Sample records for exact amount depending

  1. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  2. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  3. Field validation of recycled concrete fines usage.

    DOT National Transportation Integrated Search

    2015-03-01

    The amount of recycled concrete fines permitted in concrete mixing water is limited by ASTM C 1602 to 5.0 percent of the mixing : water, by mass, in order to avoid detrimental effects on concrete properties. Depending upon the exact nature of the rec...

  4. Fall Creek second-growth Douglas-fir thinning study.

    Treesearch

    E. E. Matson; Harold A. Rapraeger

    1950-01-01

    As the supply of old-growth timber in the Douglas-fir region decreases, there will be a continuous increase in the use of second growth. Eventually the entire wood-using industry will be wholly dependent on the younger timber stands, The exact amount of second growth being cut at present is not known, but it is estimated that close to one-third of the lumber production...

  5. Comparing exact energy solutions of quartic eigenvalue polynomials in commutative, non-commutative and non-commutative phase frameworks for boson π‑

    NASA Astrophysics Data System (ADS)

    Derakhshani, Z.; Ghominejad, M.

    2018-04-01

    In this paper, the behavior of a Duffin-Kemmer-Petiau (DKP) boson particle in the presence of a harmonic energy-dependent interaction, under the influence of an external magnetic field is precisely studied. In order to exactly solve all equations in commutative (C), non-commutative (NC) and non-commutative phase (NCP) frameworks, the Nikiforov-Uvarov (NU) powerful exact approach is employed. All these attempts end up with solving their quartic equations, trying to find and discuss on their discriminant function Δ, in a unique way which has never been discussed for any boson in any other research, especially for the boson π‑ on which, we have been exclusively concerned. We finally succeeded to obtain the exact energy spectrums and wave functions under the effects of NC and NCP parameters and energy-dependent interaction on energy eigenvalues. In this step, we analyze the behaviors of their quartic energy eigenvalue polynomials in three sections and accurately compare all achieved physical-admissible roots one by one. This comparison surprisingly shows that the NC and NCP effects on the other hand, and the assumed harmonic energy-dependent interaction on the other hand, have almost the same order of perturbation effects for limited amounts of the magnetic field in a system of DKP bosons. Furthermore, through some calculations within this paper, we came up with a very crucial point about the NU method which was mistakenly being used in many papers by several researchers and improved it to be used safely.

  6. Exact solution of a modified El Farol's bar problem: Efficiency and the role of market impact

    NASA Astrophysics Data System (ADS)

    Marsili, Matteo; Challet, Damien; Zecchina, Riccardo

    2000-06-01

    We discuss a model of heterogeneous, inductive rational agents inspired by the El Farol Bar problem and the Minority Game. As in markets, agents interact through a collective aggregate variable - which plays a role similar to price - whose value is fixed by all of them. Agents follow a simple reinforcement-learning dynamics where the reinforcement, for each of their available strategies, is related to the payoff delivered by that strategy. We derive the exact solution of the model in the “thermodynamic” limit of infinitely many agents using tools of statistical physics of disordered systems. Our results show that the impact of agents on the market price plays a key role: even though price has a weak dependence on the behavior of each individual agent, the collective behavior crucially depends on whether agents account for such dependence or not. Remarkably, if the adaptive behavior of agents accounts even “infinitesimally” for this dependence they can, in a whole range of parameters, reduce global fluctuations by a finite amount. Both global efficiency and individual utility improve with respect to a “price taker” behavior if agents account for their market impact.

  7. Lightning as a Source of NO sub x in the Troposphere.

    DTIC Science & Technology

    1981-12-01

    frequency emissions from lightning discharges, which is an experimental method sensitive to both cloud-to-ground flashes and intracloud discharges...equilibrium air can result. The precise amount of No produced is very sensitive to the freeze-out temperature which in turn depends on the cool- inq rate...inferred from indirect evidence and is difficult to esti- mate without ambiguity since the exact mechanism of energy dep- osition is not currrently

  8. Studies on the extraction of nitrogenous and phosphorus-containing materials from the seeds of kidney beans (Phaseolus vulgaris)

    PubMed Central

    Pusztai, A.

    1965-01-01

    1. The conditions of extracting nitrogenous, phosphorus-containing and glucosamine-containing components of the seeds of kidney bean have been studied. 2. The dispersing of proteins was incomplete below pH 7, and the exact amount of protein extracted depended on the pH and the ionic strength of the solvent. 3. The extraction of proteins was practically complete in the range pH 7–9, but the relative amounts of the individual proteins obtained still depended on the pH of the extracting media, indicating a pH-dependent association–dissociation reaction between the protein molecules present. 4. The extraction of phosphorus-containing material showed an optimum at pH 6–7, and only a part of this was removed on dialysis. The precipitates obtained with trichloroacetic acid, on the other hand, retained very little phosphorus-containing material. 5. The significance of these findings is discussed. PMID:14340051

  9. 26 CFR 1.669(a)-3 - Tax computed by the exact throwback method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Tax computed by the exact throwback method. 1... Taxable Years Beginning Before January 1, 1969 § 1.669(a)-3 Tax computed by the exact throwback method. (a... compute the tax, on amounts deemed distributed under section 666, by the exact throwback method provided...

  10. Computational method for exact frequency-dependent rays on the basis of the solution of the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Protasov, M.; Gadylshin, K.

    2017-07-01

    A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.

  11. Generation Expansion Planning With Large Amounts of Wind Power via Decision-Dependent Stochastic Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui

    Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less

  12. FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.

    2010-12-01

    Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.

  13. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curchod, Basile F. E.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de; Gross, E. K. U.

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrastmore » to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.« less

  15. Thin-shell wormholes in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S. Habib

    2018-03-01

    At the Planck scale of length ˜10‑35 m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.

  16. Solving Integer Programs from Dependence and Synchronization Problems

    DTIC Science & Technology

    1993-03-01

    DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving

  17. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  18. Time-local equation for exact time-dependent optimized effective potential in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-04-01

    Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.

  19. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  20. Efficient exact-exchange time-dependent density-functional theory methods and their relation to time-dependent Hartree-Fock.

    PubMed

    Hesselmann, Andreas; Görling, Andreas

    2011-01-21

    A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.

  1. Soliton and periodic solutions for time-dependent coefficient non-linear equation

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan

    2016-01-01

    In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.

  2. Linear Depolarization of Lidar Returns by Aged Smoke Particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li

    2016-01-01

    We use the numerically exact (superposition) T-matrix method to analyze recent measurements of the backscattering linear depolarization ratio (LDR) for a plume of aged smoke at lidar wavelengths ranging from 355 to 1064 nm. We show that the unique spectral dependence of the measured LDRs can be modeled, but only by assuming expressly nonspherical morphologies of smoke particles containing substantial amounts of nonabsorbing (or weakly absorbing) refractory materials such as sulfates. Our results demonstrate that spectral backscattering LDR measurements can be indicative of the presence of morphologically complex smoke particles, but additional (e.g., passive polarimetric or bistatic lidar) measurements may be required for a definitive characterization of the particle morphology and composition.

  3. Phase-coherent engineering of electronic heat currents with a Josephson modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  4. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.

    PubMed

    Dinh, Hieu; Rajasekaran, Sanguthevar

    2011-07-15

    Exact-match overlap graphs have been broadly used in the context of DNA assembly and the shortest super string problem where the number of strings n ranges from thousands to billions. The length ℓ of the strings is from 25 to 1000, depending on the DNA sequencing technologies. However, many DNA assemblers using overlap graphs suffer from the need for too much time and space in constructing the graphs. It is nearly impossible for these DNA assemblers to handle the huge amount of data produced by the next-generation sequencing technologies where the number n of strings could be several billions. If the overlap graph is explicitly stored, it would require Ω(n(2)) memory, which could be prohibitive in practice when n is greater than a hundred million. In this article, we propose a novel data structure using which the overlap graph can be compactly stored. This data structure requires only linear time to construct and and linear memory to store. For a given set of input strings (also called reads), we can informally define an exact-match overlap graph as follows. Each read is represented as a node in the graph and there is an edge between two nodes if the corresponding reads overlap sufficiently. A formal description follows. The maximal exact-match overlap of two strings x and y, denoted by ov(max)(x, y), is the longest string which is a suffix of x and a prefix of y. The exact-match overlap graph of n given strings of length ℓ is an edge-weighted graph in which each vertex is associated with a string and there is an edge (x, y) of weight ω=ℓ-|ov(max)(x, y)| if and only if ω ≤ λ, where |ov(max)(x, y)| is the length of ov(max)(x, y) and λ is a given threshold. In this article, we show that the exact-match overlap graphs can be represented by a compact data structure that can be stored using at most (2λ-1)(2⌈logn⌉+⌈logλ⌉)n bits with a guarantee that the basic operation of accessing an edge takes O(log λ) time. We also propose two algorithms for constructing the data structure for the exact-match overlap graph. The first algorithm runs in O(λℓnlogn) worse-case time and requires O(λ) extra memory. The second one runs in O(λℓn) time and requires O(n) extra memory. Our experimental results on a huge amount of simulated data from sequence assembly show that the data structure can be constructed efficiently in time and memory. Our DNA sequence assembler that incorporates the data structure is freely available on the web at http://www.engr.uconn.edu/~htd06001/assembler/leap.zip

  5. Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.

    PubMed

    Das, Shankar P; Yoshimori, Akira

    2013-10-01

    Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.

  6. Comparison of exact pupil astigmatism conditions with Seidel approximations

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; Burge, James H.

    2002-12-01

    The aberrations of axisymmetric imaging systems can be calculated to third order by use of the Seidel formulas. The Coddington equations give aberrations that have quadratic dependence on the pupil, for all field points. The pupil astigmatism conditions were recently developed to predict and control aberrations that have quadratic field dependence and arbitrary pupil dependence. We investigate the relationship between the exact pupil astigmatism conditions and the classical Seidel treatment of pupil aberrations.

  7. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  8. Approaches to Measuring and Understanding Employer Training Expenditure

    ERIC Educational Resources Information Center

    Smith, Andrew; Burke, Gerald; Long, Michael; Dumbrell, Tom

    2008-01-01

    While it is recognised that employers invest a substantial amount of money and time in training, the exact nature and amount of this investment is poorly measured and understood. This project set out to supplement the available data, which have many limitations, with more detailed data for selected industries. However, it became quickly apparent…

  9. Segmental Refinement: A Multigrid Technique for Data Locality

    DOE PAGES

    Adams, Mark F.; Brown, Jed; Knepley, Matt; ...

    2016-08-04

    In this paper, we investigate a domain decomposed multigrid technique, termed segmental refinement, for solving general nonlinear elliptic boundary value problems. We extend the method first proposed in 1994 by analytically and experimentally investigating its complexity. We confirm that communication of traditional parallel multigrid is eliminated on fine grids, with modest amounts of extra work and storage, while maintaining the asymptotic exactness of full multigrid. We observe an accuracy dependence on the segmental refinement subdomain size, which was not considered in the original analysis. Finally, we present a communication complexity analysis that quantifies the communication costs ameliorated by segmental refinementmore » and report performance results with up to 64K cores on a Cray XC30.« less

  10. The Abundance of Atmospheric CO{sub 2} in Ocean Exoplanets: a Novel CO{sub 2} Deposition Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, A.; Sasselov, D.; Podolak, M., E-mail: amitlevi.planetphys@gmail.com

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO{sub 2}, the amount of CO{sub 2} dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO{sub 2}. We find that, in a steady state, the abundance of CO{sub 2} in the atmospheremore » has two possible states. When wind-driven circulation is the dominant CO{sub 2} exchange mechanism, an atmosphere of tens of bars of CO{sub 2} results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO{sub 2} deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO{sub 2} is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO{sub 2} into the atmosphere to increase the greenhouse effect.« less

  11. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    NASA Astrophysics Data System (ADS)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  12. The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels

    NASA Astrophysics Data System (ADS)

    Reifler, Felix A.; Lehmann, Eberhard H.; Frei, Gabriel; May, Hans; Rossi, René

    2006-07-01

    A new non-destructive method based on neutron imaging (neutron radiography) to determine the exact water content in aramid-based soft body armour panels is presented. While investigating the ballistic resistance of aramid-based body armour panels under a wet condition, it is important to precisely determine their water content and its chronological development. Using the presented method, the influence of water amount and location on impact testing as well as its time dependence was shown. In the ballistic panels used, spreading of water strongly depended on the kind of quilting. Very fast water migration could be observed when the panels were held vertically. Some first results regarding the water distribution in wet panels immediately after the impact are presented. On the basis of the presented results, requirements for a standard for testing the performance of ballistic panels in the wet state are deduced.

  13. Rapid Ovary Mass-Isolation (ROMi) to Obtain Large Quantities of Drosophila Egg Chambers for Fluorescent In Situ Hybridization.

    PubMed

    Jambor, Helena; Mejstrik, Pavel; Tomancak, Pavel

    2016-01-01

    Isolation of large quantities of tissue from organisms is essential for many techniques such as genome-wide screens and biochemistry. However, obtaining large quantities of tissues or cells is often the rate-limiting step when working in vivo. Here, we present a rapid method that allows the isolation of intact, single egg chambers at various developmental stages from ovaries of adult female Drosophila flies. The isolated egg chambers are amenable for a variety of procedures such as fluorescent in situ hybridization, RNA isolation, extract preparation, or immunostaining. Isolation of egg chambers from adult flies can be completed in 5 min and results, depending on the input amount of flies, in several milliliters of material. The isolated egg chambers are then further processed depending on the exact requirements of the subsequent application. We describe high-throughput in situ hybridization in 96-well plates as example application for the mass-isolated egg chambers.

  14. Benchmark problems and solutions

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1995-01-01

    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.

  15. Approximate bilateral symmetry in evaporation-induced polycrystalline structures from droplets of wheat grain leakages and fluctuating asymmetry as quality indicator

    NASA Astrophysics Data System (ADS)

    Kokornaczyk, Maria Olga; Dinelli, Giovanni; Betti, Lucietta

    2013-01-01

    The present paper reports on an observation that dendrite-like polycrystalline structures from evaporating droplets of wheat grain leakages exhibit bilateral symmetry. The exactness of this symmetry, measured by means of fluctuating asymmetry, varies depending on the cultivar and stress factor influence, and seems to correspond to the seed germination rate. In the bodies of plants, animals, and humans, the exactness of bilateral symmetry is known to reflect the environmental conditions of an organism's growth, its health, and its success in sexual selection. In polycrystalline structures, formed under the same conditions, the symmetry exactness depends on the properties of the crystallizing solution such as the composition and viscosity; however, it has never been associated with sample quality. We hypothesize here that, as in living nature, the exactness of approximate bilateral symmetry might be considered a quality indicator also in crystallographic methods applied to food quality analysis.

  16. Exact analysis of intrinsic qualitative features of phosphorelays using mathematical models.

    PubMed

    Knudsen, Michael; Feliu, Elisenda; Wiuf, Carsten

    2012-05-07

    Phosphorelays are a class of signaling mechanisms used by cells to respond to changes in their environment. Phosphorelays (of which two-component systems constitute a special case) are particularly abundant in prokaryotes and have been shown to be involved in many fundamental processes such as stress response, osmotic regulation, virulence, and chemotaxis. We develop a general model of phosphorelays extending existing models of phosphorelays and two-component systems. We analyze the model analytically under the assumption of mass-action kinetics and prove that a phosphorelay has a unique stable steady-state. Furthermore, we derive explicit functions relating stimulus to the response in any layer of a phosphorelay and show that a limited degree of ultrasensitivity in the bottom layer of a phosphorelay is an intrinsic feature which does not depend on any reaction rates or substrate amounts. On the other hand, we show how adjusting reaction rates and substrate amounts may lead to higher degrees of ultrasensitivity in intermediate layers. The explicit formulas also enable us to prove how the response changes with alterations in stimulus, kinetic parameters, and substrate amounts. Aside from providing biological insight, the formulas may also be used to replace the time-consuming simulations in numerical analyses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A position-dependent mass model for the Thomas–Fermi potential: Exact solvability and relation to δ-doped semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; García-Ravelo, Jesús; Pacheco-García, Christian

    We consider the Schrödinger equation in the Thomas–Fermi field, a model that has been used for describing electron systems in δ-doped semiconductors. It is shown that the problem becomes exactly-solvable if a particular effective (position-dependent) mass distribution is incorporated. Orthogonal sets of normalizable bound state solutions are constructed in explicit form, and the associated energies are determined. We compare our results with the corresponding findings on the constant-mass problem discussed by Ioriatti (1990) [13]. -- Highlights: ► We introduce an exactly solvable, position-dependent mass model for the Thomas–Fermi potential. ► Orthogonal sets of solutions to our model are constructed inmore » closed form. ► Relation to delta-doped semiconductors is discussed. ► Explicit subband bottom energies are calculated and compared to results obtained in a previous study.« less

  18. 26 CFR 1.669(c)-2A - Computation of the beneficiary's income and tax for a prior taxable year.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... either the exact method or the short-cut method shall be determined by reference to the information... shows a mathematical error on its face which resulted in the wrong amount of tax being paid for such... amounts in such gross income, shall be based upon the return after the correction of such mathematical...

  19. Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study.

    PubMed

    Titov, Evgenii; Saalfrank, Peter

    2016-05-19

    Molecular photoswitches such as azobenzenes, which undergo photochemical trans ↔ cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule-surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based coupled-cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an example: The low-lying singlet excited states in the isolated trans monomer and dimer as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further, strong red shift for the present system. (iv) At a next-nearest neighbor distance (of ∼3.6 Å), the exciton splitting is ∼0.3 eV, with or without "surface", suggesting a rapid quenching of the molecular π → π* excitation. At larger distances, exciton splitting decreases rapidly.

  20. Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography

    NASA Astrophysics Data System (ADS)

    Choboter, P.; Duke, D.; Horton, J.; Sinz, P.

    2009-12-01

    The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.

  1. 21 CFR 522.1020 - Gelatin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Specifications. Each 100 milliliters contains 8 grams of gelatin in a 0.85 percent sodium chloride solution. (b) Sponsor. See No. 054771 in § 510.600(c) of this chapter. (c) Conditions of use—(1) Amount. The exact...

  2. Exact analytic solution of position-dependent mass Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Hangshadhar

    2018-03-01

    Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.

  3. Magnetically driven relativistic jets and winds: Exact solutions

    NASA Technical Reports Server (NTRS)

    Contopoulos, J.

    1994-01-01

    We present self-consistent solutions of the full set of ideal MHD equations which describe steady-state relativistic cold outflows from thin accretion disks. The magnetic field forms a spiral which is anchored in the disk, rotates with it, and accelerates the flow out of the disk plane. The collimation at large distances depends on the total amount of electric current that flows along the jet. We considered various distributions of electric current and derived the result that in straight jets which extend to infinite distances, a strong electric current flows along their axis of symmetry. The asymptotic flow velocities are of the order of the initial rotational velocity at the base of the flow (a few tenths of the speed of light). The solutions are applied to both galactic (small-scale) and extragalactic (large-scale) jets.

  4. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  5. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  6. Association between ADH1C and ALDH2 polymorphisms and alcoholism in a Turkish sample.

    PubMed

    Ayhan, Yavuz; Gürel, Şeref Can; Karaca, Özgür; Zoto, Teuta; Hayran, Mutlu; Babaoğlu, Melih; Yaşar, Ümit; Bozkurt, Atilla; Dilbaz, Nesrin; Uluğ, Berna Diclenur; Demir, Başaran

    2015-04-01

    Polymorphisms in the genes encoding alcohol metabolizing enzymes are associated with alcohol dependence. To evaluate the association between the alcohol dehydrogenase 1C (ADH1C) Ile350Val and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys polymorphisms and alcohol dependence in a Turkish sample. 235 individuals (115 alcohol-dependent patients and 120 controls) were genotyped for ADH1C and ALDH2 with PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism). Association between the polymorphisms and family history, daily and maximum amount of alcohol consumed was investigated. The associations between alcohol dependence, severity of consumption and family history and the polymorphisms were analyzed by chi-square or Fisher's exact test where necessary. Relationship between genotypes and dependence related features was evaluated using analysis of variance (ANOVA). The -350Val allele for ADH1C (ADH1C*2) was increased in alcohol-dependent patients (P = 0.05). In individuals with a positive family history, the genotype distribution differed significantly (P = 0.031) and more patients carried the Val allele compared with controls (P = 0.025). Genotyping of 162 participants did not reveal the -504Lys allele in ALDH2. These findings suggest that ADH1C*2 is associated with alcohol dependence in the Turkish population displaying a dominant inheritance model. ADH1C*2 allele may contribute to the variance in heritability of alcohol dependence. The ALDH2 -504Lys/Lys or Glu/Lys genotypes were not present in alcohol-dependent patients, similar to that seen in European populations and in contrast to the findings in the Asian populations.

  7. Accuracy of MRI-compatible contrast media injectors.

    PubMed

    Saake, M; Wuest, W; Becker, S; Uder, M; Janka, R

    2014-03-01

    To analyze the exactness of MRI-compatible contrast media (CM) injectors in an experimental setup and clinical use. Ejected fluid volumes and amounts of CM were quantified for single and double piston injections. The focus was on small volumes, as used in pediatric examination and test-bolus measurements. Samples were collected before and after clinical MRI scans and amounts of CM were measured. For single piston injections the volume differences were minimal (mean difference 0.01  ml). For double piston injections the volume of the first injection was decreased (mean 20.74  ml, target 21.00  ml, p < 0.01). After a position change of the Y-piece of the injection system, the amount of CM differed significantly from the target value (mean 1.23  mmol and 0.83  mmol at 1  ml/s flow rate, target 1.00  mmol, p < 0.01), independently of the wait time. The clinical samples confirmed these findings. The pistons of modern CM injectors work exactly. However, for small CM volumes the injected amount of CM can differ significantly from the target value in both directions. Influence factors are an incomplete elimination of air and exchange processes between the CM and saline chaser in the injection system. • In MRI examinations of children and test-bolus measurements, small amounts of CM are used. • The accuracy of single piston injections is high. • In double piston injections the injected amount of CM can differ significantly from the target value. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Nanoscale phase engineering of thermal transport with a Josephson heat modulator.

    PubMed

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  9. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  10. Entanglement dynamics in a non-Markovian environment: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.

    2012-05-01

    We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.

  11. A strategy for reducing gross errors in the generalized Born models of implicit solvation

    PubMed Central

    Onufriev, Alexey V.; Sigalov, Grigori

    2011-01-01

    The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947

  12. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  13. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    NASA Astrophysics Data System (ADS)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  14. Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Suchaneck, Andre; Puente León, Fernando

    2014-01-01

    Depending on the actual battery temperature, electrical power demands in general have a varying impact on the life span of a battery. As electrical energy provided by the battery is needed to temper it, the question arises at which temperature which amount of energy optimally should be utilized for tempering. Therefore, the objective function that has to be optimized contains both the goal to maximize life expectancy and to minimize the amount of energy used for obtaining the first goal. In this paper, Pontryagin's maximum principle is used to derive a causal control strategy from such an objective function. The derivation of the causal strategy includes the determination of major factors that rule the optimal solution calculated with the maximum principle. The optimization is calculated offline on a desktop computer for all possible vehicle parameters and major factors. For the practical implementation in the vehicle, it is sufficient to have the values of the major factors determined only roughly in advance and the offline calculation results available. This feature sidesteps the drawback of several optimization strategies that require the exact knowledge of the future power demand. The resulting strategy's application is not limited to batteries in electric vehicles.

  15. Calculating pH-dependent free energy of proteins by using Monte Carlo protonation probabilities of ionizable residues.

    PubMed

    Huang, Qiang; Herrmann, Andreas

    2012-03-01

    Protein folding, stability, and function are usually influenced by pH. And free energy plays a fundamental role in analysis of such pH-dependent properties. Electrostatics-based theoretical framework using dielectric solvent continuum model and solving Poisson-Boltzmann equation numerically has been shown to be very successful in understanding the pH-dependent properties. However, in this approach the exact computation of pH-dependent free energy becomes impractical for proteins possessing more than several tens of ionizable sites (e.g. > 30), because exact evaluation of the partition function requires a summation over a vast number of possible protonation microstates. Here we present a method which computes the free energy using the average energy and the protonation probabilities of ionizable sites obtained by the well-established Monte Carlo sampling procedure. The key feature is to calculate the entropy by using the protonation probabilities. We used this method to examine a well-studied protein (lysozyme) and produced results which agree very well with the exact calculations. Applications to the optimum pH of maximal stability of proteins and protein-DNA interactions have also resulted in good agreement with experimental data. These examples recommend our method for application to the elucidation of the pH-dependent properties of proteins.

  16. Langevin synchronization in a time-dependent, harmonic basin: An exact solution in 1D

    NASA Astrophysics Data System (ADS)

    Cadilhe, A.; Voter, Arthur F.

    2018-02-01

    The trajectories of two particles undergoing Langevin dynamics while sharing a common noise sequence can merge into a single (master) trajectory. Here, we present an exact solution for a particle undergoing Langevin dynamics in a harmonic, time-dependent potential, thus extending the idea of synchronization to nonequilibrium systems. We calculate the synchronization level, i.e., the mismatch between two trajectories sharing a common noise sequence, in the underdamped, critically damped, and overdamped regimes. Finally, we provide asymptotic expansions in various limiting cases and compare to the time independent case.

  17. An Algorithm for the Calculation of Exact Term Discrimination Values.

    ERIC Educational Resources Information Center

    Willett, Peter

    1985-01-01

    Reports algorithm for calculation of term discrimination values that is sufficiently fast in operation to permit use of exact values. Evidence is presented to show that relationship between term discrimination and term frequency is crucially dependent upon type of inter-document similarity measure used for calculation of discrimination values. (13…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diwaker, E-mail: diwakerphysics@gmail.com; Chakraborty, Aniruddha

    The Smoluchowski equation with a time-dependent sink term is solved exactly. In this method, knowing the probability distribution P(0, s) at the origin, allows deriving the probability distribution P(x, s) at all positions. Exact solutions of the Smoluchowski equation are also provided in different cases where the sink term has linear, constant, inverse, and exponential variation in time.

  19. Radiotherapy Dose Fractionation under Parameter Uncertainty

    NASA Astrophysics Data System (ADS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-11-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  20. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less

  1. Calibrating excitation light fluxes for quantitative light microscopy in cell biology

    PubMed Central

    Grünwald, David; Shenoy, Shailesh M; Burke, Sean; Singer, Robert H

    2011-01-01

    Power output of light bulbs changes over time and the total energy delivered will depend on the optical beam path of the microscope, filter sets and objectives used, thus making comparison between experiments performed on different microscopes complicated. Using a thermocoupled power meter, it is possible to measure the exact amount of light applied to a specimen in fluorescence microscopy, regardless of the light source, as the light power measured can be translated into a power density at the sample. This widely used and simple tool forms the basis of a new degree of calibration precision and comparability of results among experiments and setups. Here we describe an easy-to-follow protocol that allows researchers to precisely estimate excitation intensities in the object plane, using commercially available opto-mechanical components. The total duration of this protocol for one objective and six filter cubes is 75 min including start-up time for the lamp. PMID:18974739

  2. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  3. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2014-05-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.

  4. New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang

    2017-10-01

    In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.

  5. Discontinuous functional for linear-response time-dependent density-functional theory: The exact-exchange kernel and approximate forms

    NASA Astrophysics Data System (ADS)

    Hellgren, Maria; Gross, E. K. U.

    2013-11-01

    We present a detailed study of the exact-exchange (EXX) kernel of time-dependent density-functional theory with an emphasis on its discontinuity at integer particle numbers. It was recently found that this exact property leads to sharp peaks and step features in the kernel that diverge in the dissociation limit of diatomic systems [Hellgren and Gross, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.022514 85, 022514 (2012)]. To further analyze the discontinuity of the kernel, we here make use of two different approximations to the EXX kernel: the Petersilka Gossmann Gross (PGG) approximation and a common energy denominator approximation (CEDA). It is demonstrated that whereas the PGG approximation neglects the discontinuity, the CEDA includes it explicitly. By studying model molecular systems it is shown that the so-called field-counteracting effect in the density-functional description of molecular chains can be viewed in terms of the discontinuity of the static kernel. The role of the frequency dependence is also investigated, highlighting its importance for long-range charge-transfer excitations as well as inner-shell excitations.

  6. 40 CFR Appendix V to Part 51 - Criteria for Determining the Completeness of Plan Submissions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an exact duplicate of the hard copy with changes indicated, signed documents need to be in portable document format, rules need to be in text format and files need to be submitted in manageable amounts (e.g...

  7. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    PubMed

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  8. An Exact Solution to the Draining Reservoir Problem of the Incompressible and Non-Viscous Liquid

    ERIC Educational Resources Information Center

    Hong, Seok-In

    2009-01-01

    The exact expressions for the drain time and the height, velocity and acceleration of the free surface are found for the draining reservoir problem of the incompressible and non-viscous liquid. Contrary to the conventional approximate results, they correctly describe the initial time dependence of the liquid velocity and acceleration. Torricelli's…

  9. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  10. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  11. Exact time-dependent nonlinear dispersive wave solutions in compressible magnetized plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2011-04-08

    Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.

  12. 7 CFR 1493.260 - Facility payment guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.260 Facility payment guarantee. (a) CCC's maximum obligation. CCC will agree to... fails to pay under the foreign bank letter of credit or related obligation. The exact amount of CCC's...

  13. 7 CFR 1493.260 - Facility payment guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.260 Facility payment guarantee. (a) CCC's maximum obligation. CCC will agree to... fails to pay under the foreign bank letter of credit or related obligation. The exact amount of CCC's...

  14. 7 CFR 1493.260 - Facility payment guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF AGRICULTURE EXPORT PROGRAMS CCC EXPORT CREDIT GUARANTEE PROGRAMS CCC Facility Guarantee Program (FGP) Operations § 1493.260 Facility payment guarantee. (a) CCC's maximum obligation. CCC will agree to... fails to pay under the foreign bank letter of credit or related obligation. The exact amount of CCC's...

  15. Removal of lead by apatite and its stability in the presence of organic acids.

    PubMed

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi

    2016-12-01

    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  16. Comparison of three different techniques for application of water solutions to Finn Chambers®.

    PubMed

    Frick-Engfeldt, Malin; Gruvberger, Birgitta; Isaksson, Marléne; Hauksson, Inese; Pontén, Ann; Bruze, Magnus

    2010-11-01

    With regard to contact allergy, the dose of a sensitizer per unit skin area is an important factor for both sensitization and elicitation, and therefore a known amount/volume of test preparation should be applied at patch testing. To compare three different techniques for the application of aqueous solutions to Finn Chambers, in order to determine the precision and accuracy of each technique when the recommended 15 µl volume is applied. Four technicians applied formaldehyde 1.0% aq. (wt/vol) and methylchloroisothiazolinone/methylisothiazolinone 200 ppm (wt/vol) in sets of 10 onto Finn Chambers, with three different techniques: (i) micro-pipetting; (ii) dripping the solutions; and (iii) dripping the solutions followed by removal of excess solution with a soft tissue. Assessment of the variations was performed with the use of descriptive data. The ability to apply the exact amount was assessed by Fisher's exact test by categorizing each application as in or out of the range 12-18 µl. The micro-pipette technique had the best accuracy and precision, as well as the lowest inter-individual variation. The technique in which excess solution was removed had good precision, but failed in the application of the defined amount, i.e. 15 µl. © 2010 John Wiley & Sons A/S.

  17. Exact and Monte carlo resampling procedures for the Wilcoxon-Mann-Whitney and Kruskal-Wallis tests.

    PubMed

    Berry, K J; Mielke, P W

    2000-12-01

    Exact and Monte Carlo resampling FORTRAN programs are described for the Wilcoxon-Mann-Whitney rank sum test and the Kruskal-Wallis one-way analysis of variance for ranks test. The program algorithms compensate for tied values and do not depend on asymptotic approximations for probability values, unlike most algorithms contained in PC-based statistical software packages.

  18. Exact exchange potential for slabs: Asymptotic behavior of the Krieger-Li-Iafrate approximation

    NASA Astrophysics Data System (ADS)

    Engel, Eberhard

    2018-02-01

    The Krieger-Li-Iafrate (KLI) approximation for the exact exchange (EXX) potential of density functional theory is investigated far outside the surface of slabs. For large z the Slater component of the EXX/KLI potential falls off as -1 /z , where z is the distance to the surface of a slab parallel to the x y plane. The Slater potential thus reproduces the behavior of the exact EXX potential. Here it is demonstrated that the second component of the EXX/KLI potential, often called the orbital-shift term, is also proportional to 1 /z for large z , at least in general. This result is obtained by an analytical evaluation of the Brillouin zone integrals involved, relying on the exponential decay of the states into the vacuum. Several situations need to be distinguished in the Brillouin zone integration, depending on the band structure of the slab. In all standard situations, including such prominent cases as graphene and Si(111) slabs, however, a 1 /z dependence of the orbital-shift potential is obtained to leading order. The complete EXX/KLI potential therefore does not reproduce the asymptotic behavior of the exact EXX potential.

  19. 22 CFR 1203.735-217 - Requesting exceptions from certain statutory prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., and the Director for ICA. The request will describe the particular matter giving rise to the conflict of interest, the nature and extent of the employee's anticipated participation in the particular matter, and the exact nature and amount of the financial interest related to the particular matter. (b...

  20. Water resources of the Roseau River Watershed, Northwestern Minnesota

    USGS Publications Warehouse

    Winter, Thomas C.; Maclay, R.W.; Pike, G.M.

    1967-01-01

    This report is a general appraisal of the water resources in the Roseau River watershed unit. Detailed studies of water movement through the ground-water reservoir are needed for more exact determination of the amount of water immediately available and the specific effects of water-management practices.

  1. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters

    NASA Astrophysics Data System (ADS)

    Kruglov, Vladimir I.; Harvey, John D.

    2006-12-01

    We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.

  2. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  3. α-Synuclein Regulates Neuronal Cholesterol Efflux.

    PubMed

    Hsiao, Jen-Hsiang T; Halliday, Glenda M; Kim, Woojin Scott

    2017-10-19

    α-Synuclein is a neuronal protein that is at the center of focus in understanding the etiology of a group of neurodegenerative diseases called α-synucleinopathies, which includes Parkinson's disease (PD). Despite much research, the exact physiological function of α-synuclein is still unclear. α-Synuclein has similar biophysical properties as apolipoproteins and other lipid-binding proteins and has a high affinity for cholesterol. These properties suggest a possible role for α-synuclein as a lipid acceptor mediating cholesterol efflux (the process of removing cholesterol out of cells). To test this concept, we "loaded" SK-N-SH neuronal cells with fluorescently-labelled cholesterol, applied exogenous α-synuclein, and measured the amount of cholesterol removed from the cells using a classic cholesterol efflux assay. We found that α-synuclein potently stimulated cholesterol efflux. We found that the process was dose and time dependent, and was saturable at 1.0 µg/mL of α-synuclein. It was also dependent on the transporter protein ABCA1 located on the plasma membrane. We reveal for the first time a novel role of α-synuclein that underscores its importance in neuronal cholesterol regulation, and identify novel therapeutic targets for controlling cellular cholesterol levels.

  4. Importance of Context Dependence in the Measurement of Reading Skills.

    ERIC Educational Resources Information Center

    Oaster, T. R. F.; Thomas, Rick D.

    Past reading research suggests that measures of reading comprehension should be made context dependent. Reading comprehension test questions that are context dependent are best answered by examinees only after the accompanying passages have been read. Recently, there has been some disagreement concerning the exact importance of context dependence…

  5. 32 CFR 199.18 - Uniform HMO Benefit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (x) Appropriate education and counseling services. The exact services offered shall be established... groups: dependents of active duty members in pay grades of E-4 and below; active duty dependents of... visits. For group visits, there is a lower per visit fee for retirees and their dependents. (iii) There...

  6. Exact Solutions of Schrödinger Equation with Improved Ring-Shaped Non-Spherical Harmonic Oscillator and Coulomb Potential

    NASA Astrophysics Data System (ADS)

    Ndem Ikot, Akpan; Akpan, Ita O.; Abbey, T. M.; Hassanabadi, Hassan

    2016-05-01

    We propose improved ring shaped like potential of the form, V(r, θ) = V(r) + (ħ2/2Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2 and its exact solutions are presented via the Nikiforov-Uvarov method. The angle dependent part V(θ) = (ħ2 / 2 Mr2)[(β sin2 θ + γ cos2 θ + λ) / sin θ cos θ]2, which is reported for the first time embodied the novel angle dependent (NAD) potential and harmonic novel angle dependent potential (HNAD) as special cases. We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.

  7. Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion

    NASA Astrophysics Data System (ADS)

    Krumm, F.; Vogel, W.

    2018-04-01

    In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.

  8. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  9. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  10. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy

    2018-03-01

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.

  11. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE PAGES

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...

    2018-03-06

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  12. Numerically exact full counting statistics of the nonequilibrium Anderson impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, Michael; Singh, Viveka N.; Gull, Emanuel

    The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events

  13. Exact probability distribution functions for Parrondo's games.

    PubMed

    Zadourian, Rubina; Saakian, David B; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  14. Interacting particle systems in time-dependent geometries

    NASA Astrophysics Data System (ADS)

    Ali, A.; Ball, R. C.; Grosskinsky, S.; Somfai, E.

    2013-09-01

    Many complex structures and stochastic patterns emerge from simple kinetic rules and local interactions, and are governed by scale invariance properties in combination with effects of the global geometry. We consider systems that can be described effectively by space-time trajectories of interacting particles, such as domain boundaries in two-dimensional growth or river networks. We study trajectories embedded in time-dependent geometries, and the main focus is on uniformly expanding or decreasing domains for which we obtain an exact mapping to simple fixed domain systems while preserving the local scale invariance properties. This approach was recently introduced in Ali et al (2013 Phys. Rev. E 87 020102(R)) and here we provide a detailed discussion on its applicability for self-affine Markovian models, and how it can be adapted to self-affine models with memory or explicit time dependence. The mapping corresponds to a nonlinear time transformation which converges to a finite value for a large class of trajectories, enabling an exact analysis of asymptotic properties in expanding domains. We further provide a detailed discussion of different particle interactions and generalized geometries. All our findings are based on exact computations and are illustrated numerically for various examples, including Lévy processes and fractional Brownian motion.

  15. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.« less

  16. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, Matthew; Senatore, Leonardo

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less

  17. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    DOE PAGES

    Lewandowski, Matthew; Senatore, Leonardo

    2017-08-31

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less

  18. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kamenov, O. Y.

    2009-09-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  19. Lithium synthesis in microquasar accretion.

    PubMed

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis.

  20. Number-squeezed and fragmented states of strongly interacting bosons in a double well

    NASA Astrophysics Data System (ADS)

    Corbo, Joel C.; DuBois, Jonathan L.; Whaley, K. Birgitta

    2017-11-01

    We present a systematic study of the phenomena of number squeezing and fragmentation for a repulsive Bose-Einstein condensate (BEC) in a three-dimensional double-well potential over a range of interaction strengths and barrier heights, including geometries that exhibit appreciable overlap in the one-body wave functions localized in the left and right wells. We compute the properties of the condensate with numerically exact, full-dimensional path-integral ground-state (PIGS) quantum Monte Carlo simulations and compare with results obtained from using two- and eight-mode truncated basis models. The truncated basis models are found to agree with the numerically exact PIGS simulations for weak interactions, but fail to correctly predict the amount of number squeezing and fragmentation exhibited by the PIGS simulations for strong interactions. We find that both number squeezing and fragmentation of the BEC show nonmonotonic behavior at large values of interaction strength a . The number squeezing shows a universal scaling with the product of number of particles and interaction strength (N a ), but no such universal behavior is found for fragmentation. Detailed analysis shows that the introduction of repulsive interactions not only suppresses number fluctuations to enhance number squeezing, but can also enhance delocalization across wells and tunneling between wells, each of which may suppress number squeezing. This results in a dynamical competition whose resolution shows a complex dependence on all three physical parameters defining the system: interaction strength, number of particles, and barrier height.

  1. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.

  2. Exact collisional moments for plasma fluid theories

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  3. Exact collisional moments for plasma fluid theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  4. Exact collisional moments for plasma fluid theories

    DOE PAGES

    Pfefferlé, D.; Hirvijoki, E.; Lingam, M.

    2017-04-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less

  5. A large class of solvable multistate Landau–Zener models and quantum integrability

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen

    2018-06-01

    The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.

  6. Density-dependent resistance of the gypsy moth, Lymantria dispar, to its nucleopolyhedrovirus

    Treesearch

    James R. Reilly; Ann E. Hajek

    2007-01-01

    The processes controlling disease resistance can strongly influence the population dynamics of insect outbreaks. Evidence that disease resistance is density-dependent is accumulating, but the exact form of this relationship is highly variable from species to species.

  7. Energy Distributions in Small Populations: Pascal versus Boltzmann

    ERIC Educational Resources Information Center

    Kugel, Roger W.; Weiner, Paul A.

    2010-01-01

    The theoretical distributions of a limited amount of energy among small numbers of particles with discrete, evenly-spaced quantum levels are examined systematically. The average populations of energy states reveal the pattern of Pascal's triangle. An exact formula for the probability that a particle will be in any given energy state is derived.…

  8. The Ultimate Fizz

    ERIC Educational Resources Information Center

    Heckscher, Mary

    2008-01-01

    Many recipes for elementary science activities suggest making carbon dioxide from baking soda and vinegar; however, they often do not give exact measurements of the ingredients. The author was able to turn this "drawback" into a plus by challenging her fifth-grade students to find the "ultimate fizz"--i.,e., "What amount of baking soda added to a…

  9. Discovery

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2017-01-01

    Suppose that there is an inexhaustible supply of $3 and $5 vouchers from the local supermarket. They may only be exchanged for items that cost an exact number of dollars made up from any combination of the vouchers. What is the highest amount not able to be obtained? This is an interesting problem in mathematical thinking and logic requiring only…

  10. 48 CFR 22.406-2 - Wages, fringe benefits, and overtime.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exact cash amounts. In these cases, the hourly cash equivalent of the cost of these items shall be... the contractor's contributions, costs, or payment of cash equivalents for fringe benefits. Overtime... cash to the laborer or mechanic, or deducted from payments under the conditions set forth in 29 CFR 3.5...

  11. James-Stein Estimation. Program Statistics Research, Technical Report No. 89-86.

    ERIC Educational Resources Information Center

    Brandwein, Ann Cohen; Strawderman, William E.

    This paper presents an expository development of James-Stein estimation with substantial emphasis on exact results for nonnormal location models. The themes of the paper are: (1) the improvement possible over the best invariant estimator via shrinkage estimation is not surprising but expected from a variety of perspectives; (2) the amount of…

  12. Heterogeneous network epidemics: real-time growth, variance and extinction of infection.

    PubMed

    Ball, Frank; House, Thomas

    2017-09-01

    Recent years have seen a large amount of interest in epidemics on networks as a way of representing the complex structure of contacts capable of spreading infections through the modern human population. The configuration model is a popular choice in theoretical studies since it combines the ability to specify the distribution of the number of contacts (degree) with analytical tractability. Here we consider the early real-time behaviour of the Markovian SIR epidemic model on a configuration model network using a multitype branching process. We find closed-form analytic expressions for the mean and variance of the number of infectious individuals as a function of time and the degree of the initially infected individual(s), and write down a system of differential equations for the probability of extinction by time t that are numerically fast compared to Monte Carlo simulation. We show that these quantities are all sensitive to the degree distribution-in particular we confirm that the mean prevalence of infection depends on the first two moments of the degree distribution and the variance in prevalence depends on the first three moments of the degree distribution. In contrast to most existing analytic approaches, the accuracy of these results does not depend on having a large number of infectious individuals, meaning that in the large population limit they would be asymptotically exact even for one initial infectious individual.

  13. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  14. Simple iterative construction of the optimized effective potential for orbital functionals, including exact exchange.

    PubMed

    Kümmel, Stephan; Perdew, John P

    2003-01-31

    For exchange-correlation functionals that depend explicitly on the Kohn-Sham orbitals, the potential V(xcsigma)(r) must be obtained as the solution of the optimized effective potential (OEP) integral equation. This is very demanding and has limited the use of orbital functionals. We demonstrate that instead the OEP can be obtained iteratively by solving the partial differential equations for the orbital shifts that exactify the Krieger-Li-Iafrate approximation. Unoccupied orbitals do not need to be calculated. Accuracy and efficiency of the method are shown for atoms and clusters using the exact-exchange energy. Counterintuitive asymptotic limits of the exact OEP are presented.

  15. Signal Statistics and Maximum Likelihood Sequence Estimation in Intensity Modulated Fiber Optic Links Containing a Single Optical Pre-amplifier.

    PubMed

    Alić, Nikola; Papen, George; Saperstein, Robert; Milstein, Laurence; Fainman, Yeshaiahu

    2005-06-13

    Exact signal statistics for fiber-optic links containing a single optical pre-amplifier are calculated and applied to sequence estimation for electronic dispersion compensation. The performance is evaluated and compared with results based on the approximate chi-square statistics. We show that detection in existing systems based on exact statistics can be improved relative to using a chi-square distribution for realistic filter shapes. In contrast, for high-spectral efficiency systems the difference between the two approaches diminishes, and performance tends to be less dependent on the exact shape of the filter used.

  16. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  17. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  18. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    PubMed

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  19. Exact solutions to force-free electrodynamics in black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted

    2013-10-01

    A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.

  20. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  1. Mapping Antiretroviral Drugs in Tissue by IR-MALDESI MSI Coupled to the Q Exactive and Comparison with LC-MS/MS SRM Assay

    NASA Astrophysics Data System (ADS)

    Barry, Jeremy A.; Robichaud, Guillaume; Bokhart, Mark T.; Thompson, Corbin; Sykes, Craig; Kashuba, Angela D. M.; Muddiman, David C.

    2014-12-01

    This work describes the coupling of the IR-MALDESI imaging source with the Q Exactive mass spectrometer. IR-MALDESI MSI was used to elucidate the spatial distribution of several HIV drugs in cervical tissues that had been incubated in either a low or high concentration. Serial sections of those analyzed by IR-MALDESI MSI were homogenized and analyzed by LC-MS/MS to quantify the amount of each drug present in the tissue. By comparing the two techniques, an agreement between the average intensities from the imaging experiment and the absolute quantities for each drug was observed. This correlation between these two techniques serves as a prerequisite to quantitative IR-MALDESI MSI. In addition, a targeted MS2 imaging experiment was also conducted to demonstrate the capabilities of the Q Exactive and to highlight the added selectivity that can be obtained with SRM or MRM imaging experiments.

  2. Conformally symmetric traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eich, F. G.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de

    We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numericallymore » on a model of proton-coupled electron transfer in different non-adiabatic regimes.« less

  4. Exact solutions for mass-dependent irreversible aggregations.

    PubMed

    Son, Seung-Woo; Christensen, Claire; Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya

    2011-10-01

    We consider the mass-dependent aggregation process (k+1)X→X, given a fixed number of unit mass particles in the initial state. One cluster is chosen proportional to its mass and is merged into one, either with k neighbors in one dimension, or--in the well-mixed case--with k other clusters picked randomly. We find the same combinatorial exact solutions for the probability to find any given configuration of particles on a ring or line, and in the well-mixed case. The mass distribution of a single cluster exhibits scaling laws and the finite-size scaling form is given. The relation to the classical sum kernel of irreversible aggregation is discussed.

  5. Mechanical transduction via a single soft polymer

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  6. Extinction of conditioned opiate withdrawal in rats in a two-chambered place conditioning apparatus

    PubMed Central

    Myers, Karyn M.; Bechtholt-Gompf, Anita J.; Coleman, Brian R.; Carlezon, William A.

    2016-01-01

    Conditioned opiate withdrawal contributes to relapse in addicts and can be studied in rats using the opiate withdrawal-induced conditioned place aversion (OW-CPA) paradigm. Attenuation of conditioned withdrawal through extinction may be beneficial in the treatment of addiction. Here we describe a protocol for studying OW-CPA extinction using a two-chambered place conditioning apparatus. Rats are made dependent on morphine through subcutaneous implantation of morphine pellets and then trained to acquire OW-CPA through pairings of one chamber with naloxone-precipitated withdrawal and the other chamber with saline. Extinction training consists of re-exposures to both chambers in the absence of precipitated withdrawal. Rats tested following the completion of training show a decline in avoidance of the formerly naloxone-paired chamber with increasing numbers of extinction training sessions. The protocol takes a minimum of seven days; the exact duration varies with the amount of extinction training, which is determined by the goals of the experiment. PMID:22362157

  7. The influence of tooth color on preparation design for laminate veneers from a minimally invasive perspective: case report.

    PubMed

    Coachman, Christian; Gurel, Galip; Calamita, Marcelo; Morimoto, Susana; Paolucci, Braulio; Sesma, Newton

    2014-01-01

    Various types of dental preparations for laminate veneers have been proposed,depending on factors such as the properties of the ceramic material, remaining dental structure color, need for altering the dental contour, laboratory fabrication technique, and occlusal relationships. Clinical observations of successes and failures associated with the development of techniques and materials have allowed some safe parameters to be delineated for effectively performing dental preparations for ceramic veneers or even placing veneers without any preparation. This article describes the use of an additive diagnostic wax-up that is transferred to the mouth by means of an intraoral mock-up (aesthetic pre-evaluative temporary) with associated mathematic parameters to guide dental preparations. This technique, called Do the Math and presented here in the form of a clinical case report, aims to avoid excessive or incorrect tooth preparation by indicating the exact amount and location of the tooth reduction necessary to attain the desired color and shape.

  8. DELAY OF CLEAVAGE OF THE ARBACIA EGG BY ULTRAVIOLET RADIATION

    PubMed Central

    Blum, Harold F.; Price, Judith P.

    1950-01-01

    While our data do not permit us to state the exact locus or mode of action of ultraviolet radiation in the Arbacia egg, certain general conclusions may be reached. The amount of delay of cleavage of these eggs is determined by two principal factors: (1) The extent of an effect, resulting from photochemical action induced by ultraviolet radiation, which is reversible in a biological sense, the reversibility not being directly dependent upon the process of cell division. (2) The sensitivity of the cell division process to the effects of the ultraviolet-induced photochemical reaction. This factor varies with the stage of cell division, the cell being insensitive during a period corresponding to most of mitosis. It seems likely that these findings may apply to cell division in general, but, since the quantitative relationships observed must, in this case, reflect the integration of two semi-independent factors, the over-all picture may appear quite different for different kinds of cells. PMID:15410486

  9. Estimation of yohimbine base in complex mixtures by quantitative HPTLC application.

    PubMed

    Adel-Kader, Maged Saad; Alwahebi, Naif Wahebi Hamadan; Alam, Prawez

    2017-01-01

    The indole alkaloid Yohimbine has been used for over two centuries in the treatment of erectly dysfunction. Several formulations containing yohimbine salts, yohimbe bark power or extract are marketed worldwide. Determination of the amount of yohimbine in such formulation is a challenging task due to their complex nature. Extraction followed by acid-base purification resulted in a relatively pure alkaloids containing fractions. The exact amounts of yohimbine free base in different formulations were determined by densitometric HPTLC validated methods using silica gel TLC plates. Standard curve for yohimbine was generated using yohimbine hydrochloride subjected to the same acid-base treatment as the used samples. All formulations found to contain yohimbine though some with less concentration than the labeled amount.

  10. An exact solution for the history-dependent material and delamination behavior of laminated plates subjected to cylindrical bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Todd O

    2009-01-01

    The exact solution for the history-dependent behavior of laminated plates subjected to cylindrical bending is presented. The solution represents the extension of Pagano's solution to consider arbitrary types of constitutive behaviors for the individual lamina as well as arbitrary types of cohesive zones models for delamination behavior. Examples of the possible types of material behavior are plasticity, viscoelasticity, viscoplasticity, and damaging. Examples of possible CZMs that can be considered are linear, nonlinear hardening, as well as nonlinear with softening. The resulting solution is intended as a benchmark solution for considering the predictive capabilities of different plate theories. Initial results aremore » presented for several types of history-dependent material behaviors. It is shown that the plate response in the presence of history-dependent behaviors can differ dramatically from the elastic response. These results have strong implications for what constitutes an appropriate plate theory for modeling such behaviors.« less

  11. Environmental Effects on Non-oxide Ceramics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.

    1997-01-01

    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  12. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  13. 38 CFR 1.911 - Collection of debts owed by reason of participation in a benefits program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exact amount of the debt; (2) The specific reasons for the debt, in simple and concise language; (3) The... transferred to Treasury for administrative offset or collection. (5) That interest and administrative costs... applicant of money already collected, in § 1.967; and (5) The assessment of interest and administrative...

  14. 38 CFR 6.1 - Misstatement of age.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Misstatement of age. 6.1... GOVERNMENT LIFE INSURANCE Age § 6.1 Misstatement of age. If the age of the insured under a United States... shall be such exact amount as the premium paid would have purchased at the correct age; if overstated...

  15. 38 CFR 6.1 - Misstatement of age.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Misstatement of age. 6.1... GOVERNMENT LIFE INSURANCE Age § 6.1 Misstatement of age. If the age of the insured under a United States... shall be such exact amount as the premium paid would have purchased at the correct age; if overstated...

  16. 38 CFR 6.1 - Misstatement of age.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Misstatement of age. 6.1... GOVERNMENT LIFE INSURANCE Age § 6.1 Misstatement of age. If the age of the insured under a United States... shall be such exact amount as the premium paid would have purchased at the correct age; if overstated...

  17. 38 CFR 6.1 - Misstatement of age.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Misstatement of age. 6.1... GOVERNMENT LIFE INSURANCE Age § 6.1 Misstatement of age. If the age of the insured under a United States... shall be such exact amount as the premium paid would have purchased at the correct age; if overstated...

  18. 38 CFR 6.1 - Misstatement of age.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Misstatement of age. 6.1... GOVERNMENT LIFE INSURANCE Age § 6.1 Misstatement of age. If the age of the insured under a United States... shall be such exact amount as the premium paid would have purchased at the correct age; if overstated...

  19. 50 CFR 648.233 - Spiny dogfish Accountability Measures (AMs).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vessels issued a spiny dogfish permit under this part. (b) ACL overage evaluation. The ACL will be... determine if the ACL has been exceeded. (c) Overage repayment. In the event that the ACL has been exceeded in a given fishing year, the exact amount in pounds by which the ACL was exceeded shall be deducted...

  20. 50 CFR 648.233 - Spiny dogfish Accountability Measures (AMs).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vessels issued a spiny dogfish permit under this part. (b) ACL overage evaluation. The ACL will be... determine if the ACL has been exceeded. (c) Overage repayment. In the event that the ACL has been exceeded in a given fishing year, the exact amount in pounds by which the ACL was exceeded shall be deducted...

  1. 50 CFR 648.233 - Spiny dogfish Accountability Measures (AMs).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vessels issued a spiny dogfish permit under this part. (b) ACL overage evaluation. The ACL will be... determine if the ACL has been exceeded. (c) Overage repayment. In the event that the ACL has been exceeded in a given fishing year, the exact amount in pounds by which the ACL was exceeded shall be deducted...

  2. Computer Detection of Low Contrast Targets.

    DTIC Science & Technology

    1982-06-18

    computed from the Hessian and the gradient and is given by the formula W) = - U Hf( IVf (M), Vf()) IVfj 3 Because of the amount of noise present in these...IT (nz + 1 + Zn cost ) 1/2 and this integral is a maximum for n=1 and decreases as n increases, exactly what a good measure of curvature should do

  3. 26 CFR 1.1441-2 - Amounts subject to withholding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... part of a plan the principal purpose of which is to avoid tax and the withholding agent has actual... agent has actual knowledge or reason to know of such plan; and (7) Insurance premiums paid with respect... withholding agent knows is part of a payment it makes but which it cannot calculate exactly at the time of...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu

    The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packetmore » in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.« less

  5. Exact semiclassical expansions for one-dimensional quantum oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delabaere, E.; Dillinger, H.; Pham, F.

    1997-12-01

    A set of rules is given for dealing with WKB expansions in the one-dimensional analytic case, whereby such expansions are not considered as approximations but as exact encodings of wave functions, thus allowing for analytic continuation with respect to whichever parameters the potential function depends on, with an exact control of small exponential effects. These rules, which include also the case when there are double turning points, are illustrated on various examples, and applied to the study of bound state or resonance spectra. In the case of simple oscillators, it is thus shown that the Rayleigh{endash}Schr{umlt o}dinger series is Borelmore » resummable, yielding the exact energy levels. In the case of the symmetrical anharmonic oscillator, one gets a simple and rigorous justification of the Zinn-Justin quantization condition, and of its solution in terms of {open_quotes}multi-instanton expansions.{close_quotes} {copyright} {ital 1997 American Institute of Physics.}« less

  6. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  7. Exact synchronization bound for coupled time-delay systems.

    PubMed

    Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  8. Correlated electron-nuclear dynamics with conditional wave functions.

    PubMed

    Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel

    2014-08-22

    The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.

  9. LETTER TO THE EDITOR: Exact energy distribution function in a time-dependent harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Robnik, Marko; Romanovski, Valery G.; Stöckmann, Hans-Jürgen

    2006-09-01

    Following a recent work by Robnik and Romanovski (2006 J. Phys. A: Math. Gen. 39 L35, 2006 Open Syst. Inf. Dyn. 13 197-222), we derive an explicit formula for the universal distribution function of the final energies in a time-dependent 1D harmonic oscillator, whose functional form does not depend on the details of the frequency ω(t) and is closely related to the conservation of the adiabatic invariant. The normalized distribution function is P(x) = \\pi^{-1} (2\\mu^2 - x^2)^{-\\frac{1}{2}} , where x=E_1- \\skew3\\bar{E}_1 ; E1 is the final energy, \\skew3\\bar{E}_1 is its average value and µ2 is the variance of E1. \\skew3\\bar{E}_1 and µ2 can be calculated exactly using the WKB approach to all orders.

  10. Generic features of the wealth distribution in ideal-gas-like markets.

    PubMed

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  11. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    PubMed

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  12. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  13. Time-dependent flow model of a generalized Burgers' fluid with fractional derivatives through a cylindrical domain: An exact and numerical approach

    NASA Astrophysics Data System (ADS)

    Safdar, Rabia; Imran, M.; Khalique, Chaudry Masood

    2018-06-01

    Exact solutions for velocity field and tangential stress for rotational flow of a generalized Burgers' fluid within an infinite circular pipe are derived by using the methods of Laplace and finite Hankel transformations. Firstly we take the position of fluid at rest and then the fluid flow due to the rotation of the pipe around the axis of flow having time dependant angular velocity. The exact solutions are presented in terms of the generalized Ga,b,c (., t) -functions. The corresponding results can be freely specified for the same results of Burgers', Oldroyd B, Maxwell, second grade and Newtonian fluids (performing the same motion) as particular cases of the results obtained earlier. The impact of the different parameters, individually and in comparison, are represented by graphical demonstrations. Secondly the numerical solutions for velocity and stress are also obtained with the help of Laplace transformation, Gaver Stehfest's algorithm and MATHCAD. Finally a comparison of both methods for the same problem is done and shows the consistency of results.

  14. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  15. Electronic π-to-π* Excitations of Rhodamine Dyes Exhibit a Time-Dependent Kohn-Sham Theory “Cyanine Problem”

    DOE PAGES

    Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol; ...

    2017-05-02

    The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less

  16. Recovery time in quantum dynamics of wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strekalov, M. L., E-mail: strekalov@kinetics.nsc.ru

    2017-01-15

    A wave packet formed by a linear superposition of bound states with an arbitrary energy spectrum returns arbitrarily close to the initial state after a quite long time. A method in which quantum recovery times are calculated exactly is developed. In particular, an exact analytic expression is derived for the recovery time in the limiting case of a two-level system. In the general case, the reciprocal recovery time is proportional to the Gauss distribution that depends on two parameters (mean value and variance of the return probability). The dependence of the recovery time on the mean excitation level of themore » system is established. The recovery time is the longest for the maximal excitation level.« less

  17. A comparison of shoreline seines with fyke nets for sampling littoral fish communities in floodplain lakes

    USGS Publications Warehouse

    Clark, S.J.; Jackson, J.R.; Lochmann, S.E.

    2007-01-01

    We compared shoreline seines with fyke nets in terms of their ability to sample fish species in the littoral zone of 22 floodplain lakes of the White River, Arkansas. Lakes ranged in size from less than 0.5 to 51.0 ha. Most contained large amounts of coarse woody debris within the littoral zone, thus making seining in shallow areas difficult. We sampled large lakes (>2 ha) using three fyke nets; small lakes (<2 ha) were sampled using two fyke nets. Fyke nets were set for 24 h. Large lakes were sampled with an average of 11 seine hauls/ lake and small lakes were sampled with an average of 3 seine hauls/lake, but exact shoreline seining effort varied among lakes depending on the amount of open shoreline. Fyke nets collected more fish and produced greater species richness and diversity measures than did seining. Species evenness was similar for the two gear types. Two species were unique to seine samples, whereas 13 species and 3 families were unique to fyke-net samples. Although fyke nets collected more fish and more species than did shoreline seines, neither gear collected all the species present in the littoral zone of floodplain lakes. These results confirm the need for a multiple-gear approach to fully characterize the littoral fish assemblages in floodplain lakes. ?? Copyright by the American Fisheries Society 2007.

  18. Hierarchic models for laminated plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo Luis

    1991-01-01

    Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.

  19. Generalized Success-Breeds-Success Principle Leading to Time-Dependent Informetric Distributions.

    ERIC Educational Resources Information Center

    Egghe, Leo; Rousseau, Ronald

    1995-01-01

    Reformulates the success-breeds-success (SBS) principle in informetrics in order to generate a general theory of source-item relationships. Topics include a time-dependent probability, a new model for the expected probability that is compared with the SBS principle with exact combinatorial calculations, classical frequency distributions, and…

  20. I-Love-Q relations: from compact stars to black holes

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-05-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a particular parity-violating modified theory and find that these quantities do not tend to their BH counterparts as the anisotropic stellar sequence approaches the BH limit.

  1. Wave Functions for Time-Dependent Dirac Equation under GUP

    NASA Astrophysics Data System (ADS)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  2. Finding Our Way Back to Healthy Eating: A Conversation with David A. Kessler

    ERIC Educational Resources Information Center

    Azzam, Amy M.

    2009-01-01

    In this interview, David Kessler, former commissioner of the Food and Drug Administration, explains why so many people overeat. Changing lifestyles promote the constant availability of food and around-the-clock eating. In today's highly processed foods, food companies are able to dial in the exact amount of fat, sugar, and salt that will make…

  3. Hybrid Nested Partitions and Math Programming Framework for Large-scale Combinatorial Optimization

    DTIC Science & Technology

    2010-03-31

    optimization problems: 1) exact algorithms and 2) metaheuristic algorithms . This project will integrate concepts from these two technologies to develop...optimal solutions within an acceptable amount of computation time, and 2) metaheuristic algorithms such as genetic algorithms , tabu search, and the...integer programming decomposition approaches, such as Dantzig Wolfe decomposition and Lagrangian relaxation, and metaheuristics such as the Nested

  4. Mass preserving registration for heart MR images.

    PubMed

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2005-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.

  5. Mass Preserving Registration for Heart MR Images

    PubMed Central

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954

  6. 26 CFR 1.669(c)-3A - Information requirements with respect to beneficiary.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... year for which a recomputation is required under either the exact method or the short-cut method. Such... computed under paragraph (c) of § 1.669(b)-1A (the short-cut method) shall be deemed to be the amount of... this rule where the short-cut method is not permitted. If he cannot furnish the information required...

  7. 26 CFR 1.668(b)-4A - Information requirements with respect to beneficiary.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... which a recomputation is required under either the exact method or the short-cut method. Such... computed under paragraph (c) of § 1.668(b)-1A (the short-cut method) shall be deemed to be the amount of... this rule where the short-cut method is not permitted. If he cannot furnish the information required...

  8. 77 FR 37941 - Order Granting a Limited Exemption From Exchange Act Rule 10b-17 to Certain Actively Managed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    .... John McGuire, Esq., Morgan Lewis & Bockius LLP regarding AdvisorShares Trust (December 16, 2011... or rights or other subscription offering, of the amount in cash to be paid or distributed per share... or distribution and the rate of the dividend or distribution. \\2\\ If the exact per share cash...

  9. 47 CFR 1.420 - Additional procedures in proceedings for amendment of the FM or TV Tables of Allotments, or for...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... rulemaking, comments, reply comments, and other pleadings shall be filed with the Commission. (f) Petitions for reconsideration and responsive pleadings shall be served on parties to the proceeding and on any... expression of interest; (2) The exact nature and amount of any consideration received or promised; (3) An...

  10. Nonnative Processing of Verbal Morphology: In Search of Regularity

    ERIC Educational Resources Information Center

    Gor, Kira; Cook, Svetlana

    2010-01-01

    There is little agreement on the mechanisms involved in second language (L2) processing of regular and irregular inflectional morphology and on the exact role of age, amount, and type of exposure to L2 resulting in differences in L2 input and use. The article contributes to the ongoing debates by reporting the results of two experiments on Russian…

  11. A note on the accuracy of KS-DFT densities

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.

    2017-11-01

    The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.

  12. Regulated internalization of caveolae

    PubMed Central

    1994-01-01

    Caveolae are specialized invaginations of the plasma membrane which have been proposed to play a role in diverse cellular processes such as endocytosis and signal transduction. We have developed an assay to determine the fraction of internal versus plasma membrane caveolae. The GPI-anchored protein, alkaline phosphatase, was clustered in caveolae after antibody-induced crosslinking at low temperature and then, after various treatments, the relative amount of alkaline phosphatase on the cell surface was determined. Using this assay we were able to show a time- and temperature-dependent decrease in cell-surface alkaline phosphatase activity which was dependent on antibody-induced clustering. The decrease in cell surface alkaline phosphatase activity was greatly accelerated by the phosphatase inhibitor, okadaic acid, but not by a protein kinase C activator. Internalization of clustered alkaline phosphatase in the presence or absence of okadaic acid was blocked by cytochalasin D and by the kinase inhibitor staurosporine. Electron microscopy confirmed that okadaic acid induced removal of caveolae from the cell surface. In the presence of hypertonic medium this was followed by the redistribution of groups of caveolae to the center of the cell close to the microtubule-organizing center. This process was reversible, blocked by cytochalasin D, and the centralization of the caveolar clusters was shown to be dependent on an intact microtubule network. Although the exact mechanism of internalization remains unknown, the results show that caveolae are dynamic structures which can be internalized into the cell. This process may be regulated by kinase activity and require an intact actin network. PMID:7962085

  13. Monte Carlo study of exact {ital S}-matrix duality in nonsimply laced affine Toda theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beccaria, M.

    The ({ital g}{sub 2}{sup (1)},{ital d}{sub 4}{sup (3)}) pair of nonsimply laced affine Toda theories is studied from the point of view of nonperturbative duality. The classical spectrum of each member is composed of two massive scalar particles. The exact {ital S}-matrix prediction for the dual behavior of the coupling-dependent mass ratio is found to be in strong agreement with Monte Carlo data. {copyright} {ital 1996 The American Physical Society.}

  14. An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space

    NASA Astrophysics Data System (ADS)

    Balog, János

    2014-11-01

    We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.

  15. Time-dependent observables in heavy ion collisions. Part II. In search of pressure isotropization in the φ 4 theory

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.; Wu, Bin

    2018-03-01

    To understand the dynamics of thermalization in heavy ion collisions in the perturbative framework it is essential to first find corrections to the free-streaming classical gluon fields of the McLerran-Venugopalan model. The corrections that lead to deviations from free streaming (and that dominate at late proper time) would provide evidence for the onset of isotropization (and, possibly, thermalization) of the produced medium. To find such corrections we calculate the late-time two-point Green function and the energy-momentum tensor due to a single 2 → 2 scattering process involving two classical fields. To make the calculation tractable we employ the scalar φ 4 theory instead of QCD. We compare our exact diagrammatic results for these quantities to those in kinetic theory and find disagreement between the two. The disagreement is in the dependence on the proper time τ and, for the case of the two-point function, is also in the dependence on the space-time rapidity η: the exact diagrammatic calculation is, in fact, consistent with the free streaming scenario. Kinetic theory predicts a build-up of longitudinal pressure, which, however, is not observed in the exact calculation. We conclude that we find no evidence for the beginning of the transition from the free-streaming classical fields to the kinetic theory description of the produced matter after a single 2 → 2 rescattering.

  16. Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.

  17. Efficient scheme for parametric fitting of data in arbitrary dimensions.

    PubMed

    Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching

    2008-07-01

    We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.

  18. Is there scale-dependent bias in single-field inflation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Putter, Roland; Doré, Olivier; Green, Daniel, E-mail: rdputter@caltech.edu, E-mail: Olivier.P.Dore@jpl.nasa.gov, E-mail: drgreen@cita.utoronto.ca

    2015-10-01

    Scale-dependent halo bias due to local primordial non-Gaussianity provides a strong test of single-field inflation. While it is universally understood that single-field inflation predicts negligible scale-dependent bias compared to current observational uncertainties, there is still disagreement on the exact level of scale-dependent bias at a level that could strongly impact inferences made from future surveys. In this paper, we clarify this confusion and derive in various ways that there is exactly zero scale-dependent bias in single-field inflation. Much of the current confusion follows from the fact that single-field inflation does predict a mode coupling of matter perturbations at the levelmore » of f{sub NL}{sup local}; ≈ −5/3, which naively would lead to scale-dependent bias. However, we show explicitly that this mode coupling cancels out when perturbations are evaluated at a fixed physical scale rather than fixed coordinate scale. Furthermore, we show how the absence of scale-dependent bias can be derived easily in any gauge. This result can then be incorporated into a complete description of the observed galaxy clustering, including the previously studied general relativistic terms, which are important at the same level as scale-dependent bias of order f{sub NL}{sup local} ∼ 1. This description will allow us to draw unbiased conclusions about inflation from future galaxy clustering data.« less

  19. Principles of VCSEL designing

    NASA Astrophysics Data System (ADS)

    Nakwaski, W.

    2008-03-01

    Comprehensive computer simulations are currently the most efficient and cheap methods in designing and optimisation of semiconductor device structures. Seemingly they should be as exact as possible, but in practice it is well known that the most exact approaches are also the most involved and the most time-consuming ones and need powerful computers. In some cases, cheaper somewhat simplified modelling simulations are sufficiently accurate. Therefore, an appropriate modelling approach should be chosen taking into account a compromise between our needs and our possibilities. Modelling of operation and designing of structures of vertical-cavity surface-emitting diode lasers (VCSELs) requires appropriate mathematical description of physical processes crucial for devices operation, i.e., various optical, electrical, thermal, recombination and sometimes also mechanical phenomena taking place within their volumes. Equally important are mutual interactions between above individual processes, usually strongly non-linear and creating a real network of various inter-relations. Chain is as strong as its weakest link. Analogously, model is as exact as its less exact part. Therefore it is useless to improve exactness of its more accurate parts and not to care about less exact ones. All model parts should exhibit similar accuracy. In any individual case, a reasonable compromise should be reached between high modelling fidelity and its practical convenience depending on a main modelling goal, importance and urgency of expected results, available equipment and also financial possibilities. In the present paper, some simplifications used in VCSEL modelling are discussed and their impact on exactness of VCSEL designing is analysed.

  20. Electron localisation in static and time-dependent one-dimensional model systems

    NASA Astrophysics Data System (ADS)

    Durrant, T. R.; Hodgson, M. J. P.; Ramsden, J. D.; Godby, R. W.

    2018-02-01

    The most direct signature of electron localisation is the tendency of an electron in a many-body system to exclude other same-spin electrons from its vicinity. By applying this concept directly to the exact many-body wavefunction, we find that localisation can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use this measure to assess the well-known electron localisation function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localisation, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.

  1. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  2. Entanglement dynamics following a sudden quench: An exact solution

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Gupta, Kumar S.; Srivastava, Shashi C. L.

    2017-12-01

    We present an exact and fully analytical treatment of the entanglement dynamics for an isolated system of N coupled oscillators following a sudden quench of the system parameters. The system is analyzed using the solutions of the time-dependent Schrodinger's equation, which are obtained by solving the corresponding nonlinear Ermakov equations. The entanglement entropies exhibit a multi-oscillatory behaviour, where the number of dynamically generated time scales increases with N. The harmonic chains exhibit entanglement revival and for larger values of N (> 10), we find near-critical logarithmic scaling for the entanglement entropy, which is modulated by a time-dependent factor. The N = 2 case is equivalent to the two-site Bose-Hubbard model in the tunneling regime, which is amenable to empirical realization in cold-atom systems.

  3. The Fertilization-Induced DNA Replication Factor MCM6 of Maize Shuttles between Cytoplasm and Nucleus, and Is Essential for Plant Growth and Development1

    PubMed Central

    Dresselhaus, Thomas; Srilunchang, Kanok-orn; Leljak-Levanić, Dunja; Schreiber, Daniela N.; Garg, Preeti

    2006-01-01

    The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants. PMID:16407440

  4. The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential for plant growth and development.

    PubMed

    Dresselhaus, Thomas; Srilunchang, Kanok-Orn; Leljak-Levanic, Dunja; Schreiber, Daniela N; Garg, Preeti

    2006-02-01

    The eukaryotic genome is duplicated exactly once per cell division cycle. A strategy that limits every replication origin to a single initiation event is tightly regulated by a multiprotein complex, which involves at least 20 protein factors. A key player in this regulation is the evolutionary conserved hexameric MCM2-7 complex. From maize (Zea mays) zygotes, we have cloned MCM6 and characterized this essential gene in more detail. Shortly after fertilization, expression of ZmMCM6 is strongly induced. During progression of zygote and proembryo development, ZmMCM6 transcript amounts decrease and are low in vegetative tissues, where expression is restricted to tissues containing proliferating cells. The highest protein amounts are detectable about 6 to 20 d after fertilization in developing kernels. Subcellular localization studies revealed that MCM6 protein shuttles between cytoplasm and nucleoplasm in a cell cycle-dependent manner. ZmMCM6 is taken up by the nucleus during G1 phase and the highest protein levels were observed during late G1/S phase. ZmMCM6 is excluded from the nucleus during late S, G2, and mitosis. Transgenic maize was generated to overexpress and down-regulate ZmMCM6. Plants displaying minor antisense transcript amounts were reduced in size and did not develop cobs to maturity. Down-regulation of ZmMCM6 gene activity seems also to affect pollen development because antisense transgenes could not be propagated via pollen to wild-type plants. In summary, the transgenic data indicate that MCM6 is essential for both vegetative as well as reproductive growth and development in plants.

  5. The dynamic ejecta of compact object mergers and eccentric collisions.

    PubMed

    Rosswog, Stephan

    2013-06-13

    Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium.

  6. Investigating the Influence of the Initial Biomass Distribution and Injection Strategies on Biofilm-Mediated Calcite Precipitation in Porous Media

    DOE PAGES

    Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin; ...

    2015-12-16

    Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less

  7. Investigating the Influence of the Initial Biomass Distribution and Injection Strategies on Biofilm-Mediated Calcite Precipitation in Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hommel, Johannes; Lauchnor, Ellen; Gerlach, Robin

    Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. However, quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation.more » Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca 2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca 2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.« less

  8. Effect of limited ischemia time on the amount and function of mitochondria within human skeletal muscle cells.

    PubMed

    Jawhar, A; Ponelies, N; Schild, L

    2016-12-01

    The clinical success of total knee arthroplasty (TKA) depends substantially on the quadriceps muscle function. A frequently applied thigh tourniquet during TKA may induce ischemia related injuries to quadriceps muscle cells. Animal limb muscles subjected to 2-5 h ischemia revealed dysfunctional mitochondria, which in turn compromised the cellular bioenergetics and increased the level of reactive oxygen species. The hypothesis of the present study was that tourniquet application during TKA for 60 min (min) affects the amount and function of mitochondria within musculus vastus medialis cells. In a randomized clinical trial, 10 patients enrolled to undergo primary TKA. The patients were randomly assigned to the tourniquet (n = 5) or non-tourniquet group (n = 5) after obtaining a written informed consent. For each of the groups, the first muscle biopsy was harvested immediately after performing the surgical approach and the second biopsy exactly 60 min later. All biopsies (5 × 5 × 5 mm) 125 mm 3 were harvested from musculus vastus medialis and snap-frozen in liquid nitrogen. The biochemical analysis of the prepared muscle tissues included the measurement of activities of mitochondrial respiratory chain enzyme complexes I-III and citrate synthase. Tourniquet-induced 60 min ischemia time did not significantly change the activities of the mitochondrial respiratory chain enzymes complexes I-III of the skeletal muscle cells. The citrate synthase activities found to be not significantly different between both groups. The use of tourniquet during TKA within a limited time period of 60 min remained without substantial effects on the amount and function of mitochondria within human skeletal muscle cells.

  9. Model tests for the efficacy of disinfectants on surfaces. IV. Communication: dependence of test results on the amount of contamination and the kind of active substance.

    PubMed

    Peters, J; Spicher, G

    1998-12-01

    In the assessment of efficacy of surface disinfectants, many influencing factors have to be taken into account. One essential item is whether the surface to be disinfected is clean or soiled. Among the feasible soilings, the blood is of particular consequences because it ads impediments to many disinfecting agents. This paper shows to what extent the impairment of the efficacy of typical active agents depends on the blood burden of the surfaces. Therefore, test surfaces (varnished plywood) were contaminated with 0.01 to 0.08 ml of coagulating blood per test area (3 cm2). The blood contained cells of Staphylococcus aureus as test germs. The disinfection was effected by immersing the test objects in the disinfecting solution for 5 seconds and mingling the adhering disinfecting solution (about 0.02 ml) with the coagulated blood on the test surface with a glass spatula for about 20 seconds. Subsequently, the test objects remained in a horizontal position at room conditions for 4 hours and then the numbers of surviving test germs were determined. The graphical representation of the results shows that the efficacy curves of formaldehyde and phenol lie very closely together, i.e. their effect is hardly impaired by the different blood burdens of the test areas. The efficacy curves of glutaraldehyde, peracetic acid, chloramine T, and quaternary ammonium compounds lie very far apart from each other. To achieve the same microbicidal effect (log N/N0 = -5) when the contaminating amount is raised from 10 microliters/3 cm2 to 80 microliters/3 cm2, the concentration of chloramine T has to be raised by a factor of 5.4, peracetic acid by a factor of 9, glutaraldehyde by a factor of 24, quaternary ammonium compound even by a factor of 67. Ethanol and sodium hypochlorite showed a divergent behaviour. For ethanol, the efficacy diminution produced by increasing the contamination amount by a factor of 4 can be compensated by raising the concentration from 50% to about 70%. But again and again, there were test objects on which the number of germs able to reproduce had only been lowered by a factor of about 10(-3). At the highest contamination of 80 microliters/3 cm2, even 95% ethanol proved to be completely insufficient. With sodium hypochlorite even at the lowest contamination of 10 microliters/3 cm2, a microbicidal effect of only about 10(-5) was obtained. With increasing contamination, the highest achievable microbicidal effect clearly decreased. It is remarkable that the microbicidal effect of this active agent decreased with increasing concentrations. The results show how important it is in testing the efficacy of disinfecting agents to exactly lay down the amount of contaminating substances. To find out how safely an agent works under harder circumstances, the dependence of the microbicidal effect from the amount of contaminating substances per test area has to be determined.

  10. Denjoy minimal sets and Birkhoff periodic orbits for non-exact monotone twist maps

    NASA Astrophysics Data System (ADS)

    Qin, Wen-Xin; Wang, Ya-Nan

    2018-06-01

    A non-exact monotone twist map φbarF is a composition of an exact monotone twist map φ bar with a generating function H and a vertical translation VF with VF ((x , y)) = (x , y - F). We show in this paper that for each ω ∈ R, there exists a critical value Fd (ω) ≥ 0 depending on H and ω such that for 0 ≤ F ≤Fd (ω), the non-exact twist map φbarF has an invariant Denjoy minimal set with irrational rotation number ω lying on a Lipschitz graph, or Birkhoff (p , q)-periodic orbits for rational ω = p / q. Like the Aubry-Mather theory, we also construct heteroclinic orbits connecting Birkhoff periodic orbits, and show that quasi-periodic orbits in these Denjoy minimal sets can be approximated by periodic orbits. In particular, we demonstrate that at the critical value F =Fd (ω), the Denjoy minimal set is not uniformly hyperbolic and can be approximated by smooth curves.

  11. The gravitational law of social interaction

    NASA Astrophysics Data System (ADS)

    Levy, Moshe; Goldenberg, Jacob

    2014-01-01

    While a great deal is known about the topology of social networks, there is much less agreement about the geographical structure of these networks. The fundamental question in this context is: how does the probability of a social link between two individuals depend on the physical distance between them? While it is clear that the probability decreases with the distance, various studies have found different functional forms for this dependence. The exact form of the distance dependence has crucial implications for network searchability and dynamics: Kleinberg (2000) [15] shows that the small-world property holds if the probability of a social link is a power-law function of the distance with power -2, but not with any other power. We investigate the distance dependence of link probability empirically by analyzing four very different sets of data: Facebook links, data from the electronic version of the Small-World experiment, email messages, and data from detailed personal interviews. All four datasets reveal the same empirical regularity: the probability of a social link is proportional to the inverse of the square of the distance between the two individuals, analogously to the distance dependence of the gravitational force. Thus, it seems that social networks spontaneously converge to the exact unique distance dependence that ensures the Small-World property.

  12. Exact and Approximate Solutions for the Decades-Old Michaelis-Menten Equation: Progress-Curve Analysis through Integrated Rate Equations

    ERIC Educational Resources Information Center

    Golicnik, Marko

    2011-01-01

    The Michaelis-Menten rate equation can be found in most general biochemistry textbooks, where the time derivative of the substrate is a hyperbolic function of two kinetic parameters (the limiting rate "V", and the Michaelis constant "K"[subscript M]) and the amount of substrate. However, fundamental concepts of enzyme kinetics can be difficult to…

  13. Eliciting Dyslexic Symptoms in Proficient Readers by Simulating Deficits in Grapheme-to-Phoneme Conversion and Visuo-Magnocellular Processing

    ERIC Educational Resources Information Center

    Tholen, Nicole; Weidner, Ralph; Grande, Marion; Amunts, Katrin; Heim, Stefan

    2011-01-01

    Among the cognitive causes of dyslexia, phonological and magnocellular deficits have attracted a substantial amount of research. Their role and their exact impact on reading ability are still a matter of debate, partly also because large samples of dyslexics are hard to recruit. Here, we report a new technique to simulate dyslexic symptoms in…

  14. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  15. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  16. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  17. Numerical Activities and Information Learned at Home Link to the Exact Numeracy Skills in 5–6 Years-Old Children

    PubMed Central

    Benavides-Varela, Silvia; Butterworth, Brian; Burgio, Francesca; Arcara, Giorgio; Lucangeli, Daniela; Semenza, Carlo

    2016-01-01

    It is currently accepted that certain activities within the family environment contribute to develop early numerical skills before schooling. However, it is unknown whether this early experience influences both the exact and the approximate representation of numbers, and if so, which is more important for numerical tasks. In the present study the mathematical performance of 110 children (mean age 5 years 11 months) was evaluated using a battery that included tests of approximate and exact numerical abilities, as well as everyday numerical problems. Moreover, children were assessed on their knowledge of number information learned at home. The parents of the participants provided information regarding daily activities of the children and socio-demographic characteristics of the family. The results showed that the amount of numerical information learned at home was a significant predictor of participants' performance on everyday numerical problems and exact number representations, even after taking account of age, memory span and socio-economic and educational status of the family. We also found that particular activities, such as board games, correlate with the children's counting skills, which are foundational for arithmetic. Crucially, tests relying on approximate representations were not predicted by the numerical knowledge acquired at home. The present research supports claims about the importance and nature of home experiences in the child's acquisition of mathematics. PMID:26903902

  18. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Arne; UMR 8640 ENS-CNRS-UPMC, Département de Chimie, 24 rue Lhomond, École Normale Supérieure, 75005 Paris; UPMC Université Paris 06, 4, Place Jussieu, 75005 Paris

    The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that canmore » be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.« less

  20. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state.

    PubMed

    Koner, Debasish; Barrios, Lizandra; González-Lezana, Tomás; Panda, Aditya N

    2014-09-21

    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  1. Differential Forms: A New Tool in Economics

    NASA Astrophysics Data System (ADS)

    Mimkes, Jürgen

    Econophysics is the transfer of methods from natural to socio-economic sciences. This concept has first been applied to finance1, but it is now also used in various applications of economics and social sciences [2,3]. The present paper focuses on problems in macro economics and growth. 1. Neoclassical theory [4, 5] neglects the “ex post” property of income and growth. Income Y(K, L) is assumed to be a function of capital and labor. But functions cannot model the “ex post” character of income. 2. Neoclassical theory is based on a Cobb Douglas function [6] with variable elasticity α, which may be fitted to economic data. But an undefined elasticity α leads to a descriptive rather than a predictive economic theory. The present paper introduces a new tool - differential forms and path dependent integrals - to macro economics. This is a solution to the problems above: 1. The integral of not exact differential forms is path dependent and can only be calculated “ex post” like income and economic growth. 2. Not exact differential forms can be made exact by an integrating factor, this leads to a new, well defined, unique production function F and a predictive economic theory.

  2. Activated Macrophages Destroy Intracellular Leishmania Major Amastigotes by an l-Arginine-Dependent Killing Mechanism

    DTIC Science & Technology

    1990-01-01

    atom of L-arginine and a precursor of the nitrite measured, may disrupt Fe- dependent enzymatic pathways vital to the survival of amastigotes within...geneti- a precursor of the nitrite measured, may disrupt Fe- cally susceptible BALB/c mice. The exact role of IFN-1 in dependent enzymatic pathways vital...induces the heme - dependent activation of 0 6 ± 4 89 80 guanylate cyclase. with the subsequent stimulation of 0.01 8 ± 3 85 67 the secondary messenger

  3. The human genome as "common good".

    PubMed

    Vesto, Aurora

    2017-07-01

    Objectivity of rights must be rebuilt in a dimension not only structural but also functional, despite being a "thing" that exactly repeats itself, it differs depending on what the person intended to make.

  4. Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording.

    PubMed

    Faragó, Nóra; Kocsis, Ágnes K; Lovas, Sándor; Molnár, Gábor; Boldog, Eszter; Rózsa, Márton; Szemenyei, Viktor; Vámos, Enikő; Nagy, Lajos I; Tamás, Gábor; Puskás, László G

    2013-06-01

    Whole-cell patch-clamp recording enables detection of electrophysiological signals from single neurons as well as harvesting of perisomatic RNA through the patch pipette for subsequent gene expression analysis. Amplification and profiling of RNA with traditional quantitative real-time PCR (qRT-PCR) do not provide exact quantitation due to experimental variation caused by the limited amount of nucleic acid in a single cell. Here we describe a protocol for quantifying mRNA or miRNA expression in individual neurons after patch-clamp recording using high-density nanocapillary digital PCR (dPCR). Expression of a known cell-type dependent marker gene (gabrd), as well as oxidative-stress related induction of hspb1 and hmox1 expression, was quantified in individual neurogliaform and pyramidal cells, respectively. The miRNA mir-132, which plays a role in neurodevelopment, was found to be equally expressed in three different types of neurons. The accuracy and sensitivity of this method were further validated using synthetic spike-in templates and by detecting genes with very low levels of expression.

  5. EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN.

    PubMed

    Nguyen, Dang-Manh; Peters, Jörg

    2017-01-01

    Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP 0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP 0 filters outperform the more complex known boundary filters. NP 0 filters typically reduce the L ∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP 0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute.

  6. EXPLICIT LEAST-DEGREE BOUNDARY FILTERS FOR DISCONTINUOUS GALERKIN*

    PubMed Central

    Nguyen, Dang-Manh; Peters, Jörg

    2017-01-01

    Convolving the output of Discontinuous Galerkin (DG) computations using spline filters can improve both smoothness and accuracy of the output. At domain boundaries, these filters have to be one-sided for non-periodic boundary conditions. Recently, position-dependent smoothness-increasing accuracy-preserving (PSIAC) filters were shown to be a superset of the well-known one-sided RLKV and SRV filters. Since PSIAC filters can be formulated symbolically, PSIAC filtering amounts to forming linear products with local DG output and so offers a more stable and efficient implementation. The paper introduces a new class of PSIAC filters NP0 that have small support and are piecewise constant. Extensive numerical experiments for the canonical hyperbolic test equation show NP0 filters outperform the more complex known boundary filters. NP0 filters typically reduce the L∞ error in the boundary region below that of the interior where optimally superconvergent symmetric filters of the same support are applied. NP0 filtering can be implemented as forming linear combinations of the data with short rational weights. Exact derivatives of the convolved output are easy to compute. PMID:29081643

  7. Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites

    PubMed Central

    Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.

    2012-01-01

    The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008

  8. Escape problem under stochastic volatility: The Heston model

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2008-11-01

    We solve the escape problem for the Heston random diffusion model from a finite interval of span L . We obtain exact expressions for the survival probability (which amounts to solving the complete escape problem) as well as for the mean exit time. We also average the volatility in order to work out the problem for the return alone regardless of volatility. We consider these results in terms of the dimensionless normal level of volatility—a ratio of the three parameters that appear in the Heston model—and analyze their form in several asymptotic limits. Thus, for instance, we show that the mean exit time grows quadratically with large spans while for small spans the growth is systematically slower, depending on the value of the normal level. We compare our results with those of the Wiener process and show that the assumption of stochastic volatility, in an apparently paradoxical way, increases survival and prolongs the escape time. We finally observe that the model is able to describe the main exit-time statistics of the Dow-Jones daily index.

  9. Photons from the early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  10. Detecting Thermal Cloaks via Transient Effects

    PubMed Central

    Sklan, Sophia R.; Bai, Xue; Li, Baowen; Zhang, Xiang

    2016-01-01

    Recent research on the development of a thermal cloak has concentrated on engineering an inhomogeneous thermal conductivity and an approximate, homogeneous volumetric heat capacity. While the perfect cloak of inhomogeneous κ and inhomogeneous ρcp is known to be exact (no signals scattering and only mean values penetrating to the cloak’s interior), the sensitivity of diffusive cloaks to defects and approximations has not been analyzed. We analytically demonstrate that these approximate cloaks are detectable. Although they work as perfect cloaks in the steady-state, their transient (time-dependent) response is imperfect and a small amount of heat is scattered. This is sufficient to determine the presence of a cloak and any heat source it contains, but the material composition hidden within the cloak is not detectable in practice. To demonstrate the feasibility of this technique, we constructed a cloak with similar approximation and directly detected its presence using these transient temperature deviations outside the cloak. Due to limitations in the range of experimentally accessible volumetric specific heats, our detection scheme should allow us to find any realizable cloak, assuming a sufficiently large temperature difference. PMID:27605153

  11. Benchmarking singlet and triplet excitation energies of molecular semiconductors for singlet fission: Tuning the amount of HF exchange and adjusting local correlation to obtain accurate functionals for singlet-triplet gaps

    NASA Astrophysics Data System (ADS)

    Brückner, Charlotte; Engels, Bernd

    2017-01-01

    Vertical and adiabatic singlet and triplet excitation energies of molecular p-type semiconductors calculated with various DFT functionals and wave-function based approaches are benchmarked against MS-CASPT2/cc-pVTZ reference values. A special focus lies on the singlet-triplet gaps that are very important in the process of singlet fission. Singlet fission has the potential to boost device efficiencies of organic solar cells, but the scope of existing singlet-fission compounds is still limited. A computational prescreening of candidate molecules could enlarge it; yet it requires efficient methods accurately predicting singlet and triplet excitation energies. Different DFT formulations (Tamm-Dancoff approximation, linear response time-dependent DFT, Δ-SCF) and spin scaling schemes along with several ab initio methods (CC2, ADC(2)/MP2, CIS(D), CIS) are evaluated. While wave-function based methods yield rather reliable singlet-triplet gaps, many DFT functionals are shown to systematically underestimate triplet excitation energies. To gain insight, the impact of exact exchange and correlation is in detail addressed.

  12. Exact analytic solution for non-linear density fluctuation in a ΛCDM universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org

    We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.

  13. Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.

  14. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  15. An Exact Form of Lilley's Equation with a Velocity Quadrupole/Temperature Dipole Source Term

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2001-01-01

    There have been several attempts to introduce approximations into the exact form of Lilley's equation in order to express the source term as the sum of a quadrupole whose strength is quadratic in the fluctuating velocities and a dipole whose strength is proportional to the temperature fluctuations. The purpose of this note is to show that it is possible to choose the dependent (i.e., the pressure) variable so that this type of result can be derived directly from the Euler equations without introducing any additional approximations.

  16. Exact conditions on the temperature dependence of density functionals

    DOE PAGES

    Burke, K.; Smith, J. C.; Grabowski, P. E.; ...

    2016-05-15

    Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.

  17. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  18. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  19. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    NASA Astrophysics Data System (ADS)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-01

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.

  20. Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzweil, Yair; Head-Gordon, Martin

    2009-07-15

    We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchangemore » (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.« less

  1. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  2. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE PAGES

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; ...

    2017-01-11

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  3. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    NASA Astrophysics Data System (ADS)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  4. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals.

    PubMed

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  5. Quasiparticle density of states, localization, and distributed disorder in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Sulangi, Miguel Antonio; Zaanen, Jan

    2018-04-01

    We explore the effects of various kinds of random disorder on the quasiparticle density of states of two-dimensional d -wave superconductors using an exact real-space method, incorporating realistic details known about the cuprates. Random on-site energy and pointlike unitary impurity models are found to give rise to a vanishing DOS at the Fermi energy for narrow distributions and low concentrations, respectively, and lead to a finite, but suppressed, DOS at unrealistically large levels of disorder. Smooth disorder arising from impurities located away from the copper-oxide planes meanwhile gives rise to a finite DOS at realistic impurity concentrations. For the case of smooth disorder whose average potential is zero, a resonance is found at zero energy for the quasiparticle DOS at large impurity concentrations. We discuss the implications of these results on the computed low-temperature specific heat, the behavior of which we find is strongly affected by the amount of disorder present in the system. We also compute the localization length as a function of disorder strength for various types of disorder and find that intermediate- and high-energy states are quasiextended for low disorder, and that states near the Fermi energy are strongly localized and have a localization length that exhibits an unusual dependence on the amount of disorder. We comment on the origin of disorder in the cuprates and provide constraints on these based on known results from scanning tunneling spectroscopy and specific heat experiments.

  6. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    PubMed

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  7. People's Financial Choice Depends on their Previous Task Success or Failure.

    PubMed

    Sekścińska, Katarzyna

    2015-01-01

    Existing knowledge about the impact of the experience prior to financial choices has been limited almost exclusively to single risky choices. Moreover, the results obtained in these studies have not been entirely consistent. For example, some studies suggested that the experience of success makes people more willing to take a risk, while other studies led to the opposite conclusions. The results of the two experimental studies presented in this paper provide evidence for the hypothesis that the experience of success or failure influences people's financial choices, but the effect of the success or failure depends on the type of task (financial and non-financial) preceding a financial decision. The experience of success in financial tasks increased participants' tendency to invest and make risky investment choices, while it also made them less prone to save. On the other hand, the experience of failure heightened the amount of money that participants decided to save, and lowered their tendency to invest and make risky investment choices. However, the effects of the experience of success or failure in non-financial tasks were exactly the opposite. The presented studies indicated the role of the specific circumstances in which the individual gains the experience as a possible way to explain the discrepancies in the results of studies on the relationship between the experience prior to financial choice with a tendency to take risks.

  8. People’s Financial Choice Depends on their Previous Task Success or Failure

    PubMed Central

    Sekścińska, Katarzyna

    2015-01-01

    Existing knowledge about the impact of the experience prior to financial choices has been limited almost exclusively to single risky choices. Moreover, the results obtained in these studies have not been entirely consistent. For example, some studies suggested that the experience of success makes people more willing to take a risk, while other studies led to the opposite conclusions. The results of the two experimental studies presented in this paper provide evidence for the hypothesis that the experience of success or failure influences people’s financial choices, but the effect of the success or failure depends on the type of task (financial and non-financial) preceding a financial decision. The experience of success in financial tasks increased participants’ tendency to invest and make risky investment choices, while it also made them less prone to save. On the other hand, the experience of failure heightened the amount of money that participants decided to save, and lowered their tendency to invest and make risky investment choices. However, the effects of the experience of success or failure in non-financial tasks were exactly the opposite. The presented studies indicated the role of the specific circumstances in which the individual gains the experience as a possible way to explain the discrepancies in the results of studies on the relationship between the experience prior to financial choice with a tendency to take risks. PMID:26635654

  9. Abundance ratios in dwarf elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyse their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities, and abundance ratios obtained from these dEs within an aperture size of Re/8. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227, and [Mg/Fe] from Mgb. We find that [Na/Fe] is underabundant with respect to solar, whereas [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns, and we speculate that dEs have disc-like star formation history (SFH) favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  10. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  11. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    We apply the semiclassical theory of transport to quantum dots with exact and approximate spatial symmetries; left-right mirror symmetry, up-down mirror symmetry, inversion symmetry, or fourfold symmetry. In this work-the first of a pair of articles-we consider (a) perfectly symmetric dots and (b) nearly symmetric dots in which the symmetry is broken by the dot's internal dynamics. The second article addresses symmetry-breaking by displacement of the leads. Using semiclassics, we identify the origin of the symmetry-induced interference effects that contribute to weak localization corrections and universal conductance fluctuations. For perfect spatial symmetry, we recover results previously found using the random-matrix theory conjecture. We then go on to show how the results are affected by asymmetries in the dot, magnetic fields, and decoherence. In particular, the symmetry-asymmetry crossover is found to be described by a universal dependence on an asymmetry parameter gamma_{asym} . However, the form of this parameter is very different depending on how the dot is deformed away from spatial symmetry. Symmetry-induced interference effects are completely destroyed when the dot's boundary is globally deformed by less than an electron wavelength. In contrast, these effects are only reduced by a finite amount when a part of the dot's boundary smaller than a lead-width is deformed an arbitrarily large distance.

  12. Inverse Compton X-ray signature of AGN feedback

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei

    2013-12-01

    Bright AGN frequently show ultrafast outflows (UFOs) with outflow velocities vout ˜ 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one-temperature regime, 1T) or decouple (2T), as has been recently suggested. Here we calculate the inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component. The limits on the 2T emission are far weaker, and in fact it is possible that the observed soft X-ray excess of AGN is partially or fully due to the 2T shock emission. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encourage X-ray observers to look for the inverse Compton components calculated here in order to constrain AGN feedback models further.

  13. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.

  14. Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.

    PubMed

    Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf

    2018-06-08

    Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  16. Thermal density functional theory, ensemble density functional theory, and potential functional theory for warm dense matter

    NASA Astrophysics Data System (ADS)

    Pribram-Jones, Aurora

    Warm dense matter (WDM) is a high energy phase between solids and plasmas, with characteristics of both. It is present in the centers of giant planets, within the earth's core, and on the path to ignition of inertial confinement fusion. The high temperatures and pressures of warm dense matter lead to complications in its simulation, as both classical and quantum effects must be included. One of the most successful simulation methods is density functional theory-molecular dynamics (DFT-MD). Despite great success in a diverse array of applications, DFT-MD remains computationally expensive and it neglects the explicit temperature dependence of electron-electron interactions known to exist within exact DFT. Finite-temperature density functional theory (FT DFT) is an extension of the wildly successful ground-state DFT formalism via thermal ensembles, broadening its quantum mechanical treatment of electrons to include systems at non-zero temperatures. Exact mathematical conditions have been used to predict the behavior of approximations in limiting conditions and to connect FT DFT to the ground-state theory. An introduction to FT DFT is given within the context of ensemble DFT and the larger field of DFT is discussed for context. Ensemble DFT is used to describe ensembles of ground-state and excited systems. Exact conditions in ensemble DFT and the performance of approximations depend on ensemble weights. Using an inversion method, exact Kohn-Sham ensemble potentials are found and compared to approximations. The symmetry eigenstate Hartree-exchange approximation is in good agreement with exact calculations because of its inclusion of an ensemble derivative discontinuity. Since ensemble weights in FT DFT are temperature-dependent Fermi weights, this insight may help develop approximations well-suited to both ground-state and FT DFT. A novel, highly efficient approach to free energy calculations, finite-temperature potential functional theory, is derived, which has the potential to transform the simulation of warm dense matter. As a semiclassical method, it connects the normally disparate regimes of cold condensed matter physics and hot plasma physics. This orbital-free approach captures the smooth classical density envelope and quantum density oscillations that are both crucial to accurate modeling of materials where temperature and pressure effects are influential.

  17. Optimised effective potential for ground states, excited states, and time-dependent phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, E.K.U.

    1996-12-31

    (1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E{sub xc} is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v{sub xc} = {delta}E{sub xc}/{delta}{rho}, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativisticmore » values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data.« less

  18. Solutal Convection Around Growing Protein Crystal and Diffusional Purification in Space

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Lee, C. P.

    2002-01-01

    This work theoretically addressed two subjects: 1) onset of convection, 2) distribution of impurities. Onset of convection was considered analytically and numerically. Crystal growth was characterized by slow surface incorporation kinetics, i.e. growth kinetic coefficient beta (cm/s) small as compared to the typical bulk diffusion rate, D(sub 1)/h, where D(sub 1) is diffusivity of major crystallizing protein and h is the crystal size. Scaling type analysis predicted two laws on how the convection rate, v, essentially the Peclet number, Pe exactly equal to vh/D(sub 1), depends on dimensionless kinetic coefficient a exactly equal to beta h/D(sub 1). Namely: Pe = C(sub 2/5)(aRa(sup 2/5)) and Pe = C(sub 1) aRa. Here, Reynolds number Ra = rho(sub 1)(sup 0)gh(sup 3)(rho(sub p) - rho(sub w))/rho(sup p)rho(sub 1)vD(sub 1), v being solution viscosity. The constants C(sub 2/5), exactly equal to 0.28 and C(sub 1) exactly equal to 10(exp -2) found from the full scale computer simulation for a cylindrical crystal inside big cylindrical vessel. The linear boundary conditions connecting protein and impurity concentration at the interface with the flux to/from the interface was applied. No-slip condition for Navier-Shocker equations was employed. With these conditions, flow and concentration distributions were calculated. Validity of the Pe(Ra) dependencies follows for wide range of parameters for which numerical calculations have been accomplished and presented by various points.

  19. When group members go against the grain: An ironic interactive effect of group identification and normative content on healthy eating.

    PubMed

    Banas, Kasia; Cruwys, Tegan; de Wit, John B F; Johnston, Marie; Haslam, S Alexander

    2016-10-01

    Three studies were conducted to examine the effect of group identification and normative content of social identities on healthy eating intentions and behaviour. In Study 1 (N = 87) Australian participants were shown images that portrayed a norm of healthy vs. unhealthy behaviour among Australians. Participants' choices from an online restaurant menu were used to calculate energy content as the dependent variable. In Study 2 (N = 117), female participants were assigned to a healthy or unhealthy norm condition. The dependent variable was the amount of food eaten in a taste test. Social group identification was measured in both studies. In Study 3 (N = 117), both American identification and healthiness norm were experimentally manipulated, and participants' choices from an online restaurant menu constituted the dependent variable. In all three studies, the healthiness norm presented interacted with participants' group identification to predict eating behaviour. Contrary to what would be predicted under the traditional normative social influence account, higher identifiers chose higher energy food from an online menu and ate more food in a taste test when presented with information about their in-group members behaving healthily. The exact psychological mechanism responsible for these results remains unclear, but the pattern of means can be interpreted as evidence of vicarious licensing, whereby participants feel less motivated to make healthy food choices after being presented with content suggesting that other in-group members are engaging in healthy behaviour. These results suggest a more complex interplay between group membership and norms than has previously been proposed. Copyright © 2016. Published by Elsevier Ltd.

  20. Geometrical study on two tilting arcs based exact cone-beam CT for breast imaging

    NASA Astrophysics Data System (ADS)

    Zeng, Kai; Yu, Hengyong; Fajardo, Laurie L.; Wang, Ge

    2006-08-01

    Breast cancer is the second leading cause of cancer death in women in the United States. Currently, X-ray mammography is the method of choice for screening and diagnosing breast cancer. However, this 2D projective modality is far from perfect; with up to 17% breast cancer going unidentified. Over past several years, there has been an increasing interest in cone-beam CT for breast imaging. However, previous methods utilizing cone-beam CT only produce approximate reconstructions. Following Katsevich's recent work, we propose a new scanning mode and associated exact cone-beam CT method for breast imaging. In our design, cone-beam scans are performed along two tilting arcs for collection of a sufficient amount of data for exact reconstruction. In our Katsevich-type algorithm, conebeam data is filtered in a shift-invariant fashion and then backprojected in 3D for the final reconstruction. This approach has several desirable features. First, it allows data truncation unavoidable in practice. Second, it optimizes image quality for quantitative analysis. Third, it is efficient for sequential/parallel computation. Furthermore, we analyze the reconstruction region and the detection window in detail, which are important for numerical implementation.

  1. Analytical study of the critical behavior of the nonlinear pendulum

    NASA Astrophysics Data System (ADS)

    Lima, F. M. S.

    2010-11-01

    The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.

  2. Exact Theory of Compressible Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  3. Optimization of mass spectrometric parameters improve the identification performance of capillary zone electrophoresis for single-shot bottom-up proteomics analysis.

    PubMed

    Zhang, Zhenbin; Dovichi, Norman J

    2018-02-25

    The effects of MS1 injection time, MS2 injection time, dynamic exclusion time, intensity threshold, and isolation width were investigated on the numbers of peptide and protein identifications for single-shot bottom-up proteomics analysis using CZE-MS/MS analysis of a Xenopus laevis tryptic digest. An electrokinetically pumped nanospray interface was used to couple a linear-polyacrylamide coated capillary to a Q Exactive HF mass spectrometer. A sensitive method that used a 1.4 Th isolation width, 60,000 MS2 resolution, 110 ms MS2 injection time, and a top 7 fragmentation produced the largest number of identifications when the CZE loading amount was less than 100 ng. A programmable autogain control method (pAGC) that used a 1.4 Th isolation width, 15,000 MS2 resolution, 110 ms MS2 injection time, and top 10 fragmentation produced the largest number of identifications for CZE loading amounts greater than 100 ng; 7218 unique peptides and 1653 protein groups were identified from 200 ng by using the pAGC method. The effect of mass spectrometer conditions on the performance of UPLC-MS/MS was also investigated. A fast method that used a 1.4 Th isolation width, 30,000 MS2 resolution, 45 ms MS2 injection time, and top 12 fragmentation produced the largest number of identifications for 200 ng UPLC loading amount (6025 unique peptides and 1501 protein groups). This is the first report where the identification number for CZE surpasses that of the UPLC at the 200 ng loading level. However, more peptides (11476) and protein groups (2378) were identified by using UPLC-MS/MS when the sample loading amount was increased to 2 μg with the fast method. To exploit the fast scan speed of the Q-Exactive HF mass spectrometer, higher sample loading amounts are required for single-shot bottom-up proteomics analysis using CZE-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 14 CFR 23.395 - Control system loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1.0 may be used if hinge moments are based on accurate flight test data, the exact reduction depending upon the accuracy and reliability of the data. (c) Pilot forces used for design are assumed to act...

  5. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions

    PubMed

    Bologna; Tsallis; Grigolini

    2000-08-01

    We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity

  6. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  7. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    PubMed

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  8. Drude weight of the spin-(1)/(2) XXZ chain: Density matrix renormalization group versus exact diagonalization

    NASA Astrophysics Data System (ADS)

    Karrasch, C.; Hauschild, J.; Langer, S.; Heidrich-Meisner, F.

    2013-06-01

    We revisit the problem of the spin Drude weight D of the integrable spin-1/2 XXZ chain using two complementary approaches, exact diagonalization (ED) and the time-dependent density-matrix renormalization group (tDMRG). We pursue two main goals. First, we present extensive results for the temperature dependence of D. By exploiting time translation invariance within tDMRG, one can extract D for significantly lower temperatures than in previous tDMRG studies. Second, we discuss the numerical quality of the tDMRG data and elaborate on details of the finite-size scaling of the ED results, comparing calculations carried out in the canonical and grand-canonical ensembles. Furthermore, we analyze the behavior of the Drude weight as the point with SU(2)-symmetric exchange is approached and discuss the relative contribution of the Drude weight to the sum rule as a function of temperature.

  9. Phase separation in an exactly solvable model binary solution with three-body interactions and intermolecular bonding.

    PubMed

    Lungu, Radu P; Huckaby, Dale A; Buzatu, Florin D

    2006-02-01

    A model is presented in which the bonds of a honeycomb lattice are covered by rodlike molecules of types AA and BB, molecular ends near a common site having both three-body interactions and orientation-dependent bonding between two A molecular ends and between an A and a B molecular end. Phase diagrams corresponding to the separation into AA-rich and BB-rich phases are calculated exactly. Depending on the relative strengths of the interactions, one of several qualitatively different types of phase diagrams can result, including diagrams containing phenomena such as a double critical point or two separate asymmetric closed loops. The model is essentially a limiting case of a previously considered ternary solution model, and it is equivalent to a two-component system of interacting A and B molecules on the sites of a kagomé lattice.

  10. Tool use and the effect of action on the imagination.

    PubMed

    Schwartz, D L; Holton, D L

    2000-11-01

    Three studies examined the claim that hand movements can facilitate imagery for object rotations but that this facilitation depends on people's model of the situation. In Experiment 1, physically turning a block without vision reduced mental rotation times compared with imagining the same rotation without bodily movement. In Experiment 2, pulling a string from a spool facilitated participants' mental rotation of an object sitting on the spool. In Experiment 3, depending on participants' model of the spool, the exact same pulling movement facilitated or interfered with the exact same imagery transformation. Results of Experiments 2 and 3 indicate that the geometric characteristics of an action do not specify the trajectory of an imagery transformation. Instead, they point to people's ability to model the tools that mediate between motor activity and its environmental consequences and to transfer tool knowledge to a new situation.

  11. Variational method for calculating the binding energy of the base state of an impurity D- centered on a quantum dot of GaAs-Ga1-xAlxAs

    NASA Astrophysics Data System (ADS)

    Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.

    2018-04-01

    In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.

  12. Stability of exact solutions describing two-layer flows with evaporation at the interface

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2016-12-01

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.

  13. Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic

    DOEpatents

    Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.

    2002-01-01

    A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.

  14. JPRS Report, Soviet Union, Economic Affairs

    DTIC Science & Technology

    1988-08-18

    nonreproducible and their depletion dur- ing the planned period can demand increasing expendi- tures on extraction or import and so forth). With such...fabrics, of oil on the production of dyes, of electric motors on the extraction and pumping of oil, of wire on electric motor winding, and so...exactly what amount should coal prices be raised and how to take into account in profit taxes extraction conditions, which even in two mines located next

  15. Analytical Theory of the Destruction Terms in Dissipation Rate Transport Equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1996-01-01

    Modeled dissipation rate transport equations are often derived by invoking various hypotheses to close correlations in the corresponding exact equations. D. C. Leslie suggested that these models might be derived instead from Kraichnan's wavenumber space integrals for inertial range transport power. This suggestion is applied to the destruction terms in the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating incompressible turbulence, and rotating buoyant turbulence. Model constants like C(epsilon 2) are expressed as integrals; convergence of these integrals implies the absence of Reynolds number dependence in the corresponding destruction term. The dependence of C(epsilon 2) on rotation rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation is not required. A buoyancy related effect which is absent in the exact transport equation for temperature variance dissipation, but which sometimes improves computational predictions, also arises naturally. Both the presence of this effect and the appropriate time scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov inertial range scaling applies. A simple application of these methods leads to a preliminary, dissipation rate equation for rotating buoyant turbulence.

  16. A Gaussian wave packet phase-space representation of quantum canonical statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2015-07-28

    We present a mapping of quantum canonical statistical averages onto a phase-space average over thawed Gaussian wave-packet (GWP) parameters, which is exact for harmonic systems at all temperatures. The mapping invokes an effective potential surface, experienced by the wave packets, and a temperature-dependent phase-space integrand, to correctly transition from the GWP average at low temperature to classical statistics at high temperature. Numerical tests on weakly and strongly anharmonic model systems demonstrate that thermal averages of the system energy and geometric properties are accurate to within 1% of the exact quantum values at all temperatures.

  17. Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap

    NASA Astrophysics Data System (ADS)

    Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi

    2018-05-01

    We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.

  18. Energy and contact of the one-dimensional Fermi polaron at zero and finite temperature.

    PubMed

    Doggen, E V H; Kinnunen, J J

    2013-07-12

    We use the T-matrix approach for studying highly polarized homogeneous Fermi gases in one dimension with repulsive or attractive contact interactions. Using this approach, we compute ground state energies and values for the contact parameter that show excellent agreement with exact and other numerical methods at zero temperature, even in the strongly interacting regime. Furthermore, we derive an exact expression for the value of the contact parameter in one dimension at zero temperature. The model is then extended and used for studying the temperature dependence of ground state energies and the contact parameter.

  19. Zone clearance in an infinite TASEP with a step initial condition

    NASA Astrophysics Data System (ADS)

    Cividini, Julien; Appert-Rolland, Cécile

    2017-06-01

    The TASEP is a paradigmatic model of out-of-equilibrium statistical physics, for which many quantities have been computed, either exactly or by approximate methods. In this work we study two new kinds of observables that have some relevance in biological or traffic models. They represent the probability for a given clearance zone of the lattice to be empty (for the first time) at a given time, starting from a step density profile. Exact expressions are obtained for single-time quantities, while more involved history-dependent observables are studied by Monte Carlo simulation, and partially predicted by a phenomenological approach.

  20. Open Heisenberg chain under boundary fields: A magnonic logic gate

    NASA Astrophysics Data System (ADS)

    Landi, Gabriel T.; Karevski, Dragi

    2015-05-01

    We study the spin transport in the quantum Heisenberg spin chain subject to boundary magnetic fields and driven out of equilibrium by Lindblad dissipators. An exact solution is given in terms of matrix product states, which allows us to calculate exactly the spin current for any chain size. It is found that the system undergoes a discontinuous spin-valve-like quantum phase transition from ballistic to subdiffusive spin current, depending on the value of the boundary fields. Thus, the chain behaves as an extremely sensitive magnonic logic gate operating with the boundary fields as the base element.

  1. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  2. Integrable Time-Dependent Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  3. Theoretical Studies of Defects in Tetrahedral Semiconductors.

    DTIC Science & Technology

    1980-08-01

    pulse. The exact time of the maximal sur- has been measured by Shvarev et al. [I I at 1.0, face temperature depends on pulse duration, thermal 0.7 and...0.4 lAn from 57.50 off normal incidence. diffusivity (which is generally T dependent ), pulse Auston et al. (81 reported the time resolved reflec- shape...surface occur 30 to 40 ns after the peak of their 25 ns HWHM or ripples on the surface or a temperature depend - gaussian pulse rather than within

  4. [Illness and death of Wolfgang Amadeus Mozart (1756-1791). A contribution to the Mozart Year 2006].

    PubMed

    Franzen, Caspar

    2006-09-15

    In the Mozart year 2006 also medicine has to deal with the music genius W.A. Mozart. It has been intensely discussed for a long time whether Mozart was poisoned, whether he deceased from a certain illness, or by self-medication and/or medical procedures. Consequently, his death caused wild speculations and adventurous assertions. Many authors assume that Mozart was a chronically ill man all his life. However, most of Mozart's described illnesses were harmless, and his unbelievable amount of work proves his extraordinary efficiency. The exact cause of death remains speculative. The story of a tall stranger dressed in somber gray who assigned Mozart to write a Requiem Mass and the circumstances of Mozart's funeral have additionally contributed to the generation of legends. However, if one gathers all known facts, there is no evidence that Mozart was murdered, and the exact cause of his death remains unclear.

  5. Exact evaluation of the causal spectrum and localization properties of electronic states on a scale-free network

    NASA Astrophysics Data System (ADS)

    Xie, Pinchen; Yang, Bingjia; Zhang, Zhongzhi; Andrade, Roberto F. S.

    2018-07-01

    A deterministic network with tree structure is considered, for which the spectrum of its adjacency matrix can be exactly evaluated by a recursive renormalization approach. It amounts to successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The resulting eigenvalues can be related the full energy spectrum of a nearest-neighbor tight-binding model defined on this structure. Given this association, it turns out that further properties of the eigenvectors can be evaluated, like the degree of quantum localization of the tight-binding eigenstates, expressed by the inverse participation ratio (IPR). It happens that, for the current model, the IPR's are also suitable to be analytically expressed in terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.

  6. Producing approximate answers to database queries

    NASA Technical Reports Server (NTRS)

    Vrbsky, Susan V.; Liu, Jane W. S.

    1993-01-01

    We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.

  7. Design of a ``Digital Atlas Vme Electronics'' (DAVE) module

    NASA Astrophysics Data System (ADS)

    Goodrick, M.; Robinson, D.; Shaw, R.; Postranecky, M.; Warren, M.

    2012-01-01

    ATLAS-SCT has developed a new ATLAS trigger card, 'Digital Atlas Vme Electronics' (``DAVE''). The unit is designed to provide a versatile array of interface and logic resources, including a large FPGA. It interfaces to both VME bus and USB hosts. DAVE aims to provide exact ATLAS CTP (ATLAS Central Trigger Processor) functionality, with random trigger, simple and complex deadtime, ECR (Event Counter Reset), BCR (Bunch Counter Reset) etc. being generated to give exactly the same conditions in standalone running as experienced in combined runs. DAVE provides additional hardware and a large amount of free firmware resource to allow users to add or change functionality. The combination of the large number of individually programmable inputs and outputs in various formats, with very large external RAM and other components all connected to the FPGA, also makes DAVE a powerful and versatile FPGA utility card.

  8. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  9. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  10. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  11. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies

    PubMed Central

    Colombo, Miriam; Fiandra, Luisa; Alessio, Giulia; Mazzucchelli, Serena; Nebuloni, Manuela; De Palma, Clara; Kantner, Karsten; Pelaz, Beatriz; Rotem, Rany; Corsi, Fabio; Parak, Wolfgang J.; Prosperi, Davide

    2016-01-01

    Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect. PMID:27991503

  12. Preparation of Small RNAs Using Rolling Circle Transcription and Site-Specific RNA Disconnection.

    PubMed

    Wang, Xingyu; Li, Can; Gao, Xiaomeng; Wang, Jing; Liang, Xingguo

    2015-01-13

    A facile and robust RNA preparation protocol was developed by combining rolling circle transcription (RCT) with RNA cleavage by RNase H. Circular DNA with a complementary sequence was used as the template for promoter-free transcription. With the aid of a 2'-O-methylated DNA, the RCT-generated tandem repeats of the desired RNA sequence were disconnected at the exact end-to-end position to harvest the desired RNA oligomers. Compared with the template DNA, more than 4 × 10(3) times the amount of small RNA products were obtained when modest cleavage was carried out during transcription. Large amounts of RNA oligomers could easily be obtained by simply increasing the reaction volume.

  13. The Relationship of Amount of Resection and Time for Recovery of Bell’s Phenomenon after Levator Resection in Congenital Ptosis

    PubMed Central

    Goel, Ruchi; Kishore, Divya; Nagpal, Smriti; Jain, Sparshi; Agarwal, Tushar

    2017-01-01

    Background: Recovery of Bell`s phenomenon after levator resection is unpredicatable. Delayed recovery can result in vision threatening corneal complications. Aim: To study the variability of Bell’s phenomenon and time taken for its recovery following levator resection for blepharoptosis and to correlate it with the amount of resection. Methods: A prospective observational study was conducted on 32 eyes of 32 patients diagnosed as unilateral simple congenital blepharoptosis who underwent levator resection at a tertiary care center between July 2013 and May 2015. Patients were followed up for 5 months and correction of ptosis, type of Bell`s, duration of Bell`s recovery and complications were noted. Results: The study group ranged from 16-25 years with 15:17 male: female ratio. There were 9 mild, 16 moderate and 7 severe ptosis. Satisfactory correction was achieved in all cases. Good Bell`s recovery occurred in 13 eyes on first post-op day, in 2-14 days in 19 eyes and 28 days in 1 eye. Inverse Bell`s was noted along with lid oedema and ecchymosis in 2 patients. Large resections (23-26mm) were associated with poor Bell`s on the first postoperative day (p=0.027, Fisher`s exact test). However, the duration required for recovery of Bell`s phenomenon did not show any significant difference with the amount of resection. (p=0.248, Mann Whitney test). Larger resections resulted in greater lagophthalmos (correlation=0.830, p<0.0001). Patients with recovery of Bell`s delayed for more than 7 days were associated with greater number of complications (p=0.001 Fisher`s Exact Test). Conclusion: Close monitoring for Bell`s recovery is required following levator resection. PMID:28584563

  14. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  15. On thermodynamical inconsistency of isotherm equations: Gibbs's thermodynamics.

    PubMed

    Tóth, József

    2003-06-01

    It has been proven that all isotherm equations which include the expression 1-Theta contradict the exact Gibbs thermodynamics. These contradictions have been discussed in detail in the case of the Langmuir (L) equation applied to gas/solid (G/S), solid/liquid (S/L), and gas/liquid (G/L) interfaces. In G/S adsorption the L equation can theoretically be applied only at low equilibrium pressures on condition that vg > vs . vg is the molar volume of the adsorbed amount in the gas phase and vs is the same in the Gibbs phase. In S/L and G/L adsorption the L equation is practically applicable only in the domain of very low concentrations. The cause of these contradictions (inconsistencies) is that Gibbs thermodynamics takes excess adsorbed amounts into account; however, the L and other isotherm equations calculate with the absolute adsorbed amount. The two amounts may be practically equal to each other when the limiting conditions mentioned above are fulfilled. It is also discussed how these inconsistent isotherm equations can be transformed into consistent ones.

  16. Exact expressions and accurate approximations for the dependences of radius and index of refraction of solutions of inorganic solutes on relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, E.R.; Schwartz, S.

    2010-03-15

    Light scattering by aerosols plays an important role in Earth’s radiative balance, and quantification of this phenomenon is important in understanding and accounting for anthropogenic influences on Earth’s climate. Light scattering by an aerosol particle is determined by its radius and index of refraction, and for aerosol particles that are hygroscopic, both of these quantities vary with relative humidity RH. Here exact expressions are derived for the dependences of the radius ratio (relative to the volume-equivalent dry radius) and index of refraction on RH for aqueous solutions of single solutes. Both of these quantities depend on the apparent molal volumemore » of the solute in solution and on the practical osmotic coefficient of the solution, which in turn depend on concentration and thus implicitly on RH. Simple but accurate approximations are also presented for the RH dependences of both radius ratio and index of refraction for several atmospherically important inorganic solutes over the entire range of RH values for which these substances can exist as solution drops. For all substances considered, the radius ratio is accurate to within a few percent, and the index of refraction to within ~0.02, over this range of RH. Such parameterizations will be useful in radiation transfer models and climate models.« less

  17. Extension of the KLI approximation toward the exact optimized effective potential.

    PubMed

    Iafrate, G J; Krieger, J B

    2013-03-07

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  18. Extension of the KLI approximation toward the exact optimized effective potential

    NASA Astrophysics Data System (ADS)

    Iafrate, G. J.; Krieger, J. B.

    2013-03-01

    The integral equation for the optimized effective potential (OEP) is utilized in a compact form from which an accurate OEP solution for the spin-unrestricted exchange-correlation potential, Vxcσ, is obtained for any assumed orbital-dependent exchange-correlation energy functional. The method extends beyond the Krieger-Li-Iafrate (KLI) approximation toward the exact OEP result. The compact nature of the OEP equation arises by replacing the integrals involving the Green's function terms in the traditional OEP equation by an equivalent first-order perturbation theory wavefunction often referred to as the "orbital shift" function. Significant progress is then obtained by solving the equation for the first order perturbation theory wavefunction by use of Dalgarno functions which are determined from well known methods of partial differential equations. The use of Dalgarno functions circumvents the need to explicitly address the Green's functions and the associated problems with "sum over states" numerics; as well, the Dalgarno functions provide ease in dealing with inherent singularities arising from the origin and the zeros of the occupied orbital wavefunctions. The Dalgarno approach for finding a solution to the OEP equation is described herein, and a detailed illustrative example is presented for the special case of a spherically symmetric exchange-correlation potential. For the case of spherical symmetry, the relevant Dalgarno function is derived by direct integration of the appropriate radial equation while utilizing a user friendly method which explicitly treats the singular behavior at the origin and at the nodal singularities arising from the zeros of the occupied states. The derived Dalgarno function is shown to be an explicit integral functional of the exact OEP Vxcσ, thus allowing for the reduction of the OEP equation to a self-consistent integral equation for the exact exchange-correlation potential; the exact solution to this integral equation can be determined by iteration with the natural zeroth order correction given by the KLI exchange-correlation potential. Explicit analytic results are provided to illustrate the first order iterative correction beyond the KLI approximation. The derived correction term to the KLI potential explicitly involves spatially weighted products of occupied orbital densities in any assumed orbital-dependent exchange-correlation energy functional; as well, the correction term is obtained with no adjustable parameters. Moreover, if the equation for the exact optimized effective potential is further iterated, one can obtain the OEP as accurately as desired.

  19. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei

    2017-03-01

    We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.

  20. Multifunctional Nanocomposites for Breast Cancer Imaging and Therapy

    DTIC Science & Technology

    2008-07-01

    compounds, because of the low stability of the thiolate -capped PbS QDs at physiological pH values. The following approach, consisting of 3 phases, was...syntheses employed amphiphilic polymers to stabilize CdSe/ZnS QDs, or phospholipids micelles to stabilize Si QDs, or used ligand exchange followed...attached per surface. However, it is very difficult to estimate the exact amount within the large G6- polymer of MW= 69,351 without measuring the 800 or

  1. Light dark matter and galaxy formation

    NASA Astrophysics Data System (ADS)

    Ascasibar, Yago

    2006-11-01

    What if dark matter particles were as light as a few MeV? Well, they would ``just'' need to decay or annihilate in exactly the right amount to explain the observed dark matter density... However, such a process would yield a detectable imprint on both particle and cosmological scales. Some of the signatures would be difficult to measure; some others would determine whether a galaxy can form stars or not. Does any (actually all) of these weird things happen?

  2. Multivariate Visualization in Social Sciences and Survey Data

    DTIC Science & Technology

    2013-09-01

    uses bubbles indicating Walmart store locations. The bubble size is misleading as it does not reflect the amount of stores or the size of any store...displaying survey data, the bubbles’ exact location is relevant, indicating Walmart store locations. Yau’s choropleth (Figure 2.7, right chart) displays...is able to see the embedded image. 14 Figure 2.7: Point-based bubbles (left) display the the locations of Walmart stores at some point in the stores

  3. Optimizing Terminal Conditions Using Geometric Guidance for Low-Control Authority Munitions

    DTIC Science & Technology

    2008-06-01

    Lowest altitude allowable for maximum canard deflection per unit of acceleration constant hT δ g Canard deflection per unit of acceleration transition...target within that range window in less than five minutes from time of fire [17]. The launch platform can supply the munition with some preflight...linear 7. The information supplied by the onboard navigation system has no errors 8. The control system is always able to generate the exact amount

  4. [Autocontrol of muscle relaxation with vecuronium].

    PubMed

    Sibilla, C; Zatelli, R; Marchi, M; Zago, M

    1990-01-01

    The optimal conditions for maintaining desired levels of muscle relaxation with vecuronium are obtained by means of the continuous infusion (I.V.) technique. A frequent correction of the infusion flow is required, since it is impossible to predict the exact amount for the muscle relaxant in single case. In order to overcome such limits the authors propose a very feasible infusion system for the self-control of muscle relaxation; furthermore they positively consider its possible daily clinical application.

  5. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia

    2018-04-01

    We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.

  6. Structural design optimization with survivability dependent constraints application: Primary wing box of a multi-role fighter

    NASA Technical Reports Server (NTRS)

    Dolvin, Douglas J.

    1992-01-01

    The superior survivability of a multirole fighter is dependent upon balanced integration of technologies for reduced vulnerability and susceptability. The objective is to develop a methodology for structural design optimization with survivability dependent constraints. The design criteria for optimization will be survivability in a tactical laser environment. The following analyses are studied to establish a dependent design relationship between structural weight and survivability: (1) develop a physically linked global design model of survivability variables; and (2) apply conventional constraints to quantify survivability dependent design. It was not possible to develop an exact approach which would include all aspects of survivability dependent design, therefore guidelines are offered for solving similar problems.

  7. Exact theory of freeze-out

    NASA Astrophysics Data System (ADS)

    Cannoni, Mirco

    2015-03-01

    We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.

  8. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    NASA Astrophysics Data System (ADS)

    Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan

    2017-11-01

    We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.

  9. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  10. Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum deleyianum

    PubMed Central

    Lohmayer, Regina; Kappler, Andreas; Lösekann-Behrens, Tina

    2014-01-01

    Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations. PMID:24632263

  11. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  12. Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    2016-08-15

    The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.

  13. Asymptotically Exact Heuristics for Prime Divisors of the Sequence {a^k+b^k}_{k=1}^infty

    NASA Astrophysics Data System (ADS)

    Moree, Pieter

    2006-07-01

    Let N_{a,b}(x) count the number of primes p<= x with p dividing a^k+b^k for some k>= 1. It is known that N_{a,b}(x)sim c(a,b)x/log x for some rational number c(a,b) that depends in a rather intricate way on a and b. A simple heuristic formula for N_{a,b}(x) is proposed and it is proved that it is asymptotically exact, i.e., has the same asymptotic behavior as N_{a,b}(x). Connections with Ramanujan sums and character sums are discussed.

  14. Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?

    NASA Astrophysics Data System (ADS)

    Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2018-05-01

    Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartarius, Holger; Moiseyev, Nimrod; Department of Physics and Minerva Center for Nonlinear Physics of Complex Systems, Technion-Israel Institute of Technology, Haifa, 32000

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=|<{psi}(0)|{psi}(t)>|{sup 2} decays exactly as |1-at|{sup 2}e{sup -{Gamma}{sub E}{sub P}t/({Dirac_h}/2{pi})}, where {Gamma}{sub EP} is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  16. Observation of 1-D time dependent non-propagating laser plasma structures using fluid and PIC codes

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Bera, Ratan Kumar; Kumar, Atul; Patel, Bhavesh; Das, Amita

    2017-12-01

    The manuscript reports the observation of time dependent localized and non-propagating structures in the coupled laser plasma system through 1-D fluid and Particle-In-Cell (PIC) simulations. It is reported that such structures form spontaneously as a result of collision amongst certain exact solitonic solutions. They are seen to survive as coherent entities for a long time up to several hundreds of plasma periods. Furthermore, it is shown that such time dependence can also be artificially recreated by significantly disturbing the delicate balance between the radiation and the density fields required for the exact non-propagating solution obtained by Esirkepov et al., JETP 68(1), 36-41 (1998). The ensuing time evolution is an interesting interplay between kinetic and field energies of the system. The electrostatic plasma oscillations are coupled with oscillations in the electromagnetic field. The inhomogeneity of the background and the relativistic nature, however, invariably produces large amplitude density perturbations leading to its wave breaking. In the fluid simulations, the signature of wave breaking can be discerned by a drop in the total energy which evidently gets lost to the grid. The PIC simulations are observed to closely follow the fluid simulations till the point of wave breaking. However, the total energy in the case of PIC simulations is seen to remain conserved throughout the simulations. At the wave breaking, the particles are observed to acquire thermal kinetic energy in the case of PIC. Interestingly, even after wave breaking, compact coherent structures with trapped radiation inside high-density peaks continue to exist both in PIC and fluid simulations. Although the time evolution does not exactly match in the two simulations as it does prior to the process of wave breaking, the time-dependent features exhibited by the remnant structures are characteristically similar.

  17. Design equations for the assessment and FRP-strengthening of reinforced rectangular concrete columns under combined biaxial bending and axial loads

    NASA Astrophysics Data System (ADS)

    Alessandri, S.; Monti, G.

    2008-05-01

    A simple procedure is proposed for the assessment of reinforced rectangular concrete columns under combined biaxial bending and axial loads and for the design of a correct amount of FRP-strengthening for underdesigned concrete sections. Approximate closed-form equations are developed based on the load contour method originally proposed by Bresler for reinforced concrete sections. The 3D failure surface is approximated along its contours, at a constant axial load, by means of equations given as the sum of the acting/resisting moment ratio in the directions of principal axes of the sections, raised to a power depending on the axial load, the steel reinforcement ratio, and the section shape. The method is extended to FRP-strengthened sections. Moreover, to make it possible to apply the load contour method in a more practical way, simple closed-form equations are developed for rectangular reinforced concrete sections with a two-way steel reinforcement and FRP strengthenings on each side. A comparison between the approach proposed and the fiber method (which is considered exact) shows that the simplified equations correctly represent the section interaction diagram.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, II, Barry; Schrader, Robert L.; Kowalski, Karol

    The longest-wavelength π-to-π* electronic excitations of rhodamine-like dyes (RDs) with different group16 heteroatoms (O, S, Se, Te) have been investigated. Time-dependent Kohn–Sham theory (TDKST) calculations were compared with coupled-cluster (CC) and equations-of-motion (EOM) CC results for π-to-π* singlet and triplet excitations. The RDs exhibit characteristics in the TDKST calculations that are very similar to previously investigated cyanine dyes, in the sense that the singlet energies obtained with nonhybrid functionals are too high compared with the CC results at the SD(T) level. The errors became increasingly larger for functionals with increasing amounts of exact exchange. TDKST with all tested functionals ledmore » to severe underestimations of the corresponding triplet excitations and overestimations of the singlet--triplet gaps. Long-range-corrected range-separated exchange and "optimal tuning" of the range separation parameter did not significantly improve the TDKST results. A detailed analysis suggests that the problem is differential electron correlation between the ground and excited states, which is not treated sufficiently by the relatively small integrals over the exchange-correlation response kernel that enters the excitation energy expression. As a result, numerical criteria are suggested that may help identify "cyanine-like" problems in TDKST calculations of excitation spectra.« less

  19. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq.

    PubMed

    Chen, Jun; Suo, Shengbao; Tam, Patrick Pl; Han, Jing-Dong J; Peng, Guangdun; Jing, Naihe

    2017-03-01

    Conventional gene expression studies analyze multiple cells simultaneously or single cells, for which the exact in vivo or in situ position is unknown. Although cellular heterogeneity can be discerned when analyzing single cells, any spatially defined attributes that underpin the heterogeneous nature of the cells cannot be identified. Here, we describe how to use Geo-seq, a method that combines laser capture microdissection (LCM) and single-cell RNA-seq technology. The combination of these two methods enables the elucidation of cellular heterogeneity and spatial variance simultaneously. The Geo-seq protocol allows the profiling of transcriptome information from only a small number cells and retains their native spatial information. This protocol has wide potential applications to address biological and pathological questions of cellular properties such as prospective cell fates, biological function and the gene regulatory network. Geo-seq has been applied to investigate the spatial transcriptome of mouse early embryo, mouse brain, and pathological liver and sperm tissues. The entire protocol from tissue collection and microdissection to sequencing requires ∼5 d, Data analysis takes another 1 or 2 weeks, depending on the amount of data and the speed of the processor.

  20. Characteristics of Five Ejector Configurations at Free-Stream Mach Numbers from 0 to 2.0

    NASA Technical Reports Server (NTRS)

    Klann, John L.; Huff, Ronald G.

    1959-01-01

    Thrust, air-handling, and base-pressure characteristics of five ejector configurations were investigated in the Lewis 8-by 6-foot wind tunnel at free-stream Mach numbers from 0 to 2.0 over ranges of primary-jet pressure ratio up to 24 and corrected secondary weight-flow ratio up to 13 percent. The ejector-shroud geometries varied from convergent to divergent. Base pressure ratio and ejector performance were interrelated by means of an exit-momentum parameter. Correlations, to at least a first approximation, with base pressure ratio, of both internal-ejector-flow separation and external-flow separation over the model boattail were shown. Furthermore, it was shown that magnitudes and exact trends in base pressure ratio depended largely, and in a complicated fashion, on ejector geometry and amount of secondary flow. External-stream effects on ejector jet thrust were determined for a typical schedule of jet-engine pressure ratios. With the exception of the ejector having the largest (1.81) shroud-exit-to primary-diameter ratio, there were no stream effects at Mach numbers from 1.5 to 2.0 and variations from quiescent-air thrust data were less than 2.5 percent at the subsonic speed investigated.

  1. Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice.

    PubMed

    Wehrle, Esther; Wehner, Tim; Heilmann, Aline; Bindl, Ronny; Claes, Lutz; Jakob, Franz; Amling, Michael; Ignatius, Anita

    2014-08-01

    Low-magnitude high-frequency vibration (LMHFV) provokes anabolic effects in non-fractured bone; however, in fracture healing, inconsistent results were reported and optimum vibration conditions remain unidentified. Here, we investigated frequency dependent effects of LMHFV on fracture healing. Twelve-week-old, female C57BL/6 mice received a femur osteotomy stabilized using an external fixator. The mice received whole-body vibrations (20 min/day) with 0.3g peak-to-peak acceleration and a frequency of either 35 or 45 Hz. After 10 and 21 days, the osteotomized femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, µ-computed tomography, and histomorphometry. In non-fractured trabecular bone, vibration with 35 Hz significantly increased the relative amount of bone (+28%) and the trabecular number (+29%), whereas cortical bone was not influenced. LMHFV with 45 Hz failed to provoke anabolic effects in trabecular or cortical bone. Fracture healing was not significantly influenced by whole-body vibration with 35 Hz, whereas 45 Hz significantly reduced bone formation (-64%) and flexural rigidity (-34%) of the callus. Although the exact mechanisms remain open, our results suggest that small vibration setting changes could considerably influence LMHFV effects on bone formation in remodeling and repair, and even disrupt fracture healing, implicating caution when treating patients with impaired fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL.

    PubMed

    Gold, David L; Coombes, Kevin R; Wang, Jing; Mallick, Bani

    2007-03-01

    Translating the overwhelming amount of data generated in high-throughput genomics experiments into biologically meaningful evidence, which may for example point to a series of biomarkers or hint at a relevant pathway, is a matter of great interest in bioinformatics these days. Genes showing similar experimental profiles, it is hypothesized, share biological mechanisms that if understood could provide clues to the molecular processes leading to pathological events. It is the topic of further study to learn if or how a priori information about the known genes may serve to explain coexpression. One popular method of knowledge discovery in high-throughput genomics experiments, enrichment analysis (EA), seeks to infer if an interesting collection of genes is 'enriched' for a Consortium particular set of a priori Gene Ontology Consortium (GO) classes. For the purposes of statistical testing, the conventional methods offered in EA software implicitly assume independence between the GO classes. Genes may be annotated for more than one biological classification, and therefore the resulting test statistics of enrichment between GO classes can be highly dependent if the overlapping gene sets are relatively large. There is a need to formally determine if conventional EA results are robust to the independence assumption. We derive the exact null distribution for testing enrichment of GO classes by relaxing the independence assumption using well-known statistical theory. In applications with publicly available data sets, our test results are similar to the conventional approach which assumes independence. We argue that the independence assumption is not detrimental.

  3. Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation

    PubMed Central

    Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat

    2015-01-01

    The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the ‘history’ of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this ‘nestedness’ is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter ‘nestedness’ to understand the statistics of word frequencies. PMID:26063827

  4. Understanding Zipf's law of word frequencies through sample-space collapse in sentence formation.

    PubMed

    Thurner, Stefan; Hanel, Rudolf; Liu, Bo; Corominas-Murtra, Bernat

    2015-07-06

    The formation of sentences is a highly structured and history-dependent process. The probability of using a specific word in a sentence strongly depends on the 'history' of word usage earlier in that sentence. We study a simple history-dependent model of text generation assuming that the sample-space of word usage reduces along sentence formation, on average. We first show that the model explains the approximate Zipf law found in word frequencies as a direct consequence of sample-space reduction. We then empirically quantify the amount of sample-space reduction in the sentences of 10 famous English books, by analysis of corresponding word-transition tables that capture which words can follow any given word in a text. We find a highly nested structure in these transition tables and show that this 'nestedness' is tightly related to the power law exponents of the observed word frequency distributions. With the proposed model, it is possible to understand that the nestedness of a text can be the origin of the actual scaling exponent and that deviations from the exact Zipf law can be understood by variations of the degree of nestedness on a book-by-book basis. On a theoretical level, we are able to show that in the case of weak nesting, Zipf's law breaks down in a fast transition. Unlike previous attempts to understand Zipf's law in language the sample-space reducing model is not based on assumptions of multiplicative, preferential or self-organized critical mechanisms behind language formation, but simply uses the empirically quantifiable parameter 'nestedness' to understand the statistics of word frequencies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods

    PubMed Central

    Friedrich, Ralf P; Janko, Christina; Poettler, Marina; Tripal, Philipp; Zaloga, Jan; Cicha, Iwona; Dürr, Stephan; Nowak, Johannes; Odenbach, Stefan; Slabu, Ioana; Liebl, Maik; Trahms, Lutz; Stapf, Marcus; Hilger, Ingrid; Lyer, Stefan; Alexiou, Christoph

    2015-01-01

    Due to their special physicochemical properties, iron nanoparticles offer new promising possibilities for biomedical applications. For bench to bedside translation of super-paramagnetic iron oxide nanoparticles (SPIONs), safety issues have to be comprehensively clarified. To understand concentration-dependent nanoparticle-mediated toxicity, the exact quantification of intracellular SPIONs by reliable methods is of great importance. In the present study, we compared three different SPION quantification methods (ultraviolet spectrophotometry, magnetic particle spectroscopy, atomic adsorption spectroscopy) and discussed the shortcomings and advantages of each method. Moreover, we used those results to evaluate the possibility to use flow cytometric technique to determine the cellular SPION content. For this purpose, we correlated the side scatter data received from flow cytometry with the actual cellular SPION amount. We showed that flow cytometry provides a rapid and reliable method to assess the cellular SPION content. Our data also demonstrate that internalization of iron oxide nanoparticles in human umbilical vein endothelial cells is strongly dependent to the SPION type and results in a dose-dependent increase of toxicity. Thus, treatment with lauric acid-coated SPIONs (SEONLA) resulted in a significant increase in the intensity of side scatter and toxicity, whereas SEONLA with an additional protein corona formed by bovine serum albumin (SEONLA-BSA) and commercially available Rienso® particles showed only a minimal increase in both side scatter intensity and cellular toxicity. The increase in side scatter was in accordance with the measurements for SPION content by the atomic adsorption spectroscopy reference method. In summary, our data show that flow cytometry analysis can be used for estimation of uptake of SPIONs by mammalian cells and provides a fast tool for scientists to evaluate the safety of nanoparticle products. PMID:26170658

  6. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    NASA Astrophysics Data System (ADS)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  7. Perceptions of conflict of interest disclosures among peer reviewers.

    PubMed

    Lippert, Suzanne; Callaham, Michael L; Lo, Bernard

    2011-01-01

    Disclosure of financial conflicts of interest (COI) is intended to help reviewers assess the impact of potential bias on the validity of research results; however, there have been no empiric assessments of how reviewers understand and use disclosures in article evaluation. We investigate reviewers' perceptions of potential bias introduced by particular author disclosures, and whether reviewer characteristics are associated with a greater likelihood of perceiving bias. Of the 911 active reviewers from the Annals of Emergency Medicine, 410 were randomly selected and invited to complete our web-based, 3-part survey. We completed descriptive analysis of all survey responses and compared those responses across reviewer characteristics using 2 × 2 analyses and the Fisher exact test. We had a response rate of 54%. The majority of reviewers surveyed reported a high level of skepticism regarding financial relationships between authors and industry without a clear or consistent translation of that skepticism into the self-reported actions that characterize manuscript assessment. Only 13% of respondents believed physician consultants authoring articles based on company data are likely to have unlimited data access. 54% believed that bias most likely exists with any honorarium, regardless of monetary amount. Between 46% and 64%, depending on the type of financial relationship disclosed, reported that their recommendation for publication remains unchanged. Respondents reporting personal financial ties to industry were less likely to perceive bias in industry relationships and less likely to believe that bias exists with any monetary amount of honoraria. We recommend that the monetary amount of all financial relationships be reported with manuscript submissions, lead authors certify that they have unrestricted access to data, and reviewers disclose any financial ties to industry whether or not they are related to the manuscript under review. Further research is required to better understand reviewers' perceptions of financial relationships between authors and industry in order to develop clear and consistent guidelines for incorporating the perception of potential bias into manuscript assessments.

  8. High variability impairs motor learning regardless of whether it affects task performance.

    PubMed

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of variability was more critical than the dimension in which variability was introduced.

  9. SU-E-T-171: Missing Dose in Integrated EPID Images.

    PubMed

    King, B; Seymour, E; Nitschke, K

    2012-06-01

    A dosimetric artifact has been observed with Varian EPIDs in the presence of beam interrupts. This work determines the root cause and significance of this artifact. Integrated mode EPID images were acquired both with and without a manual beam interrupt for rectangular, sliding gap IMRT fields. Simultaneously, the individual frames were captured on a separate computer using a frame-grabber system. Synchronization of the individual frames with the integrated images allowed the determination of precisely how the EPID behaved during regular operation as well as when a beam interrupt was triggered. The ability of the EPID to reliably monitor a treatment in the presence of beam interrupts was tested by comparing the difference between the interrupt and non-interrupt images. The interrupted images acquired in integrated acquisition mode displayed unanticipated behaviour in the region of the image where the leaves were located when the beam interrupt was triggered. Differences greater than 5% were observed as a result of the interrupt in some cases, with the discrepancies occurring in a non-uniform manner across the imager. The differences measured were not repeatable from one measurement to another. Examination of the individual frames showed that the EPID was consistently losing a small amount of dose at the termination of every exposure. Inclusion of one additional frame in every image rectified the unexpected behaviour, reducing the differences to 1% or less. Although integrated EPID images nominally capture the entire dose delivered during an exposure, a small amount of dose is consistently being lost at the end of every exposure. The amount of missing dose is random, depending on the exact beam termination time within a frame. Inclusion of an extra frame at the end of each exposure effectively rectifies the problem, making the EPID more suitable for clinical dosimetry applications. The authors received support from Varian Medical Systems in the form of software and equipment loans as well as technical support. © 2012 American Association of Physicists in Medicine.

  10. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.

  11. Using permutations to detect dependence between time series

    NASA Astrophysics Data System (ADS)

    Cánovas, Jose S.; Guillamón, Antonio; Ruíz, María del Carmen

    2011-07-01

    In this paper, we propose an independence test between two time series which is based on permutations. The proposed test can be carried out by means of different common statistics such as Pearson’s chi-square or the likelihood ratio. We also point out why an exact test is necessary. Simulated and real data (return exchange rates between several currencies) reveal the capacity of this test to detect linear and nonlinear dependences.

  12. Time Dependent Models of Grain Formation Around Carbon Stars

    NASA Technical Reports Server (NTRS)

    Egan, M. P.; Shipman, R. F.

    1996-01-01

    Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.

  13. Efficient multifeature index structures for music data retrieval

    NASA Astrophysics Data System (ADS)

    Lee, Wegin; Chen, Arbee L. P.

    1999-12-01

    In this paper, we propose four index structures for music data retrieval. Based on suffix trees, we develop two index structures called combined suffix tree and independent suffix trees. These methods still show shortcomings for some search functions. Hence we develop another index, called Twin Suffix Trees, to overcome these problems. However, the Twin Suffix Trees lack of scalability when the amount of music data becomes large. Therefore we propose the fourth index, called Grid-Twin Suffix Trees, to provide scalability and flexibility for a large amount of music data. For each index, we can use different search functions, like exact search and approximate search, on different music features, like melody, rhythm or both. We compare the performance of the different search functions applied on each index structure by a series of experiments.

  14. Large-Scale Land Acquisitions in Sub-Saharan Africa: The Intersection of American Strategic Interests, Economics, Security, and Politics

    DTIC Science & Technology

    2012-05-01

    pressures on supply that led to the global food crisis of 2007 and 2008, allowing prices to fall from their peak in August 2008, the foundational...involved in the acquisition of farmland.9 This trend is also unlikely to slow, with food prices continuing to climb, surpassing the highs of 2007 and...and general secrecy in most large-scale land acquisition contracts, exact data regarding the number of deals and amount of land transferred are

  15. On a generalized Ablowitz-Kaup-Newell-Segur hierarchy in inhomogeneities of media: soliton solutions and wave propagation influenced from coefficient functions and scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Hong, Siyu

    2018-07-01

    In this paper, a generalized Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy in inhomogeneities of media described by variable coefficients is investigated, which includes some important nonlinear evolution equations as special cases, for example, the celebrated Korteweg-de Vries equation modeling waves on shallow water surfaces. To be specific, the known AKNS spectral problem and its time evolution equation are first generalized by embedding a finite number of differentiable and time-dependent functions. Starting from the generalized AKNS spectral problem and its generalized time evolution equation, a generalized AKNS hierarchy with variable coefficients is then derived. Furthermore, based on a systematic analysis on the time dependence of related scattering data of the generalized AKNS spectral problem, exact solutions of the generalized AKNS hierarchy are formulated through the inverse scattering transform method. In the case of reflectionless potentials, the obtained exact solutions are reduced to n-soliton solutions. It is graphically shown that the dynamical evolutions of such soliton solutions are influenced by not only the time-dependent coefficients but also the related scattering data in the process of propagations.

  16. Voigt equivalent widths and spectral-bin single-line transmittances: Exact expansions and the MODTRAN®5 implementation

    NASA Astrophysics Data System (ADS)

    Berk, Alexander

    2013-03-01

    Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.

  17. An Exact Separation of the Spin-Free and Spin-Dependent Terms of the Dirac-Coulomb-Breit Hamiltonian

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1994-01-01

    The Dirac Hamiltonian is transformed by extracting the operator (sigma x p)/2mc from the small component of the wave function and applying it to the operators of the original Hamiltonian. The resultant operators contain products of Paull matrices that can be rearranged to give spin-free and spin-dependent operators. These operators are the ones encountered in the Breit-Pauli Hamiltonian, as well as some of higher order in alpha(sup 2). However, since the transformation of the original Dirac Hamiltonian is exact, the new Hamiltonian can be used in variational calculations, with or without the spin-dependent terms. The new small component functions have the same symmetry properties as the large component. Use of only the spin-free terms of the new Hamiltonian permits the same factorization over spin variables as in nonrelativistic theory, and therefore all the post-Self-Consistent Field (SCF) machinery of nonrelativistic calculations can be applied. However, the single-particle functions are two-component orbitals having a large and small component, and the SCF methods must be modified accordingly. Numerical examples are presented, and comparisons are made with the spin-free second-order Douglas-Kroll transformed Hamiltonian of Hess.

  18. Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, A.C.; Ray, D.

    1987-12-01

    Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.

  19. Analysis of the interaction of an electron beam with a solar cell. III - The effect of spacial variations of the number density of recombination centers on SEM measurements

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1979-01-01

    By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.

  20. Applications of automatic differentiation in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Carle, A.; Bischof, C.; Haigler, Kara J.; Newman, Perry A.

    1994-01-01

    Automatic differentiation (AD) is a powerful computational method that provides for computing exact sensitivity derivatives (SD) from existing computer programs for multidisciplinary design optimization (MDO) or in sensitivity analysis. A pre-compiler AD tool for FORTRAN programs called ADIFOR has been developed. The ADIFOR tool has been easily and quickly applied by NASA Langley researchers to assess the feasibility and computational impact of AD in MDO with several different FORTRAN programs. These include a state-of-the-art three dimensional multigrid Navier-Stokes flow solver for wings or aircraft configurations in transonic turbulent flow. With ADIFOR the user specifies sets of independent and dependent variables with an existing computer code. ADIFOR then traces the dependency path throughout the code, applies the chain rule to formulate derivative expressions, and generates new code to compute the required SD matrix. The resulting codes have been verified to compute exact non-geometric and geometric SD for a variety of cases. in less time than is required to compute the SD matrix using centered divided differences.

  1. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries

    DOE PAGES

    Lu, Jun; Cheng, Lei; Lau, Kah Chun; ...

    2014-09-12

    Lithium–oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium–oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. In this paper, we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium–oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. Thismore » dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. Finally, the results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium–oxygen cells.« less

  2. Quantum dot in interacting environments

    NASA Astrophysics Data System (ADS)

    Rylands, Colin; Andrei, Natan

    2018-04-01

    A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

  3. On the running of the spectral index to all orders: a new model-dependent approach to constrain inflationary models

    NASA Astrophysics Data System (ADS)

    Zarei, Moslem

    2016-06-01

    In conventional model-independent approaches, the power spectrum of primordial perturbations is characterized by such free parameters as the spectral index, its running, the running of running, and the tensor-to-scalar ratio. In this work we show that, at least for simple inflationary potentials, one can find the primordial scalar and tensor power spectra exactly by resumming over all the running terms. In this model-dependent method, we expand the power spectra about the pivot scale to find the series terms as functions of the e-folding number for some single field models of inflation. Interestingly, for the viable models studied here, one can sum over all the terms and evaluate the exact form of the power spectra. This in turn gives more accurate parametrization of the specific models studied in this work. We finally compare our results with recent cosmic microwave background data to find that our new power spectra are in good agreement with the data.

  4. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  5. Kondo blockade due to quantum interference in single-molecule junctions

    PubMed Central

    Mitchell, Andrew K.; Pedersen, Kim G. L.; Hedegård, Per; Paaske, Jens

    2017-01-01

    Molecular electronics offers unique scientific and technological possibilities, resulting from both the nanometre scale of the devices and their reproducible chemical complexity. Two fundamental yet different effects, with no classical analogue, have been demonstrated experimentally in single-molecule junctions: quantum interference due to competing electron transport pathways, and the Kondo effect due to entanglement from strong electronic interactions. Here we unify these phenomena, showing that transport through a spin-degenerate molecule can be either enhanced or blocked by Kondo correlations, depending on molecular structure, contacting geometry and applied gate voltages. An exact framework is developed, in terms of which the quantum interference properties of interacting molecular junctions can be systematically studied and understood. We prove that an exact Kondo-mediated conductance node results from destructive interference in exchange-cotunneling. Nonstandard temperature dependences and gate-tunable conductance peaks/nodes are demonstrated for prototypical molecular junctions, illustrating the intricate interplay of quantum effects beyond the single-orbital paradigm. PMID:28492236

  6. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358

  7. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  8. Estimation of end of life mobile phones generation: The case study of the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polak, Milos, E-mail: mpolak@remasystem.cz; Drapalova, Lenka

    Highlights: Black-Right-Pointing-Pointer In this paper, we define lifespan of mobile phones and estimate their average total lifespan. Black-Right-Pointing-Pointer The estimation of lifespan distribution is based on large sample of EoL mobile phones. Black-Right-Pointing-Pointer Total lifespan of Czech mobile phones is surprisingly long, exactly 7.99 years. Black-Right-Pointing-Pointer In the years 2010-20, about 26.3 million pieces of EoL mobile phones will be generated in the Czech Republic. - Abstract: The volume of waste electrical and electronic equipment (WEEE) has been rapidly growing in recent years. In the European Union (EU), legislation promoting the collection and recycling of WEEE has been in forcemore » since the year 2003. Yet, both current and recently suggested collection targets for WEEE are completely ineffective when it comes to collection and recycling of small WEEE (s-WEEE), with mobile phones as a typical example. Mobile phones are the most sold EEE and at the same time one of appliances with the lowest collection rate. To improve this situation, it is necessary to assess the amount of generated end of life (EoL) mobile phones as precisely as possible. This paper presents a method of assessment of EoL mobile phones generation based on delay model. Within the scope of this paper, the method has been applied on the Czech Republic data. However, this method can be applied also to other EoL appliances in or outside the Czech Republic. Our results show that the average total lifespan of Czech mobile phones is surprisingly long, exactly 7.99 years. We impute long lifespan particularly to a storage time of EoL mobile phones at households, estimated to be 4.35 years. In the years 1990-2000, only 45 thousands of EoL mobile phones were generated in the Czech Republic, while in the years 2000-2010 the number grew to 6.5 million pieces and it is estimated that in the years 2010-2020 about 26.3 million pieces will be generated. Current European legislation sets targets on collection and recycling of WEEE in general, but no specific collection target for EoL mobile phone exists. In the year 2010 only about 3-6% of Czech EoL mobile phones were collected for recovery and recycling. If we make similar estimation using an estimated average EU value, then within the next 10 years about 1.3 billion of EoL mobile phones would be available for recycling in the EU. This amount contains about 31 tonnes of gold and 325 tonnes of silver. Since Europe is dependent on import of many raw materials, efficient recycling of EoL products could help reduce this dependence. To set a working system of collection, it will be necessary to set new and realistic collection targets.« less

  9. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    NASA Astrophysics Data System (ADS)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  10. Exact combinatorial approach to finite coagulating systems

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Chmiel, Anna; Fronczak, Piotr

    2018-02-01

    This paper outlines an exact combinatorial approach to finite coagulating systems. In this approach, cluster sizes and time are discrete and the binary aggregation alone governs the time evolution of the systems. By considering the growth histories of all possible clusters, an exact expression is derived for the probability of a coagulating system with an arbitrary kernel being found in a given cluster configuration when monodisperse initial conditions are applied. Then this probability is used to calculate the time-dependent distribution for the number of clusters of a given size, the average number of such clusters, and that average's standard deviation. The correctness of our general expressions is proved based on the (analytical and numerical) results obtained for systems with the constant kernel. In addition, the results obtained are compared with the results arising from the solutions to the mean-field Smoluchowski coagulation equation, indicating its weak points. The paper closes with a brief discussion on the extensibility to other systems of the approach presented herein, emphasizing the issue of arbitrary initial conditions.

  11. Treatment of pairing correlations based on the equations of motion for zero-coupled pair operators

    NASA Astrophysics Data System (ADS)

    Andreozzi, F.; Covello, A.; Gargano, A.; Ye, Liu Jian; Porrino, A.

    1985-07-01

    The pairing problem is treated by means of the equations of motion for zero-coupled pair operators. Exact equations for the seniority-v states of N particles are derived. These equations can be solved by a step-by-step procedure which consists of progressively adding pairs of particles to a core. The theory can be applied at several levels of approximation depending on the number of core states which are taken into account. Some numerical applications to the treatment of v=0, v=1, and v=2 states in the Ni isotopes are performed. The accuracy of various approximations is tested by comparison with exact results. For the seniority-one and seniority-two problems it turns out that the results obtained from the first-order theory are very accurate, while those of higher order calculations are practically exact. Concerning the seniority-zero problem, a fifth-order calculation reproduces quite well the three lowest states.

  12. Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2015-03-01

    The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.

  13. Exact mapping between different dynamics of isotropically trapped quantum gases

    NASA Astrophysics Data System (ADS)

    Wamba, Etienne; Pelster, Axel; Anglin, James R.

    2016-05-01

    Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.

  14. Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results

    NASA Technical Reports Server (NTRS)

    Liu, Li; Mishchenko, Michael I.

    2016-01-01

    We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.

  15. Asymptotic theory of intermediate- and high-degree solar acoustic oscillations

    NASA Technical Reports Server (NTRS)

    Brodsky, M.; Vorontsov, S. V.

    1993-01-01

    A second-order asymptotic approximation is developed for adiabatic nonradial p-modes of a spherically symmetric star. The exact solutions of adiabatic oscillations are assumed in the outermost layers, where the asymptotic description becomes invalid, which results in a eigenfrequency equation with model-dependent surface phase shift. For lower degree modes, the phase shift is a function of frequency alone; for high-degree modes, its dependence on the degree is explicitly taken into account.

  16. Quantum preservation of the measurements precision using ultra-short strong pulses in exact analytical solution

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Eleuch, H.

    2017-09-01

    Various schemes have been proposed to improve the parameter-estimation precision. In the present work, we suggest an alternative method to preserve the estimation precision by considering a model that closely describes a realistic experimental scenario. We explore this active way to control and enhance the measurements precision for a two-level quantum system interacting with classical electromagnetic field using ultra-short strong pulses with an exact analytical solution, i.e. beyond the rotating wave approximation. In particular, we investigate the variation of the precision with a few cycles pulse and a smooth phase jump over a finite time interval. We show that by acting on the shape of the phase transient and other parameters of the considered system, the amount of information may be increased and has smaller decay rate in the long time. These features make two-level systems incorporated in ultra-short, of-resonant and gradually changing phase good candidates for implementation of schemes for the quantum computation and the coherent information processing.

  17. Nitric Oxide Production by the Human Intestinal Microbiota by Dissimilatory Nitrate Reduction to Ammonium

    PubMed Central

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. 15N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells. PMID:19888436

  18. [Improvement in nuclear medicine diagnosis of kidney function using 99m technetium mercaptoacetyltriglycine (MAG3)].

    PubMed

    Erpenbach, K; Ebert, A; Wieler, H

    1991-03-01

    Renal scintigraphy and clearance measurement are indispensable in nephro-urologic disorders. A continuous series of 103 sequential scintigraphies and clearance measurements were performed with the new technetium-labelled agent MAG3 (Gamma-kamera, Phillips Tomo Diagnost) and 131I-orthohippuric acid (OIH) using the Oberhausen method (Nucleopan, Siemens). The time-activity curves obtained with the two radionuclides agreed exactly. Reaching a tubular excretion rate of nearly 90%, the clearance of MAG3 differed by no more than 6% from the OIH clearance in 95% of the cases. The factor between clearances of the two radionuclides was determined by means of a commercially available software according to the Oberhausen method and amounted to 0.59 +/- 0.09. The favorable physical properties and high activity of MAG3 permit exact examination of tubular function and better assessment of renal morphology than hippuran-labelled radionuclides. The low radiation dose combined with a better spatial resolution, especially, the constant availability in a nuclear medicine department should give the preference to MAG3.

  19. Anisotropic reflectance from turbid media. I. Theory.

    PubMed

    Neuman, Magnus; Edström, Per

    2010-05-01

    It is shown that the intensity of light reflected from plane-parallel turbid media is anisotropic in all situations encountered in practice. The anisotropy, in the form of higher intensity at large polar angles, increases when the amount of near-surface bulk scattering is increased, which dominates in optically thin and highly absorbing media. The only situation with isotropic intensity is when a non-absorbing infinitely thick medium is illuminated diffusely. This is the only case where the Kubelka-Munk model gives exact results and there exists an exact translation between Kubelka-Munk and general radiative transfer. This also means that a bulk scattering perfect diffusor does not exist. Angle-resolved models are thus crucial for a correct understanding of light scattering in turbid media. The results are derived using simulations and analytical calculations. It is also shown that there exists an optimal angle for directional detection that minimizes the error introduced when using the Kubelka-Munk model to interpret reflectance measurements with diffuse illumination.

  20. Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium.

    PubMed

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. (15)N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells.

  1. Pearson-type goodness-of-fit test with bootstrap maximum likelihood estimation.

    PubMed

    Yin, Guosheng; Ma, Yanyuan

    2013-01-01

    The Pearson test statistic is constructed by partitioning the data into bins and computing the difference between the observed and expected counts in these bins. If the maximum likelihood estimator (MLE) of the original data is used, the statistic generally does not follow a chi-squared distribution or any explicit distribution. We propose a bootstrap-based modification of the Pearson test statistic to recover the chi-squared distribution. We compute the observed and expected counts in the partitioned bins by using the MLE obtained from a bootstrap sample. This bootstrap-sample MLE adjusts exactly the right amount of randomness to the test statistic, and recovers the chi-squared distribution. The bootstrap chi-squared test is easy to implement, as it only requires fitting exactly the same model to the bootstrap data to obtain the corresponding MLE, and then constructs the bin counts based on the original data. We examine the test size and power of the new model diagnostic procedure using simulation studies and illustrate it with a real data set.

  2. S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series

    NASA Technical Reports Server (NTRS)

    Bessis, D.; Temkin, A.

    1999-01-01

    We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, N. A.

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  4. Exact solution of a model DNA-inversion genetic switch with orientational control.

    PubMed

    Visco, Paolo; Allen, Rosalind J; Evans, Martin R

    2008-09-12

    DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-specific recombinase enzyme. We propose a simple model for a DNA-inversion switch in which recombinase production is dependent on the switch state (orientational control). Our model is inspired by the fim switch in E. coli. We present an exact analytical solution of the chemical master equation for the model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from Poissonian behavior: the distribution of times in the on state shows a peak and successive flip times are correlated.

  5. Eigen model with general fitness functions and degradation rates

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun; Saakian, David B.

    2006-03-01

    We present an exact solution of Eigen's quasispecies model with a general degradation rate and fitness functions, including a square root decrease of fitness with increasing Hamming distance from the wild type. The found behavior of the model with a degradation rate is analogous to a viral quasi-species under attack by the immune system of the host. Our exact solutions also revise the known results of neutral networks in quasispecies theory. To explain the existence of mutants with large Hamming distances from the wild type, we propose three different modifications of the Eigen model: mutation landscape, multiple adjacent mutations, and frequency-dependent fitness in which the steady state solution shows a multi-center behavior.

  6. An explicit canopy BRDF model and inversion. [Bidirectional Reflectance Distribution Function

    NASA Technical Reports Server (NTRS)

    Liang, Shunlin; Strahler, Alan H.

    1992-01-01

    Based on a rigorous canopy radiative transfer equation, the multiple scattering radiance is approximated by the asymptotic theory, and the single scattering radiance calculation, which requires an numerical intergration due to considering the hotspot effect, is simplified. A new formulation is presented to obtain more exact angular dependence of the sky radiance distribution. The unscattered solar radiance and single scattering radiance are calculated exactly, and the multiple scattering is approximated by the delta two-stream atmospheric radiative transfer model. The numerical algorithms prove that the parametric canopy model is very accurate, especially when the viewing angles are smaller than 55 deg. The Powell algorithm is used to retrieve biospheric parameters from the ground measured multiangle observations.

  7. Fingerprints of exceptional points in the survival probability of resonances in atomic spectra

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Moiseyev, Nimrod

    2011-07-01

    The unique time signature of the survival probability exactly at the exceptional point parameters is studied here for the hydrogen atom in strong static magnetic and electric fields. We show that indeed the survival probability S(t)=|<ψ(0)|ψ(t)>|2 decays exactly as |1-at|2e-ΓEPt/ℏ, where ΓEP is associated with the decay rate at the exceptional point and a is a complex constant depending solely on the initial wave packet that populates exclusively the two almost degenerate states of the non-Hermitian Hamiltonian. This may open the possibility for a first experimental detection of exceptional points in a quantum system.

  8. Transfer learning improves supervised image segmentation across imaging protocols.

    PubMed

    van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen

    2015-05-01

    The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.

  9. Quantitative analysis of essential oils of Thymus daenensis using laser-induced fluorescence and Raman spectroscopy.

    PubMed

    Khoshroo, H; Khadem, H; Bahreini, M; Tavassoli, S H; Hadian, J

    2015-11-10

    Laser-induced fluorescence and Raman spectroscopy are used for the investigation of different genotypes of Thymus daenensis native to the Ilam province of Iran. Different genotypes of T. daenensis essential oils, labeled T1 through T7, possess slight differences with regard to the composition of the thymol. The gas chromatography-mass spectrometry (GC-MS) method is performed to determine the concentration of each constituent as a reference method. The Raman spectra of different concentrations of pure thymol dissolved in hexane as standard samples are obtained via a laboratory prototype Raman spectroscopy setup for the calculation of the calibration curve. The regression coefficient and limit of detection are calculated. The possibility of the differentiation of different genotypes of T. daenensis is also examined by laser-induced fluorescence spectroscopy, although we do not know the exact amounts of their components. All the fluorescence spectral information is used jointly by cluster analysis to differentiate between 7 genotypes. Our results demonstrate the acceptable precision of Raman spectroscopy with GC-MS and corroborate the capacity of Raman spectroscopy in applications in the quantitative analysis field. Furthermore, the cluster analysis results show that laser-induced fluorescence spectroscopy is an acceptable technique for the rapid classification of different genotypes of T. daenensis without having any previous information of their exact amount of constituents. So, the ability to rapidly and nondestructively differentiate between genotypes makes it possible to efficiently select high-quality herbs from many samples.

  10. The probabilistic convolution tree: efficient exact Bayesian inference for faster LC-MS/MS protein inference.

    PubMed

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called "causal independence"). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to O(k log(k)2) and the space to O(k log(k)) where k is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions.

  11. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    PubMed Central

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  12. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    NASA Astrophysics Data System (ADS)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  13. The extended Einstein-Maxwell-aether-axion model: Exact solutions for axionically controlled pp-wave aether modes

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.

    2018-03-01

    The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.

  14. A first-principles study of the influence of helium atoms on the optical response of small silver clusters.

    PubMed

    Pereiro, M; Baldomir, D; Arias, J E

    2011-02-28

    Optical excitation spectra of Ag(n) and Ag(n)@He(60) (n = 2, 8) clusters are investigated in the framework of the time-dependent density functional theory (TDDFT) within the linear response regime. We have performed the ab initio calculations for two different exact exchange functionals (GGA-exact and LDA-exact). The computed spectra of Ag(n)@He(60) clusters with the GGA-exact functional accounting for exchange-correlation effects are found to be generally in a relatively good agreement with the experiment. A strategy is proposed to obtain the ground-state structures of the Ag(n)@He(60) clusters and in the initial process of the geometry optimization, the He environment is simulated with buckyballs. A redshift of the silver clusters spectra is observed in the He environment with respect to the ones of bare silver clusters. This observation is discussed and explained in terms of a contraction of the Ag-He bonding length and a consequent confinement of the s valence electrons in silver clusters. Likewise, the Mie-Gans predictions combined with our TDDFT calculations also show that the dielectric effect produced by the He matrix is considerably less important in explaining the redshifting observed in the optical spectra of Ag(n)@He(60) clusters.

  15. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  16. Time-dependent corona models - Scaling laws

    NASA Technical Reports Server (NTRS)

    Korevaar, P.; Martens, P. C. H.

    1989-01-01

    Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.

  17. Nonlinear stability of Taylor's vortex array

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Tobak, M.

    1987-01-01

    It is proved that the two-dimensional Taylor vortex array, which is an exact unsteady solution of the Navier-Stokes equation, is globally and asymptotically stable in the mean with respect to three-dimensional periodic disturbances. A time-dependent bound on the decay rate of the kinetic energy of disturbances is obtained.

  18. Reflection and Non-Reflection of Particle Wavepackets

    ERIC Educational Resources Information Center

    Cox, Timothy; Lekner, John

    2008-01-01

    Exact closed-form solutions of the time-dependent Schrodinger equation are obtained, describing the propagation of wavepackets in the neighbourhood of a potential. Examples given include zero reflection, total reflection and partial reflection of the wavepacket, for the sech[superscript 2]x/a, 1/x[superscript 2] and delta(x) potentials,…

  19. IDENTIFYING COMPOUNDS USING SOURCE CID ON AN ORTHOGONAL ACCELERATION TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...

  20. Exploring the Relationship between Validity and Comparability in Assessment

    ERIC Educational Resources Information Center

    Crisp, Victoria

    2017-01-01

    This article discusses how comparability relates to current mainstream conceptions of validity, in the context of educational assessment. Relevant literature was used to consider the relationship between these concepts. The article concludes that, depending on the exact claims being made about the appropriate interpretations and uses of the…

  1. Movement Interference in Autism-Spectrum Disorder

    ERIC Educational Resources Information Center

    Gowen, E.; Stanley, J.; Miall, R. C.

    2008-01-01

    Movement interference occurs when concurrently observing and executing incompatible actions and is believed to be due to co-activation of conflicting populations of mirror neurons. It has also been suggested that mirror neurons contribute towards the imitation of observed actions. However, the exact neural substrate of imitation may depend on task…

  2. Aerodynamic beam generator for large particles

    DOEpatents

    Brockmann, John E.; Torczynski, John R.; Dykhuizen, Ronald C.; Neiser, Richard A.; Smith, Mark F.

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  3. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  4. Practical auxiliary basis implementation of Rung 3.5 functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.

    2014-07-21

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less

  5. Circulating plant miRNAs can regulate human gene expression in vitro

    PubMed Central

    Pastrello, Chiara; Tsay, Mike; McQuaid, Rosanne; Abovsky, Mark; Pasini, Elisa; Shirdel, Elize; Angeli, Marc; Tokar, Tomas; Jamnik, Joseph; Kotlyar, Max; Jurisicova, Andrea; Kotsopoulos, Joanne; El-Sohemy, Ahmed; Jurisica, Igor

    2016-01-01

    While Brassica oleracea vegetables have been linked to cancer prevention, the exact mechanism remains unknown. Regulation of gene expression by cross-species microRNAs has been previously reported; however, its link to cancer suppression remains unexplored. In this study we address both issues. We confirm plant microRNAs in human blood in a large nutrigenomics study cohort and in a randomized dose-controlled trial, finding a significant positive correlation between the daily amount of broccoli consumed and the amount of microRNA in the blood. We also demonstrate that Brassica microRNAs regulate expression of human genes and proteins in vitro, and that microRNAs cooperate with other Brassica-specific compounds in a possible cancer-preventive mechanism. Combined, we provide strong evidence and a possible multimodal mechanism for broccoli in cancer prevention. PMID:27604570

  6. Health Advocacy Organizations and the Pharmaceutical Industry: An Analysis of Disclosure Practices

    PubMed Central

    Raveis, Victoria H.; Friedman, Anne; Rothman, David J.

    2011-01-01

    Health advocacy organizations (HAOs) are influential stakeholders in health policy. Although their advocacy tends to closely correspond with the pharmaceutical industry's marketing aims, the financial relationships between HAOs and the pharmaceutical industry have rarely been analyzed. We used Eli Lilly and Company's grant registry to examine its grant-giving policies. We also examined HAO Web sites to determine their grant-disclosure patterns. Only 25% of HAOs that received Lilly grants acknowledged Lilly's contributions on their Web sites, and only 10% acknowledged Lilly as a grant event sponsor. No HAO disclosed the exact amount of a Lilly grant. As highly trusted organizations, HAOs should disclose all corporate grants, including the purpose and the amount. Absent this disclosure, legislators, regulators, and the public cannot evaluate possible conflicts of interest or biases in HAO advocacy. PMID:21233424

  7. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    DOE PAGES

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-05-08

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k yρ s < 1) and short wavelength electron-scale (k yρ s > 1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. We observe significant nonlinear cross-scale couplings in the multiscalemore » simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E x B shearing rate γ E x B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. And while the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Though computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.« less

  8. Gyrokinetic predictions of multiscale transport in a DIII-D ITER baseline discharge

    NASA Astrophysics Data System (ADS)

    Holland, C.; Howard, N. T.; Grierson, B. A.

    2017-06-01

    New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q e coming from long wavelength ion-scale (k y ρ s  <  1) and short wavelength electron-scale (k y ρ s  >  1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q i, but systematically underpredict Q e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E  ×  B shearing rate γ E×B used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.

  9. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan

    2006-08-15

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less

  10. Landau problem with time dependent mass in time dependent electric and harmonic background fields

    NASA Astrophysics Data System (ADS)

    Lawson, Latévi M.; Avossevou, Gabriel Y. H.

    2018-04-01

    The spectrum of a Hamiltonian describing the dynamics of a Landau particle with time-dependent mass and frequency undergoing the influence of a uniform time-dependent electric field is obtained. The configuration space wave function of the model is expressed in terms of the generalised Laguerre polynomials. To diagonalize the time-dependent Hamiltonian, we employ the Lewis-Riesenfeld method of invariants. To this end, we introduce a unitary transformation in the framework of the algebraic formalism to construct the invariant operator of the system and then to obtain the exact solution of the Hamiltonian. We recover the solutions of the ordinary Landau problem in the absence of the electric and harmonic fields for a constant particle mass.

  11. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.; Bhattacharjee, A.; Skiff, F.

    2006-05-15

    Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less

  12. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  13. Modeling the effect of reward amount on probability discounting.

    PubMed

    Myerson, Joel; Green, Leonard; Morris, Joshua

    2011-03-01

    The present study with college students examined the effect of amount on the discounting of probabilistic monetary rewards. A hyperboloid function accurately described the discounting of hypothetical rewards ranging in amount from $20 to $10,000,000. The degree of discounting increased continuously with amount of probabilistic reward. This effect of amount was not due to changes in the rate parameter of the discounting function, but rather was due to increases in the exponent. These results stand in contrast to those observed with the discounting of delayed monetary rewards, in which the degree of discounting decreases with reward amount due to amount-dependent decreases in the rate parameter. Taken together, this pattern of results suggests that delay and probability discounting reflect different underlying mechanisms. That is, the fact that the exponent in the delay discounting function is independent of amount is consistent with a psychophysical scaling interpretation, whereas the finding that the exponent of the probability-discounting function is amount-dependent is inconsistent with such an interpretation. Instead, the present results are consistent with the idea that the probability-discounting function is itself the product of a value function and a weighting function. This idea was first suggested by Kahneman and Tversky (1979), although their prospect theory does not predict amount effects like those observed. The effect of amount on probability discounting was parsimoniously incorporated into our hyperboloid discounting function by assuming that the exponent was proportional to the amount raised to a power. The amount-dependent exponent of the probability-discounting function may be viewed as reflecting the effect of amount on the weighting of the probability with which the reward will be received.

  14. Update on the Systemic Risks of Superpotent Topical Steroids.

    PubMed

    Nakamura, Mio; Abrouk, Michael; Zhu, Henry; Farahnik, Benjamin; Koo, John; Bhutani, Tina

    2017-07-01

    INTRODUCTION: The potential for systemic effects due to percutaneous absorption of superpotent topical steroids has been a longstanding concern. The Food and Drug Administration currently recommends limiting the use of superpotent topical steroids to 50g per week for 2 or 4 consecutive weeks depending on the formulation, which is mostly based on the exact duration with which phase 3 clinical trials were allowed to be conducted per the FDA. This article reviews all published clinical incidence of adrenal adverse effects in the medical literature, specifically Cushing's syndrome (CS) and pathologic adrenal suppression (PAAS), to try to ascertain a more realistic limit for the safe use of superpotent topical steroids as it pertains to its potential systemic effects.

    METHODS: Literature search was conducted using PubMed. Only cases of CS and PAAS secondary to the use of Class I superpotent topical steroids were included. Pediatric cases and full articles unavailable in English were excluded.

    RESULTS: There were a total of 14 cases of CS and 5 cases of subsequent PAAS found in the current literature.

    DISCUSSION: From our review of these cases, if the amount used per week is within FDA guidelines, it appears that patients needed to use superpotent topical steroids for far greater than 2 or 4 weeks to develop CS or PAAS. CS did not necessarily predict occurrence of PAAS, but in all cases CS appeared to be a prerequisite for developing PAAS. All cases of CS and all but one case of PAAS were reversible. If excessive amount of greater than 50g per week is avoided, it appears that superpotent topical steroids may be safe to use consecutively for months, perhaps even years, without causing systemic effects.

    J Drugs Dermatol. 2017;16(7):643-648.

    .

  15. Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.

    2012-12-01

    An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.

  16. Analytical results for a stochastic model of gene expression with arbitrary partitioning of proteins

    NASA Astrophysics Data System (ADS)

    Tschirhart, Hugo; Platini, Thierry

    2018-05-01

    In biophysics, the search for analytical solutions of stochastic models of cellular processes is often a challenging task. In recent work on models of gene expression, it was shown that a mapping based on partitioning of Poisson arrivals (PPA-mapping) can lead to exact solutions for previously unsolved problems. While the approach can be used in general when the model involves Poisson processes corresponding to creation or degradation, current applications of the method and new results derived using it have been limited to date. In this paper, we present the exact solution of a variation of the two-stage model of gene expression (with time dependent transition rates) describing the arbitrary partitioning of proteins. The methodology proposed makes full use of the PPA-mapping by transforming the original problem into a new process describing the evolution of three biological switches. Based on a succession of transformations, the method leads to a hierarchy of reduced models. We give an integral expression of the time dependent generating function as well as explicit results for the mean, variance, and correlation function. Finally, we discuss how results for time dependent parameters can be extended to the three-stage model and used to make inferences about models with parameter fluctuations induced by hidden stochastic variables.

  17. Composite recovery type curves in normalized time from Theis' exact solution

    USGS Publications Warehouse

    Goode, Daniel J.

    1997-01-01

    Type curves derived from Theis’ exact nonequilibrium well function solution are proposed for graphical estimation of aquifer hydraulic properties, transmissivity (T), and storage coefficient (S), from water-level recovery data after cessation of a constant-rate discharge test. Drawdown (on log scale) is plotted versus the ratio of time since pumping stopped to duration of pumping, a normalized time. Under Theis conditions, individual type curves depend on only the dimensionless pumping duration, which depends in turn on S and radial distance from the pumping well. Type curve matching, in contrast to the Theis procedure for pumping data, is performed by shifting only the drawdown axis; the time axis is fixed because it is a relative or normalized time. The match-point for the drawdown axis is used to compute T, and S is determined from matching the curve shape, which depends on early dimensionless-time data. Multiple well data can be plotted and matched simultaneously (a composite plot), with drawdown at different radial distances matching different curves. The ratio of dimensionless pumping durations for any two matched curves is equal to one over the squared ratio of radial distances. Application to two recovery datasets from the literature confirm the utility of these type curves in normalized time for composite estimation of T and S.

  18. An Assessment of the Impact of the Contract Disputes Act of 1978 on U.S. Army Corps of Engineers’ Construction Contracts.

    DTIC Science & Technology

    1981-03-01

    paid from the date the Contracting Officer accepts the claim until payment thereof. Simple interest will be paid as computed at the rate established by...were of quantum (e.g., involved monetary decisions). If money is part of the decision, the Board will often rule in favor of one party based on the... quantum is in issue the exact amount had to be stated. This sum would then have to be certified if it exceeded $50,000. Althoug ’ the legislative

  19. Preliminary Note on a Correlation of a Boundary-Layer Transition Results on Highly Cooled Blunt Bodies

    NASA Technical Reports Server (NTRS)

    Wisniewski, Richard J.

    1957-01-01

    Transition data on highly cooled blunt bodies are correlated in terms of the ratio of wall to local-stream enthalpy, Reynolds number based on displacement thickness, and location of transition. The proposed correlation, although not sensitive enough to predict the exact location of transition does predict the enthalpy ratio below which very early transition on blunt bodies is expected. The correlation is not altered by moderate amounts of surface roughness; however, the location of transition may well be affected by roughness.

  20. Direct methanol feed fuel cell and system

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  1. Recursive solution of number of reachable states of a simple subclass of FMS

    NASA Astrophysics Data System (ADS)

    Chao, Daniel Yuh

    2014-03-01

    This paper aims to compute the number of reachable (forbidden, live and deadlock) states for flexible manufacturing systems (FMS) without the construction of reachability graph. The problem is nontrivial and takes, in general, an exponential amount of time to solve. Hence, this paper focusses on a simple version of Systems of Simple Sequential Processes with Resources (S3PR), called kth-order system, where each resource place holds one token to be shared between two processes. The exact number of reachable (forbidden, live and deadlock) states can be computed recursively.

  2. Heuristic algorithms for solving of the tool routing problem for CNC cutting machines

    NASA Astrophysics Data System (ADS)

    Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.

    2015-11-01

    The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.

  3. Topical Atropine in the Control of Myopia

    PubMed Central

    GALVIS, Virgilio; TELLO, Alejandro; PARRA, M. Margarita; MERAYO-LLOVES, Jesus; LARREA, Jaime; JULIAN RODRIGUEZ, Carlos; CAMACHO, Paul Anthony

    2016-01-01

    Atropine has been used for more than a century to arrest myopia progression. Compelling evidence of its protective effect has been reported in well-designed clinical studies, mainly performed during the last two decades. However, its exact mechanism of action has not been determined. Experimental findings have shown that the mechanism is not related to accommodation, as was thought for decades. A review of the published literature revealed a significant amount of evidence supporting its safety and efficacy at a concentration of 1.0%, and at lower concentrations (as low as 0.01%). PMID:28293653

  4. Time-dependent quantum transport and power-law decay of the transient current in a nano-relay and nano-oscillator

    NASA Astrophysics Data System (ADS)

    Cuansing, Eduardo C.; Liang, Gengchiau

    2011-10-01

    Time-dependent nonequilibrium Green's functions are used to study electron transport properties in a device consisting of two linear chain leads and a time-dependent interlead coupling that is switched on non-adiabatically. We derive a numerically exact expression for the particle current and examine its characteristics as it evolves in time from the transient regime to the long-time steady-state regime. We find that just after switch-on, the current initially overshoots the expected long-time steady-state value, oscillates and decays as a power law, and eventually settles to a steady-state value consistent with the value calculated using the Landauer formula. The power-law parameters depend on the values of the applied bias voltage, the strength of the couplings, and the speed of the switch-on. In particular, the oscillating transient current decays away longer for lower bias voltages. Furthermore, the power-law decay nature of the current suggests an equivalent series resistor-inductor-capacitor circuit wherein all of the components have time-dependent properties. Such dynamical resistive, inductive, and capacitive influences are generic in nano-circuits where dynamical switches are incorporated. We also examine the characteristics of the dynamical current in a nano-oscillator modeled by introducing a sinusoidally modulated interlead coupling between the two leads. We find that the current does not strictly follow the sinusoidal form of the coupling. In particular, the maximum current does not occur during times when the leads are exactly aligned. Instead, the times when the maximum current occurs depend on the values of the bias potential, nearest-neighbor coupling, and the interlead coupling.

  5. Higgs boson pair production at NNLO with top quark mass effects

    NASA Astrophysics Data System (ADS)

    Grazzini, M.; Heinrich, G.; Jones, S.; Kallweit, S.; Kerner, M.; Lindert, J. M.; Mazzitelli, J.

    2018-05-01

    We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M t , with the next-to-next-to-leading order (NNLO) corrections computed in the large- M t approximation. The latter are improved with different reweighting techniques in order to account for finite- M t effects beyond NLO. Our reference NNLO result is obtained by combining one-loop double-real corrections with full M t dependence with suitably reweighted real-virtual and double-virtual contributions evaluated in the large- M t approximation. We present predictions for inclusive cross sections in pp collisions at √{s} = 13, 14, 27 and 100 TeV and we discuss their uncertainties due to missing M t effects. Our approximated NNLO corrections increase the NLO result by an amount ranging from +12% at √{s}=13 TeV to +7% at √{s}=100 TeV, and the residual uncertainty of the inclusive cross section from missing M t effects is estimated to be at the few percent level. Our calculation is fully differential in the Higgs boson pair and the associated jet activity: we also present predictions for various differential distributions at √{s}=14 and 100 TeV, and discuss the size of the missing M t effects, which can be larger, especially in the tails of certain observables. Our results represent the most advanced perturbative prediction available to date for this process.

  6. Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys.

    PubMed

    Minamimoto, Takafumi; Yamada, Hiroshi; Hori, Yukiko; Suhara, Tetsuya

    2012-05-01

    In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables.

  7. Note on the equivalence of a barotropic perfect fluid with a k-essence scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroja, Frederico; Sasaki, Misao

    In this brief report, we obtain the necessary and sufficient condition for a class of noncanonical single scalar field models to be exactly equivalent to barotropic perfect fluids, under the assumption of an irrotational fluid flow. An immediate consequence of this result is that the nonadiabatic pressure perturbation in this class of scalar field systems vanishes exactly at all orders in perturbation theory and on all scales. The Lagrangian for this general class of scalar field models depends on both the kinetic term and the value of the field. However, after a field redefinition, it can be effectively cast inmore » the form of a purely kinetic k-essence model.« less

  8. Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters

    NASA Astrophysics Data System (ADS)

    Nii, Keita

    2018-05-01

    We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.

  9. EXACT RELATIVISTIC NEWTONIAN REPRESENTATION OF GRAVITATIONAL STATIC SPACETIME GEOMETRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava, E-mail: sghosh@jcbose.ac.in, E-mail: ta.sa.nbu@hotmail.com, E-mail: aru_bhadra@yahoo.com

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite usefulmore » in studying a wide range of astrophysical phenomena, especially in strong field gravity.« less

  10. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  11. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  12. Lie symmetries for systems of evolution equations

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2018-01-01

    The Lie symmetries for a class of systems of evolution equations are studied. The evolution equations are defined in a bimetric space with two Riemannian metrics corresponding to the space of the independent and dependent variables of the differential equations. The exact relation of the Lie symmetries with the collineations of the bimetric space is determined.

  13. Plagiarism, Cultural Diversity and Metaphor--Implications for Academic Staff Development

    ERIC Educational Resources Information Center

    Leask, Betty

    2006-01-01

    Plagiarism is a complex, culturally loaded concept which causes much anxiety for both academics and students. Exactly what constitutes plagiarism is dependent on a number of contextual factors. Despite the difficulties associated with defining and detecting plagiarism, it is said to be on the increase, and students from "other cultures"…

  14. Measuring the Speed of Sound through Gases Using Nitrocellulose

    ERIC Educational Resources Information Center

    Molek, Karen Sinclair; Reyes, Karl A.; Burnette, Brandon A.; Stepherson, Jacob R.

    2015-01-01

    Measuring the heat capacity ratios, ?, of gases either through adiabatic expansion or sound velocity is a well established physical chemistry experiment. The most accurate experiments depend on an exact determination of sound origin, which necessitates the use of lasers or a wave generator, where time zero is based on an electrical trigger. Other…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creutz, Michael

    Using the Sigma model to explore the lowest order pseudo-scalar spectrum with SU(3) breaking, this talk considers an additional exact "taste" symmetry to mimic species doubling. Rooting replicas of a valid approach such as Wilson fermions reproduces the desired physical spectrum. In contrast, extra symmetries of the rooted staggered approach leave spurious states and a flavor dependent taste multiplicity.

  16. A GENERALIZED MATHEMATICAL SCHEME TO ANALYTICALLY SOLVE THE ATMOSPHERIC DIFFUSION EQUATION WITH DRY DEPOSITION. (R825689C072)

    EPA Science Inventory

    Abstract

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...

  17. Grasp Representations Depend on Knowledge and Attention

    ERIC Educational Resources Information Center

    Chua, Kao-Wei; Bub, Daniel N.; Masson, Michael E. J.; Gauthier, Isabel

    2018-01-01

    Seeing pictures of objects activates the motor cortex and can have an influence on subsequent grasping actions. However, the exact nature of the motor representations evoked by these pictures is unclear. For example, action plans engaged by pictures could be most affected by direct visual input and computed online based on object shape.…

  18. Generalized Procedure for Improved Accuracy of Thermal Contact Resistance Measurements for Materials With Arbitrary Temperature-Dependent Thermal Conductivity

    DOE PAGES

    Sayer, Robert A.

    2014-06-26

    Thermal contact resistance (TCR) is most commonly measured using one-dimensional steady-state calorimetric techniques. In the experimental methods we utilized, a temperature gradient is applied across two contacting beams and the temperature drop at the interface is inferred from the temperature profiles of the rods that are measured at discrete points. During data analysis, thermal conductivity of the beams is typically taken to be an average value over the temperature range imposed during the experiment. Our generalized theory is presented and accounts for temperature-dependent changes in thermal conductivity. The procedure presented enables accurate measurement of TCR for contacting materials whose thermalmore » conductivity is any arbitrary function of temperature. For example, it is shown that the standard technique yields TCR values that are about 15% below the actual value for two specific examples of copper and silicon contacts. Conversely, the generalized technique predicts TCR values that are within 1% of the actual value. The method is exact when thermal conductivity is known exactly and no other errors are introduced to the system.« less

  19. Exact treatment of the Jaynes-Cummings model under the action of an external classical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, M. Sebawe, E-mail: m.sebaweh@physics.org; Khalil, E.M.; Mathematics Department, College of Science, Taibah University, Al-MaDinah

    2011-09-15

    We consider the usual Jaynes-Cummings model (JCM), in the presence of an external classical field. Under a certain canonical transformation for the Pauli operators, the system is transformed into the usual JCM. Using the equations of motion in the Heisenberg picture, exact solutions for the time-dependent dynamical operators are obtained. In order to calculate the expectation values of these operators, the wave function has been constructed. It has been shown that the classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states. Changes of squeezing from one quadrature to another is also observed for a strongmore » value of the coupling parameter of the classical field. Furthermore, the system in this case displays partial entanglement and the state of the field losses its purity. - Highlights: > The time-dependent JCM, in the presence of the classical field, is still one of the essential problems in the quantum optics. > A new approach is applied through a certain canonical transformation. > The classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filinov, A.V.; Golubnychiy, V.O.; Bonitz, M.

    Extending our previous work [A.V. Filinov et al., J. Phys. A 36, 5957 (2003)], we present a detailed discussion of accuracy and practical applications of finite-temperature pseudopotentials for two-component Coulomb systems. Different pseudopotentials are discussed: (i) the diagonal Kelbg potential, (ii) the off-diagonal Kelbg potential, (iii) the improved diagonal Kelbg potential, (iv) an effective potential obtained with the Feynman-Kleinert variational principle, and (v) the 'exact' quantum pair potential derived from the two-particle density matrix. For the improved diagonal Kelbg potential, a simple temperature-dependent fit is derived which accurately reproduces the 'exact' pair potential in the whole temperature range. The derivedmore » pseudopotentials are then used in path integral Monte Carlo and molecular-dynamics (MD) simulations to obtain thermodynamical properties of strongly coupled hydrogen. It is demonstrated that classical MD simulations with spin-dependent interaction potentials for the electrons allow for an accurate description of the internal energy of hydrogen in the difficult regime of partial ionization down to the temperatures of about 60 000 K. Finally, we point out an interesting relationship between the quantum potentials and the effective potentials used in density-functional theory.« less

  1. Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.

    PubMed

    Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T

    2011-04-01

    We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society

  2. Exact Scheffé-type confidence intervals for output from groundwater flow models: 2. Combined use of hydrogeologic information and calibration data

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    Calibration data (observed values corresponding to model-computed values of dependent variables) are incorporated into a general method of computing exact Scheffé-type confidence intervals analogous to the confidence intervals developed in part 1 (Cooley, this issue) for a function of parameters derived from a groundwater flow model. Parameter uncertainty is specified by a distribution of parameters conditioned on the calibration data. This distribution was obtained as a posterior distribution by applying Bayes' theorem to the hydrogeologically derived prior distribution of parameters from part 1 and a distribution of differences between the calibration data and corresponding model-computed dependent variables. Tests show that the new confidence intervals can be much smaller than the intervals of part 1 because the prior parameter variance-covariance structure is altered so that combinations of parameters that give poor model fit to the data are unlikely. The confidence intervals of part 1 and the new confidence intervals can be effectively employed in a sequential method of model construction whereby new information is used to reduce confidence interval widths at each stage.

  3. Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross-Pitaevskii equation with time-dependent linear potential

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Lakhssassi, A.; Liu, W. M.

    2017-08-01

    A lossless nonlinear L C transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear L C transmission networks.

  4. Exact event-driven implementation for recurrent networks of stochastic perfect integrate-and-fire neurons.

    PubMed

    Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo

    2012-12-01

    In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

  5. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  6. Determining the sample size for co-dominant molecular marker-assisted linkage detection for a monogenic qualitative trait by controlling the type-I and type-II errors in a segregating F2 population.

    PubMed

    Hühn, M; Piepho, H P

    2003-03-01

    Tests for linkage are usually performed using the lod score method. A critical question in linkage analyses is the choice of sample size. The appropriate sample size depends on the desired type-I error and power of the test. This paper investigates the exact type-I error and power of the lod score method in a segregating F(2) population with co-dominant markers and a qualitative monogenic dominant-recessive trait. For illustration, a disease-resistance trait is considered, where the susceptible allele is recessive. A procedure is suggested for finding the appropriate sample size. It is shown that recessive plants have about twice the information content of dominant plants, so the former should be preferred for linkage detection. In some cases the exact alpha-values for a given nominal alpha may be rather small due to the discrete nature of the sampling distribution in small samples. We show that a gain in power is possible by using exact methods.

  7. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  8. Exact axially symmetric galactic dynamos

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  9. Potts and percolation models on bowtie lattices

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Wang, Yancheng; Li, Yang

    2012-08-01

    We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q=1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff [J. Phys. A0305-447010.1088/0305-4470/39/49/003 39, 15083 (2006)]. For the q=2 Potts model on a bowtie A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of the Potts model on a bowtie A lattice with noninteger q. Our numerical results, which are accurate up to seven significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on a bowtie A lattice, and the threshold is sc=0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on a bowtie A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.

  10. Resolving power for the diffusion orientation distribution function.

    PubMed

    Jensen, Jens H; Helpern, Joseph A

    2016-08-01

    The diffusion orientation distribution function (dODF) is primarily used for white matter fiber tractography. Here the resolving power of the dODF is investigated for a simple diffusion model of two intersecting axonal fiber bundles. The resolving power for the dODF is evaluated using the Sparrow criterion. This is determined for the exact dODF and also for q-space imaging (QSI), q-ball, and kurtosis approximations. Based on theoretical and numerical calculations, the resolving power is found to depend on the eigenvalues of the diffusion model and on the degree of radial weighting for the dODF. The resolving powers of the QSI and q-ball dODFs improve with increased b-value. The kurtosis dODF has a resolving power similar to that of the exact dODF. The dODFs, whether exact or approximate, have finite resolving powers that limit their sensitivity to fiber crossings. The resolving powers for the different dODFs considered here provide convenient benchmarks for assessing and comparing their performance. Magn Reson Med 76:679-688, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Validated multiclass targeted determination of antibiotics in fish with high performance liquid chromatography-benchtop quadrupole orbitrap hybrid mass spectrometry.

    PubMed

    Chiesa, Luca; Panseri, Sara; Pasquale, Elisa; Malandra, Renato; Pavlovic, Radmila; Arioli, Francesco

    2018-08-30

    High performance liquid chromatography, coupled with a benchtop Q-Exactive Orbitrap high-resolution mass spectrometer, was successfully applied for the determination of 24 target antibiotics (selected beta-lactams, tetracyclines, fluoroquinolones, sulfonamids, phenicols, macrolides, cephalosporins, lincosamides, diaminopyrimidine) in fish matrices. The Q-Exactive parameters were carefully studied to accomplish the best compromise between a suitable scan speed and selectivity, considering the restrictions associated with generic sample preparation methodology. Retention time, an exact mass with tolerance of 2 ppm and data-dependent MS 2 spectra were the main identifiers. The method was validated through specificity, linearity, recovery, intra- and inter-day repeatability, decision limit (CCα) and detection capability (CCβ), according to 2002/657/EC. The values of CCα and CCβ ranged from 29.2 to 36.8 and 32.5 to 48.9, respectively, while overall recovery ranged from 91.1 to 105.6%. Fifty fish samples were analysed, showing the sporadic incidence of enrofloxacin, chlortetracycline, oxytetracycline, amoxicillin and trimethoprim, albeit below the maximum residual levels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fluid-structure interaction of patient-specific Circle of Willis with aneurysm: Investigation of hemodynamic parameters.

    PubMed

    Jahed, Mahsa; Ghalichi, Farzan; Farhoudi, Mehdi

    2018-01-01

    Circle of Willis (COW) is a network of cerebral artery which continually supplies the brain with blood. Any disturbance in this supply will result in trauma or even death. One of these damages is known as brain Aneurysm. Clinical methods for diagnosing aneurysm can only measure blood velocity; while, in order to understand the causes of these occurrences it is necessary to have information about the amount of pressure and wall shear stress, which is possible through computational models. In this study purpose is achieving exact information of hemodynamic blood flow in COW with an aneurysm and investigation of effective factors on growth and rupture of aneurysm. Here, realistic three-dimensional models have been produced from angiography images. Considering fluid-structure interaction have been simulated by the ANSYS.CFX software. Hemodynamic Studying of the COW and intra-aneurysm showed that the WSS and wall tension in the neck of aneurysms for case A are 129.5 Pa, and 12.2 kPa and for case B they are 53.3 Pa and 56.2 kPa, and more than their fundus, thus neck of aneurysm is prone to rupture. This study showed that the distribution of parameters was dependent on the geometry of the COW, and maximum values are seen in areas prone to aneurysm formation.

  13. A review of recent findings about stress-relaxation in the respiratory system tissues.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi

    2014-12-01

    This article reviews the state of the art about an unclear physiological phenomenon interesting respiratory system tissues, i.e., stress-relaxation. Due to their visco-elastic properties, the tissues do not maintain constant stress under constant deformation. Rather, the stress slowly relaxes and falls to a lower value. The exact molecular basis of this complex visco-elastic behavior is not well defined, but it has been suggested that it may be generated because of the anisotropic mechanical properties of elastin and collagen fibers in the alveolar septa and their interaction phenomena, such as reciprocal sliding, also in relation to interstitial liquid movements. The effects on stress-relaxation of various biochemical and physical factors are reviewed, including the consequences of body temperature variations, respiratory system inflammations and hyperbaric oxygen exposure, endocrinal factors, circulating blood volume variations, changes in inflation volume and/or flow, changes in intra-abdominal pressure because of pneumoperitoneum or Trendelenburg position. The effects of these factors on stress-relaxation have practical consequences because, depending on visco-elastic pressure amount which is requested to inflate the respiratory system in different conditions, respiratory muscles have to produce different values of inspiratory pressure during spontaneous breathing. High inspiratory pressure values might increase the risk of respiratory failure development on mechanical basis.

  14. A Simple Tool for Diet Evaluation in Primary Health Care: Validation of a 16-Item Food Intake Questionnaire

    PubMed Central

    Hemiö, Katri; Pölönen, Auli; Ahonen, Kirsti; Kosola, Mikko; Viitasalo, Katriina; Lindström, Jaana

    2014-01-01

    Our aim was to validate a 16-item food intake questionnaire (16-FIQ) and create an easy to use method to estimate patients’ nutrient intake in primary health care. Participants (52 men, 25 women) completed a 7-day food record and a 16-FIQ. Food and nutrient intakes were calculated and compared using Spearman correlation. Further, nutrient intakes were compared using kappa-statistics and exact and opposite agreement of intake tertiles. The results indicated that the 16-FIQ reliably categorized individuals according to their nutrient intakes. Methods to estimate nutrient intake based on the answers given in 16-FIQ were created. In linear regression models nutrient intake estimates from the food records were used as the dependent variables and sum variables derived from the 16-FIQ were used as the independent variables. Valid regression models were created for the energy proportion of fat, saturated fat, and sucrose and the amount of fibre (g), vitamin C (mg), iron (mg), and vitamin D (μg) intake. The 16-FIQ is a valid method for estimating nutrient intakes in group level. In addition, the 16-FIQ could be a useful tool to facilitate identification of people in need of dietary counselling and to monitor the effect of counselling in primary health care. PMID:24599042

  15. Retrograde spread of 5-aminosalicylic acid enemas in patients with active ulcerative colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campieri, M.; Lanfranchi, G.A.; Brignola, C.

    1986-02-01

    In an attempt to know the exact retrograde spread of high-dosage 5-aminosalicylic acid enemas, we have studied eight patients with active left-sided colitis, by adding a small amount of barium sulfate to the enemas and by checking the spread radiologically after 15 minutes, 1 hour, and 6 hours. Four grams of 5-aminosalicylic acid in 100-ml enemas and 4 gm in 200-ml enemas were used. The same experiment was repeated in a subsequent attack, with enemas labeled with technetium-99m and checked by scintiscans in five of these patients. We always have observed a volume-dependent spread of enemas but, interestingly, in themore » patients studied with technetium-99m there was always a wider spread than that which was detected with barium enemas. In all five patients, 100-ml enemas reached the splenic flexure. In two patients with total colitis, a progression of 100-ml technetium-99m enemas was performed in the transverse colon, but the maximum opacity remained in the left side. We can conclude that 4 gm of 5-aminosalicylic acid in 100-ml enemas can be suitable for treating patients with left-sided colitis, and will represent a valid addition for patients with more extensive colitis.« less

  16. Dynamic axle and wheel loads identification: laboratory studies

    NASA Astrophysics Data System (ADS)

    Zhu, X. Q.; Law, S. S.

    2003-12-01

    Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.

  17. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, Dagmar, E-mail: dagmar.haase@ufz.d

    The amount of land consumption required for housing and transport severely conflicts with both the necessity and the legal obligation to maintain the ecological potential afforded by open spaces to meet the needs of current and future generations with regards to the protection of resources and climate change. Owing to an increasing intensity of soil use, soil conditions appear to have deteriorated in most city regions around the world, namely their filter and runoff regulating functions are impaired by land surfacing. As such soil functions depend on the soil's biophysical properties and the degree of imperviousness, the impact on themore » water balance caused by urban growth varies considerably. In response to the demand for sustainably secure urban water resources, it needs to be assessed exactly how land surfacing affects the functions concerned. Analysing and evaluating urban land use change on the long-term water balance should improve our understanding of the impact of urbanisation on the water household. Therefore, this paper analyses the impact of urban land use change and land surfacing on the long-term urban water balance over a 130-year trajectory by using simple model approaches that are based on data available to the public. The test site is the city of Leipzig. In particular, attention is to be paid to estimating changes of evapotranspiration, direct runoff and groundwater recharge.« less

  19. Rigorous Results for the Distribution of Money on Connected Graphs

    NASA Astrophysics Data System (ADS)

    Lanchier, Nicolas; Reed, Stephanie

    2018-05-01

    This paper is concerned with general spatially explicit versions of three stochastic models for the dynamics of money that have been introduced and studied numerically by statistical physicists: the uniform reshuffling model, the immediate exchange model and the model with saving propensity. All three models consist of systems of economical agents that consecutively engage in pairwise monetary transactions. Computer simulations performed in the physics literature suggest that, when the number of agents and the average amount of money per agent are large, the limiting distribution of money as time goes to infinity approaches the exponential distribution for the first model, the gamma distribution with shape parameter two for the second model and a distribution similar but not exactly equal to a gamma distribution whose shape parameter depends on the saving propensity for the third model. The main objective of this paper is to give rigorous proofs of these conjectures and also extend these conjectures to generalizations of the first two models and a variant of the third model that include local rather than global interactions, i.e., instead of choosing the two interacting agents uniformly at random from the system, the agents are located on the vertex set of a general connected graph and can only interact with their neighbors.

  20. Formal expressions and corresponding expansions for the exact Kohn-Sham exchange potential

    NASA Astrophysics Data System (ADS)

    Bulat, Felipe A.; Levy, Mel

    2009-11-01

    Formal expressions and their corresponding expansions in terms of Kohn-Sham (KS) orbitals are deduced for the exchange potential vx(r) . After an alternative derivation of the basic optimized effective potential integrodifferential equations is given through a Hartree-Fock adiabatic connection perturbation theory, we present an exact infinite expansion for vx(r) that is particularly simple in structure. It contains the very same occupied-virtual quantities that appear in the well-known optimized effective potential integral equation, but in this new expression vx(r) is isolated on one side of the equation. An orbital-energy modified Slater potential is its leading term which gives encouraging numerical results. Along different lines, while the earlier Krieger-Li-Iafrate approximation truncates completely the necessary first-order perturbation orbitals, we observe that the improved localized Hartree-Fock (LHF) potential, or common energy denominator potential (CEDA), or effective local potential (ELP), incorporates the part of each first-order orbital that consists of the occupied KS orbitals. With this in mind, the exact correction to the LHF, CEDA, or ELP potential (they are all equivalent) is deduced and displayed in terms of the virtual portions of the first-order orbitals. We close by observing that the newly derived exact formal expressions and corresponding expansions apply as well for obtaining the correlation potential from an orbital-dependent correlation energy functional.

  1. Introduction of water footprint assessment approach to enhance water supply management in Malaysia

    NASA Astrophysics Data System (ADS)

    Moni, Syazwan N.; Aziz, Edriyana A.; Malek, M. A.

    2017-10-01

    Presently, Water Footprint (WF) Approach has been used to assess the sustainability of a product's chain globally but is lacking in the services sector. Thus, this paper aims to introduce WF assessment as a technical approach to determine the sustainability of water supply management for the typical water supply treatment process (WSTP) used in Malaysia. Water supply is one of the pertinent services and most of WF accounting begins with data obtained from the water supply treatment plant. Therefore, the amount of WF will be accounted for each process of WSTP in order to determine the water utilization for the whole process according to blue, green and grey WF. Hence, the exact amount of water used in the process can be measured by applying this accounting method to assess the sustainability of water supply management in Malaysia. Therefore, the WF approach in assessing sustainability of WSTP could be implemented.

  2. A Cerebellar-model Associative Memory as a Generalized Random-access Memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1989-01-01

    A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.

  3. Trafficking of excitatory amino acid transporter 2- laden vesiclesin cultured astrocytes: a comparison between approximate and exact determination of trajectory angles

    PubMed Central

    Cavender, Chapin E.; Gottipati, Manoj K.; Parpura, Vladimir

    2014-01-01

    A clear consensus concerning the mechanisms of intracellular secretory vesicle trafficking in astrocytes is lacking in the physiological literature. A good characterization of vesicle trafficking that may assist researchers in achieving that goal is the trajectory angle, defined as the angle between the trajectory of a vesicle and a line radial to the cell’s nucleus. In this study, we provide a precise definition of the trajectory angle, describe and compare two methods for its calculation in terms of measureable trafficking parameters, and give recommendations for the appropriate use of each method. We investigated the trafficking of excitatory amino acid transporter 2 (EAAT2) fluorescently tagged with enhanced green fluorescent protein (EGFP) to quantify and validate the usefulness of each method. The motion of fluorescent puncta—taken to represent vesicles containing EAAT2-EGFP—was found to be typical of secretory vesicle trafficking. An exact method for calculating the trajectory angle of these puncta produced no error but required large computation time. An approximate method reduced the requisite computation time but produced an error that depended on the inverse of the ratio of the punctum’s initial distance from the nucleus centroid to its maximal displacement. Fitting this dependence to a power function allowed us to establish an exclusion distance from the centroid, beyond which the approximate method is much less likely to produce an error above acceptable 5 %. We recommend that the exact method be used to calculate the trajectory angle for puncta closer to the nucleus centroid than this exclusion distance. PMID:25408463

  4. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  5. Spontaneous, generalized lipidosis in captive greater horseshoe bats (Rhinolophus ferrumequinum).

    PubMed

    Gozalo, Alfonso S; Schwiebert, Rebecca S; Metzner, Walter; Lawson, Gregory W

    2005-11-01

    During a routine 6-month quarantine period, 3 of 34 greater horseshoe bats (Rhinolophus ferrumequinum) captured in mainland China and transported to the United States for use in echolocation studies were found dead with no prior history of illness. All animals were in good body condition at the time of death. At necropsy, a large amount of white fat was found within the subcutis, especially in the sacrolumbar region. The liver, kidneys, and heart were diffusely tan in color. Microscopic examination revealed that hepatocytes throughout the liver were filled with lipid, and in some areas, lipid granulomas were present. renal lesions included moderate amounts of lipid in the cortical tubular epithelium and large amounts of protein and lipid within Bowman's capsules in the glomeruli. In addition, one bat had large lipid vacuoles diffusely distributed throughout the myocardium. The exact pathologic mechanism inducing the hepatic, renal, and cardiac lipidosis is unknown. The horseshoe bats were captured during hibernation and immediately transported to the United States. It is possible that the large amount of fat stored coupled with changes in photoperiod, lack of exercise, and/or the stress of captivity might have contributed to altering the normal metabolic processes, leading to anorexia and consequently lipidosis in these animals.

  6. The Laplace method for probability measures in Banach spaces

    NASA Astrophysics Data System (ADS)

    Piterbarg, V. I.; Fatalov, V. R.

    1995-12-01

    Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography

  7. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  8. The mean and variance of phylogenetic diversity under rarefaction

    PubMed Central

    Matsen, Frederick A.

    2013-01-01

    Summary Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required. PMID:23833701

  9. The mean and variance of phylogenetic diversity under rarefaction.

    PubMed

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  10. DFT treatment of transport through Anderson junction: exact results and approximations

    NASA Astrophysics Data System (ADS)

    Burke, Kieron

    2012-02-01

    Since the pioneering break-junction experiments of Reed and Tour measuring the conductance of dithiolated benzene between gold leads, many researchers in physics and chemistry have been calculating conductance for such systems using density functional theory (DFT). Off resonance, the predicted current is often 10-100 times larger than that measured. This error is often ascribed to the application of ground-state DFT to a non-equilibrium problem. I will argue that, in fact, this is largely due to errors in the density functional approximations in popular use, rather than necessarily errors in the methodology. A stark illustration of this principle is the ability of DFT to reproduce the exact transmission through an Anderson junction at zero-temperature and weak bias, including the Kondo plateau, but only if the exact ground-state density functional is used. In fact, this case can be used to reverse-engineer the exact functional for this problem. Popular approximations can also be tested, including both smooth and discontinuous functionals of the density, as well as symmetry-broken approaches. [4pt] [1] Kondo effect given exactly by density functional theory, J. P. Bergfield, Z. Liu, K. Burke, and C. A. Stafford, arXiv:1106.3104; [0pt] [2] Broadening of the Derivative Discontinuity in Density Functional Theory, F. Evers, and P. Schmitteckert, arXiv:1106.3658; [0pt] [3] DFT-based transport calculations, Friedel's sum rule and the Kondo effect, P. Tr"oster, P. Schmitteckert, and F. Evers, arXiv:1106.3669; [0pt] [4] Towards a description of the Kondo effect using time-dependent density functional theory, G. Stefanucci, and S. Kurth, arXiv:1106.3728.

  11. Heisenberg-Langevin versus quantum master equation

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel; Jasnow, David

    2017-12-01

    The quantum master equation is an important tool in the study of quantum open systems. It is often derived under a set of approximations, chief among them the Born (factorization) and Markov (neglect of memory effects) approximations. In this article we study the paradigmatic model of quantum Brownian motion of a harmonic oscillator coupled to a bath of oscillators with a Drude-Ohmic spectral density. We obtain analytically the exact solution of the Heisenberg-Langevin equations, with which we study correlation functions in the asymptotic stationary state. We compare the exact correlation functions to those obtained in the asymptotic long time limit with the quantum master equation in the Born approximation with and without the Markov approximation. In the latter case we implement a systematic derivative expansion that yields the exact asymptotic limit under the factorization approximation only. We find discrepancies that could be significant when the bandwidth of the bath Λ is much larger than the typical scales of the system. We study the exact interaction energy as a proxy for the correlations missed by the Born approximation and find that its dependence on Λ is similar to the discrepancy between the exact solution and that of the quantum master equation in the Born approximation. We quantify the regime of validity of the quantum master equation in the Born approximation with or without the Markov approximation in terms of the system's relaxation rate γ , its unrenormalized natural frequency Ω and Λ : γ /Ω ≪1 and also γ Λ /Ω2≪1 . The reliability of the Born approximation is discussed within the context of recent experimental settings and more general environments.

  12. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.

  13. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*.

  14. Interplay between gravity and quintessence: a set of new GR solutions

    NASA Astrophysics Data System (ADS)

    Chernin, Arthur D.; Santiago, David I.; Silbergleit, Alexander S.

    2002-02-01

    A set of new exact analytical general relativity (GR) solutions with time-dependent and spatially inhomogeneous quintessence demonstrate (1) a static non-empty space-time with a horizon-type singular surface; (2) time-dependent spatially homogeneous `spheres' which are completely different in geometry from the Friedmann isotropic models; (3) infinitely strong anti-gravity at a `true' singularity where the density is infinitely large. It is also found that (4) the GR solutions allow for an extreme `density-free' form of energy that can generate regular space-time geometries.

  15. Torques on a nearly rigid body in a relativistic gravitational field

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1980-01-01

    The effect of post-Newtonian potentials on the rotation of a nearly rigid body is shown to consist of a precession and a torque. The frequency of the precession can be exactly represented by means of suitable differential operators. The relativistic torques in the quadrupole approximation depend on the instantaneous orientation of the principal axes of one body with respect to the position like the classical torque and velocity of the other. For a relatively low mass body, such as a gyroscope, these velocity-dependent torques have no observable consequences.

  16. He3 Spin-Dependent Cross Sections and Sum Rules

    NASA Astrophysics Data System (ADS)

    Slifer, K.; Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, B.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Ciofi Degli Atti, C.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Glöckle, W.; Golak, J.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Kamada, H.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J. J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R. D.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Nogga, A.; Pace, E.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatié, F.; Saha, A.; Salmè, G.; Scopetta, S.; Skibiński, R.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; van der Meer, R.; Vernin, P.; Voskanian, H.; Witała, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Zolnierczuk, P.

    2008-07-01

    We present a measurement of the spin-dependent cross sections for the He→3(e→,e')X reaction in the quasielastic and resonance regions at a four-momentum transfer 0.1≤Q2≤0.9GeV2. The spin-structure functions have been extracted and used to evaluate the nuclear Burkhardt-Cottingham and extended Gerasimov-Drell-Hearn sum rules for the first time. The data are also compared to an impulse approximation calculation and an exact three-body Faddeev calculation in the quasielastic region.

  17. Spermidine boosts autophagy to protect from synapse aging.

    PubMed

    Bhukel, Anuradha; Madeo, Frank; Sigrist, Stephan J

    2017-02-01

    All animals form memories to adapt their behavior in a context-dependent manner. With increasing age, however, forming new memories becomes less efficient. While synaptic plasticity promotes memory formation, the etiology of age-induced memory formation remained enigmatic. Previous work showed that simple feeding of polyamine spermidine protects from age-induced memory impairment in Drosophila. Most recent work now shows that spermidine operates directly at synapses, allowing for an autophagy-dependent homeostatic regulation of presynaptic specializations. How exactly autophagic regulations intersect with synaptic plasticity should be an interesting subject for future research.

  18. Spectral function from Reduced Density Matrix Functional Theory

    NASA Astrophysics Data System (ADS)

    Romaniello, Pina; di Sabatino, Stefano; Berger, Jan A.; Reining, Lucia

    2015-03-01

    In this work we focus on the calculation of the spectral function, which determines, for example, photoemission spectra, from reduced density matrix functional theory. Starting from its definition in terms of the one-body Green's function we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the two-body as well as higher-order density matrices. Various approximations to this expression are explored by using the exactly solvable Hubbard chains.

  19. Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.S.; Bhattacharjee, A.

    2005-12-09

    Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.

  20. Cued Speech Transliteration: Effects of Speaking Rate and Lag Time on Production Accuracy

    ERIC Educational Resources Information Center

    Krause, Jean C.; Tessler, Morgan P.

    2016-01-01

    Many deaf and hard-of-hearing children rely on interpreters to access classroom communication. Although the exact level of access provided by interpreters in these settings is unknown, it is likely to depend heavily on interpreter accuracy (portion of message correctly produced by the interpreter) and the factors that govern interpreter accuracy.…

  1. Predicting Quarantine Failure Rates

    PubMed Central

    2004-01-01

    Preemptive quarantine through contact-tracing effectively controls emerging infectious diseases. Occasionally this quarantine fails, however, and infected persons are released. The probability of quarantine failure is typically estimated from disease-specific data. Here a simple, exact estimate of the failure rate is derived that does not depend on disease-specific parameters. This estimate is universally applicable to all infectious diseases. PMID:15109418

  2. Block Constraints in Age-Period-Cohort Models with Unequal-Width Intervals

    ERIC Educational Resources Information Center

    Luo, Liying; Hodges, James S.

    2016-01-01

    Age-period-cohort (APC) models are designed to estimate the independent effects of age, time periods, and cohort membership. However, APC models suffer from an identification problem: There are no unique estimates of the independent effects that fit the data best because of the exact linear dependency among age, period, and cohort. Among methods…

  3. Random function theory revisited - Exact solutions versus the first order smoothing conjecture

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Parker, E. N.

    1975-01-01

    We remark again that the mathematical conjecture known as first order smoothing or the quasi-linear approximation does not give the correct dependence on correlation length (time) in many cases, although it gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is unreliable.

  4. Effect of Level of Adjunct Questions on Achievement of Field Independent/Field Dependent Learners

    ERIC Educational Resources Information Center

    Pi-Sui-Hsu; Dwyer, Francis

    2004-01-01

    Adjunct questions inserted in text requires that an individual is retrieving known concepts and constructing the new meaning. In this process, the individual has to recall the knowledge just studied and locate exactly the location of the information. This study attempts to examine the (a) instructional effects of varied types of adjunct questions…

  5. Multispecies reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, A.; Fatollahi, A. H.; Khorrami, M.; Shariati, A.

    2000-10-01

    Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions become a closed set, are considered. A formal solution for the average densities is found. Some special interactions and the exact time dependence of the average densities in these cases are also studied. For the general case, the large-time behavior of the average densities has also been obtained.

  6. The Role of a Mental Model in Learning to Operate a Device.

    ERIC Educational Resources Information Center

    Kieras, David E.; Bovair, Susan

    1984-01-01

    Describes three studies concerned with learning to operate a control panel device and how this learning is affected by understanding a device model that describes its internal mechanism. Results indicate benefits of a device model depend on whether it supports direct inference of exact steps required to operate the device. (Author/MBR)

  7. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  8. The exact solution of shear-lag problems in flat panels and box beams assumed rigid in the transverse direction

    NASA Technical Reports Server (NTRS)

    Hildebrand, Francis B

    1943-01-01

    A mathematical procedure is herein developed for obtaining exact solutions of shear-lag problems in flat panels and box beams: the method is based on the assumption that the amount of stretching of the sheets in the direction perpendicular to the direction of essential normal stresses is negligible. Explicit solutions, including the treatment of cut-outs, are given for several cases and numerical results are presented in graphic and tabular form. The general theory is presented in a from which further solutions can be readily obtained. The extension of the theory to cover certain cases of non-uniform cross section is indicated. Although the solutions are obtained in terms of infinite series, the present developments differ from those previously given in that, in practical cases, the series usually converge so rapidly that sufficient accuracy is afforded by a small number of terms. Comparisons are made in several cases between the present results and the corresponding solutions obtained by approximate procedures devised by Reissner and by Kuhn and Chiarito.

  9. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory

    NASA Astrophysics Data System (ADS)

    Franzke, Yannick J.; Middendorf, Nils; Weigend, Florian

    2018-03-01

    We present an efficient algorithm for one- and two-component analytical energy gradients with respect to nuclear displacements in the exact two-component decoupling approach to the one-electron Dirac equation (X2C). Our approach is a generalization of the spin-free ansatz by Cheng and Gauss [J. Chem. Phys. 135, 084114 (2011)], where the perturbed one-electron Hamiltonian is calculated by solving a first-order response equation. Computational costs are drastically reduced by applying the diagonal local approximation to the unitary decoupling transformation (DLU) [D. Peng and M. Reiher, J. Chem. Phys. 136, 244108 (2012)] to the X2C Hamiltonian. The introduced error is found to be almost negligible as the mean absolute error of the optimized structures amounts to only 0.01 pm. Our implementation in TURBOMOLE is also available within the finite nucleus model based on a Gaussian charge distribution. For a X2C/DLU gradient calculation, computational effort scales cubically with the molecular size, while storage increases quadratically. The efficiency is demonstrated in calculations of large silver clusters and organometallic iridium complexes.

  10. Alcohol-induced tolerance and physical dependence in mice with ethanol insensitive α1 GABAA receptors

    PubMed Central

    Werner, David F.; Swihart, Andrew R.; Ferguson, Carolyn; Lariviere, William R.; Harrison, Neil L.; Homanics, Gregg E.

    2009-01-01

    Background Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, γ-aminobutyric acid type A receptors (GABAA-Rs) have been extensively implicated in ethanol action. The α1 GABAA-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that α1-GABAA-Rs mediate in part these effects of ethanol. Methods Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin mice that have ethanol-insensitive α1 GABAA-Rs and wildtype controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex assays. Chronic tolerance was assessed on the loss of righting reflex, fixed speed rotarod, hypothermia, and radiant tail flick assays following ten consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess α1 protein levels. Results Compared to controls, knockin mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between wildtype and knockin mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in α1 protein levels, but knockins did not. Conclusions We conclude that α1-GABAA-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on α1-containing GABAA-Rs. PMID:19032579

  11. A Gaussian theory for fluctuations in simple liquids.

    PubMed

    Krüger, Matthias; Dean, David S

    2017-04-07

    Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.

  12. New envelope solitons for Gerdjikov-Ivanov model in nonlinear fiber optics

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Alqahtani, Rubayyi T.; Zhou, Qin; Biswas, Anjan

    2017-11-01

    Exact soliton solutions in a class of derivative nonlinear Schrödinger equations including a pure quintic nonlinearity are investigated. By means of the coupled amplitude-phase formulation, we derive a nonlinear differential equation describing the evolution of the wave amplitude in the non-Kerr quintic media. The resulting amplitude equation is then solved to get exact analytical chirped bright, kink, antikink, and singular soliton solutions for the model. It is also shown that the nonlinear chirp associated with these solitons is crucially dependent on the wave intensity and related to self-steepening and group velocity dispersion parameters. Parametric conditions on physical parameters for the existence of chirped solitons are also presented. These localized structures exist due to a balance among quintic nonlinearity, group velocity dispersion, and self-steepening effects.

  13. On the structure of the master equation for a two-level system coupled to a thermal bath

    NASA Astrophysics Data System (ADS)

    de Vega, Inés

    2015-04-01

    We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).

  14. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 3. Numerical methods and comparisons with exact solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbard, F.; Fitzgerald, J.W.; Hoppel, W.A.

    1998-07-01

    We present the theoretical framework and computational methods that were used by {ital Fitzgerald} {ital et al.} [this issue (a), (b)] describing a one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. The concepts and limitations of modeling spatially varying multicomponent aerosols are elucidated. New numerical sectional techniques are presented for simulating multicomponent aerosol growth, settling, and eddy transport, coupled to time-dependent and spatially varying condensing vapor concentrations. Comparisons are presented with new exact solutions for settling and particle growth by simultaneous dynamic condensation of one vapor and by instantaneous equilibration with a spatially varying secondmore » vapor. {copyright} 1998 American Geophysical Union« less

  15. A Gaussian theory for fluctuations in simple liquids

    NASA Astrophysics Data System (ADS)

    Krüger, Matthias; Dean, David S.

    2017-04-01

    Assuming an effective quadratic Hamiltonian, we derive an approximate, linear stochastic equation of motion for the density-fluctuations in liquids, composed of overdamped Brownian particles. From this approach, time dependent two point correlation functions (such as the intermediate scattering function) are derived. We show that this correlation function is exact at short times, for any interaction and, in particular, for arbitrary external potentials so that it applies to confined systems. Furthermore, we discuss the relation of this approach to previous ones, such as dynamical density functional theory as well as the formally exact treatment. This approach, inspired by the well known Landau-Ginzburg Hamiltonians, and the corresponding "Model B" equation of motion, may be seen as its microscopic version, containing information about the details on the particle level.

  16. Classical heat transport in anharmonic molecular junctions: exact solutions.

    PubMed

    Liu, Sha; Agarwalla, Bijay Kumar; Wang, Jian-Sheng; Li, Baowen

    2013-02-01

    We study full counting statistics for classical heat transport through anharmonic or nonlinear molecular junctions formed by interacting oscillators. An analytical result of the steady-state heat flux for an overdamped anharmonic junction with arbitrary temperature bias is obtained. It is found that the thermal conductance can be expressed in terms of a temperature-dependent effective force constant. The role of anharmonicity is identified. We also give the general formula for the second cumulant of heat in steady state, as well as the average geometric heat flux when two system parameters are modulated adiabatically. We present an anharmonic example for which all cumulants for heat can be obtained exactly. For a bounded single oscillator model with mass we found that the cumulants are independent of the nonlinear potential.

  17. The Quench Action

    NASA Astrophysics Data System (ADS)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  18. Black holes in an expanding universe.

    PubMed

    Gibbons, Gary W; Maeda, Kei-ichi

    2010-04-02

    An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.

  19. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  20. Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads

    NASA Astrophysics Data System (ADS)

    Stepanov, Alexey B.; Antman, Stuart S.

    2017-12-01

    This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.

  1. Plant Minders

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Indoor plants are automatically watered by the Aqua Trends watering system. System draws water from building outlets or from pump/reservoir module and distributes it to the plants via a network of tubes and adjustable nozzles. Key element of system is electronic controller programmed to dispense water according to the needs of various plants in an installation. Adjustable nozzle meters out exactly right amount of water at proper time to the plant it's serving. More than 100 Aqua/Trends systems are in service in the USA, from a simple residential system to a large Mirage III system integrated to water all greenery in a large office or apartment building.

  2. A simple explanation of the classic hydrostatic paradox

    NASA Astrophysics Data System (ADS)

    Kontomaris, Stylianos-Vasileios; Malamou, Anna

    2016-07-01

    An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the same. However, if the shape of the container is different, the amount of the liquid (and as a consequence the weight) can greatly vary. In this paper, a simple explanation of the hydrostatic paradox, specifically designed and implemented for educational purposes regarding secondary education, is provided.

  3. Transfer in motion perceptual learning depends on the difficulty of the training task.

    PubMed

    Wang, Xiaoxiao; Zhou, Yifeng; Liu, Zili

    2013-06-07

    One hypothesis in visual perceptual learning is that the amount of transfer depends on the difficulty of the training and transfer tasks (Ahissar & Hochstein, 1997; Liu, 1995, 1999). Jeter, Dosher, Petrov, and Lu (2009), using an orientation discrimination task, challenged this hypothesis by arguing that the amount of transfer depends only on the transfer task but not on the training task. Here we show in a motion direction discrimination task that the amount of transfer indeed depends on the difficulty of the training task. Specifically, participants were first trained with either 4° or 8° direction discrimination along one average direction. Their transfer performance was then tested along an average direction 90° away from the trained direction. A variety of transfer measures consistently demonstrated that transfer performance depended on whether the participants were trained on 4° or 8° directional difference. The results contradicted the prediction that transfer was independent of the training task difficulty.

  4. Possible pore size effects on the state of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas and their temperature dependence.

    PubMed

    Tagaya, Motohiro; Ogawa, Makoto

    2008-12-07

    The states of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas with different pore sizes (2.5, 3.1 and 5.0 nm) were investigated. Alq3 was successfully occluded into the mesoporous silicas from solution and the adsorbed amount of Alq3 per BET surface area was effectively controlled by changing the added amount Alq3 to the solution. The state of Alq3 in the mesopore varied depending on the pore size as well as the adsorbed amount of Alq3 as revealed by variation of the photoluminescence spectra. The luminescence of the adsorbed Alq3 was found to be temperature-dependent, indicating the mobility of the adsorbed Alq3 to temperature variations. The temperature-dependence also depended on the pore size. The guest-guest interactions between Alq3 molecules as well as the host-guest interactions between Alq3 and the mesopore were controlled by the pore size.

  5. The Relationship of Loss, Mean Age of Air and the Distribution of CFCs to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Guptal, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2007-01-01

    Man-made molecules called chlorofluorcarbons (CFCs) are broken apart in the stratosphere by high energy light, and the reactive chlorine gases that come from them cause the ozone hole. Since the ozone layer stops high energy light from reaching low altitudes, CFCs must be transported to high altitudes to be broken apart. The number of molecules per volume (the density) is much smaller at high altitudes than near the surface, and CFC molecules have a very small chance of reaching that altitude in any particular year. Many tons of CFCs were put into the atmosphere during the end of the last century, and it will take many years for all of them to be destroyed. Each CFC has an atmospheric lifetime that depends on the amount of energy required to break them apart. Two of the gases that were made the most are CFC13 and CF2C12. It takes more energy to break apart CF2C12 than CFC13, and its lifetime is about 100 years, nearly twice as long as the lifetime for CFC13. It is hard to figure out the lifetimes from surface measurements because we don't know exactly how much was released into the air each year. Atmospheric models are used to predict what will happen to ozone and other gases as the CFCs decrease and other gases like C02 continue to increase during the next century. CFC lifetimes are used to predict future concentrations and all assessment models use the predicted future concentrations. The models have different circulations and the amount of CFC lost according to the model may not match the loss that is expected according to the lifetime. In models the amount destroyed per year depends on how fast the model pushes air into the stratosphere and how much goes to high altitudes each year. This paper looks at the way the model circulation changes the lifetimes, and looks at measurements that tell us which model is more realistic. Some models do a good job reproducing the age-of-air, which tells us that these models are circulating the stratospheric air at the right speed. These same models also do a good job reproducing the amount of CFCs in the lower atmosphere where they were measured by instruments on NASA's ER-2, a research plane that flies in the lower stratosphere. The lifetime for CFC13 that is calculated using the models that do the best job matching the data is about 25% longer than most people thought. This paper shows that using these measurements to decide which models are more realistic helps us understand why their predictions are different from each other and also to decide which predictions are more likely.

  6. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    PubMed

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs. Enantioselective biotransformation of chiral POPs is dependent on enzyme amounts and activities. However, the role of cytochrome P450 in enantioselective biotransformation has not yet been confirmed. Currently available data on biotransformation of chiral POPs provide a preliminary understanding of the fate of chiral compounds in organisms. Further detailed studies of species-dependent biotransformation pathway and molecular mechanism in various animal models should be performed to comprehensively understand chiral POP biotransformation.

  7. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  8. Generalization of dielectric-dependent hybrid functionals to finite systems

    DOE PAGES

    Brawand, Nicholas P.; Voros, Marton; Govoni, Marco; ...

    2016-10-04

    The accurate prediction of electronic and optical properties of molecules and solids is a persistent challenge for methods based on density functional theory. We propose a generalization of dielectric-dependent hybrid functionals to finite systems where the definition of the mixing fraction of exact and semilocal exchange is physically motivated, nonempirical, and system dependent. The proposed functional yields ionization potentials, and fundamental and optical gaps of many, diverse molecular systems in excellent agreement with experiments, including organic and inorganic molecules and semiconducting nanocrystals. As a result, we further demonstrate that this hybrid functional gives the correct alignment between energy levels ofmore » the exemplary TTF-TCNQ donor-acceptor system.« less

  9. Well-posedness of nonlocal parabolic differential problems with dependent operators.

    PubMed

    Ashyralyev, Allaberen; Hanalyev, Asker

    2014-01-01

    The nonlocal boundary value problem for the parabolic differential equation v'(t) + A(t)v(t) = f(t) (0 ≤ t ≤ T), v(0) = v(λ) + φ, 0 < λ ≤ T in an arbitrary Banach space E with the dependent linear positive operator A(t) is investigated. The well-posedness of this problem is established in Banach spaces C 0 (β,γ) (E α-β ) of all E α-β -valued continuous functions φ(t) on [0, T] satisfying a Hölder condition with a weight (t + τ)(γ). New Schauder type exact estimates in Hölder norms for the solution of two nonlocal boundary value problems for parabolic equations with dependent coefficients are established.

  10. Quantum and classical dissipation of charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less

  11. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies.

    PubMed

    Raghunathan, Vivek; Ye, Winnie N; Hu, Juejun; Izuhara, Tomoyuki; Michel, Jurgen; Kimerling, Lionel

    2010-08-16

    We report the design criteria and performance of Si ring resonators for passive athermal applications in wavelength division multiplexing (WDM). The waveguide design rules address i) positive-negative thermo-optic (TO) composite structures, ii) resonant wavelength dependent geometry to achieve constant confinement factor (Gamma), and iii) observation of small residual second order effects. We develop exact design requirements for a temperature dependent resonant wavelength shift (TDWS) of 0 pm/K and present prototype TDWS performance of 0.5 pm/K. We evaluate the materials selection tradeoffs between high-index contrast (HIC) and low-index contrast (LIC) systems and show, remarkably, that FSR and footprint become comparable under the constraint of athermal design.

  12. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  13. Higher-order symmetry energy and neutron star core-crust transition with Gogny forces

    NASA Astrophysics Data System (ADS)

    Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Rios, A.

    2017-12-01

    Background: An accurate determination of the core-crust transition is necessary in the modeling of neutron stars for astrophysical purposes. The transition is intimately related to the isospin dependence of the nuclear force at low baryon densities. Purpose: To study the symmetry energy and the core-crust transition in neutron stars using the finite-range Gogny nuclear interaction and to examine the deduced crustal thickness and crustal moment of inertia. Methods: The second-, fourth-, and sixth-order coefficients of the Taylor expansion of the energy per particle in powers of the isospin asymmetry are analyzed for Gogny forces. These coefficients provide information about the departure of the symmetry energy from the widely used parabolic law. The neutron star core-crust transition is evaluated by looking at the onset of thermodynamical instability of the liquid core. The calculation is performed with the exact Gogny equation of state (EoS) (i.e., the Gogny EoS with the full isospin dependence) for the β -equilibrated matter of the core, and also with the Taylor expansion of the Gogny EoS in order to assess the influence of isospin expansions on locating the inner edge of neutron star crusts. Results: The properties of the core-crust transition derived from the exact EoS differ from the predictions of the Taylor expansion even when the expansion is carried through sixth order in the isospin asymmetry. Gogny forces, using the exact EoS, predict the ranges 0.094 fm-3≲ρt≲0.118 fm-3 for the transition density and 0.339 MeVfm-3≲Pt≲0.665 MeVfm-3 for the transition pressure. The transition densities show an anticorrelation with the slope parameter L of the symmetry energy. The transition pressures are not found to correlate with L . Neutron stars obtained with Gogny forces have maximum masses below 1.74 M⊙ and relatively small moments of inertia. The crustal mass and moment of inertia are evaluated and comparisons are made with the constraints from observed glitches in pulsars. Conclusions: The finite-range exchange contribution of the nuclear force, and its associated nontrivial isospin dependence, is key in determining the core-crust transition properties. Finite-order isospin expansions do not reproduce the core-crust transition results of the exact EoS. The predictions of the Gogny D1M force for the stellar crust are overall in broad agreement with those obtained using the Skyrme-Lyon EoS.

  14. Importance of the correlation contribution for local hybrid functionals: range separation and self-interaction corrections.

    PubMed

    Arbuznikov, Alexei V; Kaupp, Martin

    2012-01-07

    Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.

  15. Theory of concentration dependence in drag reduction by polymers and of the maximum drag reduction asymptote.

    PubMed

    Benzi, Roberto; Ching, Emily S C; Horesh, Nizan; Procaccia, Itamar

    2004-02-20

    A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the maximum drag reduction (MDR) asymptote. The Re-dependent drag and the MDR are analytically explained, and the dependence of the amount of drag on material parameters is rationalized.

  16. Robustness of networks with assortative dependence groups

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Ming; Deng, Lin; Wang, Bing-Hong

    2018-07-01

    Assortativity is one of the important characteristics in real networks. To study the effects of this characteristic on the robustness of networks, we propose a percolation model on networks with assortative dependence group. The assortativity in this model means that the nodes with the same or similar degrees form dependence groups, for which one node fails, other nodes in the same group are very likely to fail. We find that the assortativity makes the nodes with large degrees easier to survive from the cascading failure. In this way, such networks are more robust than that with random dependence group, which also proves the assortative network is robust in another perspective. Furthermore, we also present exact solutions to the size of the giant component and the critical point, which are in agreement with the simulation results well.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derrida, B.; Nadal, J.P.

    It is possible to construct diluted asymmetric models of neural networks for which the dynamics can be calculated exactly. The authors test several learning schemes, in particular, models for which the values of the synapses remain bounded and depend on the history. Our analytical results on the relative efficiencies of the various learning schemes are qualitatively similar to the corresponding ones obtained numerically on fully connected symmetric networks.

  18. Timed and Untimed Grammaticality Judgments Measure Distinct Types of Knowledge: Evidence from Eye-Movement Patterns

    ERIC Educational Resources Information Center

    Godfroid, Aline; Loewen, Shawn; Jung, Sehoon; Park, Ji-Hyun; Gass, Susan; Ellis, Rod

    2015-01-01

    Grammaticality judgment tests (GJTs) have been used to elicit data reflecting second language (L2) speakers' knowledge of L2 grammar. However, the exact constructs measured by GJTs, whether primarily implicit or explicit knowledge, are disputed and have been argued to differ depending on test-related variables (i.e., time pressure and item…

  19. Second-order numerical solution of time-dependent, first-order hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Shah, Patricia L.; Hardin, Jay

    1995-01-01

    A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.

  20. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    PubMed

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given.

  1. MP Resulting in Autophagic Cell Death of Microglia through Zinc Changes against Spinal Cord Injury

    PubMed Central

    Li, Dingding; Wang, Guannan; Han, Donghe; Bi, Jing; Li, Chenyuan; Wang, Hongyu; Liu, Zhiyuan; Gao, Wei; Gao, Kai; Yao, Tianchen; Wan, Zhanghui; Li, Haihong; Mei, Xifan

    2016-01-01

    Methylprednisolone pulse therapy (MPPT), as a public recognized therapy of spinal cord injury (SCI), is doubted recently, and the exact mechanism of MP on SCI is unclear. This study sought to investigate the exact effect of MP on SCI. We examined the effect of MP in a model of SCI in vivo and an LPS induced model in vitro. We found that administration of MP produced an increase in the Basso, Beattie, and Bresnahan scores and motor neurons counts of injured rats. Besides the number of activated microglia was apparently reduced by MP in vivo, and Beclin-1 dependent autophagic cell death of microglia was induced by MP in LPS induced model. At the same time, MP increases cellular zinc concentration and level of ZIP8, and TPEN could revert effect of MP on autophagic cell death of microglia. Finally, we have found that MP could inhibit NF-κβ in LPS induced model. These results show that the MP could result in autophagic cell death of microglia, which mainly depends on increasing cellular labile zinc, and may be associated with inhibition of NF-κβ, and that MP can produce neuroprotective effect in SCI. PMID:27057544

  2. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  3. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  4. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE PAGES

    Velikovich, A. L.; Schmit, P. F.

    2015-12-28

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  5. Double-winding Wilson loops in SU(N) Yang-Mills theory - A criterion for testing the confinement models -

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi; Shibata, Akihiro

    2018-03-01

    We examine how the average of double-winding Wilson loops depends on the number of color N in the SU(N) Yang-Mills theory. In the case where the two loops C1 and C2 are identical, we derive the exact operator relation which relates the doublewinding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on N. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for N = 2 is excluded for N ⩾ 3, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law (N - 3)A1/(N - 1) + A2 with A1 and A2(A1 < A2) being the minimal areas spanned respectively by the loops C1 and C2, which is neither sum-ofareas (A1 + A2) nor difference-of-areas (A2 - A1) law when (N ⩾ 3). Indeed, this behavior can be confirmed in the two-dimensional SU(N) Yang-Mills theory exactly.

  6. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-12-01

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].

  7. Analytical model of a corona discharge from a conical electrode under saturation

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.

    2012-11-01

    Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.

  8. Exact and approximate stochastic simulation of intracellular calcium dynamics.

    PubMed

    Wieder, Nicolas; Fink, Rainer H A; Wegner, Frederic von

    2011-01-01

    In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.

  9. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  10. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  11. BPS equations and non-trivial compactifications

    NASA Astrophysics Data System (ADS)

    Tyukov, Alexander; Warner, Nicholas P.

    2018-05-01

    We consider the problem of finding exact, eleven-dimensional, BPS supergravity solutions in which the compactification involves a non-trivial Calabi-Yau manifold, Y , as opposed to simply a T 6. Since there are no explicitly-known metrics on non-trivial, compact Calabi-Yau manifolds, we use a non-compact "local model" and take the compactification manifold to be Y={M}_{GH}× {T}^2 , where ℳGH is a hyper-Kähler, Gibbons-Hawking ALE space. We focus on backgrounds with three electric charges in five dimensions and find exact families of solutions to the BPS equations that have the same four supersymmetries as the three-charge black hole. Our exact solution to the BPS system requires that the Calabi-Yau manifold be fibered over the space-time using compensators on Y . The role of the compensators is to ensure smoothness of the eleven-dimensional metric when the moduli of Y depend on the space-time. The Maxwell field Ansatz also implicitly involves the compensators through the frames of the fibration. We examine the equations of motion and discuss the brane distributions on generic internal manifolds that do not have enough symmetry to allow smearing.

  12. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  13. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  14. Exact and approximate many-body dynamics with stochastic one-body density matrix evolution

    NASA Astrophysics Data System (ADS)

    Lacroix, Denis

    2005-06-01

    We show that the dynamics of interacting fermions can be exactly replaced by a quantum jump theory in the many-body density matrix space. In this theory, jumps occur between densities formed of pairs of Slater determinants, Dab=|Φa><Φb|, where each state evolves according to the stochastic Schrödinger equation given by O. Juillet and Ph. Chomaz [Phys. Rev. Lett. 88, 142503 (2002)]. A stochastic Liouville-von Neumann equation is derived as well as the associated. Bogolyubov-Born-Green-Kirwood-Yvon hierarchy. Due to the specific form of the many-body density along the path, the presented theory is equivalent to a stochastic theory in one-body density matrix space, in which each density matrix evolves according to its own mean-field augmented by a one-body noise. Guided by the exact reformulation, a stochastic mean-field dynamics valid in the weak coupling approximation is proposed. This theory leads to an approximate treatment of two-body effects similar to the extended time-dependent Hartree-Fock scheme. In this stochastic mean-field dynamics, statistical mixing can be directly considered and jumps occur on a coarse-grained time scale. Accordingly, numerical effort is expected to be significantly reduced for applications.

  15. Many-body Green’s function theory for electron-phonon interactions: The Kadanoff-Baym approach to spectral properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Peng, Yang; Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin-Dahlem

    2015-12-21

    We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting electrons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into account effects of the initial preparation of an equilibrium state and allows for an explicit time-dependence of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent Born (Gd) and fully self-consistent Born (GD) approximationsmore » published in Säkkinen et al. [J. Chem. Phys. 143, 234101 (2015)]. Here, the homogeneous ground state solution is shown to become unstable for a sufficiently strong interaction while a symmetry-broken ground state solution is shown to be stable in the Hartree approximation. Signatures of this instability are observed for the partially self-consistent Born approximation but are not found for the fully self-consistent Born approximation. By understanding the stability properties, we are able to study the linear response regime by calculating the density-density response function by time-propagation. This amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that none of the approximations is able to describe the response function during or beyond the bipolaronic crossover for the parameters investigated. Overall, we provide an extensive discussion on when the approximations are valid and how they fail to describe the studied exact properties of the chosen model system.« less

  16. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

    PubMed

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

  17. IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Thomas; Girichidis, Philipp; Gatto, Andrea

    2015-11-10

    The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less

  18. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth

    PubMed Central

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R.; Vande Geest, Jonathan P.

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues. PMID:27078495

  19. Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation.

    PubMed

    Casida, Mark E; Huix-Rotllant, Miquel

    2016-01-01

    In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew's Jacob's ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.

  20. [A new method for determining the body composition with the aid of a displacement balance and low-pressure volumetric analysis (author's transl)].

    PubMed

    Schmid, P; Schlick, W; Irsigler, K

    1976-01-09

    A new method for determination of the specific weight of the gas-free human body is presented. Volume measurement is facilitated by extremely precise scales, by means of which a well-defined amount of water which was removed from a "patient container" is weighed. After the test subject has entered the container and is standing up to the neck in water, the container is closed. The combined gas volume consisting of the subject's lung volume, his intestinal gas and the air around his head is measured by lowering the pressure by an exactly-defined amount. This is done by opening a valve at the bottom of the container, which results in the outflow of a certain amount of water, the volume of which corresponds to the volume expansion inside the container. The gas volume prior to expansion can then be calculated by application of the gas laws. The advantages of this measuring device are its relatively small size, the high precision and the fact that the procedure is not unpleasant for the subject, as the head is not submerged under water.

Top