Sample records for evolving weighted networks

  1. Surrogate-assisted identification of influences of network construction on evolving weighted functional networks

    NASA Astrophysics Data System (ADS)

    Stahn, Kirsten; Lehnertz, Klaus

    2017-12-01

    We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.

  2. Weighted Scaling in Non-growth Random Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li

    2012-09-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  3. Effects of Vertex Activity and Self-organized Criticality Behavior on a Weighted Evolving Network

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Qing; Yang, Qiu-Ying; Chen, Tian-Lun

    2008-08-01

    Effects of vertex activity have been analyzed on a weighted evolving network. The network is characterized by the probability distribution of vertex strength, each edge weight and evolution of the strength of vertices with different vertex activities. The model exhibits self-organized criticality behavior. The probability distribution of avalanche size for different network sizes is also shown. In addition, there is a power law relation between the size and the duration of an avalanche and the average of avalanche size has been studied for different vertex activities.

  4. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    PubMed Central

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641

  5. The General Evolving Model for Energy Supply-Demand Network with Local-World

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Han, Dun; Li, Dandan; Fang, Cuicui

    2013-10-01

    In this paper, two general bipartite network evolving models for energy supply-demand network with local-world are proposed. The node weight distribution, the "shifting coefficient" and the scaling exponent of two different kinds of nodes are presented by the mean-field theory. The numerical results of the node weight distribution and the edge weight distribution are also investigated. The production's shifted power law (SPL) distribution of coal enterprises and the installed capacity's distribution of power plants in the US are obtained from the empirical analysis. Numerical simulations and empirical results are given to verify the theoretical results.

  6. a Weighted Local-World Evolving Network Model Based on the Edge Weights Preferential Selection

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhao, Qingzhen; Wang, Haitang

    2013-05-01

    In this paper, we use the edge weights preferential attachment mechanism to build a new local-world evolutionary model for weighted networks. It is different from previous papers that the local-world of our model consists of edges instead of nodes. Each time step, we connect a new node to two existing nodes in the local-world through the edge weights preferential selection. Theoretical analysis and numerical simulations show that the scale of the local-world affect on the weight distribution, the strength distribution and the degree distribution. We give the simulations about the clustering coefficient and the dynamics of infectious diseases spreading. The weight dynamics of our network model can portray the structure of realistic networks such as neural network of the nematode C. elegans and Online Social Network.

  7. A model for the emergence of cooperation, interdependence, and structure in evolving networks.

    PubMed

    Jain, S; Krishna, S

    2001-01-16

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  8. A model for the emergence of cooperation, interdependence, and structure in evolving networks

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay; Krishna, Sandeep

    2001-01-01

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  9. Self-organization of complex networks as a dynamical system

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  10. Self-organization of complex networks as a dynamical system.

    PubMed

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  11. A new evolutionary system for evolving artificial neural networks.

    PubMed

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  12. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  13. Empirical investigation of topological and weighted properties of a bus transport network from China

    NASA Astrophysics Data System (ADS)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  14. Charting epilepsy by searching for intelligence in network space with the help of evolving autonomous agents.

    PubMed

    Ohayon, Elan L; Kalitzin, Stiliyan; Suffczynski, Piotr; Jin, Frank Y; Tsang, Paul W; Borrett, Donald S; Burnham, W McIntyre; Kwan, Hon C

    2004-01-01

    The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.

  15. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  16. Impact analysis of two kinds of failure strategies in Beijing road transportation network

    NASA Astrophysics Data System (ADS)

    Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan

    The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.

  17. Evolving cell models for systems and synthetic biology.

    PubMed

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  18. Evolving neural networks through augmenting topologies.

    PubMed

    Stanley, Kenneth O; Miikkulainen, Risto

    2002-01-01

    An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

  19. Emergence of bursts and communities in evolving weighted networks.

    PubMed

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2011-01-01

    Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  20. Social networks in cardiovascular disease management.

    PubMed

    Shaya, Fadia T; Yan, Xia; Farshid, Maryam; Barakat, Samer; Jung, Miah; Low, Sara; Fedder, Donald

    2010-12-01

    Cardiovascular disease remains the leading cause of death in the USA. Social networks have a positive association with obesity, smoking cessation and weight loss. This article summarizes studies evaluating the impact of social networks on the management of cardiovascular disease. The 35 studies included in the article describe the impact of social networks on a decreased incidence of cardiovascular disease, depression and mortality. In addition, having a large-sized social network is also associated with better outcomes and improved health. The role of pharmacists is beginning to play an important role in the patient-centered medical home, which needs to be incorporated into social networks. The patient-centered medical home can serve as an adaptive source for social network evolvement.

  1. Undermining and Strengthening Social Networks through Network Modification

    PubMed Central

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-01-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention. PMID:27703198

  2. Undermining and Strengthening Social Networks through Network Modification.

    PubMed

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-05

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  3. Undermining and Strengthening Social Networks through Network Modification

    NASA Astrophysics Data System (ADS)

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  4. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    PubMed

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  5. Increases in Network Ties Are Associated with Increased Cohesion among Intervention Participants

    ERIC Educational Resources Information Center

    Gesell, Sabina B.; Barkin, Shari L.; Sommer, Evan C.; Thompson, Jessica R.; Valente, Thomas W.

    2016-01-01

    Objective: Many behavior change programs are delivered in group settings to manage implementation costs and to foster support and interactions among group members in order to facilitate behavior change. Understanding the group dynamics that evolve in group settings (e.g., weight management, Alcoholics Anonymous) is important, yet rarely measured.…

  6. Investigation of rat exploratory behavior via evolving artificial neural networks.

    PubMed

    Costa, Ariadne de Andrade; Tinós, Renato

    2016-09-01

    Neuroevolution comprises the use of evolutionary computation to define the architecture and/or to train artificial neural networks (ANNs). This strategy has been employed to investigate the behavior of rats in the elevated plus-maze, which is a widely used tool for studying anxiety in mice and rats. Here we propose a neuroevolutionary model, in which both the weights and the architecture of artificial neural networks (our virtual rats) are evolved by a genetic algorithm. This model is an improvement of a previous model that involves the evolution of just the weights of the ANN by the genetic algorithm. In order to compare both models, we analyzed traditional measures of anxiety behavior, like the time spent and the number of entries in both open and closed arms of the maze. When compared to real rat data, our findings suggest that the results from the model introduced here are statistically better than those from other models in the literature. In this way, the neuroevolution of architecture is clearly important for the development of the virtual rats. Moreover, this technique allowed the comprehension of the importance of different sensory units and different number of hidden neurons (performing as memory) in the ANNs (virtual rats). Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Weighted and directed interactions in evolving large-scale epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus

    2016-10-01

    Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.

  8. The structure and resilience of financial market networks

    NASA Astrophysics Data System (ADS)

    Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.

    2012-03-01

    Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.

  9. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  10. A networks-based discrete dynamic systems approach to volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Suteanu, Mirela

    2013-04-01

    The detection and relevant description of pattern change concerning earthquake events is an important, but challenging task. In this paper, earthquake events related to volcanic activity are considered manifestations of a dynamic system evolving over time. The system dynamics is seen as a succession of events with point-like appearance both in time and in space. Each event is characterized by a position in three-dimensional space, a moment of occurrence, and an event size (magnitude). A weighted directed network is constructed to capture the effects of earthquakes on subsequent events. Each seismic event represents a node. Relations among events represent edges. Edge directions are given by the temporal succession of the events. Edges are also characterized by weights reflecting the strengths of the relation between the nodes. Weights are calculated as a function of (i) the time interval separating the two events, (ii) the spatial distance between the events, (iii) the magnitude of the earliest event among the two. Different ways of addressing weight components are explored, and their implications for the properties of the produced networks are analyzed. The resulting networks are then characterized in terms of degree- and weight distributions. Subsequently, the distribution of system transitions is determined for all the edges connecting related events in the network. Two- and three-dimensional diagrams are constructed to reflect transition distributions for each set of events. Networks are thus generated for successive temporal windows of different size, and the evolution of (a) network properties and (b) system transition distributions are followed over time and compared to the timeline of documented geologic processes. Applications concerning volcanic seismicity on the Big Island of Hawaii show that this approach is capable of revealing novel aspects of change occurring in the volcanic system on different scales in time and in space.

  11. The evolution of communities in the international oil trade network

    NASA Astrophysics Data System (ADS)

    Zhong, Weiqiong; An, Haizhong; Gao, Xiangyun; Sun, Xiaoqi

    2014-11-01

    International oil trade is a subset of global trade and there exist oil trade communities. These communities evolve over time and provide clues of international oil trade patterns. A better understanding of the international oil trade patterns is necessary for governments in policy making. To study the evolution of trade communities in the international oil trade network, we set up unweighted and weighted oil trade network models based on complex network theory using data from 2002 to 2011. We detected the communities in the oil trade networks and analyzed their evolutionary properties and stabilities over time. We found that the unweighted and weighted international oil trade networks show many different features in terms of community number, community scale, distribution of countries, quality of partitions, and stability of communities. Two turning points occurred in the evolution of community stability in the international oil trade network. One is the year 2004-2005 which correlates with changes in demand and supply in the world oil market after the Iraq War, and the other is the year 2008-2009 which is connected to the 2008 financial crisis. Different causations of instability show different features and this should be considered by policy makers.

  12. Mean-field theory of a plastic network of integrate-and-fire neurons.

    PubMed

    Chen, Chun-Chung; Jasnow, David

    2010-01-01

    We consider a noise-driven network of integrate-and-fire neurons. The network evolves as result of the activities of the neurons following spike-timing-dependent plasticity rules. We apply a self-consistent mean-field theory to the system to obtain the mean activity level for the system as a function of the mean synaptic weight, which predicts a first-order transition and hysteresis between a noise-dominated regime and a regime of persistent neural activity. Assuming Poisson firing statistics for the neurons, the plasticity dynamics of a synapse under the influence of the mean-field environment can be mapped to the dynamics of an asymmetric random walk in synaptic-weight space. Using a master equation for small steps, we predict a narrow distribution of synaptic weights that scales with the square root of the plasticity rate for the stationary state of the system given plausible physiological parameter values describing neural transmission and plasticity. The dependence of the distribution on the synaptic weight of the mean-field environment allows us to determine the mean synaptic weight self-consistently. The effect of fluctuations in the total synaptic conductance and plasticity step sizes are also considered. Such fluctuations result in a smoothing of the first-order transition for low number of afferent synapses per neuron and a broadening of the synaptic-weight distribution, respectively.

  13. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  14. A further analysis of the role of heterogeneity in coevolutionary spatial games

    NASA Astrophysics Data System (ADS)

    Cardinot, Marcos; Griffith, Josephine; O'Riordan, Colm

    2018-03-01

    Heterogeneity has been studied as one of the most common explanations of the puzzle of cooperation in social dilemmas. A large number of papers have been published discussing the effects of increasing heterogeneity in structured populations of agents, where it has been established that heterogeneity may favour cooperative behaviour if it supports agents to locally coordinate their strategies. In this paper, assuming an existing model of a heterogeneous weighted network, we aim to further this analysis by exploring the relationship (if any) between heterogeneity and cooperation. We adopt a weighted network which is fully populated by agents playing both the Prisoner's Dilemma or the Optional Prisoner's Dilemma games with coevolutionary rules, i.e., not only the strategies but also the link weights evolve over time. Surprisingly, results show that the heterogeneity of link weights (states) on their own does not always promote cooperation; rather cooperation is actually favoured by the increase in the number of overlapping states and not by the heterogeneity itself. We believe that these results can guide further research towards a more accurate analysis of the role of heterogeneity in social dilemmas.

  15. The super-Turing computational power of plastic recurrent neural networks.

    PubMed

    Cabessa, Jérémie; Siegelmann, Hava T

    2014-12-01

    We study the computational capabilities of a biologically inspired neural model where the synaptic weights, the connectivity pattern, and the number of neurons can evolve over time rather than stay static. Our study focuses on the mere concept of plasticity of the model so that the nature of the updates is assumed to be not constrained. In this context, we show that the so-called plastic recurrent neural networks (RNNs) are capable of the precise super-Turing computational power--as the static analog neural networks--irrespective of whether their synaptic weights are modeled by rational or real numbers, and moreover, irrespective of whether their patterns of plasticity are restricted to bi-valued updates or expressed by any other more general form of updating. Consequently, the incorporation of only bi-valued plastic capabilities in a basic model of RNNs suffices to break the Turing barrier and achieve the super-Turing level of computation. The consideration of more general mechanisms of architectural plasticity or of real synaptic weights does not further increase the capabilities of the networks. These results support the claim that the general mechanism of plasticity is crucially involved in the computational and dynamical capabilities of biological neural networks. They further show that the super-Turing level of computation reflects in a suitable way the capabilities of brain-like models of computation.

  16. Efficiency Analysis of Integrated Public Hospital Networks in Outpatient Internal Medicine.

    PubMed

    Ortíz-Barrios, Miguel Angel; Escorcia-Caballero, Juan P; Sánchez-Sánchez, Fabián; De Felice, Fabio; Petrillo, Antonella

    2017-09-07

    Healthcare systems are evolving towards a complex network of interconnected services due to the increasing costs and the increasing expectations for high service levels. It is evidenced in the literature the importance of implementing management techniques and sophisticated methods to improve the efficiency of healthcare systems, especially in emerging economies. This paper proposes an integrated collaboration model between two public hospitals to reach the reduction of weighted average lead time in outpatient internal medicine department. A strategic framework based on value stream mapping and collaborative practices has been developed in real case study settled in Colombia.

  17. Insight to the express transport network

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Nie, Yuchao; Zhang, Hongbin; Di, Zengru; Fan, Ying

    2009-09-01

    The express delivery industry is developing rapidly in recent years and has attracted attention in many fields. Express shipment service requires that parcels be delivered in a limited time with a low operation cost, which requests a high level and efficient express transport network (ETN). The ETN is constructed based on the public transport networks, especially the airline network. It is similar to the airline network in some aspects, while it has its own feature. With the complex network theory, the topological properties of the ETN are analyzed deeply. We find that the ETN has the small-world property, with disassortative mixing behavior and rich club phenomenon. It also shows difference from the airline network in some features, such as edge density and average shortest path. Analysis on the corresponding distance-weighted network shows that the distance distribution displays a truncated power-law behavior. At last, an evolving model, which takes both geographical constraint and preference attachment into account, is proposed. The model shows similar properties with the empirical results.

  18. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  19. Context-aided analysis of community evolution in networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose

    Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less

  20. Context-aided analysis of community evolution in networks

    DOE PAGES

    Pallotta, Giuliana; Konjevod, Goran; Cadena, Jose; ...

    2017-09-15

    Here, we are interested in detecting and analyzing global changes in dynamic networks (networks that evolve with time). More precisely, we consider changes in the activity distribution within the network, in terms of density (ie, edge existence) and intensity (ie, edge weight). Detecting change in local properties, as well as individual measurements or metrics, has been well studied and often reduces to traditional statistical process control. In contrast, detecting change in larger scale structure of the network is more challenging and not as well understood. We address this problem by proposing a framework for detecting change in network structure basedmore » on separate pieces: a probabilistic model for partitioning nodes by their behavior, a label-unswitching heuristic, and an approach to change detection for sequences of complex objects. We examine the performance of one instantiation of such a framework using mostly previously available pieces. The dataset we use for these investigations is the publicly available New York City Taxi and Limousine Commission dataset covering all taxi trips in New York City since 2009. Using it, we investigate the evolution of an ensemble of networks under different spatiotemporal resolutions. We identify the community structure by fitting a weighted stochastic block model. In conclusion, we offer insights on different node ranking and clustering methods, their ability to capture the rhythm of life in the Big Apple, and their potential usefulness in highlighting changes in the underlying network structure.« less

  1. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  2. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural network and algorithm is that each update of synaptic weights takes place in conjunction with the addition of another hidden unit, which then remains in place as still other hidden units are added on subsequent iterations. For a given training pattern, the synaptic weight between (1) the inputs and the previously added hidden units and (2) the newly added hidden unit is updated by an amount proportional to the partial derivative of a quadratic error function with respect to the synaptic weight. The synaptic weight between the newly added hidden unit and each output unit is given by a more complex function that involves the errors between the outputs and their target values, the transfer functions (hyperbolic tangents) of the neural units, and the derivatives of the transfer functions.

  3. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  4. Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity

    PubMed Central

    Effenberger, Felix; Jost, Jürgen; Levina, Anna

    2015-01-01

    Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425

  5. Perturbation propagation in random and evolved Boolean networks

    NASA Astrophysics Data System (ADS)

    Fretter, Christoph; Szejka, Agnes; Drossel, Barbara

    2009-03-01

    In this paper, we investigate the propagation of perturbations in Boolean networks by evaluating the Derrida plot and its modifications. We show that even small random Boolean networks agree well with the predictions of the annealed approximation, but nonrandom networks show a very different behaviour. We focus on networks that were evolved for high dynamical robustness. The most important conclusion is that the simple distinction between frozen, critical and chaotic networks is no longer useful, since such evolved networks can display the properties of all three types of networks. Furthermore, we evaluate a simplified empirical network and show how its specific state space properties are reflected in the modified Derrida plots.

  6. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-12-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  7. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  8. Dynamic social networks facilitate cooperation in the N-player Prisoner’s Dilemma

    NASA Astrophysics Data System (ADS)

    Rezaei, Golriz; Kirley, Michael

    2012-12-01

    Understanding how cooperative behaviour evolves in network communities, where the individual members interact via social dilemma games, is an on-going challenge. In this paper, we introduce a social network based model to investigate the evolution of cooperation in the N-player Prisoner’s Dilemma game. As such, this work complements previous studies focused on multi-player social dilemma games and endogenous networks. Agents in our model, employ different game-playing strategies reflecting varying cognitive capacities. When an agent plays cooperatively, a social link is formed with each of the other N-1 group members. Subsequent cooperative actions reinforce this link. However, when an agent defects, the links in the social network are broken. Computational simulations across a range of parameter settings are used to examine different scenarios: varying population and group sizes; the group formation process (or partner selection); and agent decision-making strategies under varying dilemma constraints (cost-to-benefit ratios), including a “discriminator” strategy where the action is based on a function of the weighted links within an agent’s social network. The simulation results show that the proposed social network model is able to evolve and maintain cooperation. As expected, as the value of N increases the equilibrium proportion of cooperators in the population decreases. In addition, this outcome is dependent on the dilemma constraint (cost-to-benefit ratio). However, in some circumstances the dynamic social network plays an increasingly important role in promoting and sustaining cooperation, especially when the agents adopt the discriminator strategy. The adjustment of social links results in the formation of communities of “like-minded” agents. Subsequently, this local optimal behaviour promotes the evolution of cooperative behaviour at the system level.

  9. Evolving Digital Ecological Networks

    PubMed Central

    Wagner, Aaron P.; Ofria, Charles

    2013-01-01

    “It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370

  10. Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matulef, Kevin Michael

    The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less

  11. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  12. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  14. Effects of topology on network evolution

    NASA Astrophysics Data System (ADS)

    Oikonomou, Panos; Cluzel, Philippe

    2006-08-01

    The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.

  15. The Evolutionary Origins of Hierarchy

    PubMed Central

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  16. The Evolutionary Origins of Hierarchy.

    PubMed

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  17. Complex network view of evolving manifolds

    NASA Astrophysics Data System (ADS)

    da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2018-03-01

    We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.

  18. Using artificial neural networks to constrain the halo baryon fraction during reionization

    NASA Astrophysics Data System (ADS)

    Sullivan, David; Iliev, Ilian T.; Dixon, Keri L.

    2018-01-01

    Radiative feedback from stars and galaxies has been proposed as a potential solution to many of the tensions with simplistic galaxy formation models based on Λcold dark matter, such as the faint end of the ultraviolet (UV) luminosity function. The total energy budget of radiation could exceed that of galactic winds and supernovae combined, which has driven the development of sophisticated algorithms that evolve both the radiation field and the hydrodynamical response of gas simultaneously, in a cosmological context. We probe self-feedback on galactic scales using the adaptive mesh refinement, radiative transfer, hydrodynamics, and N-body code RAMSES-RT. Unlike previous studies which assume a homogeneous UV background, we self-consistently evolve both the radiation field and gas to constrain the halo baryon fraction during cosmic reionization. We demonstrate that the characteristic halo mass with mean baryon fraction half the cosmic mean, Mc(z), shows very little variation as a function of mass-weighted ionization fraction. Furthermore, we find that the inclusion of metal cooling and the ability to resolve scales small enough for self-shielding to become efficient leads to a significant drop in Mc when compared to recent studies. Finally, we develop an artificial neural network that is capable of predicting the baryon fraction of haloes based on recent tidal interactions, gas temperature, and mass-weighted ionization fraction. Such a model can be applied to any reionization history, and trivially incorporated into semi-analytical models of galaxy formation.

  19. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  20. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks

    DOE PAGES

    Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...

    2015-09-12

    We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less

  1. Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility.

  2. Evolving phenotypic networks in silico.

    PubMed

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  4. Triadic motifs in the dependence networks of virtual societies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  5. Triadic motifs in the dependence networks of virtual societies

    PubMed Central

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  6. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  7. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    PubMed

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  8. Estimating the Importance of Terrorists in a Terror Network

    NASA Astrophysics Data System (ADS)

    Elhajj, Ahmed; Elsheikh, Abdallah; Addam, Omar; Alzohbi, Mohamad; Zarour, Omar; Aksaç, Alper; Öztürk, Orkun; Özyer, Tansel; Ridley, Mick; Alhajj, Reda

    While criminals may start their activities at individual level, the same is in general not true for terrorists who are mostly organized in well established networks. The effectiveness of a terror network could be realized by watching many factors, including the volume of activities accomplished by its members, the capabilities of its members to hide, and the ability of the network to grow and to maintain its influence even after the loss of some members, even leaders. Social network analysis, data mining and machine learning techniques could play important role in measuring the effectiveness of a network in general and in particular a terror network in support of the work presented in this chapter. We present a framework that employs clustering, frequent pattern mining and some social network analysis measures to determine the effectiveness of a network. The clustering and frequent pattern mining techniques start with the adjacency matrix of the network. For clustering, we utilize entries in the table by considering each row as an object and each column as a feature. Thus features of a network member are his/her direct neighbors. We maintain the weight of links in case of weighted network links. For frequent pattern mining, we consider each row of the adjacency matrix as a transaction and each column as an item. Further, we map entries into a 0/1 scale such that every entry whose value is greater than zero is assigned the value one; entries keep the value zero otherwise. This way we can apply frequent pattern mining algorithms to determine the most influential members in a network as well as the effect of removing some members or even links between members of a network. We also investigate the effect of adding some links between members. The target is to study how the various members in the network change role as the network evolves. This is measured by applying some social network analysis measures on the network at each stage during the development. We report some interesting results related to two benchmark networks: the first is 9/11 and the second is Madrid bombing.

  9. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    NASA Astrophysics Data System (ADS)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  10. Nature-Inspired Cognitive Evolution to Play MS. Pac-Man

    NASA Astrophysics Data System (ADS)

    Tan, Tse Guan; Teo, Jason; Anthony, Patricia

    Recent developments in nature-inspired computation have heightened the need for research into the three main areas of scientific, engineering and industrial applications. Some approaches have reported that it is able to solve dynamic problems and very useful for improving the performance of various complex systems. So far however, there has been little discussion about the effectiveness of the application of these models to computer and video games in particular. The focus of this research is to explore the hybridization of nature-inspired computation methods for optimization of neural network-based cognition in video games, in this case the combination of a neural network with an evolutionary algorithm. In essence, a neural network is an attempt to mimic the extremely complex human brain system, which is building an artificial brain that is able to self-learn intelligently. On the other hand, an evolutionary algorithm is to simulate the biological evolutionary processes that evolve potential solutions in order to solve the problems or tasks by applying the genetic operators such as crossover, mutation and selection into the solutions. This paper investigates the abilities of Evolution Strategies (ES) to evolve feed-forward artificial neural network's internal parameters (i.e. weight and bias values) for automatically generating Ms. Pac-man controllers. The main objective of this game is to clear a maze of dots while avoiding the ghosts and to achieve the highest possible score. The experimental results show that an ES-based system can be successfully applied to automatically generate artificial intelligence for a complex, dynamic and highly stochastic video game environment.

  11. Evolving gene regulation networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system

    PubMed Central

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L.

    2014-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs, their localized patterning into remarkably different cell types aggregated into variably sized parts of the central nervous system begin to emerge. Insights at the cellular and molecular level begin to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early and not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system. PMID:25416504

  12. Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.

    PubMed

    Fritzsch, Bernd; Jahan, Israt; Pan, Ning; Elliott, Karen L

    2015-01-01

    Understanding the evolution of the neurosensory system of man, able to reflect on its own origin, is one of the major goals of comparative neurobiology. Details of the origin of neurosensory cells, their aggregation into central nervous systems and associated sensory organs and their localized patterning leading to remarkably different cell types aggregated into variably sized parts of the central nervous system have begun to emerge. Insights at the cellular and molecular level have begun to shed some light on the evolution of neurosensory cells, partially covered in this review. Molecular evidence suggests that high mobility group (HMG) proteins of pre-metazoans evolved into the definitive Sox [SRY (sex determining region Y)-box] genes used for neurosensory precursor specification in metazoans. Likewise, pre-metazoan basic helix-loop-helix (bHLH) genes evolved in metazoans into the group A bHLH genes dedicated to neurosensory differentiation in bilaterians. Available evidence suggests that the Sox and bHLH genes evolved a cross-regulatory network able to synchronize expansion of precursor populations and their subsequent differentiation into novel parts of the brain or sensory organs. Molecular evidence suggests metazoans evolved patterning gene networks early, which were not dedicated to neuronal development. Only later in evolution were these patterning gene networks tied into the increasing complexity of diffusible factors, many of which were already present in pre-metazoans, to drive local patterning events. It appears that the evolving molecular basis of neurosensory cell development may have led, in interaction with differentially expressed patterning genes, to local network modifications guiding unique specializations of neurosensory cells into sensory organs and various areas of the central nervous system.

  13. Usefulness of Neuro-Fuzzy Models' Application for Tobacco Control

    NASA Astrophysics Data System (ADS)

    Petrovic-Lazarevic, Sonja; Zhang, Jian Ying

    2007-12-01

    The paper presents neuro-fuzzy models' application appropriate for tobacco control: the fuzzy control model, Adaptive Network Based Fuzzy Inference System, Evolving Fuzzy Neural Network models, and EVOlving POLicies. We propose further the use of Fuzzy Casual Networks to help tobacco control decision makers develop policies and measure their impact on social regulation.

  14. Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability

    PubMed Central

    Torres-Sosa, Christian; Huang, Sui; Aldana, Maximino

    2012-01-01

    Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape. PMID:22969419

  15. Estimation of Global Network Statistics from Incomplete Data

    PubMed Central

    Bliss, Catherine A.; Danforth, Christopher M.; Dodds, Peter Sheridan

    2014-01-01

    Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week. PMID:25338183

  16. Ranking in evolving complex networks

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  17. Analysis of the transmission characteristics of China's carbon market transaction price volatility from the perspective of a complex network.

    PubMed

    Jia, Jingjing; Li, Huajiao; Zhou, Jinsheng; Jiang, Meihui; Dong, Di

    2018-03-01

    Research on the price fluctuation transmission of the carbon trading pilot market is of great significance for the establishment of China's unified carbon market and its development in the future. In this paper, the carbon market transaction prices of Beijing, Shanghai, Tianjin, Shenzhen, and Guangdong were selected from December 29, 2013 to March 26, 2016, as sample data. Based on the view of the complex network theory, we construct a price fluctuation transmission network model of five pilot carbon markets in China, with the purposes of analyzing the topological features of this network, including point intensity, weighted clustering coefficient, betweenness centrality, and community structure, and elucidating the characteristics and transmission mechanism of price fluctuation in China's five pilot cities. The results of point intensity and weighted clustering coefficient show that the carbon prices in the five markets remained unchanged and transmitted smoothly in general, and price fragmentation is serious; however, at some point, the price fluctuates with mass phenomena. The result of betweenness centrality reflects that a small number of price fluctuations can control the whole market carbon price transmission and price fluctuation evolves in an alternate manner. The study provides direction for the scientific management of the carbon price. Policy makers should take a positive role in promoting market activity, preventing the risks that may arise from mass trade and scientifically forecasting the volatility of trading prices, which will provide experience for the establishment of a unified carbon market in China.

  18. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    PubMed

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  19. Towards a Framework for Evolvable Network Design

    NASA Astrophysics Data System (ADS)

    Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed

    The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.

  20. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  1. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In addition, two mass extinction events appear as "pinch points" in the network.

  2. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    PubMed Central

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  3. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis.

    PubMed

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jeongsik; Kim, Jin Hee; Woo, Hye Ryun; Hyeon, Changbong; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-05-22

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a "NAC troika," govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NAC s, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. Copyright © 2018 the Author(s). Published by PNAS.

  4. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis

    PubMed Central

    Kim, Hyo Jung; Park, Ji-Hwan; Kim, Jingil; Kim, Jung Ju; Hong, Sunghyun; Kim, Jin Hee; Woo, Hye Ryun; Lim, Pyung Ok; Nam, Hong Gil; Hwang, Daehee

    2018-01-01

    Senescence is controlled by time-evolving networks that describe the temporal transition of interactions among senescence regulators. Here, we present time-evolving networks for NAM/ATAF/CUC (NAC) transcription factors in Arabidopsis during leaf aging. The most evident characteristic of these time-dependent networks was a shift from positive to negative regulation among NACs at a presenescent stage. ANAC017, ANAC082, and ANAC090, referred to as a “NAC troika,” govern the positive-to-negative regulatory shift. Knockout of the NAC troika accelerated senescence and the induction of other NACs, whereas overexpression of the NAC troika had the opposite effects. Transcriptome and molecular analyses revealed shared suppression of senescence-promoting processes by the NAC troika, including salicylic acid (SA) and reactive oxygen species (ROS) responses, but with predominant regulation of SA and ROS responses by ANAC090 and ANAC017, respectively. Our time-evolving networks provide a unique regulatory module of presenescent repressors that direct the timely induction of senescence-promoting processes at the presenescent stage of leaf aging. PMID:29735710

  5. Signalling chains with probe and adjust learning

    NASA Astrophysics Data System (ADS)

    Gosti, Giorgio

    2018-04-01

    Many models explain the evolution of signalling in repeated stage games on social networks, differently in this study each signalling game evolves a communication strategy to transmit information across the network. Specifically, I formalise signalling chain games as a generalisation of Lewis' signalling games, where a number of players are placed on a chain network and play a signalling game in which they have to propagate information across the network. I show that probe and adjust learning allows the system to develop communication conventions, but it may temporarily perturb the system out of conventions. Through simulations, I evaluate how long the system takes to evolve a signalling convention and the amount of time it stays in it. This discussion presents a mechanism in which simple players can evolve signalling across a social network without necessarily understanding the entire system.

  6. Social networks: Evolving graphs with memory dependent edges

    NASA Astrophysics Data System (ADS)

    Grindrod, Peter; Parsons, Mark

    2011-10-01

    The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

  7. Ion track based tunable device as humidity sensor: a neural network approach

    NASA Astrophysics Data System (ADS)

    Sharma, Mamta; Sharma, Anuradha; Bhattacherjee, Vandana

    2013-01-01

    Artificial Neural Network (ANN) has been applied in statistical model development, adaptive control system, pattern recognition in data mining, and decision making under uncertainty. The nonlinear dependence of any sensor output on the input physical variable has been the motivation for many researchers to attempt unconventional modeling techniques such as neural networks and other machine learning approaches. Artificial neural network (ANN) is a computational tool inspired by the network of neurons in biological nervous system. It is a network consisting of arrays of artificial neurons linked together with different weights of connection. The states of the neurons as well as the weights of connections among them evolve according to certain learning rules.. In the present work we focus on the category of sensors which respond to electrical property changes such as impedance or capacitance. Recently, sensor materials have been embedded in etched tracks due to their nanometric dimensions and high aspect ratio which give high surface area available for exposure to sensing material. Various materials can be used for this purpose to probe physical (light intensity, temperature etc.), chemical (humidity, ammonia gas, alcohol etc.) or biological (germs, hormones etc.) parameters. The present work involves the application of TEMPOS structures as humidity sensors. The sample to be studied was prepared using the polymer electrolyte (PEO/NH4ClO4) with CdS nano-particles dispersed in the polymer electrolyte. In the present research we have attempted to correlate the combined effects of voltage and frequency on impedance of humidity sensors using a neural network model and results have indicated that the mean absolute error of the ANN Model for the training data was 3.95% while for the validation data it was 4.65%. The corresponding values for the LR model were 8.28% and 8.35% respectively. It was also demonstrated the percentage improvement of the ANN Model with respect to the linear regression model. This demonstrates the suitability of neural networks to perform such modeling.

  8. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms

    PubMed Central

    Vázquez, Roberto A.

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132

  9. Review of Literature on Mentorship Networks in Medicine: Where Are We Now and Where Are We Going?

    NASA Astrophysics Data System (ADS)

    Mickelson, Jennifer Judith

    Mentorship is imperative in medical training and conceptual frameworks for mentoring continue to evolve. This study is an integrated review of the literature on mentoring networks. A systematic review of the literature on mentoring networks identified 943 articles from multiple databases. 24 relevant articles under went qualitative analysis. An iterative approach was taken to formulate themes, subthemes and codes. Three major themes were identified. The first theme was that group or peer networks meet evolving and dynamic or changing needs through training and career development. A prominent subtheme was identified which was the need for mentees to be the architects or directors of their evolving mentorship networks. The second theme identified was that mentorship networks offered a solution to barriers associated with the dyad model of mentorship. The third theme was the importance of the informality or "voluntary marriages", as distinguished from structured formal programs, to create meaningful mentorship networks. Future directions of study include examining how to empower mentees to facilitate and direct their mentorship networks.

  10. Analysing published global Ebola Virus Disease research using social network analysis

    PubMed Central

    Hagel, Christiane; Weidemann, Felix; Gauch, Stephan; Edwards, Suzanne

    2017-01-01

    Introduction The 2014/2015 West African Ebola Virus Disease (EVD) outbreak attracted global attention. Numerous opinions claimed that the global response was impaired, in part because, the EVD research was neglected, although quantitative or qualitative studies did not exist. Our objective was to analyse how the EVD research landscape evolved by exploring the existing research network and its communities before and during the outbreak in West Africa. Methods/ Principal findings Social network analysis (SNA) was used to analyse collaborations between institutions named by co-authors as affiliations in publications on EVD. Bibliometric data of publications on EVD between 1976 and 2015 was collected from Thomson Reuters’ Web of Science Core Collection (WoS). Freely available software was used for network analysis at a global-level and for 10-year periods. The networks are presented as undirected-weighted graphs. Rankings by degree and betweenness were calculated to identify central and powerful network positions; modularity function was used to identify research communities. Overall 4,587 publications were identified, of which 2,528 were original research articles. Those yielded 1,644 authors’ affiliated institutions and 9,907 connections for co-authorship network construction. The majority of institutions were from the USA, Canada and Europe. Collaborations with research partners on the African continent did exist, but less frequently. Around six highly connected organisations in the network were identified with powerful and broker positions. Network characteristics varied widely among the 10-year periods and evolved from 30 to 1,489 institutions and 60 to 9,176 connections respectively. Most influential actors are from public or governmental institutions whereas private sector actors, in particular the pharmaceutical industry, are largely absent. Conclusion/ Significance Research output on EVD has increased over time and surged during the 2014/2015 outbreak. The overall EVD research network is organised around a few key actors, signalling a concentration of expertise but leaving room for increased cooperation with other institutions especially from affected countries. Finding innovative ways to maintain support for these pivotal actors while steering the global EVD research network towards an agenda driven by agreed, prioritized needs and finding ways to better integrate currently peripheral and newer expertise may accelerate the translation of research into the development of necessary live saving products for EVD ahead of the next outbreak. PMID:28991915

  11. Analysing published global Ebola Virus Disease research using social network analysis.

    PubMed

    Hagel, Christiane; Weidemann, Felix; Gauch, Stephan; Edwards, Suzanne; Tinnemann, Peter

    2017-10-01

    The 2014/2015 West African Ebola Virus Disease (EVD) outbreak attracted global attention. Numerous opinions claimed that the global response was impaired, in part because, the EVD research was neglected, although quantitative or qualitative studies did not exist. Our objective was to analyse how the EVD research landscape evolved by exploring the existing research network and its communities before and during the outbreak in West Africa. Social network analysis (SNA) was used to analyse collaborations between institutions named by co-authors as affiliations in publications on EVD. Bibliometric data of publications on EVD between 1976 and 2015 was collected from Thomson Reuters' Web of Science Core Collection (WoS). Freely available software was used for network analysis at a global-level and for 10-year periods. The networks are presented as undirected-weighted graphs. Rankings by degree and betweenness were calculated to identify central and powerful network positions; modularity function was used to identify research communities. Overall 4,587 publications were identified, of which 2,528 were original research articles. Those yielded 1,644 authors' affiliated institutions and 9,907 connections for co-authorship network construction. The majority of institutions were from the USA, Canada and Europe. Collaborations with research partners on the African continent did exist, but less frequently. Around six highly connected organisations in the network were identified with powerful and broker positions. Network characteristics varied widely among the 10-year periods and evolved from 30 to 1,489 institutions and 60 to 9,176 connections respectively. Most influential actors are from public or governmental institutions whereas private sector actors, in particular the pharmaceutical industry, are largely absent. Research output on EVD has increased over time and surged during the 2014/2015 outbreak. The overall EVD research network is organised around a few key actors, signalling a concentration of expertise but leaving room for increased cooperation with other institutions especially from affected countries. Finding innovative ways to maintain support for these pivotal actors while steering the global EVD research network towards an agenda driven by agreed, prioritized needs and finding ways to better integrate currently peripheral and newer expertise may accelerate the translation of research into the development of necessary live saving products for EVD ahead of the next outbreak.

  12. Neutral evolution of mutational robustness

    PubMed Central

    van Nimwegen, Erik; Crutchfield, James P.; Huynen, Martijn

    1999-01-01

    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population’s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network’s adjacency matrix. Moreover, the average number of neutral mutant neighbors per individual is given by the matrix spectral radius. These results quantify the extent to which populations evolve mutational robustness—the insensitivity of the phenotype to mutations—and thus reduce genetic load. Because the average neutrality is independent of evolutionary parameters—such as mutation rate, population size, and selective advantage—one can infer global statistics of neutral network topology by using simple population data available from in vitro or in vivo evolution. Populations evolving on neutral networks of RNA secondary structures show excellent agreement with our theoretical predictions. PMID:10449760

  13. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  14. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, R; Gallagher, B; Neville, J

    Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less

  15. Weighted projected networks: mapping hypergraphs to networks.

    PubMed

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  16. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  17. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000

    PubMed Central

    de Albuquerque, Fábio Suzart; Gregory, Andrew

    2017-01-01

    A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)–sites that efficiently represent species–for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR. PMID:28379991

  18. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000.

    PubMed

    Albuquerque, Fábio Suzart de; Gregory, Andrew

    2017-01-01

    A major challenge for biogeographers and conservation planners is to identify where to best locate or distribute high-priority areas for conservation and to explore whether these areas are well represented by conservation actions such as protected areas (PAs). We aimed to identify high-priority areas for conservation, expressed as hotpots of rarity-weighted richness (HRR)-sites that efficiently represent species-for birds across EU countries, and to explore whether HRR are well represented by the Natura 2000 network. Natura 2000 is an evolving network of PAs that seeks to conserve biodiversity through the persistence of the most patrimonial species and habitats across Europe. This network includes Sites of Community Importance (SCI) and Special Areas of Conservation (SAC), where the latter regulated the designation of Special Protected Areas (SPA). Distribution maps for 416 bird species and complementarity-based approaches were used to map geographical patterns of rarity-weighted richness (RWR) and HRR for birds. We used species accumulation index to evaluate whether RWR was efficient surrogates to identify HRRs for birds. The results of our analysis support the proposition that prioritizing sites in order of RWR is a reliable way to identify sites that efficiently represent birds. HRRs were concentrated in the Mediterranean Basin and alpine and boreal biogeographical regions of northern Europe. The cells with high RWR values did not correspond to cells where Natura 2000 was present. We suggest that patterns of RWR could become a focus for conservation biogeography. Our analysis demonstrates that identifying HRR is a robust approach for prioritizing management actions, and reveals the need for more conservation actions, especially on HRR.

  19. Scaling of Average Weighted Receiving Time on Double-Weighted Koch Networks

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Ye, Dandan; Hou, Jie; Li, Xingyi

    2015-03-01

    In this paper, we introduce a model of the double-weighted Koch networks based on actual road networks depending on the two weight factors w,r ∈ (0, 1]. The double weights represent the capacity-flowing weight and the cost-traveling weight, respectively. Denote by wFij the capacity-flowing weight connecting the nodes i and j, and denote by wCij the cost-traveling weight connecting the nodes i and j. Let wFij be related to the weight factor w, and let wCij be related to the weight factor r. This paper assumes that the walker, at each step, starting from its current node, moves to any of its neighbors with probability proportional to the capacity-flowing weight of edge linking them. The weighted time for two adjacency nodes is the cost-traveling weight connecting the two nodes. We define the average weighted receiving time (AWRT) on the double-weighted Koch networks. The obtained result displays that in the large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(w,r) = ½ log2(1 + 3wr). We show that the AWRT exhibits a sublinear or linear dependence on network order. Thus, the double-weighted Koch networks are more efficient than classic Koch networks in receiving information.

  20. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  1. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  2. Average receiving scaling of the weighted polygon Koch networks with the weight-dependent walk

    NASA Astrophysics Data System (ADS)

    Ye, Dandan; Dai, Meifeng; Sun, Yanqiu; Shao, Shuxiang; Xie, Qi

    2016-09-01

    Based on the weighted Koch networks and the self-similarity of fractals, we present a family of weighted polygon Koch networks with a weight factor r(0 < r ≤ 1) . We study the average receiving time (ART) on weight-dependent walk (i.e., the walker moves to any of its neighbors with probability proportional to the weight of edge linking them), whose key step is to calculate the sum of mean first-passage times (MFPTs) for all nodes absorpt at a hub node. We use a recursive division method to divide the weighted polygon Koch networks in order to calculate the ART scaling more conveniently. We show that the ART scaling exhibits a sublinear or linear dependence on network order. Thus, the weighted polygon Koch networks are more efficient than expended Koch networks in receiving information. Finally, compared with other previous studies' results (i.e., Koch networks, weighted Koch networks), we find out that our models are more general.

  3. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  4. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  5. Summarisation of weighted networks

    NASA Astrophysics Data System (ADS)

    Zhou, Fang; Qu, Qiang; Toivonen, Hannu

    2017-09-01

    Networks often contain implicit structure. We introduce novel problems and methods that look for structure in networks, by grouping nodes into supernodes and edges to superedges, and then make this structure visible to the user in a smaller generalised network. This task of finding generalisations of nodes and edges is formulated as 'network Summarisation'. We propose models and algorithms for networks that have weights on edges, on nodes or on both, and study three new variants of the network summarisation problem. In edge-based weighted network summarisation, the summarised network should preserve edge weights as well as possible. A wider class of settings is considered in path-based weighted network summarisation, where the resulting summarised network should preserve longer range connectivities between nodes. Node-based weighted network summarisation in turn allows weights also on nodes and summarisation aims to preserve more information related to high weight nodes. We study theoretical properties of these problems and show them to be NP-hard. We propose a range of heuristic generalisation algorithms with different trade-offs between complexity and quality of the result. Comprehensive experiments on real data show that weighted networks can be summarised efficiently with relatively little error.

  6. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    PubMed

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  7. History, Epidemic Evolution, and Model Burn-In for a Network of Annual Invasion: Soybean Rust.

    PubMed

    Sanatkar, M R; Scoglio, C; Natarajan, B; Isard, S A; Garrett, K A

    2015-07-01

    Ecological history may be an important driver of epidemics and disease emergence. We evaluated the role of history and two related concepts, the evolution of epidemics and the burn-in period required for fitting a model to epidemic observations, for the U.S. soybean rust epidemic (caused by Phakopsora pachyrhizi). This disease allows evaluation of replicate epidemics because the pathogen reinvades the United States each year. We used a new maximum likelihood estimation approach for fitting the network model based on observed U.S. epidemics. We evaluated the model burn-in period by comparing model fit based on each combination of other years of observation. When the miss error rates were weighted by 0.9 and false alarm error rates by 0.1, the mean error rate did decline, for most years, as more years were used to construct models. Models based on observations in years closer in time to the season being estimated gave lower miss error rates for later epidemic years. The weighted mean error rate was lower in backcasting than in forecasting, reflecting how the epidemic had evolved. Ongoing epidemic evolution, and potential model failure, can occur because of changes in climate, host resistance and spatial patterns, or pathogen evolution.

  8. Gravity effects on information filtering and network evolving.

    PubMed

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model.

  9. Gravity Effects on Information Filtering and Network Evolving

    PubMed Central

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  10. Environmental change makes robust ecological networks fragile

    USGS Publications Warehouse

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers’ tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems.

  11. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance here, cultural dissemination [47,12,48].Combining the effects of social influence and homophily naturally gives rise to an adaptive network, since social influence causes the states of agents that are strongly connected to become more similar, while homophily strengthens connections between agents whose states are already similar.1

  12. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  13. Implications of behavioral architecture for the evolution of self-organized division of labor.

    PubMed

    Duarte, A; Scholtens, E; Weissing, F J

    2012-01-01

    Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.

  14. Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor

    PubMed Central

    Duarte, A.; Scholtens, E.; Weissing, F. J.

    2012-01-01

    Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization. PMID:22457609

  15. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.

    PubMed

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.

  16. Characterizing the evolution of climate networks

    NASA Astrophysics Data System (ADS)

    Tupikina, L.; Rehfeld, K.; Molkenthin, N.; Stolbova, V.; Marwan, N.; Kurths, J.

    2014-06-01

    Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, Erdős-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.

  17. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  18. Adaptive control of dynamical synchronization on evolving networks with noise disturbances

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen

    2018-02-01

    In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).

  19. Long-legged bees make adaptive leaps: linking adaptation to coevolution in a plant-pollinator network.

    PubMed

    Pauw, Anton; Kahnt, Belinda; Kuhlmann, Michael; Michez, Denis; Montgomery, Graham A; Murray, Elizabeth; Danforth, Bryan N

    2017-09-13

    Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant-pollinator coevolution. © 2017 The Author(s).

  20. Environmental change makes robust ecological networks fragile

    PubMed Central

    Strona, Giovanni; Lafferty, Kevin D.

    2016-01-01

    Complex ecological networks appear robust to primary extinctions, possibly due to consumers' tendency to specialize on dependable (available and persistent) resources. However, modifications to the conditions under which the network has evolved might alter resource dependability. Here, we ask whether adaptation to historical conditions can increase community robustness, and whether such robustness can protect communities from collapse when conditions change. Using artificial life simulations, we first evolved digital consumer-resource networks that we subsequently subjected to rapid environmental change. We then investigated how empirical host–parasite networks would respond to historical, random and expected extinction sequences. In both the cases, networks were far more robust to historical conditions than new ones, suggesting that new environmental challenges, as expected under global change, might collapse otherwise robust natural ecosystems. PMID:27511722

  1. Analyses of the response of a complex weighted network to nodes removal strategies considering links weight: The case of the Beijing urban road system

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Lu, Zhe-Ming; Cassi, Davide; Scotognella, Francesco

    2018-02-01

    Complex network response to node loss is a central question in different fields of science ranging from physics, sociology, biology to ecology. Previous studies considered binary networks where the weight of the links is not accounted for. However, in real-world networks the weights of connections can be widely different. Here, we analyzed the response of real-world road traffic complex network of Beijing, the most prosperous city in China. We produced nodes removal attack simulations using classic binary node features and we introduced weighted ranks for node importance. We measured the network functioning during nodes removal with three different parameters: the size of the largest connected cluster (LCC), the binary network efficiency (Bin EFF) and the weighted network efficiency (Weg EFF). We find that removing nodes according to weighted rank, i.e. considering the weight of the links as a number of taxi flows along the roads, produced in general the highest damage in the system. Our results show that: (i) in order to model Beijing road complex networks response to nodes (intersections) failure, it is necessary to consider the weight of the links; (ii) to discover the best attack strategy, it is important to use nodes rank accounting links weight.

  2. Implications of network structure on public health collaboratives.

    PubMed

    Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M

    2013-10-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of these findings for research and practice are discussed.

  3. The influence of tie strength on evolutionary games on networks: An empirical investigation

    NASA Astrophysics Data System (ADS)

    Buesser, Pierre; Peña, Jorge; Pestelacci, Enea; Tomassini, Marco

    2011-11-01

    Extending previous work on unweighted networks, we present here a systematic numerical investigation of standard evolutionary games on weighted networks. In the absence of any reliable model for generating weighted social networks, we attribute weights to links in a few ways supported by empirical data ranging from totally uncorrelated to weighted bipartite networks. The results of the extensive simulation work on standard complex network models show that, except in a case that does not seem to be common in social networks, taking the tie strength into account does not change in a radical manner the long-run steady-state behavior of the studied games. Besides model networks, we also included a real-life case drawn from a coauthorship network. In this case also, taking the weights into account only changes the results slightly with respect to the raw unweighted graph, although to draw more reliable conclusions on real social networks many more cases should be studied as these weighted networks become available.

  4. Quantum games on evolving random networks

    NASA Astrophysics Data System (ADS)

    Pawela, Łukasz

    2016-09-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  5. Reciprocity of weighted networks

    PubMed Central

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation. PMID:24056721

  6. Reciprocity of weighted networks.

    PubMed

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation.

  7. Wideband, mobile networking technologies

    NASA Astrophysics Data System (ADS)

    Hyer, Kevin L.; Bowen, Douglas G.; Pulsipher, Dennis C.

    2005-05-01

    Ubiquitous communications will be the next era in the evolving communications revolution. From the human perspective, access to information will be instantaneous and provide a revolution in services available to both the consumer and the warfighter. Services will be from the mundane - anytime, anywhere access to any movie ever made - to the vital - reliable and immediate access to the analyzed real-time video from the multi-spectral sensors scanning for snipers in the next block. In the former example, the services rely on a fixed infrastructure of networking devices housed in controlled environments and coupled to fixed terrestrial fiber backbones - in the latter, the services are derived from an agile and highly mobile ad-hoc backbone established in a matter of minutes by size, weight, and power-constrained platforms. This network must mitigate significant changes in the transmission media caused by millisecond-scale atmospheric temperature variations, the deployment of smoke, or the drifting of a cloud. It must mitigate against structural obscurations, jet wash, or incapacitation of a node. To maintain vital connectivity, the mobile backbone must be predictive and self-healing on both near-real-time and real-time time scales. The nodes of this network must be reconfigurable to mitigate intentional and environmental jammers, block attackers, and alleviate interoperability concerns caused by changing standards. The nodes must support multi-access of disparate waveform and protocols.

  8. Vertical Transmission of Social Roles Drives Resilience to Poaching in Elephant Networks.

    PubMed

    Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George

    2016-01-11

    Network resilience to perturbation is fundamental to functionality in systems ranging from synthetic communication networks to evolved social organization [1]. While theoretical work offers insight into causes of network robustness, examination of natural networks can identify evolved mechanisms of resilience and how they are related to the selective pressures driving structure. Female African elephants (Loxodonta africana) exhibit complex social networks with node heterogeneity in which older individuals serve as connectivity hubs [2, 3]. Recent ivory poaching targeting older elephants in a well-studied population has mirrored the targeted removal of highly connected nodes in the theoretical literature that leads to structural collapse [4, 5]. Here we tested the response of this natural network to selective knockouts. We find that the hierarchical network topology characteristic of elephant societies was highly conserved across the 16-year study despite ∼70% turnover in individual composition of the population. At a population level, the oldest available individuals persisted to fill socially central positions in the network. For analyses using known mother-daughter pairs, social positions of daughters during the disrupted period were predicted by those of their mothers in years prior, were unrelated to individual histories of family mortality, and were actively built. As such, daughters replicated the social network roles of their mothers, driving the observed network resilience. Our study provides a rare bridge between network theory and an evolved system, demonstrating social redundancy to be the mechanism by which resilience to perturbation occurred in this socially advanced species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multifractal analysis and topological properties of a new family of weighted Koch networks

    NASA Astrophysics Data System (ADS)

    Huang, Da-Wen; Yu, Zu-Guo; Anh, Vo

    2017-03-01

    Weighted complex networks, especially scale-free networks, which characterize real-life systems better than non-weighted networks, have attracted considerable interest in recent years. Studies on the multifractality of weighted complex networks are still to be undertaken. In this paper, inspired by the concepts of Koch networks and Koch island, we propose a new family of weighted Koch networks, and investigate their multifractal behavior and topological properties. We find some key topological properties of the new networks: their vertex cumulative strength has a power-law distribution; there is a power-law relationship between their topological degree and weight strength; the networks have a high weighted clustering coefficient of 0.41004 (which is independent of the scaling factor c) in the limit of large generation t; the second smallest eigenvalue μ2 and the maximum eigenvalue μn are approximated by quartic polynomials of the scaling factor c for the general Laplacian operator, while μ2 is approximately a quartic polynomial of c and μn= 1.5 for the normalized Laplacian operator. Then, we find that weighted koch networks are both fractal and multifractal, their fractal dimension is influenced by the scaling factor c. We also apply these analyses to six real-world networks, and find that the multifractality in three of them are strong.

  10. Scale-free effect of substitution networks

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Yu, Zhouyu; Xi, Lifeng

    2018-02-01

    In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.

  11. Evolutionary Games in Multi-Agent Systems of Weighted Social Networks

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Zheng, Hao-Ran; Zhou, Hong; Hu, Mao-Bin

    Much empirical evidence has shown realistic networks are weighted. Compared with those on unweighted networks, the dynamics on weighted network often exhibit distinctly different phenomena. In this paper, we investigate the evolutionary game dynamics (prisoner's dilemma game and snowdrift game) on a weighted social network consisted of rational agents and focus on the evolution of cooperation in the system. Simulation results show that the cooperation level is strongly affected by the weighted nature of the network. Moreover, the variation of time series has also been investigated. Our work may be helpful in understanding the cooperative behavior in the social systems.

  12. Flow of Emotional Messages in Artificial Social Networks

    NASA Astrophysics Data System (ADS)

    Chmiel, Anna; Hołyst, Janusz A.

    Models of message flows in an artificial group of users communicating via the Internet are introduced and investigated using numerical simulations. We assumed that messages possess an emotional character with a positive valence and that the willingness to send the next affective message to a given person increases with the number of messages received from this person. As a result, the weights of links between group members evolve over time. Memory effects are introduced, taking into account that the preferential selection of message receivers depends on the communication intensity during the recent period only. We also model the phenomenon of secondary social sharing when the reception of an emotional e-mail triggers the distribution of several emotional e-mails to other people.

  13. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  14. Node property of weighted networks considering connectability to nodes within two degrees of separation.

    PubMed

    Amano, Sun-Ichi; Ogawa, Ken-Ichiro; Miyake, Yoshihiro

    2018-05-31

    Weighted networks have been extensively studied because they can represent various phenomena in which the diversity of edges is essential. To investigate the properties of weighted networks, various centrality measures have been proposed, such as strength, weighted clustering coefficients, and weighted betweenness centrality. In such measures, only direct connections or entire network connectivity from arbitrary nodes have been used to calculate the connectivity of each node. However, in weighted networks composed of autonomous elements such as humans, middle ranges from each node are also considered to be meaningful for characterizing each node's connectability. In this study, we define a new node property in weighted networks to consider connectability to nodes within a range of two degrees of separation, then apply this new centrality to face-to-face human communication networks in corporate organizations. Our results show that the proposed centrality distinguishes inherent communities corresponding to the job types in each organization with a high degree of accuracy. This indicates the possibility that connectability to nodes within two degrees of separation reveals potential trends of weighted networks that are not apparent from conventional measures.

  15. Comparison of weighted and unweighted network analysis in the case of a pig trade network in Northern Germany.

    PubMed

    Büttner, Kathrin; Krieter, Joachim

    2018-08-01

    The analysis of trade networks as well as the spread of diseases within these systems focuses mainly on pure animal movements between farms. However, additional data included as edge weights can complement the informational content of the network analysis. However, the inclusion of edge weights can also alter the outcome of the network analysis. Thus, the aim of the study was to compare unweighted and weighted network analyses of a pork supply chain in Northern Germany and to evaluate the impact on the centrality parameters. Five different weighted network versions were constructed by adding the following edge weights: number of trade contacts, number of delivered livestock, average number of delivered livestock per trade contact, geographical distance and reciprocal geographical distance. Additionally, two different edge weight standardizations were used. The network observed from 2013 to 2014 contained 678 farms which were connected by 1,018 edges. General network characteristics including shortest path structure (e.g. identical shortest paths, shortest path lengths) as well as centrality parameters for each network version were calculated. Furthermore, the targeted and the random removal of farms were performed in order to evaluate the structural changes in the networks. All network versions and edge weight standardizations revealed the same number of shortest paths (1,935). Between 94.4 to 98.9% of the unweighted network and the weighted network versions were identical. Furthermore, depending on the calculated centrality parameters and the edge weight standardization used, it could be shown that the weighted network versions differed from the unweighted network (e.g. for the centrality parameters based on ingoing trade contacts) or did not differ (e.g. for the centrality parameters based on the outgoing trade contacts) with regard to the Spearman Rank Correlation and the targeted removal of farms. The choice of standardization method as well as the inclusion or exclusion of specific farm types (e.g. abattoirs) can alter the results significantly. These facts have to be considered when centrality parameters are to be used for the implementation of prevention and control strategies in the case of an epidemic. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Average weighted receiving time on the non-homogeneous double-weighted fractal networks

    NASA Astrophysics Data System (ADS)

    Ye, Dandan; Dai, Meifeng; Sun, Yu; Su, Weiyi

    2017-05-01

    In this paper, based on actual road networks, a model of the non-homogeneous double-weighted fractal networks is introduced depending on the number of copies s and two kinds of weight factors wi ,ri(i = 1 , 2 , … , s) . The double-weights represent the capacity-flowing weights and the cost-traveling weights, respectively. Denote by wijF the capacity-flowing weight connecting the nodes i and j, and denote by wijC the cost-traveling weight connecting the nodes i and j. Let wijF be related to the weight factors w1 ,w2 , … ,ws, and let wijC be related to the weight factors r1 ,r2 , … ,rs. Assuming that the walker, at each step, starting from its current node, moves to any of its neighbors with probability proportional to the capacity-flowing weight of edge linking them. The weighted time for two adjacency nodes is the cost-traveling weight connecting the two nodes. The average weighted receiving time (AWRT) is defined on the non-homogeneous double-weighted fractal networks. AWRT depends on the relationships of the number of copies s and two kinds of weight factors wi ,ri(i = 1 , 2 , … , s) . The obtained remarkable results display that in the large network, the AWRT grows as a power-law function of the network size Ng with the exponent, represented by θ =logs(w1r1 +w2r2 + ⋯ +wsrs) < 1 when w1r1 +w2r2 + ⋯ +wsrs ≠ 1, which means that the smaller the value of w1r1 +w2r2 + ⋯ +wsrs is, the more efficient the process of receiving information is. Especially when w1r1 +w2r2 + ⋯ +wsrs = 1, AWRT grows with increasing order Ng as logNg or (logNg) 2 . In the classic fractal networks, the average receiving time (ART) grows with linearly with the network size Ng. Thus, the non-homogeneous double-weighted fractal networks are more efficient than classic fractal networks in term of receiving information.

  17. On the Deduction of Galactic Abundances with Evolutionary Neural Networks

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Diaz, A. I.

    2007-12-01

    A growing number of indicators are now being used with some confidence to measure the metallicity(Z) of photoionisation regions in planetary nebulae, galactic HII regions(GHIIRs), extra-galactic HII regions(EGHIIRs) and HII galaxies(HIIGs). However, a universal indicator valid also at high metallicities has yet to be found. Here, we report on a new artificial intelligence-based approach to determine metallicity indicators that shows promise for the provision of improved empirical fits. The method hinges on the application of an evolutionary neural network to observational emission line data. The network's DNA, encoded in its architecture, weights and neuron transfer functions, is evolved using a genetic algorithm. Furthermore, selection, operating on a set of 10 distinct neuron transfer functions, means that the empirical relation encoded in the network solution architecture is in functional rather than numerical form. Thus the network solutions provide an equation for the metallicity in terms of line ratios without a priori assumptions. Tapping into the mathematical power offered by this approach, we applied the network to detailed observations of both nebula and auroral emission lines from 0.33μ m-1μ m for a sample of 96 HII-type regions and we were able to obtain an empirical relation between Z and S_{23} with a dispersion of only 0.16 dex. We show how the method can be used to identify new diagnostics as well as the nonlinear relationship supposed to exist between the metallicity Z, ionisation parameter U and effective (or equivalent) temperature T*.

  18. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  19. Evolving network simulation study. From regular lattice to scale free network

    NASA Astrophysics Data System (ADS)

    Makowiec, D.

    2005-12-01

    The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

  20. Recovering time-varying networks of dependencies in social and biological studies.

    PubMed

    Ahmed, Amr; Xing, Eric P

    2009-07-21

    A plausible representation of the relational information among entities in dynamic systems such as a living cell or a social community is a stochastic network that is topologically rewiring and semantically evolving over time. Although there is a rich literature in modeling static or temporally invariant networks, little has been done toward recovering the network structure when the networks are not observable in a dynamic context. In this article, we present a machine learning method called TESLA, which builds on a temporally smoothed l(1)-regularized logistic regression formalism that can be cast as a standard convex-optimization problem and solved efficiently by using generic solvers scalable to large networks. We report promising results on recovering simulated time-varying networks and on reverse engineering the latent sequence of temporally rewiring political and academic social networks from longitudinal data, and the evolving gene networks over >4,000 genes during the life cycle of Drosophila melanogaster from a microarray time course at a resolution limited only by sample frequency.

  1. Resiliently evolving supply-demand networks

    NASA Astrophysics Data System (ADS)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  2. Efficient weighting strategy for enhancing synchronizability of complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan

    2018-04-01

    Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.

  3. Small Worldness in Dense and Weighted Connectomes

    NASA Astrophysics Data System (ADS)

    Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas

    2016-05-01

    The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.

  4. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  5. Internet Basics. ERIC Digest.

    ERIC Educational Resources Information Center

    Tennant, Roy

    The Internet is a worldwide network of computer networks. In the United States, the National Science Foundation Network (NSFNet) serves as the Internet "backbone" (a very high speed network that connects key regions across the country). The NSFNet will likely evolve into the National Research and Education Network (NREN) as defined in…

  6. The evolvability of programmable hardware.

    PubMed

    Raman, Karthik; Wagner, Andreas

    2011-02-06

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected 'neutral networks' in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10(45) logic circuits ('genotypes') and 10(19) logic functions ('phenotypes'). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.

  7. Pre-seizure architecture of the local connections of the epileptic focus examined via graph-theory.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Vollono, Catello; Fuggetta, Filomena; Bramanti, Placido; Cioni, Beatrice; Rossini, Paolo Maria

    2016-10-01

    Epilepsy is characterized by unpredictable and sudden paroxysmal neuronal firing occurrences and sometimes evolving in clinically evident seizure. To predict seizure event, small-world characteristic in nine minutes before seizure, divided in three 3-min periods (T0, T1, T2) were investigated. Intracerebral recordings were obtained from 10 patients with drug resistant focal epilepsy examined by means of stereotactically implanted electrodes; analysis was focused in a period of low spiking (Baseline) and during two seizures. Networks' architecture is undirected and weighted. Electrodes' contacts close to epileptic focus are the vertices, edges are weighted by mscohere (=magnitude squared coherence). Differences were observed between Baseline and T1 and between Baseline and T2 in theta band; and between Baseline and T1, Baseline and T2, and near-significant difference between T0 and T2 in Alpha 2 band. Moreover, an intra-band index was computed for small worldness as difference between Theta and Alpha 2. It was found a growing index trend from Baseline to T2. Cortical network features a specific pre-seizure architecture which could predict the incoming epileptic seizure. Through this study future researches could investigate brain connectivity modifications approximating a clinical seizure also in order to address a preventive therapy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  9. Link prediction in multiplex online social networks

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  10. Link prediction in multiplex online social networks.

    PubMed

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  11. Average Weighted Receiving Time of Weighted Tetrahedron Koch Networks

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Zhang, Danping; Ye, Dandan; Zhang, Cheng; Li, Lei

    2015-07-01

    We introduce weighted tetrahedron Koch networks with infinite weight factors, which are generalization of finite ones. The term of weighted time is firstly defined in this literature. The mean weighted first-passing time (MWFPT) and the average weighted receiving time (AWRT) are defined by weighted time accordingly. We study the AWRT with weight-dependent walk. Results show that the AWRT for a nontrivial weight factor sequence grows sublinearly with the network order. To investigate the reason of sublinearity, the average receiving time (ART) for four cases are discussed.

  12. Autonomous evolution of topographic regularities in artificial neural networks.

    PubMed

    Gauci, Jason; Stanley, Kenneth O

    2010-07-01

    Looking to nature as inspiration, for at least the past 25 years, researchers in the field of neuroevolution (NE) have developed evolutionary algorithms designed specifically to evolve artificial neural networks (ANNs). Yet the ANNs evolved through NE algorithms lack the distinctive characteristics of biological brains, perhaps explaining why NE is not yet a mainstream subject of neural computation. Motivated by this gap, this letter shows that when geometry is introduced to evolved ANNs through the hypercube-based neuroevolution of augmenting topologies algorithm, they begin to acquire characteristics that indeed are reminiscent of biological brains. That is, if the neurons in evolved ANNs are situated at locations in space (i.e., if they are given coordinates), then, as experiments in evolving checkers-playing ANNs in this letter show, topographic maps with symmetries and regularities can evolve spontaneously. The ability to evolve such maps is shown in this letter to provide an important advantage in generalization. In fact, the evolved maps are sufficiently informative that their analysis yields the novel insight that the geometry of the connectivity patterns of more general players is significantly smoother and more contiguous than less general ones. Thus, the results reveal a correlation between generality and smoothness in connectivity patterns. They also hint at the intriguing possibility that as NE matures as a field, its algorithms can evolve ANNs of increasing relevance to those who study neural computation in general.

  13. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  14. How People Interact in Evolving Online Affiliation Networks

    NASA Astrophysics Data System (ADS)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  15. Fractal and multifractal analyses of bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  16. Fractal and multifractal analyses of bipartite networks.

    PubMed

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-03-31

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions.

  17. Fractal and multifractal analyses of bipartite networks

    PubMed Central

    Liu, Jin-Long; Wang, Jian; Yu, Zu-Guo; Xie, Xian-Hua

    2017-01-01

    Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality of unipartite (classical) networks have been studied in recent years, but there is no work to study these properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite networks by performing the fractal and multifractal analyses for a variety of real-world bipartite network data sets and models. First, we find the fractality in some bipartite networks, including the CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we observe the shifted power-law or exponential behavior in other several networks. We then focus on the multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with two types different nodes, we give the different weights for the nodes of different classes, and show the existence of multifractality in these node-weighted bipartite networks. In addition, for the data sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite networks. The results show that our modified algorithms are feasible and can effectively uncover the self-similarity structure of these edge-weighted bipartite networks and their corresponding node-weighted versions. PMID:28361962

  18. Linking Behavior in the Physics Education Research Coauthorship Network

    ERIC Educational Resources Information Center

    Anderson, Katharine A.; Crespi, Matthew; Sayre, Eleanor C.

    2017-01-01

    There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real…

  19. English and Chinese languages as weighted complex networks

    NASA Astrophysics Data System (ADS)

    Sheng, Long; Li, Chunguang

    2009-06-01

    In this paper, we analyze statistical properties of English and Chinese written human language within the framework of weighted complex networks. The two language networks are based on an English novel and a Chinese biography, respectively, and both of the networks are constructed in the same way. By comparing the intensity and density of connections between the two networks, we find that high weight connections in Chinese language networks prevail more than those in English language networks. Furthermore, some of the topological and weighted quantities are compared. The results display some differences in the structural organizations between the two language networks. These observations indicate that the two languages may have different linguistic mechanisms and different combinatorial natures.

  20. Entropy-based link prediction in weighted networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhongqi; Pu, Cunlai; Ramiz Sharafat, Rajput; Li, Lunbo; Yang, Jian

    2017-01-01

    Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks. In the previous work (Xu et al, 2016 \\cite{xu2016}), we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight, and propose a weighted prediction index based on the contributions of paths, namely Weighted Path Entropy (WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three typical weighted indices.

  1. Geometry Genetics and Evolution

    NASA Astrophysics Data System (ADS)

    Siggia, Eric

    2011-03-01

    Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University

  2. Epidemic spreading in weighted networks: an edge-based mean-field solution.

    PubMed

    Yang, Zimo; Zhou, Tao

    2012-05-01

    Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.

  3. An information dimension of weighted complex networks

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Jiang, Wen

    2018-07-01

    The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.

  4. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  5. Evolutionary rewiring of bacterial regulatory networks

    PubMed Central

    Taylor, Tiffany B.; Mulley, Geraldine; McGuffin, Liam J.; Johnson, Louise J.; Brockhurst, Michael A.; Arseneault, Tanya; Silby, Mark W.; Jackson, Robert W.

    2015-01-01

    Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks - homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs. PMID:28357301

  6. Dynamic model of time-dependent complex networks.

    PubMed

    Hill, Scott A; Braha, Dan

    2010-10-01

    The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.

  7. SkyNet: Modular nuclear reaction network library

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  8. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  9. Core psychopathology in anorexia nervosa and bulimia nervosa: A network analysis.

    PubMed

    Forrest, Lauren N; Jones, Payton J; Ortiz, Shelby N; Smith, April R

    2018-04-25

    The cognitive-behavioral theory of eating disorders (EDs) proposes that shape and weight overvaluation are the core ED psychopathology. Core symptoms can be statistically identified using network analysis. Existing ED network studies support that shape and weight overvaluation are the core ED psychopathology, yet no studies have estimated AN core psychopathology and concerns exist about the replicability of network analysis findings. The current study estimated ED symptom networks among people with anorexia nervosa (AN) and bulimia nervosa (BN) and among a combined group of people with AN and BN. Participants were girls and women with AN (n = 604) and BN (n = 477) seeking residential ED treatment. ED symptoms were assessed with the Eating Disorder Examination-Questionnaire (EDE-Q); 27 of the EDE-Q items were included as nodes in symptom networks. Core symptoms were determined by expected influence and strength values. In all networks, desiring weight loss, restraint, shape and weight preoccupation, and shape overvaluation emerged as the most important symptoms. In addition, in the AN and combined networks, fearing weight gain emerged as an important symptom. In the BN network, weight overvaluation emerged as another important symptom. Findings support the cognitive-behavioral premise that shape and weight overvaluation are at the core of AN psychopathology. Our BN and combined network findings provide a high degree of replication of previous findings. Clinically, findings highlight the importance of considering shape and weight overvaluation as a severity specifier and primary treatment target for people with EDs. © 2018 Wiley Periodicals, Inc.

  10. Networking standards

    NASA Technical Reports Server (NTRS)

    Davies, Mark

    1991-01-01

    The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.

  11. What Presidents Need To Know about the Impact of Networking.

    ERIC Educational Resources Information Center

    Leadership Abstracts, 1993

    1993-01-01

    Many colleges and universities are undergoing cultural changes as a result of extensive voice, data, and video networking. Local area networks link large portions of most campuses, and national networks have evolved from specialized services for researchers in computer-related disciplines to general utilities on many campuses. Campuswide systems…

  12. Characterizing complex networks through statistics of Möbius transformations

    NASA Astrophysics Data System (ADS)

    Jaćimović, Vladimir; Crnkić, Aladin

    2017-04-01

    It is well-known now that dynamics of large populations of globally (all-to-all) coupled oscillators can be reduced to low-dimensional submanifolds (WS transformation and OA ansatz). Marvel et al. (2009) described an intriguing algebraic structure standing behind this reduction: oscillators evolve by the action of the group of Möbius transformations. Of course, dynamics in complex networks of coupled oscillators is highly complex and not reducible. Still, closer look unveils that even in complex networks some (possibly overlapping) groups of oscillators evolve by Möbius transformations. In this paper, we study properties of the network by identifying Möbius transformations in the dynamics of oscillators. This enables us to introduce some new (statistical) concepts that characterize the network. In particular, the notion of coherence of the network (or subnetwork) is proposed. This conceptual approach is meaningful for the broad class of networks, including those with time-delayed, noisy or mixed interactions. In this paper, several simple (random) graphs are studied illustrating the meaning of the concepts introduced in the paper.

  13. Good Samaritans in Networks: An Experiment on How Networks Influence Egalitarian Sharing and the Evolution of Inequality

    PubMed Central

    Chiang, Yen-Sheng

    2015-01-01

    The fact that the more resourceful people are sharing with the poor to mitigate inequality—egalitarian sharing—is well documented in the behavioral science research. How inequality evolves as a result of egalitarian sharing is determined by the structure of “who gives whom”. While most prior experimental research investigates allocation of resources in dyads and groups, the paper extends the research of egalitarian sharing to networks for a more generalized structure of social interaction. An agent-based model is proposed to predict how actors, linked in networks, share their incomes with neighbors. A laboratory experiment with human subjects further shows that income distributions evolve to different states in different network topologies. Inequality is significantly reduced in networks where the very rich and the very poor are connected so that income discrepancy is salient enough to motivate the rich to share their incomes with the poor. The study suggests that social networks make a difference in how egalitarian sharing influences the evolution of inequality. PMID:26061642

  14. The QAP weighted network analysis method and its application in international services trade

    NASA Astrophysics Data System (ADS)

    Xu, Helian; Cheng, Long

    2016-04-01

    Based on QAP (Quadratic Assignment Procedure) correlation and complex network theory, this paper puts forward a new method named QAP Weighted Network Analysis Method. The core idea of the method is to analyze influences among relations in a social or economic group by building a QAP weighted network of networks of relations. In the QAP weighted network, a node depicts a relation and an undirect edge exists between any pair of nodes if there is significant correlation between relations. As an application of the QAP weighted network, we study international services trade by using the QAP weighted network, in which nodes depict 10 kinds of services trade relations. After the analysis of international services trade by QAP weighted network, and by using distance indicators, hierarchy tree and minimum spanning tree, the conclusion shows that: Firstly, significant correlation exists in all services trade, and the development of any one service trade will stimulate the other nine. Secondly, as the economic globalization goes deeper, correlations in all services trade have been strengthened continually, and clustering effects exist in those services trade. Thirdly, transportation services trade, computer and information services trade and communication services trade have the most influence and are at the core in all services trade.

  15. Robustness and Vulnerability of Networks with Dynamical Dependency Groups.

    PubMed

    Bai, Ya-Nan; Huang, Ning; Wang, Lei; Wu, Zhi-Xi

    2016-11-28

    The dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time. Based on generating function techniques, we provide an analytical framework for random networks with arbitrary degree distribution. In particular, we theoretically find that an abrupt percolation transition exists corresponding to the dynamical dependency groups for a wide range of topologies after initial random removal. Moreover, when the abrupt transition point is above the failure threshold of dependency groups, the evolving network with the larger dependency groups is more vulnerable; when below it, the larger dependency groups make the network more robust. Numerical simulations employing the Erdős-Rényi network and Barabási-Albert scale free network are performed to validate our theoretical results.

  16. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  17. Alignment of dynamic networks.

    PubMed

    Vijayan, V; Critchlow, D; Milenkovic, T

    2017-07-15

    Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems' static network representations, as is currently done. For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. http://nd.edu/∼cone/DynaMAGNA++/ . tmilenko@nd.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Alignment of dynamic networks

    PubMed Central

    Vijayan, V.; Critchlow, D.; Milenković, T.

    2017-01-01

    Abstract Motivation: Network alignment (NA) aims to find a node mapping that conserves similar regions between compared networks. NA is applicable to many fields, including computational biology, where NA can guide the transfer of biological knowledge from well- to poorly-studied species across aligned network regions. Existing NA methods can only align static networks. However, most complex real-world systems evolve over time and should thus be modeled as dynamic networks. We hypothesize that aligning dynamic network representations of evolving systems will produce superior alignments compared to aligning the systems’ static network representations, as is currently done. Results: For this purpose, we introduce the first ever dynamic NA method, DynaMAGNA ++. This proof-of-concept dynamic NA method is an extension of a state-of-the-art static NA method, MAGNA++. Even though both MAGNA++ and DynaMAGNA++ optimize edge as well as node conservation across the aligned networks, MAGNA++ conserves static edges and similarity between static node neighborhoods, while DynaMAGNA++ conserves dynamic edges (events) and similarity between evolving node neighborhoods. For this purpose, we introduce the first ever measure of dynamic edge conservation and rely on our recent measure of dynamic node conservation. Importantly, the two dynamic conservation measures can be optimized with any state-of-the-art NA method and not just MAGNA++. We confirm our hypothesis that dynamic NA is superior to static NA, on synthetic and real-world networks, in computational biology and social domains. DynaMAGNA++ is parallelized and has a user-friendly graphical interface. Availability and implementation: http://nd.edu/∼cone/DynaMAGNA++/. Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881980

  19. Modeling the Chinese language as an evolving network

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Shi, Yuming; Huang, Qiuling

    2014-01-01

    The evolution of Chinese language has three main features: the total number of characters is gradually increasing, new words are generated in the existing characters, and some old words are no longer used in daily-life language. Based on the features, we propose an evolving language network model. Finally, we use this model to simulate the character co-occurrence networks (nodes are characters, and two characters are connected by an edge if they are adjacent to each other) constructed from essays in 11 different periods of China, and find that characters that appear with high frequency in old words are likely to be reused when new words are formed.

  20. The Weight-control Information Network (WIN) | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Javascript on. Feature: Reducing Childhood Obesity The Weight-control Information Network (WIN) Past Issues / Spring - Summer 2010 ... overweight children, here are tips from the Weight-control Information Network (WIN), an information service of the ...

  1. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  2. Statistics of Weighted Brain Networks Reveal Hierarchical Organization and Gaussian Degree Distribution

    PubMed Central

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable. PMID:22761649

  3. Statistics of weighted brain networks reveal hierarchical organization and Gaussian degree distribution.

    PubMed

    Ivković, Miloš; Kuceyeski, Amy; Raj, Ashish

    2012-01-01

    Whole brain weighted connectivity networks were extracted from high resolution diffusion MRI data of 14 healthy volunteers. A statistically robust technique was proposed for the removal of questionable connections. Unlike most previous studies our methods are completely adapted for networks with arbitrary weights. Conventional statistics of these weighted networks were computed and found to be comparable to existing reports. After a robust fitting procedure using multiple parametric distributions it was found that the weighted node degree of our networks is best described by the normal distribution, in contrast to previous reports which have proposed heavy tailed distributions. We show that post-processing of the connectivity weights, such as thresholding, can influence the weighted degree asymptotics. The clustering coefficients were found to be distributed either as gamma or power-law distribution, depending on the formula used. We proposed a new hierarchical graph clustering approach, which revealed that the brain network is divided into a regular base-2 hierarchical tree. Connections within and across this hierarchy were found to be uncommonly ordered. The combined weight of our results supports a hierarchically ordered view of the brain, whose connections have heavy tails, but whose weighted node degrees are comparable.

  4. Toward a model of school inspections in a polycentric system.

    PubMed

    Janssens, Frans J G; Ehren, Melanie C M

    2016-06-01

    Many education systems are developing towards more lateral structures where schools collaborate in networks to improve and provide (inclusive) education. These structures call for bottom-up models of network evaluation and accountability instead of the current hierarchical arrangements where single schools are evaluated by a central agency. This paper builds on available research about network effectiveness to present evolving models of network evaluation. Network effectiveness can be defined as the achievement of positive network level outcomes that cannot be attained by individual organizational participants acting alone. Models of network evaluation need to take into account the relations between network members, the structure of the network, its processes and its internal mechanism to enforce norms in order to understand the achievement and outcomes of the network and how these may evolve over time. A range of suitable evaluation models are presented in this paper, as well as a tentative school inspection framework which is inspired by these models. The final section will present examples from Inspectorates of Education in Northern Ireland and Scotland who have developed newer inspection models to evaluate the effectiveness of a range of different networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analysis of a large-scale weighted network of one-to-one human communication

    NASA Astrophysics Data System (ADS)

    Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János

    2007-06-01

    We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.

  6. Bayesian Mixed-Membership Models of Complex and Evolving Networks

    DTIC Science & Technology

    2006-12-01

    R. Hughes, J. Parkinson , M. Gerstein, S . J. Wodak, A. Emili, and J. F. Greenblatt. Global landscape of protein complexes in the yeast Saccharomyces...provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...Membership Models of Complex and Evolving Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e

  7. Sensitivity of feedforward neural networks to weight errors

    NASA Technical Reports Server (NTRS)

    Stevenson, Maryhelen; Widrow, Bernard; Winter, Rodney

    1990-01-01

    An analysis is made of the sensitivity of feedforward layered networks of Adaline elements (threshold logic units) to weight errors. An approximation is derived which expresses the probability of error for an output neuron of a large network (a network with many neurons per layer) as a function of the percentage change in the weights. As would be expected, the probability of error increases with the number of layers in the network and with the percentage change in the weights. The probability of error is essentially independent of the number of weights per neuron and of the number of neurons per layer, as long as these numbers are large (on the order of 100 or more).

  8. Access Selection Algorithm of Heterogeneous Wireless Networks for Smart Distribution Grid Based on Entropy-Weight and Rough Set

    NASA Astrophysics Data System (ADS)

    Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang

    2017-11-01

    To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.

  9. Selecting a Classification Ensemble and Detecting Process Drift in an Evolving Data Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heredia-Langner, Alejandro; Rodriguez, Luke R.; Lin, Andy

    2015-09-30

    We characterize the commercial behavior of a group of companies in a common line of business using a small ensemble of classifiers on a stream of records containing commercial activity information. This approach is able to effectively find a subset of classifiers that can be used to predict company labels with reasonable accuracy. Performance of the ensemble, its error rate under stable conditions, can be characterized using an exponentially weighted moving average (EWMA) statistic. The behavior of the EWMA statistic can be used to monitor a record stream from the commercial network and determine when significant changes have occurred. Resultsmore » indicate that larger classification ensembles may not necessarily be optimal, pointing to the need to search the combinatorial classifier space in a systematic way. Results also show that current and past performance of an ensemble can be used to detect when statistically significant changes in the activity of the network have occurred. The dataset used in this work contains tens of thousands of high level commercial activity records with continuous and categorical variables and hundreds of labels, making classification challenging.« less

  10. Modeling epidemics on adaptively evolving networks: A data-mining perspective.

    PubMed

    Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G

    2016-01-01

    The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.

  11. Inferring Structure and Forecasting Dynamics on Evolving Networks

    DTIC Science & Technology

    2016-01-05

    Graphs ........................................................................................................................ 23 7. Sacred Values...5) Team Formation; (6) Games of Graphs; (7) Sacred Values and Legitimacy in Network Interactions; (8) Network processes in Geo-Social Context. 1...Authority, Cooperation and Competition in Religious Networks Key Papers: McBride 2015a [72] and McBride 2015b [73] McBride (2015a) examines

  12. Predicting links based on knowledge dissemination in complex network

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Jia, Yifan

    2017-04-01

    Link prediction is the task of mining the missing links in networks or predicting the next vertex pair to be connected by a link. A lot of link prediction methods were inspired by evolutionary processes of networks. In this paper, a new mechanism for the formation of complex networks called knowledge dissemination (KD) is proposed with the assumption of knowledge disseminating through the paths of a network. Accordingly, a new link prediction method-knowledge dissemination based link prediction (KDLP)-is proposed to test KD. KDLP characterizes vertex similarity based on knowledge quantity (KQ) which measures the importance of a vertex through H-index. Extensive numerical simulations on six real-world networks demonstrate that KDLP is a strong link prediction method which performs at a higher prediction accuracy than four well-known similarity measures including common neighbors, local path index, average commute time and matrix forest index. Furthermore, based on the common conclusion that an excellent link prediction method reveals a good evolving mechanism, the experiment results suggest that KD is a considerable network evolving mechanism for the formation of complex networks.

  13. Reducing weight precision of convolutional neural networks towards large-scale on-chip image recognition

    NASA Astrophysics Data System (ADS)

    Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang

    2015-05-01

    In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.

  14. The role of social networks in the development of overweight and obesity among adults: a scoping review.

    PubMed

    Powell, Katie; Wilcox, John; Clonan, Angie; Bissell, Paul; Preston, Louise; Peacock, Marian; Holdsworth, Michelle

    2015-09-30

    Although it is increasingly acknowledged that social networks are important to our understanding ofoverweight and obesity, there is limited understanding about the processes by which such networks shapetheir progression. This paper reports the findings of a scoping review of the literature that sought to identify the key processes through which social networks are understood to influence the development of overweight and obesity. A scoping review was conducted. Forty five papers were included in the final review, the findings of which were synthesised to provide an overview of the main processes through which networks have been understood to influence the development of overweight and obesity. Included papers addressed a wide range of research questions framed around six types of networks: a paired network (one's spouse or intimate partner); friends and family (including work colleagues and people within social clubs); ephemeral networks in shared public spaces (such as fellow shoppers in a supermarket or diners in a restaurant); people living within the same geographical region; peers (including co-workers, fellow students, fellow participants in a weight loss programme); and cultural groups (often related toethnicity). As individuals are embedded in many of these different types of social networks at any one time, the pathways of influence from social networks to the development of patterns of overweight and obesity are likely to be complex and interrelated. Included papers addressed a diverse set of issues: body weight trends over time; body size norms or preferences; weight loss and management; physical activity patterns; and dietary patterns. Three inter-related processes were identified: social contagion (whereby the network in which people are embedded influences their weight or weight influencing behaviours), social capital (whereby sense of belonging and social support influence weight or weight influencing behaviours), and social selection (whereby a person's network might develop according to his or her weight). The findings have important implications for understanding about methods to target the spread of obesity, indicating that much greater attention needs to be paid to the social context in which people make decisions about their weight and weight influencing behaviours.

  15. An evolving Mars telecommunications network to enable exploration and increase science data return

    NASA Technical Reports Server (NTRS)

    Edwards, Chad; Komarek, Tomas A.; Noreen, Gary K.; Wilson, Gregory R.

    2003-01-01

    The coming decade of Mars exploration involves a variety of unique telecommunications challenges. Increasing spatial and spectral resolution of in situ science instruments drive the need for increased bandwidth. At the same time, many innovative and low-cost in situ mission concepts are enabled by energy-efficient relay communications. In response to these needs, the Mars Exploration Program has established a plan for an evolving orbital infrastructure that can provide enhancing and enabling telecommunications services to future Mars missions. We will present the evolving capabilities of this network over the coming decade in terms of specific quantitative metrics such as data volume per sol and required lander energy per Gb of returned data for representative classes of Mars exploration spacecraft.

  16. Application of stochastic processes in random growth and evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Oikonomou, Panagiotis

    We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.

  17. eNewborn: The Information Technology Revolution and Challenges for Neonatal Networks.

    PubMed

    Haumont, Dominique; NguyenBa, Cuong; Modi, Neena

    2017-01-01

    Among preterm infants, 1-2% are born before 32 weeks of gestation or have a birth weight below 1,500 g. They contribute disproportionately to the burden of mortality and morbidity related to preterm birth, whether in the neonatal period or later in life. They are the target population studied in neonatal networks. Improving neonatal care and later outcome is a major issue in public health. Neonatologists, health care providers, public authorities, parents and families, industry, and all organizations dedicated to infant health must bring their efforts together and dedicate their actions in order to do so. Neonatal networks are the strongest platforms through which to achieve this goal. The progressive information technology (IT) revolution is leading to a new approach. The power of search engines and new technological devices opens extraordinary new perspectives in terms of speed, storing, sharing, and innovative approaches in providing health care. However, difficulties are expected with old applications that cannot evolve in the new IT environment. Security and privacy in data collection are future challenges to be addressed. Here, we describe the eNewborn project and its original software. The main functionalities are interactive navigation, harmonization with other formats, linkage with other databases, and strict security and privacy procedures. © 2017 S. Karger AG, Basel.

  18. A Regularizer Approach for RBF Networks Under the Concurrent Weight Failure Situation.

    PubMed

    Leung, Chi-Sing; Wan, Wai Yan; Feng, Ruibin

    2017-06-01

    Many existing results on fault-tolerant algorithms focus on the single fault source situation, where a trained network is affected by one kind of weight failure. In fact, a trained network may be affected by multiple kinds of weight failure. This paper first studies how the open weight fault and the multiplicative weight noise degrade the performance of radial basis function (RBF) networks. Afterward, we define the objective function for training fault-tolerant RBF networks. Based on the objective function, we then develop two learning algorithms, one batch mode and one online mode. Besides, the convergent conditions of our online algorithm are investigated. Finally, we develop a formula to estimate the test set error of faulty networks trained from our approach. This formula helps us to optimize some tuning parameters, such as RBF width.

  19. Evolving dynamics of trading behavior based on coordination game in complex networks

    NASA Astrophysics Data System (ADS)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  20. Recommendation in evolving online networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zeng, An; Shang, Ming-Sheng

    2016-02-01

    Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.

  1. The evolvability of programmable hardware

    PubMed Central

    Raman, Karthik; Wagner, Andreas

    2011-01-01

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598

  2. Interplay of network dynamics and heterogeneity of ties on spreading dynamics.

    PubMed

    Ferreri, Luca; Bajardi, Paolo; Giacobini, Mario; Perazzo, Silvia; Venturino, Ezio

    2014-07-01

    The structure of a network dramatically affects the spreading phenomena unfolding upon it. The contact distribution of the nodes has long been recognized as the key ingredient in influencing the outbreak events. However, limited knowledge is currently available on the role of the weight of the edges on the persistence of a pathogen. At the same time, recent works showed a strong influence of temporal network dynamics on disease spreading. In this work we provide an analytical understanding, corroborated by numerical simulations, about the conditions for infected stable state in weighted networks. In particular, we reveal the role of heterogeneity of edge weights and of the dynamic assignment of weights on the ties in the network in driving the spread of the epidemic. In this context we show that when weights are dynamically assigned to ties in the network, a heterogeneous distribution is able to hamper the diffusion of the disease, contrary to what happens when weights are fixed in time.

  3. Can multilayer brain networks be a real step forward?. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    NASA Astrophysics Data System (ADS)

    Buldú, Javier M.; Papo, David

    2018-03-01

    Over the last two decades Network Science has become one of the most active fields in science, whose growth has been supported by four fundamental pillars: statistical physics, nonlinear dynamics, graph theory and Big Data [1]. Initially concerned with analyzing the structure of networks, Network Science rapidly turned its attention, focused on the implications of network topology, on the dynamics of and processes unfolding on networked systems, greatly improving our understanding of diffusion, synchronization, epidemics and information transmission in complex systems [2]. The network approach typically considered complex systems as evolving in a vacuum; however real networks are generally not isolated systems, but are in continuous and evolving contact with other networks, with which they interact in multiple qualitative different and typically time-varying ways. These systems can then be represented as a collection of subsystems with connectivity layers, which are simply collapsed when considering the traditional monolayer representation. Surprisingly, such an "unpacking" of layers has proven to bear profound consequences on the structural and dynamical properties of networks, leading for instance to counter-intuitive synchronization phenomena, where maximization synchronization is achieved through strategies opposite of those maximizing synchronization in isolated networks [3].

  4. Tracking the Evolution of Infrastructure Systems and Mass Responses Using Publically Available Data

    PubMed Central

    Guan, Xiangyang; Chen, Cynthia; Work, Dan

    2016-01-01

    Networks can evolve even on a short-term basis. This phenomenon is well understood by network scientists, but receive little attention in empirical literature involving real-world networks. On one hand, this is due to the deceitfully fixed topology of some networks such as many physical infrastructures, whose evolution is often deemed unlikely to occur in short term; on the other hand, the lack of data prohibits scientists from studying subjects such as social networks that seem likely to evolve on a short-term basis. We show that both networks—the infrastructure network and social network—are able to demonstrate evolutionary dynamics at the system level even in the short-term, characterized by shifting between different phases as predicted in network science. We develop a methodology of tracking the evolutionary dynamics of the two networks by incorporating flows and the microstructure of networks such as motifs. This approach is applied to the human interaction network and two transportation networks (subway and taxi) in the context of Hurricane Sandy, using publically available Twitter data and transportation data. Our result shows that significant changes in the system-level structure of networks can be detected on a continuous basis. This result provides a promising channel for real-time tracking in the future. PMID:27907061

  5. Prediction of drug synergy in cancer using ensemble-based machine learning techniques

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Rana, Prashant Singh; Singh, Urvinder

    2018-04-01

    Drug synergy prediction plays a significant role in the medical field for inhibiting specific cancer agents. It can be developed as a pre-processing tool for therapeutic successes. Examination of different drug-drug interaction can be done by drug synergy score. It needs efficient regression-based machine learning approaches to minimize the prediction errors. Numerous machine learning techniques such as neural networks, support vector machines, random forests, LASSO, Elastic Nets, etc., have been used in the past to realize requirement as mentioned above. However, these techniques individually do not provide significant accuracy in drug synergy score. Therefore, the primary objective of this paper is to design a neuro-fuzzy-based ensembling approach. To achieve this, nine well-known machine learning techniques have been implemented by considering the drug synergy data. Based on the accuracy of each model, four techniques with high accuracy are selected to develop ensemble-based machine learning model. These models are Random forest, Fuzzy Rules Using Genetic Cooperative-Competitive Learning method (GFS.GCCL), Adaptive-Network-Based Fuzzy Inference System (ANFIS) and Dynamic Evolving Neural-Fuzzy Inference System method (DENFIS). Ensembling is achieved by evaluating the biased weighted aggregation (i.e. adding more weights to the model with a higher prediction score) of predicted data by selected models. The proposed and existing machine learning techniques have been evaluated on drug synergy score data. The comparative analysis reveals that the proposed method outperforms others in terms of accuracy, root mean square error and coefficient of correlation.

  6. Examining the Emergence of Large-Scale Structures in Collaboration Networks: Methods in Sociological Analysis

    ERIC Educational Resources Information Center

    Ghosh, Jaideep; Kshitij, Avinash

    2017-01-01

    This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…

  7. Evidence for network evolution in an arabidopsis interactome map

    USDA-ARS?s Scientific Manuscript database

    Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...

  8. A weighted higher-order network analysis of fine particulate matter (PM2.5) transport in Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Yufang; Wang, Haiyan; Zhang, Shuhua

    2018-04-01

    Specification of PM2.5 transmission characteristics is important for pollution control, policymaking and prediction. In this paper, we propose weights for motif instances, thereby to implement a weighted higher-order clustering algorithm for a weighted, directed PM2.5 network in the Yangtze River Delta (YRD) of China. The weighted, directed network we create in this paper includes information on meteorological conditions of wind speed and wind direction, plus data on geographic distance and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in the YRD. Major potential PM2.5 contributors and closely interacted clusters are identified in the network of 178 air quality stations in the YRD. To our knowledge, it is the first work to incorporate weight information into the higher-order network analysis to study PM2.5 transport.

  9. Functional Topology of Evolving Urban Drainage Networks

    NASA Astrophysics Data System (ADS)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs (<2 km2), length-area scales linearly (h ˜ 1), but power law scaling (h ˜ 0.6) emerges as the UDNs grow. While P>(A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  10. φ-evo: A program to evolve phenotypic models of biological networks.

    PubMed

    Henry, Adrien; Hemery, Mathieu; François, Paul

    2018-06-01

    Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.

  11. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  12. Diversity in the origins of proteostasis networks- a driver for protein function in evolution

    PubMed Central

    Powers, Evan T.; Balch, William E.

    2013-01-01

    Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216

  13. Increases in New Social Network Ties are Associated with Increased Cohesion among Intervention Participants

    PubMed Central

    Gesell, Sabina B.; Barkin, Shari L.; Sommer, Evan C.; Thompson, Jessica R.; Valente, Thomas W.

    2016-01-01

    Objective Many behavior change programs are delivered in group settings to manage implementation costs and to foster support and interactions among group members to facilitate behavior change. Understanding the group dynamics that evolve in group settings (e.g., weight management, Alcoholics Anonymous) is important, yet rarely measured. This paper examined the relationship between social network ties and group cohesion in a group-based intervention to prevent obesity in children. Method The data reported are process measures from an ongoing community-based randomized controlled trial. 305 parents with a child (3-6 years) at risk of developing obesity were assigned to an intervention that taught parents healthy lifestyles. Parents met weekly for 12 weeks in small consistent groups. Two measures were collected at weeks 3 and 6: a social network survey (people in the group with whom one discusses healthy lifestyles); and the validated Perceived Cohesion Scale (Bollen & Hoyle, 1990). We used lagged random and fixed effects regression models to analyze the data. Results Cohesion increased from 6.51 to 6.71 (t=4.4, p<0.01). Network nominations tended to increase over the 3-week period in each network. In the combined discussion and advice network, the number of nominations increased from 1.76 to 1.95 (z=2.59, p<0.01). Cohesion at week 3 was the strongest predictor of cohesion at week 6 (b=0.55, p<0.01). Number of new network nominations at week 6 was positively related to cohesion at week 6 (b=0.06, p<.01). In sum, being able to name new network contacts was associated with feelings of cohesion. Conclusion This is the first study to demonstrate how network changes affect perceived group cohesion within a behavioral intervention. Given that many behavioral interventions occur in group settings, intentionally building new social networks could be promising to augment desired outcomes. PMID:26286298

  14. Increases in Network Ties Are Associated With Increased Cohesion Among Intervention Participants.

    PubMed

    Gesell, Sabina B; Barkin, Shari L; Sommer, Evan C; Thompson, Jessica R; Valente, Thomas W

    2016-04-01

    Many behavior change programs are delivered in group settings to manage implementation costs and to foster support and interactions among group members in order to facilitate behavior change. Understanding the group dynamics that evolve in group settings (e.g., weight management, Alcoholics Anonymous) is important, yet rarely measured. This article examined the relationship between social network ties and group cohesion in a group-based intervention to prevent obesity in children. The data reported are process measures from an ongoing community-based randomized controlled trial. A total of 305 parents with a child (3-6 years) at risk of developing obesity were assigned to an intervention that taught parents healthy lifestyles. Parents met weekly for 12 weeks in small consistent groups. Two measures were collected at Weeks 3 and 6: a social network survey (people in the group with whom one discusses healthy lifestyles) and the validated Perceived Cohesion Scale. We used lagged random and fixed effects regression models to analyze the data. Cohesion increased from 6.51 to 6.71 (t= 4.4,p< .01). Network nominations tended to increase over the 3-week period in each network. In the combined discussion and advice network, the number of nominations increased from 1.76 to 1.95 (z= 2.59,p< .01). Cohesion at Week 3 was the strongest predictor of cohesion at Week 6 (b= 0.55,p< .01). Number of new network nominations at Week 6 was positively related to cohesion at Week 6 (b= 0.06,p< .01). In sum, being able to name new network contacts was associated with feelings of cohesion. This is the first study to demonstrate how network changes affect perceived group cohesion within a behavioral intervention. Given that many behavioral interventions occur in group settings, intentionally building new social networks could be promising to augment desired outcomes. © 2015 Society for Public Health Education.

  15. Netgram: Visualizing Communities in Evolving Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2015-01-01

    Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538

  16. On the use of ANN interconnection weights in optimal structural design

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Szewczyk, Z.

    1992-01-01

    The present paper describes the use of interconnection weights of a multilayer, feedforward network, to extract information pertinent to the mapping space that the network is assumed to represent. In particular, these weights can be used to determine an appropriate network architecture, and an adequate number of training patterns (input-output pairs) have been used for network training. The weight analysis also provides an approach to assess the influence of each input parameter on a selected output component. The paper shows the significance of this information in decomposition driven optimal design.

  17. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  18. Exploring activity-driven network with biased walks

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Wu, Ding Juan; Lv, Fang; Su, Meng Long

    We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.

  19. The Global Special Operations Forces Network from a Partner-Nation Perspective

    DTIC Science & Technology

    2014-12-01

    in networks vs . management of Networks. ................................80  Figure 17.  A national SOF network with SOCOM as the manager of networks...context and are asked in the natural course of things; there is no predetermination of question topics or wording. 10 descriptive section is the...struggles and challenges that occur naturally over time. As depicted in Figure 2, the network will constantly have to examine how it is evolving and, if

  20. A group evolving-based framework with perturbations for link prediction

    NASA Astrophysics Data System (ADS)

    Si, Cuiqi; Jiao, Licheng; Wu, Jianshe; Zhao, Jin

    2017-06-01

    Link prediction is a ubiquitous application in many fields which uses partially observed information to predict absence or presence of links between node pairs. The group evolving study provides reasonable explanations on the behaviors of nodes, relations between nodes and community formation in a network. Possible events in group evolution include continuing, growing, splitting, forming and so on. The changes discovered in networks are to some extent the result of these events. In this work, we present a group evolving-based characterization of node's behavioral patterns, and via which we can estimate the probability they tend to interact. In general, the primary aim of this paper is to offer a minimal toy model to detect missing links based on evolution of groups and give a simpler explanation on the rationality of the model. We first introduce perturbations into networks to obtain stable cluster structures, and the stable clusters determine the stability of each node. Then fluctuations, another node behavior, are assumed by the participation of each node to its own belonging group. Finally, we demonstrate that such characteristics allow us to predict link existence and propose a model for link prediction which outperforms many classical methods with a decreasing computational time in large scales. Encouraging experimental results obtained on real networks show that our approach can effectively predict missing links in network, and even when nearly 40% of the edges are missing, it also retains stationary performance.

  1. Analysis of Friendship Network and its Role in Explaining Obesity

    PubMed Central

    Marathe, Achla; Pan, Zhengzheng; Apolloni, Andrea

    2013-01-01

    We employ Add Health data to show that friendship networks, constructed from mutual friendship nominations, are important in building weight perception, setting weight goals and measuring social marginalization among adolescents and young adults. We study the relationship between individuals’ perceived weight status, actual weight status, weight status relative to friends’ weight status and weight goals. This analysis helps us understand how individual weight perceptions might be formed, what these perceptions do to the weight goals, and how does friends’ relative weight affect weight perception and weight goals. Combining this information with individuals’ friendship network helps determine the influence of social relationships on weight related variables. Multinomial logistic regression results indicate that relative status is indeed a significant predictor of perceived status, and perceived status is a significant predictor of weight goals. We also address the issue of causality between actual weight status and social marginalization (as measured by the number of friends) and show that obesity precedes social marginalization in time rather than the other way around. This lends credence to the hypothesis that obesity leads to social marginalization not vice versa. Attributes of friendship network can provide new insights into effective interventions for combating obesity since adolescent friendships provide an important social context for weight related behaviors. PMID:25328818

  2. Importance of small-degree nodes in assortative networks with degree-weight correlations

    NASA Astrophysics Data System (ADS)

    Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng

    2017-10-01

    It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

  3. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks.

    PubMed

    Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter

    2016-11-01

    Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.

  4. Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores.

    PubMed

    Parente, Daniel J; Ray, J Christian J; Swint-Kruse, Liskin

    2015-12-01

    As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. © 2015 Wiley Periodicals, Inc.

  5. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

    PubMed Central

    Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung

    2016-01-01

    Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747

  6. Genonets server-a web server for the construction, analysis and visualization of genotype networks.

    PubMed

    Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L

    2016-07-08

    A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. A Risk Based Approach to Node Insertion Within Social Networks

    DTIC Science & Technology

    2015-03-26

    changes to enemy networks, tactical involvement must evolve, beginning with the intelligent use of network infiltration through the application of the...counterterrorism begins with the intelligent use of network infiltration, or the covert insertion of assets into a network, otherwise known as node insertion. The...Federal Bureau of Intelligence (FBI) defines an undercover operation as “an investigation involving a series of related undercover activities over a

  8. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China

    PubMed Central

    Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao

    2018-01-01

    The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551

  9. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  10. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    PubMed

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  11. Metabolic Surgery in a Pill.

    PubMed

    Miras, Alexander D; le Roux, Carel W

    2017-05-02

    Bariatric surgery has evolved from a very effective treatment of weight to a treatment of "metabolism" and end-organ damage. Even though surgery was designed with the aim of causing mechanical restriction and calorie malabsorption, mechanistic work in humans and rodents over the last 10 years or so has informed us that this could not be further from the truth. Dietary, pharmacological, and medical device interventions for weight loss and metabolic control have also evolved rapidly only very recently. In this Crosstalk we discuss how close we are to harnessing the clinical efficacy of surgery through a metabolic "polypill." Copyright © 2017. Published by Elsevier Inc.

  12. Distributed synaptic weights in a LIF neural network and learning rules

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Salort, Delphine; Wainrib, Gilles

    2017-09-01

    Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connectivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorize a learned signal.

  13. General Dynamics of Topology and Traffic on Weighted Technological Networks

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Wang, Bing-Hong; Hu, Bo; Yan, Gang; Ou, Qing

    2005-05-01

    For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength correlation are all consistent with empirical evidence.

  14. Evolution of the Global Space Geodesy Network

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Bianco, Giuseppe; Ipatov, Alexander; Ma, Chopo; Neilan, Ruth; Noll, Carey; Park, Jong Uk; Pavlis, Erricos; Wetzel, Scott

    2013-04-01

    The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the scientific Services has been encouraging current groups to upgrade and new groups to join the activity. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  15. Sequential detection of temporal communities by estrangement confinement.

    PubMed

    Kawadia, Vikas; Sreenivasan, Sameet

    2012-01-01

    Temporal communities are the result of a consistent partitioning of nodes across multiple snapshots of an evolving network, and they provide insights into how dense clusters in a network emerge, combine, split and decay over time. To reliably detect temporal communities we need to not only find a good community partition in a given snapshot but also ensure that it bears some similarity to the partition(s) found in the previous snapshot(s), a particularly difficult task given the extreme sensitivity of community structure yielded by current methods to changes in the network structure. Here, motivated by the inertia of inter-node relationships, we present a new measure of partition distance called estrangement, and show that constraining estrangement enables one to find meaningful temporal communities at various degrees of temporal smoothness in diverse real-world datasets. Estrangement confinement thus provides a principled approach to uncovering temporal communities in evolving networks.

  16. Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves

    NASA Astrophysics Data System (ADS)

    Couchet, Jorge; Font, José María; Manrique, Daniel

    In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.

  17. Features of the Correlation Structure of Price Indices

    PubMed Central

    Gao, Xiangyun; An, Haizhong; Zhong, Weiqiong

    2013-01-01

    What are the features of the correlation structure of price indices? To answer this question, 5 types of price indices, including 195 specific price indices from 2003 to 2011, were selected as sample data. To build a weighted network of price indices each price index is represented by a vertex, and a positive correlation between two price indices is represented by an edge. We studied the features of the weighted network structure by applying economic theory to the analysis of complex network parameters. We found that the frequency of the price indices follows a normal distribution by counting the weighted degrees of the nodes, and we identified the price indices which have an important impact on the network's structure. We found out small groups in the weighted network by the methods of k-core and k-plex. We discovered structure holes in the network by calculating the hierarchy of the nodes. Finally, we found that the price indices weighted network has a small-world effect by calculating the shortest path. These results provide a scientific basis for macroeconomic control policies. PMID:23593399

  18. Completing sparse and disconnected protein-protein network by deep learning.

    PubMed

    Huang, Lei; Liao, Li; Wu, Cathy H

    2018-03-22

    Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method. The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data sources.

  19. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    PubMed Central

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971

  20. Libraries in the Global, National, and Local Networked Information Infrastructure.

    ERIC Educational Resources Information Center

    McClure, Charles R.

    This paper explores the challenges and opportunities facing libraries as they evolve into the electronic networked environment, and looks at options for libraries in the year 2000 and beyond. The internationally networked environment has fundamentally changed the way in which people acquire and use information resources and services. The paper…

  1. My Space or Yours?

    ERIC Educational Resources Information Center

    Barrett, Joanne

    2006-01-01

    Social networking is one of the latest trends to evolve out of the growing online community. Social networking sites gather data submitted by members that is then stored as user profiles. The data or profiles can then be shared among the members of the site. Membership can be free or fee-based. A typical social networking site provides members…

  2. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  3. In-silico studies of neutral drift for functional protein interaction networks

    NASA Astrophysics Data System (ADS)

    Ali, Md Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    We have developed a minimal physically-motivated model of protein-protein interaction networks. Our system consists of two classes of enzymes, activators (e.g. kinases) and deactivators (e.g. phosphatases), and the enzyme-mediated activation/deactivation rates are determined by sequence-dependent binding strengths between enzymes and their targets. The network is evolved by introducing random point mutations in the binding sequences where we assume that each new mutation is either fixed or entirely lost. We apply this model to studies of neutral drift in networks that yield oscillatory dynamics, where we start, for example, with a relatively simple network and allow it to evolve by adding nodes and connections while requiring that dynamics be conserved. Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. Surprisingly, in addition to this redistribution time we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains.

  4. Life's attractors : understanding developmental systems through reverse engineering and in silico evolution.

    PubMed

    Jaeger, Johannes; Crombach, Anton

    2012-01-01

    We propose an approach to evolutionary systems biology which is based on reverse engineering of gene regulatory networks and in silico evolutionary simulations. We infer regulatory parameters for gene networks by fitting computational models to quantitative expression data. This allows us to characterize the regulatory structure and dynamical repertoire of evolving gene regulatory networks with a reasonable amount of experimental and computational effort. We use the resulting network models to identify those regulatory interactions that are conserved, and those that have diverged between different species. Moreover, we use the models obtained by data fitting as starting points for simulations of evolutionary transitions between species. These simulations enable us to investigate whether such transitions are random, or whether they show stereotypical series of regulatory changes which depend on the structure and dynamical repertoire of an evolving network. Finally, we present a case study-the gap gene network in dipterans (flies, midges, and mosquitoes)-to illustrate the practical application of the proposed methodology, and to highlight the kind of biological insights that can be gained by this approach.

  5. Research at the Crossroads: How Intellectual Initiatives across Disciplines Evolve

    ERIC Educational Resources Information Center

    Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.

    2004-01-01

    How do intellectual initiatives across disciplines evolve? This qualitative case study of 11 interdisciplinary research initiatives at Emory University identifies key factors in their development: the passionate commitments of scholarly leaders, the presence of strong collegial networks, access to timely and multiple resources, flexible practices,…

  6. Creative Work: The Case of Charles Darwin.

    ERIC Educational Resources Information Center

    Gruber, Howard E.; Wallace, Doris B.

    2001-01-01

    Describes the evolving systems approach (ESA) to creative work, which emerged from a case study of Charles Darwin. Explains how the ESA differs from other approaches and describes various facets of creative work (networks of enterprise, uniqueness, insight, pluralism, and evolving belief systems and ensembles of metaphor). Emphasizes the…

  7. Scaling and correlations in three bus-transport networks of China

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; Hu, Junhui; Liu, Feng; Liu, Lianshou

    2007-01-01

    We report the statistical properties of three bus-transport networks (BTN) in three different cities of China. These networks are composed of a set of bus lines and stations serviced by these. Network properties, including the degree distribution, clustering and average path length are studied in different definitions of network topology. We explore scaling laws and correlations that may govern intrinsic features of such networks. Besides, we create a weighted network representation for BTN with lines mapped to nodes and number of common stations to weights between lines. In such a representation, the distributions of degree, strength and weight are investigated. A linear behavior between strength and degree s(k)∼k is also observed.

  8. "Now My Old Self Is Thin": Stigma Exits after Weight Loss

    ERIC Educational Resources Information Center

    Granberg, Ellen M.

    2011-01-01

    In this article, I employ a structural symbolic interaction framework to examine the processes by which persons can exit a stigmatized identity. Using the empirical example of weight loss, I analyze how individuals evolve from an identity as "fat" and stigmatized to one that is "normal" with respect to weight and free from identification with…

  9. Advancing Nucleosynthesis in Core-Collapse Supernovae Models Using 2D CHIMERA Simulations

    NASA Astrophysics Data System (ADS)

    Harris, J. A.; Hix, W. R.; Chertkow, M. A.; Bruenn, S. W.; Lentz, E. J.; Messer, O. B.; Mezzacappa, A.; Blondin, J. M.; Marronetti, P.; Yakunin, K.

    2014-01-01

    The deaths of massive stars as core-collapse supernovae (CCSN) serve as a crucial link in understanding galactic chemical evolution since the birth of the universe via the Big Bang. We investigate CCSN in polar axisymmetric simulations using the multidimensional radiation hydrodynamics code CHIMERA. Computational costs have traditionally constrained the evolution of the nuclear composition in CCSN models to, at best, a 14-species α-network. However, the limited capacity of the α-network to accurately evolve detailed composition, the neutronization and the nuclear energy generation rate has fettered the ability of prior CCSN simulations to accurately reproduce the chemical abundances and energy distributions as known from observations. These deficits can be partially ameliorated by "post-processing" with a more realistic network. Lagrangian tracer particles placed throughout the star record the temporal evolution of the initial simulation and enable the extension of the nuclear network evolution by incorporating larger systems in post-processing nucleosynthesis calculations. We present post-processing results of the four ab initio axisymmetric CCSN 2D models of Bruenn et al. (2013) evolved with the smaller α-network, and initiated from stellar metallicity, non-rotating progenitors of mass 12, 15, 20, and 25 M⊙ from Woosley & Heger (2007). As a test of the limitations of post-processing, we provide preliminary results from an ongoing simulation of the 15 M⊙ model evolved with a realistic 150 species nuclear reaction network in situ. With more accurate energy generation rates and an improved determination of the thermodynamic trajectories of the tracer particles, we can better unravel the complicated multidimensional "mass-cut" in CCSN simulations and probe for less energetically significant nuclear processes like the νp-process and the r-process, which require still larger networks.

  10. Weighted networks as randomly reinforced urn processes

    NASA Astrophysics Data System (ADS)

    Caldarelli, Guido; Chessa, Alessandro; Crimaldi, Irene; Pammolli, Fabio

    2013-02-01

    We analyze weighted networks as randomly reinforced urn processes, in which the edge-total weights are determined by a reinforcement mechanism. We develop a statistical test and a procedure based on it to study the evolution of networks over time, detecting the “dominance” of some edges with respect to the others and then assessing if a given instance of the network is taken at its steady state or not. Distance from the steady state can be considered as a measure of the relevance of the observed properties of the network. Our results are quite general, in the sense that they are not based on a particular probability distribution or functional form of the random weights. Moreover, the proposed tool can be applied also to dense networks, which have received little attention by the network community so far, since they are often problematic. We apply our procedure in the context of the International Trade Network, determining a core of “dominant edges.”

  11. Analog hardware implementation of neocognitron networks

    NASA Astrophysics Data System (ADS)

    Inigo, Rafael M.; Bonde, Allen, Jr.; Holcombe, Bradford

    1990-08-01

    This paper deals with the analog implementation of neocognitron based neural networks. All of Fukushima''s and related work on the neocognitron is based on digital computer simulations. To fully take advantage of the power of this network paradigm an analog electronic approach is proposed. We first implemented a 6-by-6 sensor network with discrete analog components and fixed weights. The network was given weight values to recognize the characters U L and F. These characters are recognized regardless of their location on the sensor and with various levels of distortion and noise. The network performance has also shown an excellent correlation with software simulation results. Next we implemented a variable weight network which can be trained to recognize simple patterns by means of self-organization. The adaptable weights were implemented with PETs configured as voltage-controlled resistors. To implement a variable weight there must be some type of " memory" to store the weight value and hold it while the value is reinforced or incremented. Two methods were evaluated: an analog sample-hold circuit and a digital storage scheme using binary counters. The latter is preferable for VLSI implementation because it uses standard components and does not require the use of capacitors. The analog design and implementation of these small-scale networks demonstrates the feasibility of implementing more complicated ANNs in electronic hardware. The circuits developed can also be designed for VLSI implementation. 1.

  12. On the role of sparseness in the evolution of modularity in gene regulatory networks

    PubMed Central

    2018-01-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459

  13. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    PubMed

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  14. The Structure and Characteristics of #PhDChat, an Emergent Online Social Network

    ERIC Educational Resources Information Center

    Ford, Kasey C.; Veletsianos, George; Resta, Paul

    2014-01-01

    #PhDChat is an online network of individuals that has its roots to a group of UK doctoral students who began using Twitter in 2010 to hold discussions. Since then, the network around #PhDchat has evolved and grown. In this study, we examine this network using a mixed methods analysis of the tweets that were labeled with the hashtag over a…

  15. Weight-elimination neural networks applied to coronary surgery mortality prediction.

    PubMed

    Ennett, Colleen M; Frize, Monique

    2003-06-01

    The objective was to assess the effectiveness of the weight-elimination cost function in improving classification performance of artificial neural networks (ANNs) and to observe how changing the a priori distribution of the training set affects network performance. Backpropagation feedforward ANNs with and without weight-elimination estimated mortality for coronary artery surgery patients. The ANNs were trained and tested on cases with 32 input variables describing the patient's medical history; the output variable was in-hospital mortality (mortality rates: training 3.7%, test 3.8%). Artificial training sets with mortality rates of 20%, 50%, and 80% were created to observe the impact of training with a higher-than-normal prevalence. When the results were averaged, weight-elimination networks achieved higher sensitivity rates than those without weight-elimination. Networks trained on higher-than-normal prevalence achieved higher sensitivity rates at the cost of lower specificity and correct classification. The weight-elimination cost function can improve the classification performance when the network is trained with a higher-than-normal prevalence. A network trained with a moderately high artificial mortality rate (artificial mortality rate of 20%) can improve the sensitivity of the model without significantly affecting other aspects of the model's performance. The ANN mortality model achieved comparable performance as additive and statistical models for coronary surgery mortality estimation in the literature.

  16. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    PubMed Central

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  17. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.

  18. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  19. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling.

    PubMed

    Witkowski, Olaf; Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds' boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other's signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents' ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals.

  20. Assuring SS7 dependability: A robustness characterization of signaling network elements

    NASA Astrophysics Data System (ADS)

    Karmarkar, Vikram V.

    1994-04-01

    Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.

  1. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  2. A model for evolution of overlapping community networks

    NASA Astrophysics Data System (ADS)

    Karan, Rituraj; Biswal, Bibhu

    2017-05-01

    A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.

  3. Exponential stability of stochastic complex networks with multi-weights based on graph theory

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Chen, Tianrui

    2018-04-01

    In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.

  4. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks

    PubMed Central

    Colon-Perez, Luis M.; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R.; Price, Catherine; Mareci, Thomas H.

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime. PMID:26173147

  5. Dimensionless, Scale Invariant, Edge Weight Metric for the Study of Complex Structural Networks.

    PubMed

    Colon-Perez, Luis M; Spindler, Caitlin; Goicochea, Shelby; Triplett, William; Parekh, Mansi; Montie, Eric; Carney, Paul R; Price, Catherine; Mareci, Thomas H

    2015-01-01

    High spatial and angular resolution diffusion weighted imaging (DWI) with network analysis provides a unique framework for the study of brain structure in vivo. DWI-derived brain connectivity patterns are best characterized with graph theory using an edge weight to quantify the strength of white matter connections between gray matter nodes. Here a dimensionless, scale-invariant edge weight is introduced to measure node connectivity. This edge weight metric provides reasonable and consistent values over any size scale (e.g. rodents to humans) used to quantify the strength of connection. Firstly, simulations were used to assess the effects of tractography seed point density and random errors in the estimated fiber orientations; with sufficient signal-to-noise ratio (SNR), edge weight estimates improve as the seed density increases. Secondly to evaluate the application of the edge weight in the human brain, ten repeated measures of DWI in the same healthy human subject were analyzed. Mean edge weight values within the cingulum and corpus callosum were consistent and showed low variability. Thirdly, using excised rat brains to study the effects of spatial resolution, the weight of edges connecting major structures in the temporal lobe were used to characterize connectivity in this local network. The results indicate that with adequate resolution and SNR, connections between network nodes are characterized well by this edge weight metric. Therefore this new dimensionless, scale-invariant edge weight metric provides a robust measure of network connectivity that can be applied in any size regime.

  6. Multilayer Optimization of Heterogeneous Networks Using Grammatical Genetic Programming.

    PubMed

    Fenton, Michael; Lynch, David; Kucera, Stepan; Claussen, Holger; O'Neill, Michael

    2017-09-01

    Heterogeneous cellular networks are composed of macro cells (MCs) and small cells (SCs) in which all cells occupy the same bandwidth. Provision has been made under the third generation partnership project-long term evolution framework for enhanced intercell interference coordination (eICIC) between cell tiers. Expanding on previous works, this paper instruments grammatical genetic programming to evolve control heuristics for heterogeneous networks. Three aspects of the eICIC framework are addressed including setting SC powers and selection biases, MC duty cycles, and scheduling of user equipments (UEs) at SCs. The evolved heuristics yield minimum downlink rates three times higher than a baseline method, and twice that of a state-of-the-art benchmark. Furthermore, a greater number of UEs receive transmissions under the proposed scheme than in either the baseline or benchmark cases.

  7. Long-term variability of importance of brain regions in evolving epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  8. Cooperative networks overcoming defectors by social influence

    NASA Astrophysics Data System (ADS)

    Gomez Portillo, Ignacio

    2014-01-01

    We address the cooperation problem in structured populations by considering the prisoner’s dilemma game as a metaphor of the social interactions between individuals with imitation capacity. We present a new strategy update rule called democratic weighted update where the individual’s behavior is socially influenced by each one of their neighbors. In particular, the capacity of an individual to socially influence other ones is proportional to its accumulated payoff. When in a neighborhood there are cooperators and defectors, the focal player is contradictorily influenced by them and, therefore, the effective social influence is given by the difference of the accumulated payoff of each strategy in its neighborhood. First, by considering the growing process of the network and neglecting mutations, we show the evolution of highly cooperative systems. Then, we broadly show that the social influence allows to overcome the emergence of defectors into highly cooperative systems. In this way, we conclude that in a structured system formed by a growing process, the cooperation evolves if the individuals have an imitation capacity socially influenced by each one of their neighbors. Therefore, here we present a theoretical solution of the cooperation problem among genetically unrelated individuals.

  9. Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network

    DTIC Science & Technology

    2015-08-14

    theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints

  10. Data Networks and Sustainability Education in African Universities: A Case Study for Sub-Saharan Africa

    ERIC Educational Resources Information Center

    Bothun, Gregory D.

    2016-01-01

    Purpose: The purpose of this paper is to provide a case study report of the development of data networks and initial connectivity in the Sub-Saharan African (SSA) region and how that development evolved into the formation of research and education (R&E) networks that enable new collaborations and curriculum potential.…

  11. Empirical study on a directed and weighted bus transport network in China

    NASA Astrophysics Data System (ADS)

    Feng, Shumin; Hu, Baoyu; Nie, Cen; Shen, Xianghao

    2016-01-01

    Bus transport networks are directed complex networks that consist of routes, stations, and passenger flow. In this study, the concept of duplication factor is introduced to analyze the differences between uplinks and downlinks for the bus transport network of Harbin (BTN-H). Further, a new representation model for BTNs is proposed, named as directed-space P. Two empirical characteristics of BTN-H are reported in this paper. First, the cumulative distributions of weighted degree, degree, number of routes that connect to each station, and node weight (peak-hour trips at a station) uniformly follow the exponential law. Meanwhile, the node weight shows positive correlations with the corresponding weighted degree, degree, and number of routes that connect to a station. Second, a new richness parameter of a node is explored by its node weight and the connectivity, weighted connectivity, average shortest path length and efficiency between rich nodes can be fitted by composite exponential functions to demonstrate the rich-club phenomenon.

  12. Supercooperation in evolutionary games on correlated weighted networks.

    PubMed

    Buesser, Pierre; Tomassini, Marco

    2012-01-01

    In this work we study the behavior of classical two-person, two-strategies evolutionary games on a class of weighted networks derived from Barabási-Albert and random scale-free unweighted graphs. Using customary imitative dynamics, our numerical simulation results show that the presence of link weights that are correlated in a particular manner with the degree of the link end points leads to unprecedented levels of cooperation in the whole games' phase space, well above those found for the corresponding unweighted complex networks. We provide intuitive explanations for this favorable behavior by transforming the weighted networks into unweighted ones with particular topological properties. The resulting structures help us to understand why cooperation can thrive and also give ideas as to how such supercooperative networks might be built.

  13. RANWAR: rank-based weighted association rule mining from gene expression and methylation data.

    PubMed

    Mallik, Saurav; Mukhopadhyay, Anirban; Maulik, Ujjwal

    2015-01-01

    Ranking of association rules is currently an interesting topic in data mining and bioinformatics. The huge number of evolved rules of items (or, genes) by association rule mining (ARM) algorithms makes confusion to the decision maker. In this article, we propose a weighted rule-mining technique (say, RANWAR or rank-based weighted association rule-mining) to rank the rules using two novel rule-interestingness measures, viz., rank-based weighted condensed support (wcs) and weighted condensed confidence (wcc) measures to bypass the problem. These measures are basically depended on the rank of items (genes). Using the rank, we assign weight to each item. RANWAR generates much less number of frequent itemsets than the state-of-the-art association rule mining algorithms. Thus, it saves time of execution of the algorithm. We run RANWAR on gene expression and methylation datasets. The genes of the top rules are biologically validated by Gene Ontologies (GOs) and KEGG pathway analyses. Many top ranked rules extracted from RANWAR that hold poor ranks in traditional Apriori, are highly biologically significant to the related diseases. Finally, the top rules evolved from RANWAR, that are not in Apriori, are reported.

  14. The urban watershed continuum: evolving spatial and temporal dimensions

    Treesearch

    Sujay S. Kaushal; Kenneth T. Belt

    2012-01-01

    Urban ecosystems are constantly evolving, and they are expected to change in both space and time with active management or degradation. An urban watershed continuum framework recognizes a continuum of engineered and natural hydrologic flowpaths that expands hydrologic networks in ways that are seldom considered. It recognizes that the nature of hydrologic connectivity...

  15. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  16. Enhanced Weight based DSR for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Verma, Samant; Jain, Sweta

    2011-12-01

    Routing in ad hoc network is a great problematic, since a good routing protocol must ensure fast and efficient packet forwarding, which isn't evident in ad hoc networks. In literature there exists lot of routing protocols however they don't include all the aspects of ad hoc networks as mobility, device and medium constraints which make these protocols not efficient for some configuration and categories of ad hoc networks. Thus in this paper we propose an improvement of Weight Based DSR in order to include some of the aspects of ad hoc networks as stability, remaining battery power, load and trust factor and proposing a new approach Enhanced Weight Based DSR.

  17. Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest.

    PubMed

    Nagasawa, Shinji; Al-Naamani, Eman; Saeki, Akinori

    2018-05-17

    Owing to the diverse chemical structures, organic photovoltaic (OPV) applications with a bulk heterojunction framework have greatly evolved over the last two decades, which has produced numerous organic semiconductors exhibiting improved power conversion efficiencies (PCEs). Despite the recent fast progress in materials informatics and data science, data-driven molecular design of OPV materials remains challenging. We report a screening of conjugated molecules for polymer-fullerene OPV applications by supervised learning methods (artificial neural network (ANN) and random forest (RF)). Approximately 1000 experimental parameters including PCE, molecular weight, and electronic properties are manually collected from the literature and subjected to machine learning with digitized chemical structures. Contrary to the low correlation coefficient in ANN, RF yields an acceptable accuracy, which is twice that of random classification. We demonstrate the application of RF screening for the design, synthesis, and characterization of a conjugated polymer, which facilitates a rapid development of optoelectronic materials.

  18. Surface Acoustic Wave Transducer Study.

    DTIC Science & Technology

    1978-05-01

    B. Network Analysis 48 C. Experimental Results 53 D. Conc lusions 56 VI. Analysis of SAW Propagation in Layered Structures . . . 56 A. Introduction...unLdtrect1ona~ transducer and the associated matching networks . The capacity weighted transducer consists of a layered structure in which the lower...CAPACITIVELY WEIGHTED TRANSDUCERS A. Introduction The capacitive tap weight network transducer (CNN) has been pre- .5 sented in the interim as an

  19. Unwinding the hairball graph: Pruning algorithms for weighted complex networks

    NASA Astrophysics Data System (ADS)

    Dianati, Navid

    2016-01-01

    Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

  20. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.

    2002-08-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.

  1. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.

    PubMed

    Gilson, Matthieu; Burkitt, Anthony N; Grayden, David B; Thomas, Doreen A; van Hemmen, J Leo

    2009-12-01

    In neuronal networks, the changes of synaptic strength (or weight) performed by spike-timing-dependent plasticity (STDP) are hypothesized to give rise to functional network structure. This article investigates how this phenomenon occurs for the excitatory recurrent connections of a network with fixed input weights that is stimulated by external spike trains. We develop a theoretical framework based on the Poisson neuron model to analyze the interplay between the neuronal activity (firing rates and the spike-time correlations) and the learning dynamics, when the network is stimulated by correlated pools of homogeneous Poisson spike trains. STDP can lead to both a stabilization of all the neuron firing rates (homeostatic equilibrium) and a robust weight specialization. The pattern of specialization for the recurrent weights is determined by a relationship between the input firing-rate and correlation structures, the network topology, the STDP parameters and the synaptic response properties. We find conditions for feed-forward pathways or areas with strengthened self-feedback to emerge in an initially homogeneous recurrent network.

  2. Directed evolution to re-adapt a co-evolved network within an enzyme.

    PubMed

    Strafford, John; Payongsri, Panwajee; Hibbert, Edward G; Morris, Phattaraporn; Batth, Sukhjeet S; Steadman, David; Smith, Mark E B; Ward, John M; Hailes, Helen C; Dalby, Paul A

    2012-01-01

    We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve k(cat) 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. WGCNA: an R package for weighted correlation network analysis.

    PubMed

    Langfelder, Peter; Horvath, Steve

    2008-12-29

    Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.

  4. Socioscape: Real-Time Analysis of Dynamic Heterogeneous Networks In Complex Socio-Cultural Systems

    DTIC Science & Technology

    2015-10-22

    Cluster Mixed-Membership Blockmodel for Time-Evolving Networks, Proceedings of the 14th International Conference on Artifical Intelligence and...Learning With Simultaneous Orthogonal Matching Pursuit, Proceedings of the 13th International Conference on Artifical Intelligence and Statistics

  5. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    PubMed

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  6. Limitations of opto-electronic neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David

    1989-01-01

    Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.

  7. An evolving model of online bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  8. Application-driven strategies for efficient transfer of medical images over very high speed networks

    NASA Astrophysics Data System (ADS)

    Alsafadi, Yasser H.; McNeill, Kevin M.; Martinez, Ralph

    1993-09-01

    The American College of Radiology (ACR) and the National Electrical Manufacturing Association (NEMA) in 1982 formed the ACR-NEMA committee to develop a standard to enable equipment from different vendors to communicate and participate in a picture archiving and communications system (PACS). The standard focused mostly on interconnectivity issues and communication needs of PACS. It was patterned after the international standards organization open systems interconnection (ISO/OSI) reference model. Three versions of the standard appeared, evolving from simple point-to-point specification of connection between two medical devices to a complex standard of a network environment. However, fast changes in network software and hardware technologies makes it difficult for the standard to keep pace. This paper compares two versions of the ACR-NEMA standard and then describes a system that is used at the University of Arizona Intensive Care Unit. In this system, the application should specify the interface to network services and grade of service required. These provisions are suggested to make the application independent from evolving network technology and support true open systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  10. Dynamic weight evolution network with preferential attachment

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Xie, Qi; Li, Lei

    2014-12-01

    A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.

  11. Nonparametric weighted stochastic block models

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2018-01-01

    We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric, and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.e., continuous or discrete, signed or unsigned, bounded or unbounded), as well as arbitrary weight transformations, and describe an unsupervised model selection approach to choose the best network description. We illustrate the application of our method to a variety of empirical weighted networks, such as global migrations, voting patterns in congress, and neural connections in the human brain.

  12. Addressing Software Security

    NASA Technical Reports Server (NTRS)

    Bailey, Brandon

    2015-01-01

    Historically security within organizations was thought of as an IT function (web sites/servers, email, workstation patching, etc.) Threat landscape has evolved (Script Kiddies, Hackers, Advanced Persistent Threat (APT), Nation States, etc.) Attack surface has expanded -Networks interconnected!! Some security posture factors Network Layer (Routers, Firewalls, etc.) Computer Network Defense (IPS/IDS, Sensors, Continuous Monitoring, etc.) Industrial Control Systems (ICS) Software Security (COTS, FOSS, Custom, etc.)

  13. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  14. Analysis of the social network development of a virtual community for Australian intensive care professionals.

    PubMed

    Rolls, Kaye Denise; Hansen, Margaret; Jackson, Debra; Elliott, Doug

    2014-11-01

    Social media platforms can create virtual communities, enabling healthcare professionals to network with a broad range of colleagues and facilitate knowledge exchange. In 2003, an Australian state health department established an intensive care mailing list to address the professional isolation experienced by senior intensive care nurses. This article describes the social network created within this virtual community by examining how the membership profile evolved from 2003 to 2009. A retrospective descriptive design was used. The data source was a deidentified member database. Since 2003, 1340 healthcare professionals subscribed to the virtual community with 78% of these (n = 1042) still members at the end of 2009. The membership profile has evolved from a single-state nurse-specific network to an Australia-wide multidisciplinary and multiorganizational intensive care network. The uptake and retention of membership by intensive care clinicians indicated that they appeared to value involvement in this virtual community. For healthcare organizations, a virtual community may be a communications option for minimizing professional and organizational barriers and promoting knowledge flow. Further research is, however, required to demonstrate a link between these broader social networks, enabling the exchange of knowledge and improved patient outcomes.

  15. Solar-terrestrial data access distribution and archiving

    NASA Technical Reports Server (NTRS)

    1984-01-01

    It is recommended that a central data catalog and data access network (CDC/DAN) for solar-terrestrial research be established, initially as a NASA pilot program. The system is envisioned to be flexible and to evolve as funds permit, starting from a catalog to an access network for high-resolution data. The report describes the various functional requirements for the CDC/DAN, but does not specify the hardware and software architectures as these are constantly evolving. The importance of a steering committee, working with the CDC/DAN organization, to provide scientific guidelines for the data catalog and for data storage, access, and distribution is also stressed.

  16. Cognitive Radio Networks for Tactical Wireless Communications

    DTIC Science & Technology

    2014-12-01

    exists. Instead, security is an evolving process, as we have seen in the context of WLANs and 2G / 3G networks. New system vulnerabilities continue to...in the network configuration and radio parameters take place due to mobility of platforms, and variation in other users of the RF environment. CRNs...dynamic spectrum access experimentally, and it represents the largest military Mobile Ad hoc Network (MANET) as of today. The WNaN demonstrator has been

  17. Sex Offenders in the Digital Age.

    PubMed

    Chan, Eric J; McNiel, Dale E; Binder, Renee L

    2016-09-01

    With most youths now using the Internet and social networking sites (SNSs), the public has become increasingly concerned about risks posed by online predators. In response, lawmakers have begun to pass laws that ban or limit sex offenders' use of the Internet and SNSs. At the time of this article, 12 states and the federal government have passed legislation attempting to restrict or ban the use of SNSs by registered sex offenders. These laws have been successfully challenged in 4 states. In this article, we discuss examples of case law that illustrate evolving trends regarding Internet and social networking site restrictions on sex offenders on supervised release, as well as those who have already completed their sentences. We also review constitutional questions and empirical evidence concerning Internet and social networking use by sex offenders. To our knowledge, this is the first paper in the psychiatric literature that addresses the evolving legal landscape in reference to sex offenders and their use of the Internet and SNSs. This article is intended to help inform forensic mental health professionals who work with sex offenders on current concerns in this rapidly evolving legal landscape. © 2016 American Academy of Psychiatry and the Law.

  18. WGCNA: an R package for weighted correlation network analysis

    PubMed Central

    Langfelder, Peter; Horvath, Steve

    2008-01-01

    Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008

  19. MSAT signalling and network management architectures

    NASA Technical Reports Server (NTRS)

    Garland, Peter; Keelty, J. Malcolm

    1989-01-01

    Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.

  20. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    NASA Astrophysics Data System (ADS)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  1. Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons

    PubMed Central

    Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram

    2017-01-01

    Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508

  2. A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice

    PubMed Central

    Snijders, Tom A.B.; Lomi, Alessandro; Torló, Vanina Jasmine

    2012-01-01

    We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior. PMID:23690653

  3. The GGOS Global Space Geodesy Network and its Evolution

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Pavlis, E. C.; Ma, C.; Noll, C. E.; Neilan, R. E.; Stowers, D. A.; Wetzel, S.

    2013-12-01

    The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the IAG Services has been encouraging current groups to upgrade and new groups to join the activity. Simulations examine the projected accuracy and stability of the network that would exist in five- and ten-years time, were the proposed expansion to fully materialize by then. Over the last year additional sites have joined the GGOS network, and ground techniques have continued to make progress in new technology systems. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  4. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    PubMed Central

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  5. Improved Neural Networks with Random Weights for Short-Term Load Forecasting.

    PubMed

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.

  6. A Multi-level Fuzzy Evaluation Method for Smart Distribution Network Based on Entropy Weight

    NASA Astrophysics Data System (ADS)

    Li, Jianfang; Song, Xiaohui; Gao, Fei; Zhang, Yu

    2017-05-01

    Smart distribution network is considered as the future trend of distribution network. In order to comprehensive evaluate smart distribution construction level and give guidance to the practice of smart distribution construction, a multi-level fuzzy evaluation method based on entropy weight is proposed. Firstly, focus on both the conventional characteristics of distribution network and new characteristics of smart distribution network such as self-healing and interaction, a multi-level evaluation index system which contains power supply capability, power quality, economy, reliability and interaction is established. Then, a combination weighting method based on Delphi method and entropy weight method is put forward, which take into account not only the importance of the evaluation index in the experts’ subjective view, but also the objective and different information from the index values. Thirdly, a multi-level evaluation method based on fuzzy theory is put forward. Lastly, an example is conducted based on the statistical data of some cites’ distribution network and the evaluation method is proved effective and rational.

  7. Neural network for processing both spatial and temporal data with time based back-propagation

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)

    1993-01-01

    Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.

  8. Coherence analysis of a class of weighted networks

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; He, Jiaojiao; Zong, Yue; Ju, Tingting; Sun, Yu; Su, Weiyi

    2018-04-01

    This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1/√{d }

  9. Weighting for sex acts to understand the spread of STI on networks.

    PubMed

    Moslonka-Lefebvre, Mathieu; Bonhoeffer, Sebastian; Alizon, Samuel

    2012-10-21

    Human sexual networks exhibit a heterogeneous structure where few individuals have many partners and many individuals have few partners. Network theory predicts that the spread of sexually transmitted infections (STI) on such networks should exhibit striking properties (e.g. rapid spread). However, these properties cannot be found in epidemiological data. Current network models typically assume a constant STI transmission risk per partnership, which is unrealistic because it implies that sexual activity is proportional to the number of partners and that individuals have the same activity with each partner. We develop a framework that allows us to weight any sexual network based on biological assumptions. Our results indicate that STI spreading on the resulting weighted networks do not have heterogeneous-related properties, which is consistent with data and earlier studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Structural Controllability of Temporal Networks with a Single Switching Controller

    PubMed Central

    Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang

    2017-01-01

    Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538

  11. Skeleton of weighted social network

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhu, J.

    2013-03-01

    In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.

  12. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    PubMed

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Exploring biological interaction networks with tailored weighted quasi-bicliques

    PubMed Central

    2012-01-01

    Background Biological networks provide fundamental insights into the functional characterization of genes and their products, the characterization of DNA-protein interactions, the identification of regulatory mechanisms, and other biological tasks. Due to the experimental and biological complexity, their computational exploitation faces many algorithmic challenges. Results We introduce novel weighted quasi-biclique problems to identify functional modules in biological networks when represented by bipartite graphs. In difference to previous quasi-biclique problems, we include biological interaction levels by using edge-weighted quasi-bicliques. While we prove that our problems are NP-hard, we also describe IP formulations to compute exact solutions for moderately sized networks. Conclusions We verify the effectiveness of our IP solutions using both simulation and empirical data. The simulation shows high quasi-biclique recall rates, and the empirical data corroborate the abilities of our weighted quasi-bicliques in extracting features and recovering missing interactions from biological networks. PMID:22759421

  14. Classification of Company Performance using Weighted Probabilistic Neural Network

    NASA Astrophysics Data System (ADS)

    Yasin, Hasbi; Waridi Basyiruddin Arifin, Adi; Warsito, Budi

    2018-05-01

    Classification of company performance can be judged by looking at its financial status, whether good or bad state. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric methods. One of Artificial Neural Network (ANN) models is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclidean distance and each class share the same values as their weights. In this study used PNN that has been modified on the weighting process between the pattern layer and the addition layer by involving the calculation of the mahalanobis distance. This model is called the Weighted Probabilistic Neural Network (WPNN). The results show that the company's performance modeling with the WPNN model has a very high accuracy that reaches 100%.

  15. Betweenness centrality in a weighted network

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Hernandez, Javier Martin; van Mieghem, Piet

    2008-04-01

    When transport in networks follows the shortest paths, the union of all shortest path trees G∪SPT can be regarded as the “transport overlay network.” Overlay networks such as peer-to-peer networks or virtual private networks can be considered as a subgraph of G∪SPT . The traffic through the network is examined by the betweenness Bl of links in the overlay G∪SPT . The strength of disorder can be controlled by, e.g., tuning the extreme value index α of the independent and identically distributed polynomial link weights. In the strong disorder limit (α→0) , all transport flows over a critical backbone, the minimum spanning tree (MST). We investigate the betweenness distributions of wide classes of trees, such as the MST of those well-known network models and of various real-world complex networks. All these trees with different degree distributions (e.g., uniform, exponential, or power law) are found to possess a power law betweenness distribution Pr[Bl=j]˜j-c . The exponent c seems to be positively correlated with the degree variance of the tree and to be insensitive of the size N of a network. In the weak disorder regime, transport in the network traverses many links. We show that a link with smaller link weight tends to carry more traffic. This negative correlation between link weight and betweenness depends on α and the structure of the underlying topology.

  16. The influence of passenger flow on the topology characteristics of urban rail transit networks

    NASA Astrophysics Data System (ADS)

    Hu, Yingyue; Chen, Feng; Chen, Peiwen; Tan, Yurong

    2017-05-01

    Current researches on the network characteristics of metro networks are generally carried out on topology networks without passenger flows running on it, thus more complex features of the networks with ridership loaded on it cannot be captured. In this study, we incorporated the load of metro networks, passenger volume, into the exploration of network features. Thus, the network can be examined in the context of operation, which is the ultimate purpose of the existence of a metro network. To this end, section load was selected as an edge weight to demonstrate the influence of ridership on the network, and a weighted calculation method for complex network indicators and robustness were proposed to capture the unique behaviors of a metro network with passengers flowing in it. The proposed method was applied on Beijing Subway. Firstly, the passenger volume in terms of daily origin and destination matrix was extracted from exhausted transit smart card data. Using the established approach and the matrix as weighting, common indicators of complex network including clustering coefficient, betweenness and degree were calculated, and network robustness were evaluated under potential attacks. The results were further compared to that of unweighted networks, and it suggests indicators of the network with consideration of passenger volumes differ from that without ridership to some extent, and networks tend to be more vulnerable than that without load on it. The significance sequence for the stations can be changed. By introducing passenger flow weighting, actual operation status of the network can be reflected more accurately. It is beneficial to determine the crucial stations and make precautionary measures for the entire network’s operation security.

  17. Improved Autoassociative Neural Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.

  18. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  19. Diffusion weighted magnetic resonance imaging and its recent trend—a survey

    PubMed Central

    Chilla, Geetha Soujanya; Tan, Cher Heng

    2015-01-01

    Since its inception in 1985, diffusion weighted magnetic resonance imaging has been evolving and is becoming instrumental in diagnosis and investigation of tissue functions in various organs including brain, cartilage, and liver. Even though brain related pathology and/or investigation remains as the main application, diffusion weighted magnetic resonance imaging (DWI) is becoming a standard in oncology and in several other applications. This review article provides a brief introduction of diffusion weighted magnetic resonance imaging, challenges involved and recent advancements. PMID:26029644

  20. Optimal Network-based Intervention in the Presence of Undetectable Viruses.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2014-08-01

    This letter presents an optimal control framework to reduce the spread of viruses in networks. The network is modeled as an undirected graph of nodes and weighted links. We consider the spread of viruses in a network as a system, and the total number of infected nodes as the state of the system, while the control function is the weight reduction leading to slow/reduce spread of viruses. Our epidemic model overcomes three assumptions that were extensively used in the literature and produced inaccurate results. We apply the optimal control formulation to crucial network structures. Numerical results show the dynamical weight reduction and reveal the role of the network structure and the epidemic model in reducing the infection size in the presence of indiscernible infected nodes.

  1. Optimal Network-based Intervention in the Presence of Undetectable Viruses

    PubMed Central

    Youssef, Mina; Scoglio, Caterina

    2014-01-01

    This letter presents an optimal control framework to reduce the spread of viruses in networks. The network is modeled as an undirected graph of nodes and weighted links. We consider the spread of viruses in a network as a system, and the total number of infected nodes as the state of the system, while the control function is the weight reduction leading to slow/reduce spread of viruses. Our epidemic model overcomes three assumptions that were extensively used in the literature and produced inaccurate results. We apply the optimal control formulation to crucial network structures. Numerical results show the dynamical weight reduction and reveal the role of the network structure and the epidemic model in reducing the infection size in the presence of indiscernible infected nodes. PMID:25422579

  2. Quantifying the Structure of Free Association Networks across the Life Span

    ERIC Educational Resources Information Center

    Dubossarsky, Haim; De Deyne, Simon; Hills, Thomas T.

    2017-01-01

    We investigate how the mental lexicon changes over the life span using free association data from over 8,000 individuals, ranging from 10 to 84 years of age, with more than 400 cue words per age group. Using network analysis, with words as nodes and edges defined by the strength of shared associations, we find that associative networks evolve in a…

  3. The Evolving National Information Network: Background and Challenges. A Report of the Technology Assessment Advisory Committee to the Commission on Preservation and Access.

    ERIC Educational Resources Information Center

    Van Houweling, Douglas E.; McGill, Michael J.

    The rapidly developing and changing networking and telecommunications environment now being implemented in the United States and across the globe is explored. The creation of a flexible and inexpensive digital network allowing instantaneous access by any individual to information of any type is now within our grasp. A primer on the technology…

  4. Efficient Strategies for Active Interface-Level Network Topology Discovery

    DTIC Science & Technology

    2013-09-01

    Network Information Centre API Application Programming Interface APNIC Asia-Pacific Network Information Centre ARIN American Registry for Internet Numbers...very convenient Application Programming Interface ( API ) for easy primitive implementation. Ark’s API facilitates easy development and rapid...prototyping – important attributes as the char- acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn leads to rapid

  5. A Markovian model of evolving world input-output network

    PubMed Central

    Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145

  6. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    PubMed Central

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826

  7. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    PubMed

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.

  8. Dynamics of subway networks based on vehicles operation timetable

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui

    2017-05-01

    In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.

  9. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    PubMed

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  11. A Measure for the Cohesion of Weighted Networks.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    2003-01-01

    Discusses graph theory in information science, focusing on measures for the cohesion of networks. Illustrates how a set of weights between connected nodes can be transformed into a set of dissimilarity measures and presents an example of the new compactness measures for a cocitation and a bibliographic coupling network. (Author/LRW)

  12. The Irving Harris Foundation's Investment in the Professional Development Network

    ERIC Educational Resources Information Center

    Glink, Phyllis

    2012-01-01

    Phyllis Glink, the executive director of the Irving Harris Foundation, describes the Foundation's strategic approach to grantmaking in the infant and early childhood field. The Harris Professional Development Network evolved out of Irving Harris's growing appreciation for the importance of supporting very young children's mental health and…

  13. Wireless Takes Over

    ERIC Educational Resources Information Center

    Korzeniowski, Paul

    2008-01-01

    After starting off as a simple way to provide users with access to internet resources, WiFi networks have evolved to become an important communications cornerstone for a growing number of academic institutions. Not only have colleges been working to make these networks available across their entire campuses (or at least pretty close to 100 percent…

  14. Surveillance Jumps on the Network

    ERIC Educational Resources Information Center

    Raths, David

    2011-01-01

    Internet protocol (IP) network-based cameras and digital video management software are maturing, and many issues that have surrounded them, including bandwidth, data storage, ease of use, and integration are starting to become clearer as the technology continues to evolve. Prices are going down and the number of features is going up. Many school…

  15. Investigating the Educational Value of Social Learning Networks: A Quantitative Analysis

    ERIC Educational Resources Information Center

    Dafoulas, Georgios; Shokri, Azam

    2016-01-01

    Purpose: The emergence of Education 2.0 enabled technology-enhanced learning, necessitating new pedagogical approaches, while e-learning has evolved into an instrumental pedagogy of collaboration through affordances of social media. Social learning networks and ubiquitous learning enabled individual and group learning through social engagement and…

  16. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  17. Representation in dynamical agents.

    PubMed

    Ward, Ronnie; Ward, Robert

    2009-04-01

    This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.

  18. Analysis of NASA communications (Nascom) II network protocols and performance

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.

    1991-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.

  19. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  20. Evolving network with different edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Jie; Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699; Ge Yizhi

    2007-10-15

    We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges. This model is based on the idea that in many cases there are more than one kind of link in a network and when a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free. Simulations are shown to confirm these results.

  1. The Effects of Dr. Oz on Health Behaviors and Attitudes

    ERIC Educational Resources Information Center

    Crouch, Elizabeth; Dickes, Lori A.; Davis, Amanda; Zarandy, Joy

    2016-01-01

    Background: Consumption of social media has quickly evolved into a primary source of health information for many consumers. This seems to be particularly true for individuals seeking to modify chronic health conditions like weight loss, obesity, and obesity-related diseases. Purpose: This study explores whether watching Dr. Oz weight loss episodes…

  2. Social Dynamics of a University Weight Room: A Microethnography.

    ERIC Educational Resources Information Center

    Ittenbach, Richard F.; Chissom, Brad S.

    The purpose of this investigation was to describe and explain the social dynamics of America's second most popular recreational sport, weight lifting, as performed on a university campus. Data were collected and analyzed using the participant observation approach to grounded theory research. Several hypotheses evolved from this analysis: (1) it is…

  3. Opinion formation and distribution in a bounded-confidence model on various networks

    NASA Astrophysics Data System (ADS)

    Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.

    2018-02-01

    In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.

  4. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F

    2009-01-01

    Background Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. Results We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. Conclusions These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote. PMID:19754933

  5. Network speech systems technology program

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  6. Modeling evolution of crosstalk in noisy signal transduction networks

    NASA Astrophysics Data System (ADS)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  7. Dynamics and control of state-dependent networks for probing genomic organization

    PubMed Central

    Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran

    2011-01-01

    A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407

  8. Epidemic spreading on contact networks with adaptive weights.

    PubMed

    Zhu, Guanghu; Chen, Guanrong; Xu, Xin-Jian; Fu, Xinchu

    2013-01-21

    The heterogeneous patterns of interactions within a population are often described by contact networks, but the variety and adaptivity of contact strengths are usually ignored. This paper proposes a modified epidemic SIS model with a birth-death process and nonlinear infectivity on an adaptive and weighted contact network. The links' weights, named as 'adaptive weights', which indicate the intimacy or familiarity between two connected individuals, will reduce as the disease develops. Through mathematical and numerical analyses, conditions are established for population extermination, disease extinction and infection persistence. Particularly, it is found that the fixed weights setting can trigger the epidemic incidence, and that the adaptivity of weights cannot change the epidemic threshold but it can accelerate the disease decay and lower the endemic level. Finally, some corresponding control measures are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Similarity indices based on link weight assignment for link prediction of unweighted complex networks

    NASA Astrophysics Data System (ADS)

    Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi

    2017-01-01

    Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.

  10. Do-it-yourself networks: a novel method of generating weighted networks.

    PubMed

    Shanafelt, D W; Salau, K R; Baggio, J A

    2017-11-01

    Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.

  11. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions.

    PubMed

    Semenov, Sergey N; Kraft, Lewis J; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E; Kang, Kyungtae; Fox, Jerome M; Whitesides, George M

    2016-09-29

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.

  12. Networks in ATLAS

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  13. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Kraft, Lewis J.; Ainla, Alar; Zhao, Mengxia; Baghbanzadeh, Mostafa; Campbell, Victoria E.; Kang, Kyungtae; Fox, Jerome M.; Whitesides, George M.

    2016-09-01

    Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.

  14. Emergence of small-world structure in networks of spiking neurons through STDP plasticity.

    PubMed

    Basalyga, Gleb; Gleiser, Pablo M; Wennekers, Thomas

    2011-01-01

    In this work, we use a complex network approach to investigate how a neural network structure changes under synaptic plasticity. In particular, we consider a network of conductance-based, single-compartment integrate-and-fire excitatory and inhibitory neurons. Initially the neurons are connected randomly with uniformly distributed synaptic weights. The weights of excitatory connections can be strengthened or weakened during spiking activity by the mechanism known as spike-timing-dependent plasticity (STDP). We extract a binary directed connection matrix by thresholding the weights of the excitatory connections at every simulation step and calculate its major topological characteristics such as the network clustering coefficient, characteristic path length and small-world index. We numerically demonstrate that, under certain conditions, a nontrivial small-world structure can emerge from a random initial network subject to STDP learning.

  15. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    NASA Technical Reports Server (NTRS)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  16. International migration network: Topology and modeling

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  17. International migration network: topology and modeling.

    PubMed

    Fagiolo, Giorgio; Mastrorillo, Marina

    2013-07-01

    This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.

  18. Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences.

    PubMed

    Zhong, Suyu; He, Yong; Gong, Gaolang

    2015-05-01

    Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.

  19. The Role of State Library Agencies in the Evolving National Information Network. Proceedings of the Joint Meeting of the Library of Congress Network Advisory Committee and the Chief Officers of State Library Agencies (Washington, D.C., April 27-29, 1992). Network Planning Paper No. 23.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Network Development and MARC Standards Office.

    The papers in this proceedings describe similarities and differences in state libraries and examine the state library role in local, regional, and national network development and in the dissemination of information to various client segments. The papers are: (1) "The Commonalities of State Library Agencies" (Barrat Wilkins); (2)…

  20. Towards integrated crisis support of regional emergency networks.

    PubMed

    Caro, D H

    1999-01-01

    Emergency and crisis management pose multidimensional information systems challenges for communities across North America. In the quest to reduce mortality and morbidity risks and to increase the level of crisis preparedness, regional emergency management networks have evolved. Integrated Crisis Support Systems (ICSS) are enabling information technologies that assist emergency managers by enhancing the ability to strategically manage and control these regional emergency networks efficiently and effectively. This article underscores the ICCS development, control and leadership issues and their promising implications for regional emergency management networks.

  1. Network community-detection enhancement by proper weighting

    NASA Astrophysics Data System (ADS)

    Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin

    2011-04-01

    In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.

  2. Modeling the coevolution of topology and traffic on weighted technological networks

    NASA Astrophysics Data System (ADS)

    Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong

    2007-02-01

    For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.

  3. STOCK Market Differences in Correlation-Based Weighted Network

    NASA Astrophysics Data System (ADS)

    Youn, Janghyuk; Lee, Junghoon; Chang, Woojin

    We examined the sector dynamics of Korean stock market in relation to the market volatility. The daily price data of 360 stocks for 5019 trading days (from January, 1990 to August, 2008) in Korean stock market are used. We performed the weighted network analysis and employed four measures: the average, the variance, the intensity, and the coherence of network weights (absolute values of stock return correlations) to investigate the network structure of Korean stock market. We performed regression analysis using the four measures in the seven major industry sectors and the market (seven sectors combined). We found that the average, the intensity, and the coherence of sector (subnetwork) weights increase as market becomes volatile. Except for the "Financials" sector, the variance of sector weights also grows as market volatility increases. Based on the four measures, we can categorize "Financials," "Information Technology" and "Industrials" sectors into one group, and "Materials" and "Consumer Discretionary" sectors into another group. We investigated the distributions of intrasector and intersector weights for each sector and found the differences in "Financials" sector are most distinct.

  4. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  5. Data Acquisition and Preparation for Social Network Analysis Based on Email: Lessons Learned

    DTIC Science & Technology

    2009-06-01

    Mrvar , A., and Batagelj , V. (2005), Exploratory Social Network Analysis with Pajek (Structural Analysis in the Social Sciences series). Cambridge, New...visualization of large networks. This program was developed by Vladimir Batagelj and Andrej Mrvar of the University of Ljubljana in Slovenia. Pajek evolved...theory, presumes Wasserman & Faust as foundation Amazon: 55% purchase rate among viewers 5. de Nooy, W., Mrvar , A., and Batagelj , V. (2005

  6. Modelling conflicts with cluster dynamics in networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Rodgers, G. J.

    2010-12-01

    We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.

  7. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    NASA Astrophysics Data System (ADS)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  8. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  10. “Theory of Food” as a Neurocognitive Adaptation

    PubMed Central

    Allen, John S.

    2011-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and socio-cultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a “theory of food” (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. PMID:22262561

  11. Epidemic spreading on evolving signed networks

    NASA Astrophysics Data System (ADS)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  12. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    PubMed Central

    Moon, Hankyu; Lu, Tsai-Ching

    2015-01-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423

  13. Network Catastrophe: Self-Organized Patterns Reveal both the Instability and the Structure of Complex Networks

    NASA Astrophysics Data System (ADS)

    Moon, Hankyu; Lu, Tsai-Ching

    2015-03-01

    Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.

  14. "Theory of food" as a neurocognitive adaptation.

    PubMed

    Allen, John S

    2012-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and sociocultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a "theory of food" (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. Copyright © 2012 Wiley Periodicals, Inc.

  15. The Global Space Geodesy Network and the Essential Role of Latin America Sites

    NASA Astrophysics Data System (ADS)

    Pearlman, M. R.; Ma, C.; Neilan, R.; Noll, C. E.; Pavlis, E. C.; Wetzel, S.

    2013-05-01

    The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network, and new technologies are implemented at current and new sites, thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS, through its Call for Participation, bi-lateral and multi-lateral discussions, and work through the scientific Services have been encouraging current groups to upgrade and new groups to join the activity. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years based on discussions and planning that has already occurred. We will also discuss some of the historical contributions to the reference frame from sites in Latin America and need for new sites in the future.

  16. A diffusion perspective on temporal networks: A case study on a supermarket

    NASA Astrophysics Data System (ADS)

    Deng, Shiguo; Qiu, Lu; Yang, Yue; Yang, Huijie

    2016-01-01

    From a large amount of records, one can extract behavioral characteristics of a social system at different scales. Theoretically, it can help us to know how the global behavior of a social system is formed from individual activities. Practically, it can be used to optimize and even to control the social system. Complicated relationships between the individuals form a network, which evolves with time. The behavior of the system can be accordingly understood in the framework of temporal network. In the present paper, instead of focusing on microscopic structures, we develop a framework to investigate temporal networks from the viewpoint of diffusion process, in which each snapshot network is divided into groups and the ID number of the group a node belongs to is used to measure its state. By this way trajectories of the nodes form an ensemble of realizations of a stochastic process. As an illustration, we investigate the diffusion behavior of a supermarket. One can find that with the increase of time the customers cluster and separate into different groups. Meanwhile, the system evolves in a significant order way, instead of a complete random one.

  17. A model to assess the Mars Telecommunications Network relay robustness

    NASA Technical Reports Server (NTRS)

    Girerd, Andre R.; Meshkat, Leila; Edwards, Charles D., Jr.; Lee, Charles H.

    2005-01-01

    The relatively long mission durations and compatible radio protocols of current and projected Mars orbiters have enabled the gradual development of a heterogeneous constellation providing proximity communication services for surface assets. The current and forecasted capability of this evolving network has reached the point that designers of future surface missions consider complete dependence on it. Such designers, along with those architecting network requirements, have a need to understand the robustness of projected communication service. A model has been created to identify the robustness of the Mars Network as a function of surface location and time. Due to the decade-plus time horizon considered, the network will evolve, with emerging productive nodes and nodes that cease or fail to contribute. The model is a flexible framework to holistically process node information into measures of capability robustness that can be visualized for maximum understanding. Outputs from JPL's Telecom Orbit Analysis Simulation Tool (TOAST) provide global telecom performance parameters for current and projected orbiters. Probabilistic estimates of orbiter fuel life are derived from orbit keeping burn rates, forecasted maneuver tasking, and anomaly resolution budgets. Orbiter reliability is estimated probabilistically. A flexible scheduling framework accommodates the projected mission queue as well as potential alterations.

  18. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson

    2017-07-01

    We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

  19. The Cooperative Landscape of Multinational Clinical Trials

    PubMed Central

    Hsiehchen, David; Espinoza, Magdalena; Hsieh, Antony

    2015-01-01

    The scale and nature of cooperative efforts spanning geopolitical borders in clinical research have not been elucidated to date. In a cross-sectional study of 110,428 interventional trials registered in Clinicaltrials.gov, we characterized the evolution, trial demographics, and network properties of multinational clinical research. We reveal that the relative growth of international collaboratives has remained stagnant in the last two decades, although clinical trials have evolved to become much larger in scale. Multinational clinical trials are also characterized by higher patient enrollments, industry funding, and specific clinical disciplines including oncology and infectious disease. Network analyses demonstrate temporal shifts in collaboration patterns between countries and world regions, with developing nations now collaborating more within themselves, although Europe remains the dominant contributor to multinational clinical trials worldwide. Performances in network centrality measures also highlight the differential contribution of nations in the global research network. A city-level clinical trial network analysis further demonstrates how collaborative ties decline with physical distance. This study clarifies evolving themes and highlights potential growth mechanisms and barriers in multinational clinical trials, which may be useful in evaluating the role of national and local policies in organizing transborder efforts in clinical endeavors. PMID:26103155

  20. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE PAGES

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...

    2017-06-26

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  1. The use of nodes attributes in social network analysis with an application to an international trade network

    NASA Astrophysics Data System (ADS)

    de Andrade, Ricardo Lopes; Rêgo, Leandro Chaves

    2018-02-01

    The social network analysis (SNA) studies the interactions among actors in a network formed through some relationship (friendship, cooperation, trade, among others). The SNA is constantly approached from a binary point of view, i.e., it is only observed if a link between two actors is present or not regardless of the strength of this link. It is known that different information can be obtained in weighted and unweighted networks and that the information extracted from weighted networks is more accurate and detailed. Another rarely discussed approach in the SNA is related to the individual attributes of the actors (nodes), because such analysis is usually focused on the topological structure of networks. Features of the nodes are not incorporated in the SNA what implies that there is some loss or misperception of information in those analyze. This paper aims at exploring more precisely the complexities of a social network, initially developing a method that inserts the individual attributes in the topological structure of the network and then analyzing the network in four different ways: unweighted, edge-weighted and two methods for using both edge-weights and nodes' attributes. The international trade network was chosen in the application of this approach, where the nodes represent the countries, the links represent the cash flow in the trade transactions and countries' GDP were chosen as nodes' attributes. As a result, it is possible to observe which countries are most connected in the world economy and with higher cash flows, to point out the countries that are central to the intermediation of the wealth flow and those that are most benefited from being included in this network. We also made a principal component analysis to study which metrics are more influential in describing the data variability, which turn out to be mostly the weighted metrics which include the nodes' attributes.

  2. Connectivity of Secondary Channels in the Floodplain of a Low-Gradient Midwestern U.S. Agricultural River

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2016-12-01

    Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?

  3. System Model Network for Adipose Tissue Signatures Related to Weight Changes in Response to Calorie Restriction and Subsequent Weight Maintenance

    PubMed Central

    Montastier, Emilie; Villa-Vialaneix, Nathalie; Caspar-Bauguil, Sylvie; Hlavaty, Petr; Tvrzicka, Eva; Gonzalez, Ignacio; Saris, Wim H. M.; Langin, Dominique; Kunesova, Marie; Viguerie, Nathalie

    2015-01-01

    Nutrigenomics investigates relationships between nutrients and all genome-encoded molecular entities. This holistic approach requires systems biology to scrutinize the effects of diet on tissue biology. To decipher the adipose tissue (AT) response to diet induced weight changes we focused on key molecular (lipids and transcripts) AT species during a longitudinal dietary intervention. To obtain a systems model, a network approach was used to combine all sets of variables (bio-clinical, fatty acids and mRNA levels) and get an overview of their interactions. AT fatty acids and mRNA levels were quantified in 135 obese women at baseline, after an 8-week low calorie diet (LCD) and after 6 months of ad libitum weight maintenance diet (WMD). After LCD, individuals were stratified a posteriori according to weight change during WMD. A 3 steps approach was used to infer a global model involving the 3 sets of variables. It consisted in inferring intra-omic networks with sparse partial correlations and inter-omic networks with regularized canonical correlation analysis and finally combining the obtained omic-specific network in a single global model. The resulting networks were analyzed using node clustering, systematic important node extraction and cluster comparisons. Overall, AT showed both constant and phase-specific biological signatures in response to dietary intervention. AT from women regaining weight displayed growth factors, angiogenesis and proliferation signaling signatures, suggesting unfavorable tissue hyperplasia. By contrast, after LCD a strong positive relationship between AT myristoleic acid (a fatty acid with low AT level) content and de novo lipogenesis mRNAs was found. This relationship was also observed, after WMD, in the group of women that continued to lose weight. This original system biology approach provides novel insight in the AT response to weight control by highlighting the central role of myristoleic acid that may account for the beneficial effects of weight loss. PMID:25590576

  4. Analyzing Evolving Social Network 2 (EVOLVE2)

    DTIC Science & Technology

    2015-04-01

    Facebook friendship graph. We simulated two different interaction models: one-to-one and one-to-many interactions . Both types of models revealed...to an unbiased random walk on the reweighed “ interaction graph” W with entries wij = αiAijαj . The generalized Laplacian framework is flexible enough...Information Intelligence Systems & Analysis Division Information Directorate This report is published in the interest of scientific and technical

  5. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction.

    PubMed

    Chen, C P; Wan, J Z

    1999-01-01

    A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.

  6. Cyclopentadiene evolution during pyrolysis-gas chromatography of PMR polyimides

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Gluyas, Richard E.; Snyder, William J.

    1992-01-01

    The effect of formulated molecular weight (FMW), extent of cure, and cumulative aging on the amount of cyclopentadiene (CPD) evolved from Polymerization of Monomeric Reactants (PMR) polyimides were investigated by pyrolysis-gas chromotography (PY-GC). The PMR polyimides are additional crosslinked resins formed from an aromatic diamine, a diester of an aromatic tetracarboxylic acid and a monoester of 5-norbornene-2, 3-dicarboxylic acid. The PY-GC results were related to the degree of crosslinking and to the thermo-oxidative stability (weight loss) of PMR polyimides. Thus, PY-GC has shown to be a valid technique for the characterization of PMR polyimide resins and composites via correlation of the CPD evolved versus the thermal history of the PMR sample.

  7. Network formation, governance, and evolution in public health: The North American Quitline Consortium case

    PubMed Central

    Provan, Keith G.; Beagles, Jonathan E.; Leischow, Scott J.

    2014-01-01

    Background Collaborative networks of health organizations have received a great deal of attention in recent years as a way of enhancing the flow of information and coordination of services. However, relatively little is known about how such networks are formed and evolve, especially outside a local, community-based setting. This article is an in-depth discussion of the evolution of the North American Quitline Consortium (NAQC). The NAQC is a network of U.S. and Canadian organizations that provide telephone-based counseling and related services to people trying to quit smoking. Methodology The research draws on data from interviews, documents, and a survey of NAQC members to assess how the network emerged, became formalized, and effectively governed. Findings The findings provide an understanding of how multiregional public health networks evolve, while building on and extending the broader literature on organizational networks in other sectors and settings. Specifically, we found that the network form that ultimately emerged was a product of the back-and-forth interplay between the internal needs and goals of those organizations that would ultimately become network members, in this case, state-, and provincial-level tobacco quitline organizations. We also found that network formation, and then governance through a network administrative organization, was driven by important events and shifts in the external environment, including the impact and influence of major national organizations. Practice Implications The results of the study provide health care leaders and policy officials an understanding of how the activities of a large number of organizations having a common health goal, but spanning multiple states and countries, might be coordinated and integrated through the establishment of a formal network. PMID:21712725

  8. Network formation, governance, and evolution in public health: the North American Quitline Consortium case.

    PubMed

    Provan, Keith G; Beagles, Jonathan E; Leischow, Scott J

    2011-01-01

    Collaborative networks of health organizations have received a great deal of attention in recent years as a way of enhancing the flow of information and coordination of services. However, relatively little is known about how such networks are formed and evolve, especially outside a local, community-based setting. This article is an in-depth discussion of the evolution of the North American Quitline Consortium (NAQC). The NAQC is a network of U.S. and Canadian organizations that provide telephone-based counseling and related services to people trying to quit smoking. The research draws on data from interviews, documents, and a survey of NAQC members to assess how the network emerged, became formalized, and effectively governed. The findings provide an understanding of how multiregional public health networks evolve, while building on and extending the broader literature on organizational networks in other sectors and settings. Specifically, we found that the network form that ultimately emerged was a product of the back-and-forth interplay between the internal needs and goals of those organizations that would ultimately become network members, in this case, state-, and provincial-level tobacco quitline organizations. We also found that network formation, and then governance through a network administrative organization, was driven by important events and shifts in the external environment, including the impact and influence of major national organizations. The results of the study provide health care leaders and policy officials an understanding of how the activities of a large number of organizations having a common health goal, but spanning multiple states and countries, might be coordinated and integrated through the establishment of a formal network.

  9. Programmable Ultra-Lightweight System Adaptable Radio

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The programmable ultra-lightweight system adaptable radio (PULSAR) is a NASA Marshall Space Flight Center transceiver designed for the CubeSat market, but has the potential for other markets. The PULSAR project aims to reduce size, weight, and power while increasing telemetry data rate. The current version of the PULSAR has a mass of 2.2 kg and a footprint of 10.8 cm2. The height depends on the specific configuration. The PULSAR S-Band Communications Subsystem is an S- and X-band transponder system comprised of a receiver/detector (receiver) element, a transmitter element(s), and related power distribution, command, control, and telemetry element for operation and information interfaces. It is capable of receiving commands, encoding and transmitting telemetry, as well as providing tracking data in a manner compatible with Earthbased ground stations, near Earth network, and deep space network station resources. The software-defined radio's (SDR's) data format characteristics can be defined and reconfigured during spaceflight or prior to launch. The PULSAR team continues to evolve the SDR to improve the performance and form factor to meet the requirements that the CubeSat market space requires. One of the unique features is that the actual radio design can change (somewhat), but not require any hardware modifications due to the use of field programmable gate arrays.

  10. OVERCOMING BROWNFIELD BARRIERS TO URBAN MANUFACTURING: COMPARATIVE STUDY OF POLICY NETWORKS AND CHANGING LOCAL ECONOMIC DEVELOPMENT STRATEGIES IN FOUR U.S. CITIES

    EPA Science Inventory

    This study suggests that growing optimism in the U.S. manufacturing’s recovery, coupled with evolving structures and functions of social (policy) networks involving diverse groups of local stakeholders concerned with brownfields, economic development, smart growth, environm...

  11. Colleges and Universities Want to Be Your Friend: Communicating via Online Social Networking

    ERIC Educational Resources Information Center

    Wandel, Tamara L.

    2008-01-01

    This article presents a compilation of data regarding the role of online social networks within campus communities, specifically for nonacademic purposes. Both qualitative and quantitative data methodologies are used to provide a unique perspective on a constantly evolving topic. Interviews of students and administrators allow for candid…

  12. Network Search: A New Way of Seeing the Education Knowledge Domain

    ERIC Educational Resources Information Center

    McFarland, Daniel; Klopfer, Eric

    2010-01-01

    Background: The educational knowledge domain may be understood as a system composed of multiple, co-evolving networks that reflect the form and content of a cultural field. This paper describes the educational knowledge domain as having a community structure (form) based in relations of production (authoring) and consumption (referencing), and a…

  13. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms.

    PubMed

    Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo

    2017-10-15

    Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. SynchroPhasor Measurements: System Architecture and Performance Evaluation in Supporting Wide-Area Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Dagle, Jeffery E.

    2008-07-31

    The infrastructure of phasor measurements have evolved over the last two decades from isolated measurement units to networked measurement systems with footprints beyond individual utility companies. This is, to a great extent, a bottom-up self-evolving process except some local systems built by design. Given the number of phasor measurement units (PMUs) in the system is small (currently 70 each in western and eastern interconnections), current phasor network architecture works just fine. However, the architecture will become a bottleneck when large number of PMUs are installed (e.g. >1000~10000). The need for phasor architecture design has yet to be addressed. This papermore » reviews the current phasor networks and investigates future architectures, as related to the efforts undertaken by the North America SynchroPhasor Initiative (NASPI). Then it continues to present staged system tests to evaluate the performance of phasor networks, which is a common practice in the Western Electricity Coordinating Council (WECC) system. This is followed by field measurement evaluation and the implication of phasor quality issues on phasor applications.« less

  15. Gap Gene Regulatory Dynamics Evolve along a Genotype Network

    PubMed Central

    Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-01-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability). PMID:26796549

  16. Effects of deception in social networks

    PubMed Central

    Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A.

    2014-01-01

    Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies (‘white’ lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. PMID:25056625

  17. Randomizing world trade. II. A weighted network analysis

    NASA Astrophysics Data System (ADS)

    Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2011-10-01

    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed and undirected, aggregated and disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.

  18. Network analysis of translocated Takahe populations to identify disease surveillance targets.

    PubMed

    Grange, Zoë L; VAN Andel, Mary; French, Nigel P; Gartrell, Brett D

    2014-04-01

    Social network analysis is being increasingly used in epidemiology and disease modeling in humans, domestic animals, and wildlife. We investigated this tool in describing a translocation network (area that allows movement of animals between geographically isolated locations) used for the conservation of an endangered flightless rail, the Takahe (Porphyrio hochstetteri). We collated records of Takahe translocations within New Zealand and used social network principles to describe the connectivity of the translocation network. That is, networks were constructed and analyzed using adjacency matrices with values based on the tie weights between nodes. Five annual network matrices were created using the Takahe data set, each incremental year included records of previous years. Weights of movements between connected locations were assigned by the number of Takahe moved. We calculated the number of nodes (i(total)) and the number of ties (t(total)) between the nodes. To quantify the small-world character of the networks, we compared the real networks to random graphs of the equivalent size, weighting, and node strength. Descriptive analysis of cumulative annual Takahe movement networks involved determination of node-level characteristics, including centrality descriptors of relevance to disease modeling such as weighted measures of in degree (k(i)(in)), out degree (k(i)(out)), and betweenness (B(i)). Key players were assigned according to the highest node measure of k(i)(in), k(i)(out), and B(i) per network. Networks increased in size throughout the time frame considered. The network had some degree small-world characteristics. Nodes with the highest cumulative tie weights connecting them were the captive breeding center, the Murchison Mountains and 2 offshore islands. The key player fluctuated between the captive breeding center and the Murchison Mountains. The cumulative networks identified the captive breeding center every year as the hub of the network until the final network in 2011. Likewise, the wild Murchison Mountains population was consistently the sink of the network. Other nodes, such as the offshore islands and the wildlife hospital, varied in importance over time. Common network descriptors and measures of centrality identified key locations for targeting disease surveillance. The visual representation of movements of animals in a population that this technique provides can aid decision makers when they evaluate translocation proposals or attempt to control a disease outbreak. © 2014 Society for Conservation Biology.

  19. Enhanced reconstruction of weighted networks from strengths and degrees

    NASA Astrophysics Data System (ADS)

    Mastrandrea, Rossana; Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2014-04-01

    Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate information available. For binary networks, the relevant ensemble is one where the degree (number of links) of each node is constrained to its observed value. However, for weighted networks the problem is much more complicated. While the naïve approach prescribes to constrain the strengths (total link weights) of all nodes, recent counter-intuitive results suggest that in weighted networks the degrees are often more informative than the strengths. This implies that the reconstruction of weighted networks would be significantly enhanced by the specification of both strengths and degrees, a computationally hard and bias-prone procedure. Here we solve this problem by introducing an analytical and unbiased maximum-entropy method that works in the shortest possible time and does not require the explicit generation of reconstructed samples. We consider several real-world examples and show that, while the strengths alone give poor results, the additional knowledge of the degrees yields accurately reconstructed networks. Information-theoretic criteria rigorously confirm that the degree sequence, as soon as it is non-trivial, is irreducible to the strength sequence. Our results have strong implications for the analysis of motifs and communities and whenever the reconstructed ensemble is required as a null model to detect higher-order patterns.

  20. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

    PubMed Central

    Whittington, James C. R.; Bogacz, Rafal

    2017-01-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583

  1. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.

    PubMed

    Whittington, James C R; Bogacz, Rafal

    2017-05-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

  2. Mitigation of epidemics in contact networks through optimal contact adaptation *

    PubMed Central

    Youssef, Mina; Scoglio, Caterina

    2013-01-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209

  3. Mitigation of epidemics in contact networks through optimal contact adaptation.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2013-08-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

  4. Asymmetric network connectivity using weighted harmonic averages

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  5. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  6. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  7. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  8. The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: A study using label free proteomics

    USDA-ARS?s Scientific Manuscript database

    Seasonal weight loss (SWL) is a significant limitation to animal production. Breeds that have evolved in harsh climates have acquired tolerance to SWL through selection. Herein, labelfree proteomics was used to characterize the effects of SWL in two goat breeds with different levels of adaptation to...

  9. Development and Efficacy Testing of a Social Network-Based Competitive Application for Weight Loss.

    PubMed

    Lee, Jisan; Kim, Jeongeun

    2016-05-01

    Although a lot of people continuously try to lose weight, the obesity rate has remained high: 36.9% of males and 38.0% of females worldwide in 2013. This suggests the need for a new intervention. In this study, we designed a smartphone application, With U, to aid weight loss by using an offline social network of friends and an online social network, Facebook. To determine the effects of With U, this study was designed as a one-group pretest-posttest design. Overweight, obese, and severely obese adults 20-40 years old, along with their friends, participated in this study. A total of 10 pairs attempted to lose weight for 4 weeks. We used a questionnaire to measure general characteristics, motivation, and intent to continue to use With U, and the Inbody720 (Biospace, Seoul, Republic of Korea) body composition analyzer was used to measure physical characteristics. In addition, we briefly interviewed the participants about their experience. We observed statistically significant effects in terms of motivation to lose weight and the amount of weight loss. Changes in physical characteristics beyond weight loss also showed positive trends. Also, we discovered some interesting facts during the interviews. The weight loss effect was greater when the team members met more and the relationship between the challengers was more direct and intimate. The application With U, designed and developed to allow friends to challenge each other to lose weight, affected both motivation to lose weight and the amount of weight loss. In the future, effects of smartphone applications for health management with social networks need to be studied further.

  10. Hybrid optoelectronic neural networks using a mutually pumped phase-conjugate mirror

    NASA Astrophysics Data System (ADS)

    Dunning, G. J.; Owechko, Y.; Soffer, B. H.

    1991-06-01

    A method is described for interconnecting hybrid optoelectronic neural networks by using a mutually pumped phase conjugate mirror (MP-PCM). In this method, cross talk due to Bragg degeneracies is greatly reduced by storing each weight among many spatially and angularly multiplexed gratings. The effective weight throughput is increased by the parallel updating of weights using outer-product learning. Experiments demonstrated a high degree of interconnectivity between adjacent pixels. A diagram is presented showing the architecture for the optoelectronic neural network using an MP-PCM.

  11. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  12. Algorithm for optimizing bipolar interconnection weights with applications in associative memories and multitarget classification.

    PubMed

    Chang, S; Wong, K W; Zhang, W; Zhang, Y

    1999-08-10

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  13. Algorithm for Optimizing Bipolar Interconnection Weights with Applications in Associative Memories and Multitarget Classification

    NASA Astrophysics Data System (ADS)

    Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin

    1999-08-01

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  14. ClueNet: Clustering a temporal network based on topological similarity rather than denseness.

    PubMed

    Crawford, Joseph; Milenković, Tijana

    2018-01-01

    Network clustering is a very popular topic in the network science field. Its goal is to divide (partition) the network into groups (clusters or communities) of "topologically related" nodes, where the resulting topology-based clusters are expected to "correlate" well with node label information, i.e., metadata, such as cellular functions of genes/proteins in biological networks, or age or gender of people in social networks. Even for static data, the problem of network clustering is complex. For dynamic data, the problem is even more complex, due to an additional dimension of the data-their temporal (evolving) nature. Since the problem is computationally intractable, heuristic approaches need to be sought. Existing approaches for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes should be in the same cluster if they are densely interconnected within the network. We hypothesize that in some applications, it might be of interest to cluster nodes that are topologically similar to each other instead of or in addition to requiring the nodes to be densely interconnected. Second, they ignore temporal information in their early steps, and when they do consider this information later on, they do so implicitly. We hypothesize that capturing temporal information earlier in the clustering process and doing so explicitly will improve results. We test these two hypotheses via our new approach called ClueNet. We evaluate ClueNet against six existing DNC methods on both social networks capturing evolving interactions between individuals (such as interactions between students in a high school) and biological networks capturing interactions between biomolecules in the cell at different ages. We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world dynamic data are becoming available, DNC and thus ClueNet will only continue to gain importance.

  15. Asymptotically inspired moment-closure approximation for adaptive networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim; Shaw, Leah

    2012-02-01

    Adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a moment-closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and epidemic spread model. We show a good agreement between the improved mean-field prediction and simulations of the full network system.

  16. Asymptotically inspired moment-closure approximation for adaptive networks

    NASA Astrophysics Data System (ADS)

    Shkarayev, Maxim

    2013-03-01

    Dynamics of adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a systematic approach to moment closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the mean-field prediction and simulations of the full network system.

  17. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  18. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  19. Statistical Mechanical Analysis of Online Learning with Weight Normalization in Single Layer Perceptron

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi

    2017-04-01

    Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.

  20. Evolution of canalizing Boolean networks

    NASA Astrophysics Data System (ADS)

    Szejka, A.; Drossel, B.

    2007-04-01

    Boolean networks with canalizing functions are used to model gene regulatory networks. In order to learn how such networks may behave under evolutionary forces, we simulate the evolution of a single Boolean network by means of an adaptive walk, which allows us to explore the fitness landscape. Mutations change the connections and the functions of the nodes. Our fitness criterion is the robustness of the dynamical attractors against small perturbations. We find that with this fitness criterion the global maximum is always reached and that there is a huge neutral space of 100% fitness. Furthermore, in spite of having such a high degree of robustness, the evolved networks still share many features with “chaotic” networks.

  1. Geographies of an Online Social Network.

    PubMed

    Lengyel, Balázs; Varga, Attila; Ságvári, Bence; Jakobi, Ákos; Kertész, János

    2015-01-01

    How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the "death of distance", physical proximity is still a major factor in social tie formation and maintenance in virtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resemble to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected.

  2. Geographies of an Online Social Network

    PubMed Central

    Lengyel, Balázs; Varga, Attila; Ságvári, Bence; Jakobi, Ákos; Kertész, János

    2015-01-01

    How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the “death of distance”, physical proximity is still a major factor in social tie formation and maintenance in virtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resemble to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected. PMID:26359668

  3. CEREBRA: a 3-D visualization tool for brain network extracted from fMRI data.

    PubMed

    Nasir, Baris; Yarman Vural, Fatos T

    2016-08-01

    In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and node degree distributions. CEREBRA provides an interactive interface with basic display and editing options for the researchers to study their hypotheses about the connectivity of the brain network. CEREBRA interactively simplifies the network by selecting the active voxels and the most correlated edge weights. The researchers may remove the voxels and edges by using local and global thresholds selected on the window. The built-in graph reduction algorithms are then eliminate the irrelevant regions, voxels and edges and display various properties of the network. The toolbox is capable of space-time representation of the voxel time series and estimated arc weights by using the animated heat maps.

  4. Variable weight spectral amplitude coding for multiservice OCDMA networks

    NASA Astrophysics Data System (ADS)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  5. Spatial price dynamics: From complex network perspective

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Bi, J. T.; Sun, H. J.

    2008-10-01

    The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.

  6. Conjunctive coding in an evolved spiking model of retrosplenial cortex.

    PubMed

    Rounds, Emily L; Alexander, Andrew S; Nitz, Douglas A; Krichmar, Jeffrey L

    2018-06-04

    Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Tag Clouds in the Blogosphere: Electronic Literacy and Social Networking

    ERIC Educational Resources Information Center

    Godwin-Jones, Robert

    2006-01-01

    Electronic literacy today is a moving target. How and why people read and write online are evolving at the fast pace of Internet time. One of the most striking developments in the past few years has been how new social networking phenomena on the Web like community tagging, shared bookmarking, and blogs have created convergences between consumers…

  8. Exploring Classroom Community: A Social Network Study of Reacting to the Past

    ERIC Educational Resources Information Center

    Webb, Jeff; Engar, Ann

    2016-01-01

    In this exploratory social network study, we examined how student relationships evolved during three month-long Reacting to the Past (RTTP) role-playing games in a lower division honors course at a large US public university. Our purpose was to explore how RTTP games--and collaborative learning approaches more generally--impact classroom community…

  9. Modeling a Neural Network as a Teaching Tool for the Learning of the Structure-Function Relationship

    ERIC Educational Resources Information Center

    Salinas, Dino G.; Acevedo, Cristian; Gomez, Christian R.

    2010-01-01

    The authors describe an activity they have created in which students can visualize a theoretical neural network whose states evolve according to a well-known simple law. This activity provided an uncomplicated approach to a paradigm commonly represented through complex mathematical formulation. From their observations, students learned many basic…

  10. Shedding Light on Words and Sentences: Near-Infrared Spectroscopy in Language Research

    ERIC Educational Resources Information Center

    Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell; Obrig, Hellmuth

    2012-01-01

    Investigating the neuronal network underlying language processing may contribute to a better understanding of how the brain masters this complex cognitive function with surprising ease and how language is acquired at a fast pace in infancy. Modern neuroimaging methods permit to visualize the evolvement and the function of the language network. The…

  11. Student Use of Facebook for Organizing Collaborative Classroom Activities

    ERIC Educational Resources Information Center

    Lampe, Cliff; Wohn, Donghee Yvette; Vitak, Jessica; Ellison, Nicole B.; Wash, Rick

    2011-01-01

    Social network sites such as Facebook are often conceived of as purely social spaces; however, as these sites have evolved, so have the ways in which students are using them. In this study, we examine how undergraduate students use the social network site Facebook to engage in classroom-related collaborative activities (e.g., arranging study…

  12. Network structure, topology, and dynamics in generalized models of synchronization

    NASA Astrophysics Data System (ADS)

    Lerman, Kristina; Ghosh, Rumi

    2012-08-01

    Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.

  13. A neural network construction method for surrogate modeling of physics-based analysis

    NASA Astrophysics Data System (ADS)

    Sung, Woong Je

    In this thesis existing methodologies related to the developmental methods of neural networks have been surveyed and their approaches to network sizing and structuring are carefully observed. This literature review covers the constructive methods, the pruning methods, and the evolutionary methods and questions about the basic assumption intrinsic to the conventional neural network learning paradigm, which is primarily devoted to optimization of connection weights (or synaptic strengths) for the pre-determined connection structure of the network. The main research hypothesis governing this thesis is that, without breaking a prevailing dichotomy between weights and connectivity of the network during learning phase, the efficient design of a task-specific neural network is hard to achieve because, as long as connectivity and weights are searched by separate means, a structural optimization of the neural network requires either repetitive re-training procedures or computationally expensive topological meta-search cycles. The main contribution of this thesis is designing and testing a novel learning mechanism which efficiently learns not only weight parameters but also connection structure from a given training data set, and positioning this learning mechanism within the surrogate modeling practice. In this work, a simple and straightforward extension to the conventional error Back-Propagation (BP) algorithm has been formulated to enable a simultaneous learning for both connectivity and weights of the Generalized Multilayer Perceptron (GMLP) in supervised learning tasks. A particular objective is to achieve a task-specific network having reasonable generalization performance with a minimal training time. The dichotomy between architectural design and weight optimization is reconciled by a mechanism establishing a new connection for a neuron pair which has potentially higher error-gradient than one of the existing connections. Interpreting an instance of the absence of connection as a zero-weight connection, the potential contribution to training error reduction of any present or absent connection can readily be evaluated using the BP algorithm. Instead of being broken, the connections that contribute less remain frozen with constant weight values optimized to that point but they are excluded from further weight optimization until reselected. In this way, a selective weight optimization is executed only for the dynamically maintained pool of high gradient connections. By searching the rapidly changing weights and concentrating optimization resources on them, the learning process is accelerated without either a significant increase in computational cost or a need for re-training. This results in a more task-adapted network connection structure. Combined with another important criterion for the division of a neuron which adds a new computational unit to a network, a highly fitted network can be grown out of the minimal random structure. This particular learning strategy can belong to a more broad class of the variable connectivity learning scheme and the devised algorithm has been named Optimal Brain Growth (OBG). The OBG algorithm has been tested on two canonical problems; a regression analysis using the Complicated Interaction Regression Function and a classification of the Two-Spiral Problem. A comparative study with conventional Multilayer Perceptrons (MLPs) consisting of single- and double-hidden layers shows that OBG is less sensitive to random initial conditions and generalizes better with only a minimal increase in computational time. This partially proves that a variable connectivity learning scheme has great potential to enhance computational efficiency and reduce efforts to select proper network architecture. To investigate the applicability of the OBG to more practical surrogate modeling tasks, the geometry-to-pressure mapping of a particular class of airfoils in the transonic flow regime has been sought using both the conventional MLP networks with pre-defined architecture and the OBG-developed networks started from the same initial MLP networks. Considering wide variety in airfoil geometry and diversity of flow conditions distributed over a range of flow Mach numbers and angles of attack, the new method shows a great potential to capture fundamentally nonlinear flow phenomena especially related to the occurrence of shock waves on airfoil surfaces in transonic flow regime. (Abstract shortened by UMI.).

  14. Cloud-based Communications Planning Collaboration and Interoperability

    DTIC Science & Technology

    2012-06-01

    battle concept is derived from the observation that all actions in the battle space have the ability to affect other areas or functions in the battle... space . This is equally true for tactical networks, which grow and transform dynamically as an operation evolves. Changes in one aspect of the network...availability of any updated network plans not only to the local SYSCON and TECHCON, but to all other units operating in the battle space (keeping in mind

  15. Genetic adaptation of the antibacterial human innate immunity network.

    PubMed

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  16. Genetic adaptation of the antibacterial human innate immunity network

    PubMed Central

    2011-01-01

    Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response. PMID:21745391

  17. Evolutionary transitions in controls reconcile adaptation with continuity of evolution.

    PubMed

    Badyaev, Alexander V

    2018-05-19

    Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Optimizing hidden layer node number of BP network to estimate fetal weight

    NASA Astrophysics Data System (ADS)

    Su, Juan; Zou, Yuanwen; Lin, Jiangli; Wang, Tianfu; Li, Deyu; Xie, Tao

    2007-12-01

    The ultrasonic estimation of fetal weigh before delivery is of most significance for obstetrical clinic. Estimating fetal weight more accurately is crucial for prenatal care, obstetrical treatment, choosing appropriate delivery methods, monitoring fetal growth and reducing the risk of newborn complications. In this paper, we introduce a method which combines golden section and artificial neural network (ANN) to estimate the fetal weight. The golden section is employed to optimize the hidden layer node number of the back propagation (BP) neural network. The method greatly improves the accuracy of fetal weight estimation, and simultaneously avoids choosing the hidden layer node number with subjective experience. The estimation coincidence rate achieves 74.19%, and the mean absolute error is 185.83g.

  19. Short-term prediction of chaotic time series by using RBF network with regression weights.

    PubMed

    Rojas, I; Gonzalez, J; Cañas, A; Diaz, A F; Rojas, F J; Rodriguez, M

    2000-10-01

    We propose a framework for constructing and training a radial basis function (RBF) neural network. The structure of the gaussian functions is modified using a pseudo-gaussian function (PG) in which two scaling parameters sigma are introduced, which eliminates the symmetry restriction and provides the neurons in the hidden layer with greater flexibility with respect to function approximation. We propose a modified PG-BF (pseudo-gaussian basis function) network in which the regression weights are used to replace the constant weights in the output layer. For this purpose, a sequential learning algorithm is presented to adapt the structure of the network, in which it is possible to create a new hidden unit and also to detect and remove inactive units. A salient feature of the network systems is that the method used for calculating the overall output is the weighted average of the output associated with each receptive field. The superior performance of the proposed PG-BF system over the standard RBF are illustrated using the problem of short-term prediction of chaotic time series.

  20. A new mutually reinforcing network node and link ranking algorithm

    PubMed Central

    Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

    2015-01-01

    This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

  1. Localization and Spreading of Diseases in Complex Networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Dorogovtsev, S. N.; Oliveira, J. G.; Mendes, J. F. F.

    2012-09-01

    Using the susceptible-infected-susceptible model on unweighted and weighted networks, we consider the disease localization phenomenon. In contrast to the well-recognized point of view that diseases infect a finite fraction of vertices right above the epidemic threshold, we show that diseases can be localized on a finite number of vertices, where hubs and edges with large weights are centers of localization. Our results follow from the analysis of standard models of networks and empirical data for real-world networks.

  2. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks

    PubMed Central

    Albergante, Luca; Blow, J Julian; Newman, Timothy J

    2014-01-01

    The gene regulatory network (GRN) is the central decision‐making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large‐scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. DOI: http://dx.doi.org/10.7554/eLife.02863.001 PMID:25182846

  3. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks.

    PubMed

    Albergante, Luca; Blow, J Julian; Newman, Timothy J

    2014-09-02

    The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation. Copyright © 2014, Albergante et al.

  4. Consensus in evolving networks of mobile agents

    NASA Astrophysics Data System (ADS)

    Baronchelli, Andrea; Díaz-Guilera, Albert

    2012-02-01

    Populations of mobile and communicating agents describe a vast array of technological and natural systems, ranging from sensor networks to animal groups. Here, we investigate how a group-level agreement may emerge in the continuously evolving networks defined by the local interactions of the moving individuals. We adopt a general scheme of motion in two dimensions and we let the individuals interact through the minimal naming game, a prototypical scheme to investigate social consensus. We distinguish different regimes of convergence determined by the emission range of the agents and by their mobility, and we identify the corresponding scaling behaviors of the consensus time. In the same way, we rationalize also the behavior of the maximum memory used during the convergence process, which determines the minimum cognitive/storage capacity needed by the individuals. Overall, we believe that the simple and general model presented in this talk can represent a helpful reference for a better understanding of the behavior of populations of mobile agents.

  5. Evolving autonomous learning in cognitive networks.

    PubMed

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  6. Evolvable rough-block-based neural network and its biomedical application to hypoglycemia detection system.

    PubMed

    San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung

    2014-08-01

    This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network.

  7. Epileptic seizures as condensed sleep: an analysis of network dynamics from electroencephalogram signals.

    PubMed

    Gast, Heidemarie; Müller, Markus; Rummel, Christian; Roth, Corinne; Mathis, Johannes; Schindler, Kaspar; Bassetti, Claudio L

    2014-06-01

    Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures. © 2013 European Sleep Research Society.

  8. Communicability across evolving networks.

    PubMed

    Grindrod, Peter; Parsons, Mark C; Higham, Desmond J; Estrada, Ernesto

    2011-04-01

    Many natural and technological applications generate time-ordered sequences of networks, defined over a fixed set of nodes; for example, time-stamped information about "who phoned who" or "who came into contact with who" arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time's arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.

  9. Firewall systems: the next generation

    NASA Astrophysics Data System (ADS)

    McGhie, Lynda L.

    1996-01-01

    To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.

  10. ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION

    PubMed Central

    Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.

    2012-01-01

    Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561

  11. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Benzi, Michele

    2014-10-01

    There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions (signed networks) there is a general tendency to a global balance. Balance represents a state of the network with a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed (social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is generally believed, many signed social networks, in particular very large directed online social networks, are in general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the social interactions among the agents in the network.

  12. IEEE 342 Node Low Voltage Networked Test System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Phanivong, Phillippe K.; Lacroix, Jean-Sebastian

    The IEEE Distribution Test Feeders provide a benchmark for new algorithms to the distribution analyses community. The low voltage network test feeder represents a moderate size urban system that is unbalanced and highly networked. This is the first distribution test feeder developed by the IEEE that contains unbalanced networked components. The 342 node Low Voltage Networked Test System includes many elements that may be found in a networked system: multiple 13.2kV primary feeders, network protectors, a 120/208V grid network, and multiple 277/480V spot networks. This paper presents a brief review of the history of low voltage networks and how theymore » evolved into the modern systems. This paper will then present a description of the 342 Node IEEE Low Voltage Network Test System and power flow results.« less

  13. Model-free distributed learning

    NASA Technical Reports Server (NTRS)

    Dembo, Amir; Kailath, Thomas

    1990-01-01

    Model-free learning for synchronous and asynchronous quasi-static networks is presented. The network weights are continuously perturbed, while the time-varying performance index is measured and correlated with the perturbation signals; the correlation output determines the changes in the weights. The perturbation may be either via noise sources or orthogonal signals. The invariance to detailed network structure mitigates large variability between supposedly identical networks as well as implementation defects. This local, regular, and completely distributed mechanism requires no central control and involves only a few global signals. Thus it allows for integrated on-chip learning in large analog and optical networks.

  14. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks.

    PubMed

    Suen, Jonathan Y; Navlakha, Saket

    2017-05-01

    Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.

  15. s-core network decomposition: A generalization of k-core analysis to weighted networks

    NASA Astrophysics Data System (ADS)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  16. Group-based strategy diffusion in multiplex networks with weighted values

    NASA Astrophysics Data System (ADS)

    Yu, Jianyong; Jiang, J. C.; Xiang, Leijun

    2017-03-01

    The information diffusion of multiplex social networks has received increasing interests in recent years. Actually, the multiplex networks are made of many communities, and it should be gotten more attention for the influences of community level diffusion, besides of individual level interactions. In view of this, this work explores strategy interactions and diffusion processes in multiplex networks with weighted values from a new perspective. Two different groups consisting of some agents with different influential strength are firstly built in each layer network, the authority and non-authority groups. The strategy interactions between different groups in intralayer and interlayer networks are performed to explore community level diffusion, by playing two classical strategy games, Prisoner's Dilemma and Snowdrift Game. The impact forces from the different groups and the reactive forces from individual agents are simultaneously taken into account in intralayer and interlayer interactions. This paper reveals and explains the evolutions of cooperation diffusion and the influences of interlayer interaction tight degrees in multiplex networks with weighted values. Some thresholds of critical parameters of interaction degrees and games parameters settings are also discussed in group-based strategy diffusion.

  17. Structural stability of interaction networks against negative external fields

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  18. The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks.

    PubMed

    Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo R; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez

    2011-09-01

    In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 ± 0.09, C = 0.30 ± 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 ± 0.07, C = 0.22 ± 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 ± 0.13) than in bat-fruit networks (R = 0.54 ± 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.

  19. Disease dynamics in a dynamic social network

    NASA Astrophysics Data System (ADS)

    Christensen, Claire; Albert, István; Grenfell, Bryan; Albert, Réka

    2010-07-01

    We develop a framework for simulating a realistic, evolving social network (a city) into which a disease is introduced. We compare our results to prevaccine era measles data for England and Wales, and find that they capture the quantitative and qualitative features of epidemics in populations spanning two orders of magnitude. Our results provide unique insight into how and why the social topology of the contact network influences the propagation of the disease through the population. We argue that network simulation is suitable for concurrently probing contact network dynamics and disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study of less well-documented diseases.

  20. The complex network of the Brazilian Popular Music

    NASA Astrophysics Data System (ADS)

    de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.

    2004-02-01

    We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.

  1. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development.

    PubMed

    Rebeiz, Mark; Patel, Nipam H; Hinman, Veronica F

    2015-01-01

    The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.

  2. Small worlds in space: Synchronization, spatial and relational modularity

    NASA Astrophysics Data System (ADS)

    Brede, M.

    2010-06-01

    In this letter we investigate networks that have been optimized to realize a trade-off between enhanced synchronization and cost of wire to connect the nodes in space. Analyzing the evolved arrangement of nodes in space and their corresponding network topology, a class of small-world networks characterized by spatial and network modularity is found. More precisely, for low cost of wire optimal configurations are characterized by a division of nodes into two spatial groups with maximum distance from each other, whereas network modularity is low. For high cost of wire, the nodes organize into several distinct groups in space that correspond to network modules connected on a ring. In between, spatially and relationally modular small-world networks are found.

  3. A Cross-Cultural Comparison of Korean and American Social Network Sites: Exploring Cultural Differences in Social Relationships and Self-Presentation

    ERIC Educational Resources Information Center

    Cho, Seong Eun

    2010-01-01

    National culture is being challenged as societies evolve from their homogeneous origins. The theoretical base of this study uses two cultural dimensions, individualism-collectivism (Hofstede, 2001) and high-and low-context cultures (Hall, 1976), to unpack the effects of national culture on social network sites (SNSs). This study explores cultural…

  4. Mobile Support For Logistics

    DTIC Science & Technology

    2016-03-01

    Infrastructure to Support Mobile Devices (Takai, 2012, p. 2). The objectives needed in order to meet this goal are to: evolve spectrum management, expand... infrastructure to support wireless capabilities, and establish a mobile device security architecture (Takai, 2012, p. 2). By expanding infrastructure to...often used on Mobile Ad-Hoc Networks (MANETs). MANETS are infrastructure -less networks that include, but are not limited to, mobile devices. These

  5. Telecommunications Options Connect OCLC and Libraries to the Future: The Co-Evolution of OCLC Connectivity Options and the Library Computing Environment.

    ERIC Educational Resources Information Center

    Breeding, Marshall

    1998-01-01

    The Online Computer Library Center's (OCLC) access options have kept pace with the evolving trends in telecommunications and the library computing environment. As libraries deploy microcomputers and develop networks, OCLC offers access methods consistent with these environments. OCLC works toward reorienting its network paradigm through TCP/IP…

  6. Comparison Of In Situ Soil Moisture Measurements: An Examination of the Neutron and Dielectric Measurements within the Illinois Climate Network

    USDA-ARS?s Scientific Manuscript database

    The continuity of soil moisture time series data is crucial for climatic research. Yet, a common problem for continuous data series is the changing of sensors, not only as replacements are necessary, but as technologies evolve. The Illinois Climate Network has one of the longest data records of soi...

  7. Defining Appropriate Professional Behavior for Faculty and University Students on Social Networking Websites

    ERIC Educational Resources Information Center

    Malesky, L. Alvin; Peters, Chris

    2012-01-01

    The vast majority of university students have profiles on social networking sites (e.g., Myspace, Facebook) (Salaway et al. 2008). However, it is yet to be determined what role this rapidly evolving method of communication will play in an academic setting. Data for the current study was collected from 459 university students and 159 university…

  8. Analysis of QoS Requirements for e-Health Services and Mapping to Evolved Packet System QoS Classes

    PubMed Central

    Skorin-Kapov, Lea; Matijasevic, Maja

    2010-01-01

    E-Health services comprise a broad range of healthcare services delivered by using information and communication technology. In order to support existing as well as emerging e-Health services over converged next generation network (NGN) architectures, there is a need for network QoS control mechanisms that meet the often stringent requirements of such services. In this paper, we evaluate the QoS support for e-Health services in the context of the Evolved Packet System (EPS), specified by the Third Generation Partnership Project (3GPP) as a multi-access all-IP NGN. We classify heterogeneous e-Health services based on context and network QoS requirements and propose a mapping to existing 3GPP QoS Class Identifiers (QCIs) that serve as a basis for the class-based QoS concept of the EPS. The proposed mapping aims to provide network operators with guidelines for meeting heterogeneous e-Health service requirements. As an example, we present the QoS requirements for a prototype e-Health service supporting tele-consultation between a patient and a doctor and illustrate the use of the proposed mapping to QCIs in standardized QoS control procedures. PMID:20976301

  9. Metabolic networks evolve towards states of maximum entropy production.

    PubMed

    Unrean, Pornkamol; Srienc, Friedrich

    2011-11-01

    A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Selfish cellular networks and the evolution of complex organisms.

    PubMed

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment. Copyright © 2012 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Effects of deception in social networks.

    PubMed

    Iñiguez, Gerardo; Govezensky, Tzipe; Dunbar, Robin; Kaski, Kimmo; Barrio, Rafael A

    2014-09-07

    Honesty plays a crucial role in any situation where organisms exchange information or resources. Dishonesty can thus be expected to have damaging effects on social coherence if agents cannot trust the information or goods they receive. However, a distinction is often drawn between prosocial lies ('white' lies) and antisocial lying (i.e. deception for personal gain), with the former being considered much less destructive than the latter. We use an agent-based model to show that antisocial lying causes social networks to become increasingly fragmented. Antisocial dishonesty thus places strong constraints on the size and cohesion of social communities, providing a major hurdle that organisms have to overcome (e.g. by evolving counter-deception strategies) in order to evolve large, socially cohesive communities. In contrast, white lies can prove to be beneficial in smoothing the flow of interactions and facilitating a larger, more integrated network. Our results demonstrate that these group-level effects can arise as emergent properties of interactions at the dyadic level. The balance between prosocial and antisocial lies may set constraints on the structure of social networks, and hence the shape of society as a whole. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. PSINET: Assisting HIV Prevention Amongst Homeless Youth by Planning Ahead

    PubMed Central

    Yadav, A.; Marcolino, L. S.; Rice, E.; Petering, R.; Winetrobe, H.; Rhoades, H.; Tambe, M.; Carmichael, H.

    2015-01-01

    Homeless youth are prone to Human Immunodeficiency Virus (HIV) due to their engagement in high risk behavior such as unprotected sex, sex under influence of drugs, etc. Many non-profit agencies conduct interventions to educate and train a select group of homeless youth about HIV prevention and treatment practices and rely on word-of-mouth spread of information through their social network. Previous work in strategic selection of intervention participants does not handle uncertainties in the social network’s structure and evolving network state, potentially causing significant shortcomings in spread of information. Thus, we developed PSINET, a decision support system to aid the agencies in this task. PSINET includes the following key novelties: (i) it handles uncertainties in network structure and evolving network state; (ii) it addresses these uncertainties by using POMDPs in influence maximization; and (iii) it provides algorithmic advances to allow high quality approximate solutions for such POMDPs. Simulations show that PSINET achieves ~60% more information spread over the current state-of-the-art. PSINET was developed in collaboration with My Friend’s Place (a drop-in agency serving homeless youth in Los Angeles) and is currently being reviewed by their officials. PMID:27642227

  13. An evolving model for the lodging-service network in a tourism destination

    NASA Astrophysics Data System (ADS)

    Hernández, Juan M.; González-Martel, Christian

    2017-09-01

    Tourism is a complex dynamic system including multiple actors which are related each other composing an evolving social network. This paper presents a growing model that explains how part of the supply components in a tourism system forms a social network. Specifically, the lodgings and services in a destination are the network nodes and a link between them appears if a representative tourist hosted in the lodging visits/consumes the service during his/her stay. The specific link between both categories are determined by a random and preferential attachment rule. The analytic results show that the long-term degree distribution of services follows a shifted power-law distribution. The numerical simulations show slight disagreements with the theoretical results in the case of the one-mode degree distribution of services, due to the low order of convergence to zero of X-motifs. The model predictions are compared with real data coming from a popular tourist destination in Gran Canaria, Spain, showing a good agreement between analytical and empirical data for the degree distribution of services. The theoretical model was validated assuming four type of perturbations in the real data.

  14. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several cities optimally or connecting all cities with minimum total road length.

  15. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.

    PubMed

    Austin, Daniel; Dinwoodie, Ian H

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.

  16. MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS

    PubMed Central

    AUSTIN, DANIEL; DINWOODIE, IAN H

    2014-01-01

    We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks. PMID:25620893

  17. A mean field neural network for hierarchical module placement

    NASA Technical Reports Server (NTRS)

    Unaltuna, M. Kemal; Pitchumani, Vijay

    1992-01-01

    This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules.

  18. Coevolution of dynamical states and interactions in dynamic networks

    NASA Astrophysics Data System (ADS)

    Zimmermann, Martín G.; Eguíluz, Víctor M.; San Miguel, Maxi

    2004-06-01

    We explore the coupled dynamics of the internal states of a set of interacting elements and the network of interactions among them. Interactions are modeled by a spatial game and the network of interaction links evolves adapting to the outcome of the game. As an example, we consider a model of cooperation in which the adaptation is shown to facilitate the formation of a hierarchical interaction network that sustains a highly cooperative stationary state. The resulting network has the characteristics of a small world network when a mechanism of local neighbor selection is introduced in the adaptive network dynamics. The highly connected nodes in the hierarchical structure of the network play a leading role in the stability of the network. Perturbations acting on the state of these special nodes trigger global avalanches leading to complete network reorganization.

  19. Transitional care in clinical networks for young people with juvenile idiopathic arthritis: current situation and challenges.

    PubMed

    Cruikshank, Mary; Foster, Helen E; Stewart, Jane; Davidson, Joyce E; Rapley, Tim

    2016-04-01

    Clinical networks for paediatric and adolescent rheumatology are evolving, and their effect and role in the transition process between paediatric and adult services are unknown. We therefore explored the experiences of those involved to try and understand this further. Health professionals, young people with juvenile idiopathic arthritis and their families were recruited via five national health service paediatric and adolescent rheumatology specialist centres and networks across the UK. Seventy participants took part in focus groups and one-to-one interviews. Data was analysed using coding, memoing and mapping techniques to identify features of transitional services across the sector. Variation and inequities in transitional care exist. Although transition services in networks are evolving, development has lagged behind other areas with network establishment focusing more on access to paediatric rheumatology multidisciplinary teams. Challenges include workforce shortfalls, differences in service priorities, standards and healthcare infrastructures, and managing the legacy of historic encounters. Providing equitable high-quality clinically effective services for transition across the UK has a long way to go. There is a call from within the sector for more protected time, staff and resources to develop transition roles and services, as well as streamlining of local referral pathways between paediatric and adult healthcare services. In addition, there is a need to support professionals in developing their understanding of transitional care in clinical networks, particularly around service design, organisational change and the interpersonal skills required for collaborative working. Key messages • Transitional care in clinical networks requires collaborative working and an effective interface with paediatric and adult rheumatology.• Professional centrism and historic encounters may affect collaborative relationships within clinical networks.• Education programmes need to support the development of interpersonal skills and change management, to facilitate professionals in networks delivering transitional care.

  20. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  1. Balanced Centrality of Networks.

    PubMed

    Debono, Mark; Lauri, Josef; Sciriha, Irene

    2014-01-01

    There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings.

  2. Social patterns revealed through random matrix theory

    NASA Astrophysics Data System (ADS)

    Sarkar, Camellia; Jalan, Sarika

    2014-11-01

    Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.

  3. Continuation of Gradual Weight Gain Necessary for the Onset of Puberty May Be Responsible for Obesity Later in Life

    PubMed Central

    Lehrer, Steven

    2016-01-01

    A continuation of the gradual weight gain necessary for the onset of puberty may be responsible for obesity later in life. Hypothetically, a group of brain nuclei form components of a single pubertal clock mechanism that drives pre-pubertal weight gain and governs the onset of puberty and fertility. No mechanism evolved to shut off pre-pubertal and pubertal weight and body fat gain after puberty. The weight gain continues unabated throughout life. A better understanding of the mechanism of puberty and pre-pubertal weight gain could provide new insights into obesity and diseases associated with obesity such as type 2 diabetes, dyslipidemia, hypertension, heart disease, depression, etc. PMID:26562472

  4. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  5. An evolutionary algorithm that constructs recurrent neural networks.

    PubMed

    Angeline, P J; Saunders, G M; Pollack, J B

    1994-01-01

    Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

  6. Dynamics of an SAITS alcoholism model on unweighted and weighted networks

    NASA Astrophysics Data System (ADS)

    Huo, Hai-Feng; Cui, Fang-Fang; Xiang, Hong

    2018-04-01

    A novel SAITS alcoholism model on networks is introduced, in which alcoholics are divided into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contacting with light problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who receive treatment can relapse into the compartment of heavy problem alcoholics are also considered. First, the dynamics of our model on unweighted networks, including the basic reproduction number, existence and stability of equilibria are studied. Second, the models with fixed weighted and adaptive weighted networks are introduced and investigated. At last, some simulations are presented to illustrate and extend our results. Our results show that it is very important to treat alcoholics to quit the drinking.

  7. Change Point Detection in Correlation Networks

    NASA Astrophysics Data System (ADS)

    Barnett, Ian; Onnela, Jukka-Pekka

    2016-01-01

    Many systems of interacting elements can be conceptualized as networks, where network nodes represent the elements and network ties represent interactions between the elements. In systems where the underlying network evolves, it is useful to determine the points in time where the network structure changes significantly as these may correspond to functional change points. We propose a method for detecting change points in correlation networks that, unlike previous change point detection methods designed for time series data, requires minimal distributional assumptions. We investigate the difficulty of change point detection near the boundaries of the time series in correlation networks and study the power of our method and competing methods through simulation. We also show the generalizable nature of the method by applying it to stock price data as well as fMRI data.

  8. Metric projection for dynamic multiplex networks.

    PubMed

    Jurman, Giuseppe

    2016-08-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-step strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time step, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.

  9. Inter-computer communication architecture for a mixed redundancy distributed system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Adams, Stuart J.

    1987-01-01

    The triply redundant intercomputer network for the Advanced Information Processing System (AIPS), an architecture developed to serve as the core avionics system for a broad range of aerospace vehicles, is discussed. The AIPS intercomputer network provides a high-speed, Byzantine-fault-resilient communication service between processing sites, even in the presence of arbitrary failures of simplex and duplex processing sites on the IC network. The IC network contention poll has evolved from the Laning Poll. An analysis of the failure modes and effects and a simulation of the AIPS contention poll, demonstrate the robustness of the system.

  10. Topological Edge Floppy Modes in Disordered Fiber Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Di; Zhang, Leyou; Mao, Xiaoming

    2018-02-01

    Disordered fiber networks are ubiquitous in a broad range of natural (e.g., cytoskeleton) and manmade (e.g., aerogels) materials. In this Letter, we discuss the emergence of topological floppy edge modes in two-dimensional fiber networks as a result of deformation or active driving. It is known that a network of straight fibers exhibits bulk floppy modes which only bend the fibers without stretching them. We find that, interestingly, with a perturbation in geometry, these bulk modes evolve into edge modes. We introduce a topological index for these edge modes and discuss their implications in biology.

  11. Model of mobile agents for sexual interactions networks

    NASA Astrophysics Data System (ADS)

    González, M. C.; Lind, P. G.; Herrmann, H. J.

    2006-02-01

    We present a novel model to simulate real social networks of complex interactions, based in a system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to physical systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.

  12. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder.

    PubMed

    León-Montiel, Roberto de J; Quiroz-Juárez, Mario A; Quintero-Torres, Rafael; Domínguez-Juárez, Jorge L; Moya-Cessa, Héctor M; Torres, Juan P; Aragón, José L

    2015-11-27

    Noise is generally thought as detrimental for energy transport in coupled oscillator networks. However, it has been shown that for certain coherently evolving systems, the presence of noise can enhance, somehow unexpectedly, their transport efficiency; a phenomenon called environment-assisted quantum transport (ENAQT) or dephasing-assisted transport. Here, we report on the experimental observation of such effect in a network of coupled electrical oscillators. We demonstrate that by introducing stochastic fluctuations in one of the couplings of the network, a relative enhancement in the energy transport efficiency of 22.5 ± 3.6% can be observed.

  13. Tree-average distances on certain phylogenetic networks have their weights uniquely determined.

    PubMed

    Willson, Stephen J

    2012-01-01

    A phylogenetic network N has vertices corresponding to species and arcs corresponding to direct genetic inheritance from the species at the tail to the species at the head. Measurements of DNA are often made on species in the leaf set, and one seeks to infer properties of the network, possibly including the graph itself. In the case of phylogenetic trees, distances between extant species are frequently used to infer the phylogenetic trees by methods such as neighbor-joining. This paper proposes a tree-average distance for networks more general than trees. The notion requires a weight on each arc measuring the genetic change along the arc. For each displayed tree the distance between two leaves is the sum of the weights along the path joining them. At a hybrid vertex, each character is inherited from one of its parents. We will assume that for each hybrid there is a probability that the inheritance of a character is from a specified parent. Assume that the inheritance events at different hybrids are independent. Then for each displayed tree there will be a probability that the inheritance of a given character follows the tree; this probability may be interpreted as the probability of the tree. The tree-average distance between the leaves is defined to be the expected value of their distance in the displayed trees. For a class of rooted networks that includes rooted trees, it is shown that the weights and the probabilities at each hybrid vertex can be calculated given the network and the tree-average distances between the leaves. Hence these weights and probabilities are uniquely determined. The hypotheses on the networks include that hybrid vertices have indegree exactly 2 and that vertices that are not leaves have a tree-child.

  14. Dynamical behavior of susceptible-infected-recovered-susceptible epidemic model on weighted networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhang, Fei

    2018-02-01

    We study susceptible-infected-recovered-susceptible epidemic model in weighted, regular, and random complex networks. We institute a pairwise-type mathematical model with a general transmission rate to evaluate the influence of the link-weight distribution on the spreading process. Furthermore, we develop a dimensionality reduction approach to derive the condition for the contagion outbreak. Finally, we analyze the influence of the heterogeneity of weight distribution on the outbreak condition for the scenario with a linear transmission rate. Our theoretical analysis is in agreement with stochastic simulations, showing that the heterogeneity of link-weight distribution can have a significant effect on the epidemic dynamics.

  15. Technical Issues in Evolving to Integrated Services Digital Network (ISDN)

    DTIC Science & Technology

    1991-06-01

    channel through some Page 13 Technical Issues in Evolving to ISDN Final Report separate interface (such as the AT command set of the Hayes modems or the...errors experienced over standard modem provided connectivity. But, in this project connectivity has been established only over a single CO. Those...examined to some extent and are discussed below. Existing equipment was of two types: that which treats ISDN as just another leased line providing 56k or

  16. Female mating preferences determine system-level evolution in a gene network model.

    PubMed

    Fierst, Janna L

    2013-06-01

    Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.

  17. Low-frequency sine wave hard-limiting technique

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1977-01-01

    Circuit includes serial-in/parallel-out shift register and weighting network that are used to eliminate effects of noise and other nonrepetitive circuit transients. Register and weighting network average decisions from section of signal where decisions are more dependable or where differences between two consecutive samples are larger.

  18. The evolving role of telecommunications switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Personick, S.D.

    1993-01-01

    There are many forces impacting on the evolution of switching vis-a-vis its role in telecommunications/information networking. Many of the technologies that in the past 15 years have enabled the cost reductions the industry has experienced in digital switches, and the emergence of intelligent networks are now also enabling a wide range of new end-user applications. Many of these applications are rapidly emerging and evolving to meet the, as yet, uncertain needs of the marketplace. There is an explosion of new ideas for applications involving personalized, nomadic communications, multimedia communications, and information access. Some of these will succeed in the marketplacemore » and some will not. There is a continuing emergence of new and improved underlying electronic and photonic technologies and, most recently, the emergence of reliable, secure distributed computing, communications, and management environments. End-user CPE and servers have become increasingly powerful and cost effective as places to locate session (call) management and session enabling objects such as user-interfaces, directories, agents, multimedia bridges, and storage/server subsystems. Not only are dramatically new paradigms for building networks to support existing applications possible, but there is a pressing need to support the emerging and evolving new applications in a timely way. Competition is accelerating the rate of introduction of new technologies, architectures, and telecommunication services. Every aspect of the business is being reexamined to find better ways of meeting customers' needs more efficiently. Meanwhile, as new applications become deployed, there are increasing pressures to provide for security, privacy, and network integrity. This article reviews the author's personal views (many of which are widely shared by others) of the implications of all of these forces on what we traditionally call telecommunications switching. 10 refs.« less

  19. Patterns of brain structural connectivity differentiate normal weight from overweight subjects

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A.; Sanmiguel, Claudia P.; Van Horn, John D.; Woodworth, Davis; Ellingson, Benjamin M.; Fling, Connor; Love, Aubrey; Tillisch, Kirsten; Labus, Jennifer S.

    2015-01-01

    Background Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk factor in the pathophysiology of overweight and obese individuals. Neuroimaging evidence from individuals with increasing body mass index suggests structural, functional, and neurochemical alterations in the extended reward network and associated networks. Aim To apply a multivariate pattern analysis to distinguish normal weight and overweight subjects based on gray and white-matter measurements. Methods Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, overweight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the overweight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group (females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain measures can distinguish overweight from normal weight individuals. Results 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individuals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in overweight compared to normal weight between the reward network regions and regions of the executive control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber density) was found between ventromedial prefrontal cortex and the anterior insula, and between thalamus and executive control network regions. 2. Gray-matter classification: The classification algorithm, based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight from normal weight. In both brain signatures regions of the reward, salience, executive control and emotional arousal networks were associated with lower morphological values in overweight individuals compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosensory network. Conclusions 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity involving regions of the reward and associated networks can identify specific targets for mechanistic studies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity. PMID:25737959

  20. The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics

    PubMed Central

    Buice, Michael; Koch, Christof; Mihalas, Stefan

    2013-01-01

    The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations. PMID:24204219

Top