of duplications that have occurred in some vertebrates and drosophila.

  18. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  19. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  20. Evolution of democracy in Europe

    NASA Astrophysics Data System (ADS)

    Oberoi, Mukesh K.

    The emphasis of this thesis is to build an intuitive and robust GIS (Geographic Information systems) Tool which will give a survey on the evolution of democracy in European countries. The user can know about the evolution of the democratic histories of these countries by just clicking on them on the map. The information is provided in separate HTML pages which will give information about start of revolution, transition to democracy, current legislature, women's status in the country etc. There are two separate web pages for each country- one shows the detailed explanation on how democracy evolved in diff. countries and another page contains a timeline which holds key events of the evolution. The tool has been developed in JAVA. For the European map MOJO (Map Objects Java Objects) is used. MOJO is developed by ESRI. The major features shown on the European map were designed using MOJO. MOJO made it easy to incorporate the statistical data with these features. The user interface, as well as the language was intentionally kept simple and easy to use, to broaden the potential audience. To keep the user engaged, key aspects are explained using HTML pages. The idea is that users can view the timeline to get a quick overview and can go through the other html page to learn about things in more detail.

Top